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Sigamos por esa senda
a ver qué luz encontramos,
esa luz que está en la tierra
y que nosotros apagamos.1

1Todo es de color. Lole y Manuel





Prefacio

A las decenas de páginas que contienen la cristalización del trabajo de casi un lustro
es costumbre añadir una sección al margen de los detalles técnicos y académicos. Suele
ser este un texto breve, como compendio del tránsito emocional que ha envuelto las
derivaciones, los análisis, las figuras y los papers.
A mi director de tesis, Antonio Fernández Domínguez, no le hago justicia escriba cinco

líneas o veinte folios. Creo que el vínculo ha superado lo profesional, probablemente
debido a la confianza que depositó al permitirme trabajar mano a mano junto a él
durante todos estos años y donde cada uno de nosotros ha intentado enseñar y aprender
el oficio, respectivamente. Espero haber estado a la altura mínima exigida en este camino,
continuación de una saga con varios siglos de andadura. Asimismo, quiero recordar y
agradecer al prof. Guillermo Acuña, por tantas discusiones en torno a la nanofotónica,
que nunca ha dejado de ofrecernos su ayuda, desde Braunschweig o Fribourg, y cuyos
proyectos experimentales fueron parte fundamental de mi trabajo sobre todo al inicio de
la tesis.
It is true and essential to acknowledge the members of the jury, who kindly accepted

our request to evaluate this thesis. Thanks to Roberto Otero, Johannes Feist, Angela
Demetriadou, Miguel Navarro-Cía, Ana Asenjo-García, José Antonio Sánchez-Gil and
Carlos González-Ballestero for your time and your willingness to attend the defense.
Paso ahora a mis compañeros, los pasados y los presentes, quién sabe si los habrá

futuros en el tiempo corto que me quede en el 301. Del primer día recuerdo el pasillo
escondido y el aspecto que presentaba la que iba a ser mi mesa, porque toda mesa por
ocupar tiene un halo de ruina, con par de folios viejos como sello para un lugar que tuvo
vida y viene a ser repoblado. Gracias desde la más estricta verticalidad a Carlos, Javier
(dP) y Javi (G), que me enseñaron las urdimbres subterráneas del mundo académico,
de los que intenté aprender lo indecible y que siempre han estado ahí. Todos los días al
mediodía, Rubén, Víctor y Sergio daban al comedor un aspecto de patio de Monipodio,
lleno de lenguas afiladas y anécdotas alegales. ¡Poca paz para tanta guerra! No puedo
dejar de recordar aquí al conjunto de biólogos moleculares, Predes, Antonio y Filip, que
hicieron tambalearse nuestras pocas nociones del concepto emergencia en esa magia negra
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que esconde la auto-replicación del ADN. Me hago cargo de mi parte en las veces que
nuestro escándalo de voces rompió vuestro ritmo de trabajo, sobre todo el de nuestras
compañeras de almuerzo, las siempre cañeras Ana, Elena, Silvia y Rocío. Of course, I
cannot forget the stay of Dr. Rui-Qi Li in our office.
El paso de los años dio pie a la marcha de casi toda la vieja guardia, prácticamente

al mismo tiempo que mudé mis bártulos por seis meses a las llanuras polvorientas al
costado del río Grande. Al prof. Alejandro Manjavacas, muchas gracias por el trato
personal y profesional que me brindó desde el instante inicial en el que nuestros correos
se cruzaron. Dr. Paul and Dr. Keith, thank you for both your hospitality and including
me in any plan related to gun powder since the first day. Ms. LZ, from Valles Caldera
to the Mexican border, thank you for every kilometer and every party you took me,
you know this train’ll stop at Tucumcari. Thanks to Siva and the soccer team, Julián,
Mohamad and all the people in the PandA and PAIS departments.
A mi vuelta de Nuevo México, la situación por todos bien conocida cambió el ritmo

del despacho, impidiéndonos seguir desarrollando el culto de nuestros altares y sus tradi-
ciones. A Miguel, el señalado como siguiente (con esto no quiero meter presión), gracias
por cada segundo de discusiones y líneas de pensamiento, espero no se desvanezcan en la
incertidumbre del futuro. A Iñaki, nuestra promesa, gracias por tus lecturas concienzu-
das de partes del manuscrito y por tu agudeza cada vez que hemos tenido que atacar un
problema. A los más jóvenes, Jaime y Alberto, que vagan por senderos parecidos a los
míos, que tengáis suerte con todo obstáculo con el que os crucéis. Espero haber podido
ayudar en lo que hayáis necesitado tal y como me ayudaron los que por delante de mí
fueron.
Saliendo de nuestro lóbrego pasillo y subiendo las escaleras, quiero recordar a todos

los que por el departamento pasaron, en especial estudiantes y posdocs, que tanta vida
dieron, desde el humor absurdo y los memes a grupos de whatsapp furtivos de Guille, José
y Nerea. María y Raúl, mis quintos y sufridos compañeros de algunos de los Rinconetes
citados, ya sabéis que siempre a tope. Gracias pues a Marc, que nos ha dado perlas
filosóficas, científicas y políticas a todos los niveles y a mis compañeros de laboratorios,
algunos de ellos profesores, Juan Antonio, Esteban, Adolfo, Carlos Tejedor, Rafa Delgado
y Elena del Valle. Asimismo, no puedo dejar de recordar y agradecer a Laura Ramos y
Almudena Conde, que desde el despacho de la sexta planta tanta ayuda y guía nos han
dado en los procedimientos administrativos con Rectorado y el Ministerio.
Dos espíritus libres que han servido muchas veces como guía, Rocío y Clàudia, que

tanta Luz que dieron al módulo 5. Por la realización de todos vuestros (y algunos nue-
stros) proyectos, porque hay ciencia, hay vida y hay arte.
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Llego a las puertas del módulo y abandono el edificio. A Mónica, gracias por todos
estos años de análisis y consejo sobre lo que pasaba puertas afuera y puertas adentro,
que así sigan siendo. Qué puedo sino colmar de infinitas coronas de laurel y flores las
sienes de Hernán, mi primo, eterna cafeína, con el que tantos caminos de hierro anduve,
de Cantoblanco a la Mancha. Espero haber aportado por lo menos una mínima parte de
lo que de los dos he recibido.
No obstante, todo esto empezó hace mucho tiempo. Desde mis primeros años en el

instituto, la Física fue una de las materias fundamentales en mi vida como estudiante,
dentro y fuera de las clases. Gracias a todos los profesores de Física y Química que por
aquellas aulas pasaron. De tales, quiero recordar a J. Garrigós y R. Martínez que embau-
caron, aparte de mí, al reciente Dr. Felipe-Navarro, hablando extracurricularmente de
orbitales, fuerzas, ecuaciones diferenciales y transformadas de todo tipo, aún sin que tu-
viésemos mucha idea de los rudimentos más básicos de las matemáticas. De los primeros
años de la Facultad en Valencia saco charlas infinitas y un conjunto de quintos forjado
a las orillas del Rin. Suerte especial para S y mi apreciada Let, en el camino académico
que les queda por transitar. Con las eternas colegas del Erasmus, Claudia y Bea, pareja
de bromas estelares, se perfiló el momento actual desde Blackett Laboratory. Y hoy no
estaría haciendo un previo para una tesis de plasmones sin dos de mis supervisores en
el campo de la nanofotónica, Vincenzo Giannini y Rubén Esteban, en Londres y San
Sebastián, respectivamente.
A mis compadres de Albacete, con los que hemos roto balones y zapatillas en el

asfalto, en las pistas de cualquier deporte y últimamente en los caminos polvorientos.
A CM, por tirar del carro en absoluta igualdad y sin pensar en lo que cueste, por ser
absolutamente fundamental. A la parte que por ella toca, que ha tratado siempre de
hacer las circunstancias más fáciles. A toda la familia, presente y recuerdo de los que
pusieron su esfuerzo en la construcción de lo que hoy es. A mi hermana y a mis padres,
cuyo impacto en el pasado, presente y futuro es imposible de medir, la razón primera y
última de todo.
Quizá no ha sido del todo breve.

De Madrid a otros campos un poco más al sur, verano de 2021.
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Abstract

English
In the context of condensed matter physics, the manipulation of the interaction between
light and matter constitutes one of the most fruitful and promising fields in the dawn
of Physics of the XXIst century. The development of the solid-state based technologies
allowed the advances towards the control of the electromagnetic interactions between
matter excitations and light, with special interest in the possibilities that occur in the
limit where quantum emitters can store and release energy quanta one by one. The tai-
loring of light emission is well known since the middle of the XXth century through the
coupling between the emitter and the electromagnetic modes in its surroundings. If we
attend to the generation of light in the optical regime, the spatial scales shrink down to
the nanometer range, where just a few thousands of atoms can support electromagnetic
resonances. In this way, different metallodielectric structures can shape the emission of
quantum light sources. In particular, plasmonic resonances, sustained by the collective
motion of quasifree eletrons in metal-dielectric interfaces, permit the modification of the
local density of states that allows for the de-excitation of the quantum emitter. At the
same time, metallic nanoresonators are able to act as optical nanoantennas, convert-
ing very efficiently propagating light from the far-field into evanescent modes confined
with nanometric resolution and enhancing the excitation of quantum emitters by light.
The field of nanophotonics, based on the manipulation of electromagnetic waves at the
nanoscale, has been postulated as a key step of the development of optoelectronics and
nanotechnology in the XXIst century.
In the first part of the thesis, we center our study on the interaction between plasmons

and excitons in an archetypal plasmonic cavity, formed by a single nanoparticle sepa-
rated only by a few nanometers from a metallic substrate. The research in metamaterials
gave place to the development of theoretical methods for the obtention of analytical so-
lutions of Maxwell’s equations. In particular, we will make use of the Transformation
Optics formalism to study solutions of the Laplace’s equation, limit of the Maxwell’s set
in nanometric environments under the quasistatic approximation. By means of this pro-
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Abstract

cedure, we obtain a fully analytical characterization of the light-matter coupling for two
types of quantum emitters, distinguished by the nature of their transition, dipolar and
quadrupolar. Moreover, we use this approach to reveal the possible impact of finite-size
effects in the optical properties of the emitter, to describe the population dynamics in
a spontaneous emission configuration and to calculate the far-field scattering spectrum
of the hybrid plasmon-emitter system. Our findings reveal the similarities and differ-
ences between the light-matter coupling phenomenology for bright and dark excitons in
nanocavities.
In the second part, we proceed to introduce a degree of complexity in the initial sys-

tem formed by the cavity and a single emitter in the two-level approximation. Firstly, we
consider the case of having more than one emitter in the cavity. We make use of a pertur-
bative solution for the dyadic Green’s function tensor, where the presence of the second
emitter has a distorting character in the bare cavity light-matter coupling. We model
the response of the distorting emitter in terms of a lineal model through an effective
polarizability. Applying this scheme, we study two different plasmonic cavities, testing
the results with numerical simulations. Our findings reveal that the distorting emitter
induces new contributions to the density of states and we provide an interpretation of
these results in terms of a Hamiltonian formalism. Secondly, we consider a single emitter
in the cavity but with a three-level structure, where the excited states present different
transition momenta, dipolar and quadrupolar ones. The description of the light-matter
coupling is obtained analytically, focusing on both the dynamics of the light-allowed
state and the scattering cross-section of the hybrid system. Our results evidence the pro-
found modification of the Purcell enhancement besides the emergence or disappearance
of peaks in the scattering spectrum due to the presence of the light-forbidden transition.
In the third part, we put aside the study of the interaction between quantum emitters

and plasmonic modes, focusing on the form of the resonances by itself. Extended systems
given by the periodic repetition of metallic nanoparticles show different types of reso-
nances. Ones are typically plasmon-like, with large bandwidths, whereas another ones
emerge from the electromagnetic interaction between the system constituents, usually
termed lattice resonances, characterized by large quality factors. In particular, we ana-
lyze the nature of lattice resonances in complex arrays, built from unit cells comprising
two different particles. We find that the radiative losses of the resonances supported by
this type of structures result in sub- or superradiant modes, with large or small quality
factors.
Finally, in the last part of this work, we show our results, based in numerical solutions

of Maxwell’s equations, in collaboration with the group of Prof. Guillermo Acuña at
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Braunschweig and Fribourg. His experimental group carried out several research projects
on the nature of light-matter interactions in nanoscale systems built with nanometric
precision through DNA origami techniques, allowing measurements in the single molecule
limit. First, we present our study about enhancement of radiative Purcell factor in silver
dimers. Second, we analyze the influence of plasmonic resonances in energy transfer
between fluorescent molecules. Our numerical results shed light into the experimental
findings in both projects and were instrumental for their analysis and interpretation.
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Abstract

Castellano
Dentro de la física de la materia condensada, la manipulación de la interacción luz-
materia constituye uno de los campos más fructíferos y a la vez prometedores en los
inicios de la Física del siglo XXI. En el contexto actual, el desarrollo de las tecnologías
basadas en fenomenología del estado sólido permitió los avances hacia el control de las in-
teracciones electromagnéticas entre excitaciones materiales y de luz, con especial interés
en las posibilidades que sobrevienen en el límite cuántico, en el que la materia puede
almacenar y emitir un cuanto de energía. La manipulación de esta emisión es conocida
desde la mitad del siglo XX a través del acoplamiento del emisor con los modos elec-
tromagnéticos de su entorno. Si atendemos a la generación de luz en el espectro óptico,
las escalas espaciales se reducen radicalmente, hasta la escala de los nanómetros, donde
apenas unos miles de átomos pueden dar soporte a la existencia de resonancias elec-
tromagnéticas. De esta manera, distintas nanoestructuras metalodieléctricas permiten
perfilar la emisión de fuentes de luz cuánticas. En particular, las resonancias de tipo
plasmónico, sustentadas por el movimiento colectivo de los electrones cuasi-libres en la
interfaz metal-dieléctrico, permiten modificar la densidad local de estados que media la
desexcitación del emisor cuántico a través de la emisión de un fotón. Al mismo tiempo,
las nanoestructuras metálicas que soportan este tipo de resonancias son capaces de ac-
tuar como nanoantenas ópticas, convirtiendo con gran eficacia luz propagante de campo
lejano en modos evanescentes confinados con resolución nanométrica y permitiendo la
excitación eficiente de emisores cuánticos. El campo de la nanofotónica, basado en la ma-
nipulación de ondas electromagnéticas en la escala nanométrica, se ha postulado como
un paso fundamental en el desarrollo de la optoelectrónica y de la nanotecnología del
siglo XXI.
En la primera parte de la tesis, centramos nuestro estudio en la interacción entre

plasmones y excitones en una cavidad plasmónica arquetípica, formada por una sola
nanopartícula separada apenas unos nanómetros de un sustrato metálico. La investi-
gación en teoría de metamateriales dio lugar al desarrollo de métodos para la obtención
de soluciones analíticas de las ecuaciones de Maxwell. En particular, haremos uso de la
Óptica de Transformación para estudiar las soluciones a la ecuación de Laplace, límite de
las ecuaciones de Maxwell en entornos nanométricos bajo la aproximación cuasistática.
Por medio de este procedimiento, obtenemos una caracterización del acoplamiento para
dos tipos de emisores, distinguidos por la naturaleza de sus transiciones, dipolares y
cuadrupolares. Asimismo, hacemos uso de este modelo para revelar el posible impacto
del tamaño finito de los emisores y mostrar los efectos de la interacción tanto en la
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dinámica de la población del estado excitado del emisor como en los espectros de disper-
sión de campo lejano.
En la segunda parte, procedemos a introducir un grado más de complejidad en el

sistema inicial formado por la cavidad y un solo emisor cuántico en la aproximación de
dos niveles. Primero, consideramos el problema de tener más de un emisor en la cavidad.
Para ello, hacemos uso de una solución perturbativa en términos de la función de Green
diádica, donde la presencia del emisor tiene un carácter distorsionador del acoplamiento
luz-materia entre el emisor principal y los modos de la cavidad. En nuestra aproximación,
la respuesta del segundo emisor es descrita en términos de un modelo lineal a través de
una polarizabilidad efectiva. Aplicamos este modelo a dos cavidades plasmónicas distin-
tas y testeamos su validez con simulaciones numéricas. Nuestros resultados evidencian
que el emisor distorsionador induce distintas contribuciones modales en la densidad de
estados de las cavidades, que conectamos con una descripción en términos de un for-
malismo Hamiltoniano. A este problema, añadimos el estudio del acoplamiento de un
solo emisor en una cavidad, pero con una estructura de tres niveles donde los estados
excitados están caracterizados por distintos momentos de transición, dipolar y cuadrupo-
lar, respectivamente. A partir de la descripción completamente analítica de los campos,
podemos hacer un análisis exhaustivo de la dinámica de la población del estado dipolar
y del espectro de dispersión del sistema. Nuestro estudio revela la profunda modificación
del factor Purcell y la aparición o desaparición de resonancias espectro en el espectro de
la sección eficaz de dispersión.
En la tercera parte, dejamos de lado el estudio de la interacción entre emisores cuánti-

cos y modos plasmónicos, centrando nuestro interés en la forma de las resonancias. Los
sistemas extendidos dados por el ordenamiento periódico de sus constituyentes presen-
tan distintos tipos de resonancias. Unas pueden ser de puramente plasmónico, con un
gran ancho de banda, mientras que otras emergen de la interacción electromagnética a
lo largo del sistema, están caracterizadas por factores de calidad grandes y reciben el
nombre de resonancias de red. En particular, analizamos la naturaleza de este tipo de
resonancias en redes complejas, constituidas por celdas unidad formadas por dos partícu-
las distintas, y encontramos que las pérdidas radiativas de los modos de red de este tipo
de estructuras resultan en resonancias sub- o superradiantes, caracterizadas por factores
de calidad altos o bajos, respectivamente.
Finalmente, en la última parte de este trabajo, mostramos nuestros resultados, basados

en soluciones numéricas de las ecuaciones de Maxwell, en colaboración con el grupo del
Prof. Guillermo Acuña en las Universidades de Braunschweig y Fribourg. Su grupo llevo
a cabo el trabajo experimental en sistemas nanométricos diseñados y construidos por
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Abstract

medio de técnicas de origamis de ADN. Primero, presentamos nuestro estudio sobre la
mejora del efecto Purcell radiativo en dímeros plasmónicos. Después, mostramos nuestros
análisis sobre la influencia de resonancias plasmónicas en la transferencia de energía entre
emisores cuánticos. Nuestros resultados numéricos proveen de soporte teórico al trabajo
experimental, alcanzando las mismas conclusiones en ambos casos.
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1

Introduction

This thesis is devoted to the study of the interaction between light and matter. In
order to avoid such generality, we specify that we have focused on the small part

which explores how quantum emitters (QEs) respond to electromagnetic (EM) fields at
the nanoscale, and particularly, we have made an effort to understand the form of those
fields. Therefore, this work inherits a legacy that started with the formulation of classical
electrodynamics and nowadays connects the fields of cavity quantum electrodynamics
(cQED) and nanophotonics.

This introduction chapter will give a concise overview of the basic ingredients that are
customary for the study of this topic. Technical details will be given afterwards in each
chapter and final appendices.

1.1. Brief review about light-matter interactions
Our quotidian experience is depicted by both gravitation and electromagnetism. With-
out any intention of unveiling the deepest principles of Physics, we do understand that
the energy loss at the moderate early age of the Universe allowed the coupling between
protons and electrons through photons. The strength of this interaction, characterized
by the fine structure constant, determines the dominance of EM interactions. Not domi-
nance in the sense of the strongest interaction. The fine structure constant, a parameter
that surges in the theory and has to be experimentally fitted [1], permits the chemical
bonding, and therefore, the emergence of vital forms in the way we know. Life lives
within the energy scales of photons. This fact is the key that has determined the techno-
logical revolution in the last three hundred years. We have refined the way we produced
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1. Introduction

sparks with flintstone at the same time we went deeper in the accessible energy scales.
However, the interaction of light with matter was partially understood until the nine-

teenth century. The series of different works by a dispersed group of scientists (whose
name we do not write in order to not forget any of them) for more than one hundred
years allowed the Maxwell’s milestone [2]. Maxwell’s equations settled the basis that
governs macroscopic electrodynamics and constitute the classical field theory for EM
interactions1. The unification of electric and magnetic phenomena set the pace for the
understanding of light as EM waves, firstly demonstrated in Ref. [4], able to travel
through space free of matter.
The theoretical and experimental advances in classical electrodynamics guided Physics

towards an interesting debate. Whereas Maxwell’s theory led to the assumption of con-
tinuum theories for matter description, at the same time, the results derived from the
kinetic theory of gases attracted many physicists to the old-fashioned atomic ideas2. The
dispute was still on the air when experimental discoveries established the existence of
the electron, the basic constituent of charge. The birth of the twentieth century brought
the quantum description of nature with it. The earlier quantization of energy suggested
by Planck settled a starting point for the quantization of the EM field, which was almost
unaffordable at that moment. In the meantime, matter was shown to follow the quantum
rules, opening two fruitful branches of research: the macroscopic structure of matter and
the structure of atoms and molecules. The interest of the quantum community concerned
especially with the latter due to the (at that time) incomprehensible issue of discrete
spectral lines, giving rise to the quantum theory of atomic structure formulated in a
first step by Bohr [6]. The process of spontaneous decay of an atom, firstly described
phenomenologically through the Einstein’s A-coefficient, was finally understood in the
framework of quantum theory of radiation, soon known as quantum electrodynamics
(QED) [7].

After the comprehension of the spontaneous decay mechanism, the research on atom-
vacuum interactions opened a new field of physics. The work by Purcell [8] in modifying
decay rates in nuclear magnetic resonances answered a question that had been around for
forty years: the spontaneous decay rate of a quantum emitter is not an intrinsic property
of matter but of the coupled emitter-radiation system. During the following decades, this

1After Maxwell, several new branches arose as those of microscopic electromagnetism and the concepts
of potential and gauge transformations, fundamental for the formulation of quantum theory of
light [3].

2The development of kinetic theory of gases delivered not only results as diffusion or heat conduction,
but also widely-used concepts as the mean free path [5].
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1.2. Macroscopic electrodynamics

result, known as Purcell effect, was considered in different scenarios. Drexhage carried out
experiments where the fluorescence of dyes was modified in front of metallic mirrors [9].
In the opposite sense, Kleppner and others studied the inhibition of the decay, decoupling
an emitter from its EM environment and therefore, enlarging the lifetime of the excited
state [10]. Additionally, the study of stimulated processes brought out the achievement
of the laser [11], an indispensable tool for the efficient control of light.
The field of cavity QED rests on the Purcell effect through the modification of the

background radiation field in the surroundings of a quantum emitter. It is especially
noteworthy the contribution done by the Cohen-Tannoudji’s and Haroche’s groups in
the understanding of the interaction of photons and atoms in confined spaces. These
researchers established fundamental concepts such as dressed atoms [12] and set the
milestone of strong coupling regime [13], characterized by the existence of purely quan-
tum hybrid light-matter states where the atom-radiation distinction becomes blurred3.
Less renowned but not less important, the twentieth century also gave birth to a vast
amount of different research lines based on the increasing control of light properties pro-
vided fundamentally by the laser. In the last decades, technological advances allowed the
manipulation of matter in decreasing spatial ranges, leading to the dawn of nanopho-
tonics, where light and matter interact at the nanometer scale. Thus, we have witnessed
the emergence of novel areas such as plasmonics [16–18], photonic crystals [19, 20] and
metamaterials [21] that have led to astonishing applications as plasmonic sensing [22],
photovoltaics [23], cancer therapy [24] and superresolution microscopy [25]. The vigor
of this field stands on how those nanometer resonators respond to the action of the EM
field. Free space EM waves can be efficiently coupled to confined EM modes that live in
sub-wavelength volumes, providing access to the near-field properties of the fields and re-
vealing unimaginable resolution [26]. Even when the term nanophotonics or nano-optics
can remit to an oxymoron [27], this tame and control over light-matter interaction opens
future routes for facing light and quantum matter, resulting in single-photon sources [28],
hybrid states of light and matter [29] and quantum optical nanocircuits [30].

1.2. Light description: macroscopic electrodynamics
Any kind of interaction between particles can be defined through the concept of field.
Instead of describing the situation as a particle exerting a force onto another one, it is
assumed that the particle creates a field around itself and any particle present in that

3A very constructing introduction to the historical development of cQED can be read from the leading
researchers of the field in Refs. [14, 15].
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field would suffer the effect of a force. This nineteenth century concept is one of the most
fruitful ideas of Physics, both in classical and quantum descriptions [31]. The equations
that govern how the electric and magnetic fields emerge from EM sources constitute the
set of Maxwell’s equations in vacuum

∇ · E(r, t) = ρ(r, t)
ε0

, (1.1a)

∇ ·B(r, t) = 0, (1.1b)

∇× E(r, t) = −∂B(r, t)
∂t

, (1.1c)

∇×B(r, t) = µ0J(r, t) + µ0ε0
∂E(r, t)
∂t

. (1.1d)

This set of phenomenological equations links two vectorial fields, E(r, t) (electric field)
and B(r, t) (magnetic induction), and the field sources, the current density J(r, t) and
the charge density ρ(r, t). The discreteness of electric charge is not considered in macro-
scopic applications where a large amount of elementary charges play a role. The pa-
rameters ε0 and µ0 are the vacuum electric permittivity and magnetic permeability,
respectively. Maxwell’s equations implicitly contain the continuity equation for source
densities ∇ · J(r, t) + ∂tρ(r, t) = 0. Apart from those, the interaction of a single charge
q (moving at certain velocity v(r, t)) with both E(r, t) and B(r, t) should be addressed
in terms of the Lorentz force F(r, t) = q(E(r, t) + v(r, t)×B(r, t)). Maxwell’s equations
in vacuum are linear, so solutions can be written as linear superposition of fields. These
relations define how the fields are created by the sources but one still has to determine
the effects of light onto matter. Therefore, Maxwell’s set has to be completed with the
description of how matter can give rise to effective sources under light illumination.
The presence of a medium in which EM fields can exist leads to the generation of in-

duced charges and currents. In a macroscopic way, fields are sustained onto an effective
background that represents the media where those fields are different to their value in
vacuum. The total densities of charge and current are split into two different contribu-
tions ρ(r, t) = ρext(r, t) + ρind(r, t) and J(r, t) = Jext(r, t) + Jind(r, t). Both ρext and Jext

constitute the external sources as those in free space. The induced contributions (ρind,
Jind) arise from the action of the fields onto material media. For simplicity in this brief
approach, we will consider as a first assumption that linear contributions are the domi-
nant ones. In this limit, only the polarization P(r, t) and magnetization M(r, t) play a
significant role. Thus, the induced contributions can be written as ρind(r, t) = −∇·P(r, t)
and Jind(r, t) = ∂tP(r, t) +∇×M(r, t). Usually, the induced current is split into two dif-
ferent terms, the current due to moving quasifree electrons (as those in the conduction
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1.2. Macroscopic electrodynamics

band of a metal) and the current associated to the bound charges. Therefore, Ohm’s law
in the linear limit Jfree(r, t) = σE(r, t) applies to the relation between the conduction
current and the electric field.
Rearranging Maxwell’s equations including these considerations provides the set of

macroscopic Maxwell’s equations

∇ ·D(r, t) = ρext(r, t), (1.2a)

∇ ·B(r, t) = 0, (1.2b)

∇× E(r, t) = −∂B(r, t)
∂t

, (1.2c)

∇×H(r, t) = Jext(r, t) + ∂D(r, t)
∂t

, (1.2d)

where the displacement field, D(r, t) = ε0E(r, t) + P(r, t) and the magnetic field,
H(r, t) = B(r, t)/µ0 −M(r, t) naturally appear. From the divergence and rotational ex-
pressions, E(r, t) and H(r, t) are understood as field intensities whereas D(r, t) and
B(r, t) represent the flux intensities. The description is completed by expressing P(r, t)
and M(r, t) in terms of the field intensities. Limiting ourselves to isotropic, linear and
non magnetic media which exhibit local properties (no spatial dispersion is relevant),
the constitutive relations are:

D(r, t) = ε0

∫
ε(t− t′)E(r, t′)dt′ (1.3a)

H(r, t) = B(r, t)
µ0

. (1.3b)

The EM magnitudes that appear in Maxwell’s equations apply to each point of space
at a certain instant of time. Invoking the integral Stokes’s and Gauss’s theorems, the
relations between that physical magnitudes can be represented in the integral form. In
this way, the equations allow to obtain several conditions that have to be fulfilled by
the components of the fields on either side of the interface which separates two media
(subscripts 1 and 2), which read

n(D1(r, t)−D2(r, t)) = ρs(r, t), (1.4)

n(B1(r, t)−B2(r, t)) = 0, (1.5)

n× (E1(r, t)− E2(r, t)) = 0, (1.6)

n× (H1(r, t)−H2(r, t)) = Js(r, t), (1.7)
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1. Introduction

where Js(r, t) and ρs(r, t) are the surface current and charge densities in the bound-
ary that separates different media. Looking back to the set of vacuum Maxwell’s equa-
tions in terms of the fields, it is often found, especially in the context of field theo-
ries, that those are expressed in terms of potentials, obtaining a smaller number of
differential equations. Due to the vanishing character of ∇ · B(r, t), it is then defined
B(r, t) = ∇×A(r, t), where A(r, t) is the vector potential. At the same time, the Fara-
day’s law provides an irrotational field given by both E(r, t) and ∂tB(r, t), so we can
write E(r, t) = −∇Φ(r, t) − ∂tA(r, t), where the scalar potential Φ(r, t) explicitly ap-
pears. Therefore, the complete set of four equations is written in terms of the potentials
as

∇2Φ(r, t) + ∂

∂t

(
∇ ·A(r, t)

)
= −ρ(r, t)

ε0
(1.8)

∇2A(r, t)− 1
c2
∂2A(r, t)
∂t2

−∇
(
∇ ·A(r, t) + 1

c2
∂Φ(r, t)
∂t

)
= −µ0J(r, t) (1.9)

which are still coupled equations. The definition of the potentials is not unique,
due to the fact that some transformations (A′(r, t) = A(r, t) + ∇Λ(r, t) and
Φ′(r, t) = Φ(r, t)− ∂tΛ(r, t)) conserve the observables E(r, t) and B(r, t) derived from
them. Such modifications on the potentials are known as gauge transformations. In par-
ticular, we highlight two paradigmatic cases. First, the Lorenz gauge, where Λ(r, t) is
chosen to satisfy ∇ ·A(r, t) + c−2∂tΦ(r, t) = 0, which yields two symmetric inhomoge-
neous equations for each potential in the form (∇2 − c−2∂2

t )Φ(r, t) = −ρ(r, t)/ε0 and
(∇2 − c−2∂2

t )A(r, t) = −µ0J(r, t). Second, the Coulomb gauge, also known as radiation
gauge, where the imposed condition is ∇ ·A(r, t) = 0. This gauge is noteworthy for the
fact that all the radiation phenomena is contained in A(r, t) since ∇2Φ(r, t) = ρ(r, t)/ε0,
which is the Poisson’s equation that reflects the electrostatic character of the scalar
potential.
It is usually convenient to take advantage of the properties of Fourier Transforms and

express the fields in the frequency domain. Furthermore, in the reciprocal space, the
formalism of the conversion from convolutions to products can give another form of the
constitutive relation but in a simpler way in terms of wavevectors and frequencies instead
of space vectors and time. Any vectorial field F(r, t) (or scalar quantity) can be written
in the form

F(r, t) =
∫ ∞
−∞

F(r, ω)e−iωtdω. (1.10)

Monochromatic fields can be written as F(r, t) = Re{F(r, ω)e−iωt}, temporal deriva-
tives in Maxwell’s equations are expressed as products ∂t = −iω and the constitutive
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1.2. Macroscopic electrodynamics

relations simply read

D(r, ω) = ε0ε(ω)E(r, ω), (1.11a)

H(r, ω) = B(r, ω)
µ0

. (1.11b)

Maxwell’s equations implicitly contain the existence of EM waves. From the curl equa-
tions, the wave equation for the electric field in a non-magnetic homogeneous space
reads

∇×∇× E(r, ω)− εω
2

c2 E(r, ω) = iωµ0Jext(r, ω). (1.12)

The wave equation is then equivalent to an inhomogeneous equation LE(r, ω) = J(r, ω)
where L is a linear operator onto the electric field that does not create dependences on
any quadratic power. The most general solution to such an equation is given by the
sum of two functions, corresponding to the homogeneous and particular solutions of
the equation. Due to the difficulty to find a general solution for the inhomogeneous
equation, a simpler idea arises introducing just a point inhomogeneity in the form
LGi(r, r′, ω) = δ(r− r′)n̂i [32]. Gi(r, r′, ω) is the vector field that contains the solution
for the vectorial inhomogeneity in the n̂i direction. Once this equation is solved, the
solution of the wave equation above can be expressed as

E(r, ω) = E0(r, ω) + iωµ0

∫
V

G(r, r′, ω)Jext(r′, ω)d3r′, (1.13)

where E0(r, ω) is the solution to the homogeneous equation and the integral is calculated
over the volume of the sources. G(r, r′, ω) is the matrix formed by the vectors Gi, known
as the dyadic Green’s function. The generality of this solution can be clarified if we look
upon the multipolar expansion of a distribution of charges. If we consider the first term
of the expansion, the current density associated to such configuration is given by the
temporal variation of the dipole moment in the form4 J(r, ω) = −iωµδ(r − r0). This
result provides the form for the electric field for an oscillating point-dipole source

E(r, ω) = ω2

ε0c2 G(r, r0, ω)µ. (1.14)

Then, the electric field generated by a point-dipole source is given directly by the
dyadic that connects the location of the dipole and the position at which the field is
calculated. The elements of the dyadic tensor are just proportional to the field created
by a point-dipole source.

4As it is commonly used in antenna theory, to the lowest order, an oscillating dipole can be modeled
as a current density.
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The description of light as an EM wave provides access to the correct explanation
of many physical phenomena related to light-matter interactions. Nevertheless, as far
as we go in decreasing number of photons involved in the interaction, the corpuscular
(discrete) behavior of light manifests by itself. A paradigmatic example occurs when we
deal with single quantum emitters (see section 1.3), where the interaction is mediated
by one single photon. When this is the case, the quantum description of light is needed
to account for light-emitter interactions. The canonical quantization procedure consti-
tutes the fundamentals of the field of quantum optics and we are not going to cover it
in detail. We refer the reader to Refs. [33, 34], where this formulation of EM theory is
treated thoroughly. For our purposes, it is enough to state that the classical Hamiltonian
description of the EM fields can be understood as a set of independent harmonic oscil-
lators. Those functions constitute a complete basis and are interpreted as the modes of
the system, that can be canonically quantized. Therefore, the modes of the classical field
decomposition are promoted to the operators in the second quantization scheme. Those
operators are able to create or destroy an excitation (photon) of the corresponding mode.
Within this formalism, the Hamiltonian of the EM field reads

ĤR =
∑
l

~ωl
(
â†l âl + 1

2

)
, (1.15)

where the sum runs over the whole set of modes of the system, characterized by their
energy ~ωl. Besides, â†l and âl are the photon creation and annihilation operators for the
l-mode and fulfill the bosonic commutation relations [âl, â†l′ ] = δl,l′ with the Kronecker
delta δl,l′ . Furthermore, they operate onto the photon Fock states (or number states) as

â†l |nl〉 =
√
n+ 1 |(n+ 1)l〉 , (1.16)

âl |nl〉 =
√
n |(n− 1)l〉 . (1.17)

Note that the term 1/2 in Eq. (1.15) a pure quantum footprint since it represents the
vacuum state energy. Note that we are going to measure our energies as a relative
quantity, referenced to the vacuum energy.
Throughout this thesis, we will employ this description of the light fields in order to

account for their quantum and bosonic nature of photons. Diverse procedures of quanti-
zation have been studied in order to take account for the quantum interaction of light
and matter. Closed cavities made of lossless materials are accommodated in quantum
models in a straightforward manner. Nevertheless, open systems built of lossy materials
present problems in direct quantization [35]. In order to overcome those difficulties, we
highlight several proposed approaches, which have put the attention in the treatment of
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1.3. Matter description

the EM environment. In a first place, macroscopic quantum electrodynamics (mQED)
accommodate lossy materials and open environments, expressed in terms of the Green’s
function and based on Langevin noise approaches [36]. mQED founds the field quantiza-
tion in terms of bosonic operators living a frequency continuum, making the problems
involved in the number of degrees of freedom. Then, expansions of the EM response have
been tackled in terms of a few quasinormal modes (QNM) [37], yielding quantization
schemes for plasmonic resonators [38]. In this way, it is also remarkable the research
done in the context of phenomenological approaches, where the mQED continuum is de-
composed into several pseudomodes, leading to decompositions of both interacting and
non-interacting lossy effective modes [39–42].

1.3. Matter description
The classical description of EM phenomena constituted a landmark in the comprehen-
sion of natural physical phenomena, but it is clear that any perception that we have
about the existence of EM fields is given through their interaction with matter. The
issue that concerns the understanding of matter has accompanied us since the founda-
tions of natural philosophy. As mentioned above, at the end of the nineteenth century,
Maxwell’s theory introduced a continuum description of the media that sustain the EM
fields. On the other hand, the conception of fluids as discrete ensembles of solid particles
colliding each other provided at that time many results in the context of kinetic gas
theory [5, 43]. The successful derivation of properties of gases (viscosity, diffusion, heat
conduction) and the mechanical interpretation of thermodynamic magnitudes as temper-
ature gave important support to the atomic hypothesis, that was lacking in Maxwell’s
picture of light-matter interactions [44]. The unification of macroscopic and microscopic
electromagnetism constitutes by itself a wide topic and we remit the reader to Ref. [45]
as a comprehensive reference.
As we have already seen, light propagating through a medium is characterized by its

corresponding relative permittivity, ε, and permeability, µ. The first attempt towards
an atomistic description of matter accounting for the microscopic origin of these two
physical magnitudes was proposed by H. A. Lorentz with the oscillator model (formed
by two charges of opposite sign), with a characteristic resonant frequency [46]. As we
will see in subsequent sections, this model leads to expressions for the relative electric
permittivity of different media. Bulk solids will not constitute the center of our study of
light and matter interactions5.

5About the historical development of the topic that we are referring to in both current and previ-
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1. Introduction

Figure 1.1: Energy structures of matter excitations. (a) Energy levels En,l for a single-electron
(hydrogen-like) atom for different principal number n and angular momentum l. (b) Sketch of
two electronic potential energy curves of a diatomic molecule as a function of the internuclear
distance. On top of each electronic energy, the vibrational energy spectra of the corresponding
state is shown.

In the following, we turn our sight towards systems that sustain matter excitations
and emit or absorb photons in a scenario of discrete states and energies6. These systems
are called quantum emitters (QEs) as they can undergo de-excitation by emitting a single
photon.
The simplest quantum model of matter corresponds to the hydrogen atom. Applying

the Schrödinger equation for one electron and one proton attracting each other through
a Coulomb force, a solution for the electron wavefunction is obtained in terms of discrete

ous sections, we strongly recommend the book The Solvay Conferences on physics: Aspects of the
development of physics since 1911 [47] where the reader can find that the first five topics of the confer-
ences (organized by H. A. Lorentz) were focused on the nature of radiation, matter and macroscopic
properties of matter.

6Both quantum-optical and semi-classical descriptions of light-matter interactions present the material
component described within a quantized approach. The semi-classical limit, where the EM field is
treated within the Maxwell’s approach, yields a vast understanding of the processes of absorption
and scattering [33], besides it is equivalent to the quantum formalism whenever we consider electrical
fields satisfying a classical statistical character. The effects that emerge from the purely quantum
nature of radiation are introduced phenomenologically in the semi-classical model through lifetimes.
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electronic-type eigenstates7. These are determined by the principal quantum number, n,
with eigenvalue En = −13.6/n2 eV, as plotted in Figure 1.1(a). The atomic spatial length
scales are characterized by the Bohr radius, a0 = 5.29× 10−11 m.
It is obvious that the atoms are not the only form of quantum matter that we can

interact with. Molecules can be described in a similar way, through different states and
energy levels associated to those. Nevertheless, as the complexity of material structure
increases, new phenomena emerge. There are no just electronic states associated to the
electron-nucleus interaction but also energy scales linked to the molecular vibrations and
rotations, that, of course, are also quantized. The dominant energy scale is the electronic
one, constituted by the potential curves of the molecule. On top of that, the rovibrational
spectra appear, associated to the electronic state, as it can be seen in Figure 1.1(b).
The optical properties of typical solids do not usually show a dependence on size, but

if we decrease the dimensions of the system, quantum confinement effects arise. This
way, the uncertainty associated to a particle moving in a closed system provides an
additional energy ~2/(2m∆2), where ∆ is the length scale associated to the confinement
and m is the effective mass of the particle. The large number of degrees of freedom
involved makes the calculation of the energy structure of solids cumbersome, out of the
scope of this thesis, even in systems where quantum confinement is relevant. Concisely,
the small size of the system leads to quantum confinement effects and provides access
to few-body electronic states with discrete spectra. Therefore, we think of atom-like
structures, designed in an artificial way. We remark here the quantum dots, nanometric
structures formed by semiconductor scaffolding that can be engineered in size to change
their optical properties [48–50].
A single photon mediates the transition between the states of a QE. In the case of

an atom, the transition is given by the change of orbital of a single electron. Similarly
in a molecule, the photo-excitation promotes the electronic configuration from the high-
est occupied molecular orbital (HOMO) to a higher energy electronic configuration, the
lowest unoccupied molecular orbital (LUMO) configuration8. Semiconductor structures
present the formation of excitons, where the electron-hole pair become bounded to each
other. Furthermore, the dielectric conditions of the structure screens the electron-hole

7The first quantization obtained via using the Schrödinger formalism leads to an ensemble of states
whose probability does not depend on time (stationary states). It is necessary to connect this system
with another in order to have what we term transition to another stationary state, mediated by an
absorption or release of energy by the electron.

8The complex structure of molecules yields a host of phenomena where the electronic and rovibrational
energy structures are coupled each other and lead to intra-molecular processes of relaxation.
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Coulomb interaction and allows the hopping between lattice sites. Therefore, the excita-
tion (Wannier-Mott exciton) is delocalized over the emitter.
In their interaction with light, the quantum description of matter is usually given in

the two-level approximation. In a first stage, only two electronic states are considered,
the ground state, |g〉 and a unique excited one, |e〉, with a well-defined energy difference,
~ωeg = Ee−Eg, close to the photon energy, ~ω. This assumption is valid if the energies of
the higher excited states of the system, Ei, are far enough in energies from Ee, satisfying
Ei−Ee > ~ωeg. On the other hand, the rovibrational spectrum associated to those states
is also ignored. This can be positively done in simple systems, but in complex molecules,
vibrations can substantially interact with the electronic excitation. We emphasize that
two-level descriptions fairly capture the de-excitation process in organic molecules [51].
The excited and ground states span the Hilbert space for the exciton wavefunction

|ψ〉 = c1 |g〉+ c2 |e〉 . (1.18)

Their cross projection operators provide the creation, σ̂†, and annihilation, σ̂, operators
of an excitation in the quantum emitter, defined as

σ̂† = |e〉 〈g| , (1.19)

σ̂ = |g〉 〈e| , (1.20)

that follow the anticommutation properties typical of the fermionic systems,

{σ̂†, σ̂} = 1 (1.21)

since electronic excitations follow the Pauli Exclusion Principle. The Hamiltonian of this
two-level system reads

ĤTLS = ~ωg |g〉 〈g|+ ~ωe |e〉 〈e| . (1.22)

Since it is usual to define the origin of energies in the ground state where no excitations
exist, the Hamiltonian is usually written as

ĤTLS = ~ωegσ̂†σ̂. (1.23)

Therefore, the Hamiltonian shows explicitly that the matter excitation becomes char-
acterized by the transition frequency ωeg. Besides, as we will see, in their interaction
with light, the influence of the emitter is weighted through its transition moment, a
magnitude that can be related to the size of the QE, as we will see in the following
sections.
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1.4. Emitters, photons and plasmons: Quantum
nanophotonics.

Once reviewed the series of fundamental ingredients individually, we proceed to build
the picture on which this tesis is based, the study of light-matter interaction at the
nanoscale. It does not exist an ideal scenario for the investigation of the associated
phenomena over the broad set of possibilities. In the most fundamental conception, the
research about the interaction derives from the field of cQED, which has provided most
of concepts on which further research relies on. Nevertheless, the range of operability
of cQED systems, makes difficult their practical applications. In a quest to reduce the
spatial dimensions of those systems, it arose the possibility of handling with energy
transitions in the visible range, and therefore, the reduction of system to nanometer
scales. Generally, nano-optics and nanophotonics are terms used for describing those
systems in which the EM fields length scales and the system size coexist in the nanometric
range, giving rise to the coexistence of both near-field and far-field effects. We will use the
term quantum nanophotonics to refer this limit, always with the presence of QEs. Not
surprisingly, depending on the emitter properties, there exists different types of systems
(semiconductor cavities, photonic crystals or plasmonic cavities) whose properties are
used to inherit the desired purpose. In our work, we have focused on the light-matter
interaction of quantum emitters in plasmonic cavities, to which we dedicate the next
subsection since it constitutes the fundamental part of this thesis.

1.4.1. Nanoplasmonics. Electrodynamics of metals

The subject of general EM response of different media vastly exceeds the scope of this
thesis. Our focus is on optical processes, so we will restrict ourselves to local response
approximations since speed of light exceeds the velocities of excitations in solids [52].
When light scatters with extremely nanometric environments, non-local effects can take
part in the interaction and the material response under EM fields has to be treated within
more complex models, especially at high optical frequencies [53]. In our results, we neglect
non-local effects, as they do not have a substantial effect in the spatial regimes explored in
this thesis. The limits of strongly-correlated and interacting systems where the classical
electron gas model is not valid are neither considered in the common plasmonic systems.
For any reader interested in electrodynamics of matter beyond the limits treated in this
text, we refer the reader to Refs. [52, 54].
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In a local description, when an electric field spans the media, the electrons are excited
to a higher energy state by acquiring a net momentum. If the electric field has an
harmonic dependence with time through a frequency ω, the set of negative charges can
oscillate collectively, giving place to an net polarizability, proportional to the external
electric field. The linear relationship between the electric field and the displacement
becomes apparent in terms of ε, the relative electric permittivity or dielectric function for
the metal. The simplest model for describing such a response is obtained by considering
free electrons. Those are treated in the classical limit, as particles which do no interact
with each other, just characterized by their charge, e, and the average relaxation time
τm = 1/γm. The damping constant, γm, accounts for electron scattering with the ionic
background. The motion of the electrons subjected to an electric field E is described by

me
d2r
dt2

+meγm
dr
dt

= −eE, (1.24)

where me is the electron mass and the right term is just the electric contribution to the
Lorentz force onto the electron. Under the application of an harmonic field E = E0e

−iωt,
the motion has the same temporal dependence and the current associated to the moving
electrons can be written as Jcond = iωNer = σcond(ω)E. The conductivity σcond(ω) reads
σcond(ω) = iωNe2

me(ω2+iγmω) ,where Ne is the density of conduction electrons in the system.
The electric permittivity εcond(ω) of such a system is given by

εcond(ω) = 1 + iσcond(ω)
ωε0

= 1−
ω2
p

ω2 + iγmω
. (1.25)

Note that we have introduced the plasma frequency ωp = Nee
2/(ε0me). Eq. (1.25) is

known as the Drude dielectric function. This model constitutes a moderately accurate
approach for describing intraband processes in metals, since it only includes the purely
free charge description within the conducting band. At high frequencies, the boundary
between bound and free, or valence and conduction, charges blurs and interband tran-
sitions become important. The contribution of valence electrons can be introduced by
means of new terms in the permittivity given by Eq. (1.25). These emerge from an equa-
tion of motion similar to Eq. (1.24) but with an additional term mω2

j r representing the
binding of the valence electrons. This procedure provides an expression for ε(ω), which
reads

ε(ω) = 1−
ω2
p

ω2 + iγmω
+
∑
j

ω̃j
ω2
j − ω2 − iγmω

, (1.26)

where we introduced an effective ω̃j, associated to the natural frequency of an interband
transition, which would depend on the effective mass and density of electrons. Here we
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1.4. QEs, photons and plasmons

obtain the usual expression for the electric permittivity of a metal, where bound and
free contributions become apparent. Usually, at operating frequencies below the plasma
frequency where such systems show explicitly their metallic behavior (Re{ε(ω)} < 0),
the bound part is usually replaced by a constant ε∞ that effectively accounts for the
tails of those resonances beyond ωp.

1.4.2. Plasmonic modes
When we consider a bulk metallic medium, the response of the system is built on both
transversal and longitudinal oscillations of the electron gas. Travelling plane waves inside
the plasma are possible at frequencies larger than the plasma frequency ω > ωp, whereas
longitudinal modes correspond to the collective oscillation of the free electron gas at
ω = ωp (εcond(ωp) ' 0). If our system presents boundaries, the continuity exigences
for the Maxwell’s equations fields induce the advent of new modes in the system. The
simplest configuration is a planar interface between two different media, dielectric and
metallic. The permittivity mismatch at the interface supports the existence of plasmonic
modes, EM waves confined to the surface. In a plane non-dispersive dielectric-metal
interface, the dispersion relation of the surface plasmon mode (SP)9 reads

kSP = ω

c

√√√√ εdε(ω)
εd + ε(ω) , (1.27)

where εd is the relative electric permittivity of the dielectric medium. SPs are transverse
magnetic modes (the magnetic component is perpendicular to the surface) and must
fulfill εdε(ω) < 0 and εd + ε(ω) < 0, conditions satisfied by metals at frequencies below
ωp.
In Figure 1.2(a), we represent the dispersion relation of the SPs for a Ag-dielectric con-

stant background (εd = 2) interface, where Ag has been modeled through a Drude-like
permittivity with parameters ε∞ = 9.7 eV, ~ωp = 8.91 eV and ~γm = 0.06 eV. Black line
plots the so called light line, that corresponds to the wavevector of travelling plane waves
in the dielectric medium k = √εd

(
ω
c

)
. Red and blue lines show the real and imaginary

parts of the in-plane component of the SP wavevector, kSP. For frequencies below the
surface plasmon frequency10, ωSP = ωp/

√
εd + ε∞, SPs travel along the interface with

9Those modes are also known under the name Surface Plasmon Polaritons, derived from their nature
where both EM field and electrons oscillations are mixed.

10We remark that throughout the different figures in the thesis, we will use the convention ~ = 1 for
axes related to frequency.
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Figure 1.2: SPs resonances. (a) Dispersion relation of SPs propagating in a Ag-dielectric
interface. Black line plots the dispersion relation for free space plane waves. Red and blue
display the real and imaginary parts of the SP in-plane vector component, kSP, respectively.
(b) SPs length scales. Red line shows the propagation length of the SP and blue line represents
the decay in the perpendicular direction given by the inverse of the out-of-plane k component.

a wavevector larger than the corresponding to frequency ω in free-space. This means
that the SPP cannot be excited directly by an incident plane wave due to momentum
mismatch and that the out-of-plane wavevector component k⊥ =

√
k2 − k2

SP has a dom-
inant imaginary part, making the SP mode confined to the interface. For ω � ωSP,
kSP ≈ k and therefore the mode is light-like, i.e. is barely confined. As we reach larger
frequencies, the dispersion relation suffers a bending, and the mode acquires an almost
electrostatic character dω/dk ≈ 0 at ωSP, that satisfies ε(ωSP) + εd = 0. Due to the
lossy nature of metals, there is an upper limit for kSP and a backbending is observed
in the dispersion relation. On the other hand, Im{kSP} reaches a maximum exactly at
ω = ωSP. Therefore, there is a tradeoff between the maximum confinement and the
losses of the system, since the character of the surface plasmon at this limit frequency
is very leaky. The spatial confinement and propagation characteristics of SPs derive di-
rectly from the different components of the modal wavevector. Both the propagation
length of the plasmon, (2Im{kSP})−1 and the exponential decay length |k⊥|−1, plotted
in Figure 1.2(b), are minimum at the surface plasmon frequency. For frequencies beyond
ωSP, the backbending makes the dispersion relation back to the left-side of the light-line,
indicating that the mode propagates inside the material, and the solution resembles
that of a dielectric-dielectric interface, corresponding to a Brewster mode (a zero in the
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1.4. QEs, photons and plasmons

corresponding Fresnel coefficient).
The manipulation of boundaries between dielectric and metallic media permits the

access to a myriad of EM modes that present plasmonic features. Finite systems can
support the existence of plasmonic modes and those have the ability of confining them
into finite volumes, giving rise to localized surface plasmon resonances (LSPs). As ex-
plained above, the conditions for existence of LSPs emerge from the analysis of the
solutions of Maxwell’s equations for certain boundary conditions, determined by the ge-
ometry of the system. Of course, finding a general solution is far from being trivial, but
we can gain insight by considering that the quasistatic limit applies in the nanoscale.

Quasistatics refers to a limit where the spatial length of the system is small compared
to the wavelength. This situation, typically in the near-field limit, provides the assump-
tion that the material response is simultaneous [55, 56], yielding the approximation in the
velocity of the interaction c→∞. Hence, as retardation effects do not play a significant
role, the temporal and the spatial derivatives in Maxwell’s equations are decoupled each
other. In our interest, the electric field, E(r, t), becomes irrotational and the problem
is understood just after finding the scalar potential, Φ(r, t) which satisfies the Poisson’s
equation, and in absence of external charges, ∇ · ε∇Φ = 0. The spatial profile of the
fields is then instantaneous, just modulated by the time-dependent factor e−iωt.
Due to its simplicity, we consider as an example the problem of how a nanometric

metallic wire, (with its longitudinal axis along z-direction and its section in the xy
plane) with radius R, scatters a plane wave. We consider the metallic particle embedded
in a dielectric with permittivity εd. In the quasistatic limit, the plane wave can be
approximated by an electric field with constant spatial profile over the nanoparticle
extension E0 = E0x̂e−iωt, and the scalar potential outside the wire (r > R) has the form

Φ(r > R) = −E0r cos(φ)− E0
R2

r

ε(ω)− εd
ε(ω) + εd

cos(φ), (1.28)

where φ is the azimuthal angle in the xy plane. It is clear that the second term provides
an scattering term which means that free-space plane waves are able to couple to LSPs
modes in small particles. In Figure 1.3(a) we plot the spatial profile of the field enhance-
ment in the quasistatic limit for the metallic nanowire (R = 20nm) under plane wave
illumination (λ = 476 nm), finding large values of |E|2/|E0|2 ≈ 200 and making explicit
that LSPs of small particles collect EM energy from the far-field radiation into small
volumes that break the diffraction limit.

In this sub-wavelength scenario, the scattering contribution can be understood as given
by an induced dipole moment in the nanowire, µind = αw(ω)E0 in the form φsca ∝ µindr

r2
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where the polarizability αw(ω) reads

αw(ω) = 2πε0εdR2 ε(ω)− εd
ε(ω) + εd

. (1.29)

In the same way, the response of a nanosphere under a plane wave can be described in
terms of a polarizability in the form

αs(ω) = 4πε0εdR3 ε(ω)− εd
ε(ω) + 2εd

(1.30)

where it is clear the different scaling with the size and the different spectral position
of the LSP resonance in a sphere with respect to the nanowire. In addition, notice
that this resonance does not depend on size in the quasistatic limit. Only retardation
effects introduce dependences of the LSP frequencies on the nanoparticle size [56]. In
Figure 1.3(b) we plot the form of αs(ω) for a Ag sphere embedded in a dielectric medium
(same parameters as in Figure 1.2), where it is clear the typical lorentzian profile defined
by the metal losses. The efficiency of the coupling can be quantified in terms of the
absorption and scattering cross-sections for the sphere that read respectively

σabs(ω) = ω

ε0
√
εdc

Im{αs(ω)}, σsca(ω) = ω4

6πε20c4 |αs(ω)|2 (1.31)

The above expressions provide an intuition on how the scattering or absorption response
dominate each other in different regimes. From the σabs/σsca ∝ (λ/R)3 dependence it is
clear that absorption is more important as the particles are smaller in size. The excitation
of LSPs by plane waves makes the interception area that the particle presents to the
free-space radiation much larger than the spatial extension of the particle, as can be seen
in Figure 1.3(c) which also shows that, for large R (R ≈ 30 nm), scattering overcomes
absorption11.
Nevertheless, single metallic nanoparticles can support more than one plasmonic mode.

If we consider larger metal structures, the quasistatic limit is not valid any more and
the description of plane wave scattering in terms of a dipolar-like polarizability breaks.
The significant phase changes of the driving field over the nanoparticle volume require
of a full electrodynamic approach to describe the scattering process, the so known Mie
theory [57]. Actually, the metallic resonator supports higher order resonances at larger
energies, whose coupling with free space radiation is negligible in the limit kR � 1.
11We must indicate that the quasistatic limit offers a restricted version of the polarizability where

extinction (both scattering and absorption) is just associated to absorption, and corrections must
be included in the αs(ω) expression in order to account for scattering contributions.
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1.4. QEs, photons and plasmons

Figure 1.3: LSPs resonances. (a) Spatial distribution of field enhancement |E|2/|E0|2 for a
Ag wire (perimeter marked in red dashed line) at the frequency of the resonance ε(ω) + εd ≈ 0
(ω = 2.605 eV, λ = 476 nm). White arrows represent the magnitude and direction of E. (b)
Normalized quasistatic polarizability of a Ag sphere (R = 15 nm). (c) Normalized quasistatic
absorption (reddish solid lines) and scattering (azure dashed lines) cross-sections for Ag spheres
of different size (indicated in the legend).

The mechanism that permits their excitation under plane wave illumination is based
on retardation effects between the excitation and the electron response in the metal,
making those modes not negligible compared to the lowest-order dipolar one in large
particles [58]. As these higher order resonances are weakly coupled to free space radi-
ation, by reciprocity, they radiate much less than the dipolar (bright) plasmon. This
fact introduces the denomination of higher order resonances as dark modes, extremely
important in the context of near-field phenomena. While plane waves couple inefficiently
to them, QEs can interact with dark modes [59, 60].
The plasmon resonances of complex nanostructures formed by a group of individual

finite components can be explained in terms of interactions between the plasmon res-
onances of the elementary constituents. The plasmonic hybridization method [61, 62]
provides an elegant and intuitive picture in analogy with the molecular orbital theory.
Imposing a Coulomb interaction between the primitive plasmon modes of each struc-
ture separately, the new modes are obtained from a Lagrangian description, that can
be understood as superpositions of the original ones, and so on the energies associated
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to those, that can be both redshifted or blueshifted with respect to the originals. The
elegance of the plasmon hybridization picture is limited by the need of numerical simu-
lations as an input for the model. The Transformation Optics approach offered a route
to derive analytically the optical response of complex structures by applying conformal
mapping techniques to the geometry of the plasmonic structure [63], yielding an analyt-
ical solution of the electric field associated to the system resonances in agreement with
the hybridization scheme [63, 64]. Under these ideas, the plasmonic modes of multiple
structures have been investigated within analytical and quasi-analytical Transformation
Optics approaches [23, 65–67].

1.4.3. Theoretical description of light-matter interactions
From the theoretical point of view, the issue of understanding the foundations of light-
matter interaction requires of the full quantum description of both light and matter
as well as their interaction. QED sets an exact full quantum field theory approach for
treating the interaction between distributions of charged particles and EM fields, with
photons and matter excitations (in general, excitons) as its building blocks. Nevertheless,
its generality results in an imbalance for our purposes. Nanophotonics operates at low
energies within the optical regime, involving macroscopic elements that also can display
dispersive features in their response. Those specific characteristics can be treated within
the mQED approach, that leads to a field quantization in large structures, determined
by the solutions to classical macroscopic Maxwell’s equations, contained in the Green’s
function.
In the previous section, we mentioned that, in the quasiresonant interaction limit, a QE

in the two-level approximation is characterized by the set of excited-ground states (|e; g〉)
and their transition frequency ωeg. If an electric field with frequency ω interacts with a
quantized two-level system (assuming ω ∼ ωeg), we remark two phenomena: absorption
and emission. Absorption and stimulated emission processes are closely related since the
presence of the field mediates the transition from the initial state to the other. However,
there is another process, much more fascinating, the so-called spontaneous emission. In
absence of EM fields or EM energy density, the QE can decay from its excited state
to the ground one. To understand this process, we must realize that the QE does not
constitute a system by itself but a compound formed by the QE and EM vacuum field.
The concept of isolated system is no completely compatible with the description of a
quantum system. Quantum nature makes customary the study of a system considering
its interaction with the ’rest of the universe’, encapsulated under the term environment.
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The analysis of this problem considers the complete system, formed by the sub-system
under our attention, S, and the environment, E . This approach is known as theory of
open quantum systems. We emphasize that the general approach to this topic is far from
being trivial and the separation S ←→ E becomes difficult when every energy scale in
the problem is similar each other. As we will see, we avoid such complications and refer
exclusively to the Markovian limit of the theory.
The states of the light-matter system are the tensor product of the two-dimensional

space associated to the two-level system, |e; g〉, and the Fock states, |n〉, written in a
shorthand notation as

|TLS, n〉 = |TLS〉 ⊗ |n〉 , (1.32)

where the first position corresponds to the matter component and the second indicates
the number of excitations in the EM field.
The spontaneous emission rate, γ, can be obtained from the dynamics of an initially

populated excited state weakly coupled to a continuum of photonic modes devoid of
photons. The Fermi’s Golden Rule for the total decay of |e, 0〉 into the EM continuum
reads [33, 68]

γ = 2π
~2

∑
q
| 〈g, 1q| ĤI |e, 0〉 |2δ(ωq − ωeg), (1.33)

where ĤI is the interaction Hamiltonian of the system. The summation over q runs over
the set of different field states |g; 1q〉 with one photon of energy ~ωq and the QE in the
ground state [55]. It offers an intuition about the density of states, a fundamental mag-
nitude that characterizes the strength of light-matter coupling. This approach provides
a microscopic origin of the spontaneous emission mechanism12.
The multipolar classical Hamiltonian that describes the interaction between an electric

field E and a neutral distribution of charges reads

HI = −µE− 1
2(Q∇)E + ..., (1.34)

where we have just shown the first two terms explicitly, where µ and Q are the electric
dipolar and quadrupolar moments of the charge distribution. Then, by the simple in-
spection of Eq. (1.34) it becomes apparent that the HI dependence on both matter and
12We highlight the original version of this result, the spontaneous decay rate for an emitter in free

space, given by Wigner and Weisskopf [69], since it sketched the road for the theoretical description
of irreversibility in the quantum theory by using the continuum of modes, key of the theory of open
quantum systems.
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electric fields gives access to the tailoring of light-matter interactions. In the vicinities
of a nanostructure, the solution of the Maxwell’s equations would result in electric fields
different to those of free space, as we have seen in the case of plasmons. The enhancement
or suppression of the decay rates of QEs through the manipulation of | 〈g, 1q| ĤI |e, 0〉 |2

is known as the Purcell effect. To measure the intensity of this effect, a figure of merit
is the Purcell factor

Pf (ω) = γ

γ0
, (1.35)

which normalizes the decay rate to that of free space, γ0. This result makes clear that the
decay rate of an emitter is not its intrinsic property but it depends on its environment.
We can think of quantized excitations in matter in the simple picture of electrons

confined in a box. The length scale of electron confinement has a quadratic relation with
the wavelength of the emitted photon and energies in the optical regime correspond
to spatial confinements around the nanometer scale, giving a large mismatch between
both spatial parameters [70]. This mismatch leads to the small cross-sections of single
QEs and prevents a fast radiative decay rate of the excited state. Plasmonic resonators
are suitable to work as optical nanoantennas, confining the fields into small spaces and
connecting very efficiently the near EM fields and radiation [71, 72].
If we consider the QE in the dipolar limit, the interaction Hamiltonian reads ĤI =
−µ̂Ê and γ can be written [55]

γ = 2ωeg
3~ε0

µ2ρµ(r, ωeg) (1.36)

where µ = 〈e| µ̂ |g〉 is the transition dipole moment and ρµ(r, ωeg) is the local density of
states at r, the position of the QE, and ωeg, the QE natural frequency. This magnitude
encodes the effects of the environment on the decay of the emitter and it can be expressed
in terms of the EM dyadic Green’s function [72] of the system (see section 1.2) G(r, r′, ω)
as

ρµ(r, ω) = 6ω
πc2 Im{n̂µG(r, r, ω)n̂µ}, (1.37)

where n̂µ accounts for the orientation of the dipole moment.
In order to make clear the link between Eqns. (1.33) and (1.36), if we assume a lossless,

closed environment, G(r, r, ω) can be expanded as a sum of the normal modes of the
system uq(r, ω) that satisfy the wave equation ∇ × ∇ × uq − (ω2

q/c
2)uq = 0 and a

normalization
∫

uqu∗q′d3r = δq,q′ [55]. Then, the density of states reads

ρµ(r, ω) = 3
∑

q

[
n̂µ(uq(r)u∗q(r))n̂µ

]
δ(ωq − ω). (1.38)
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From this expression it becomes clear that γ will be enhanced in environments in which
the field component of the normal modes at the emitter position becomes very large.
Since those satisfy the normalization condition, the extremely confined modes typical
of plasmonic resonances emerge explicitly as good candidates for the spontaneous decay
modification due to the direct dependence of ρµ on their local amplitude. The extension of
the normal mode decomposition of EM environments to lossy, dispersive, open systems
have been an intricate problem during several decades, but recent results have been
obtained in the fields of mQED, QNMs and pseudomode descriptions [38, 42]

1.4.4. Regimes of light-matter interaction
In order to distinguish the different regimes of the interaction, we proceed to analyze
the dynamics of the excited state of a QE, coupled with a single EM mode, labelled as λ.
We write the Hamiltonian that controls the dynamics of such sub-system, which reads

ĤS = ~ωegσ̂†σ̂ + ~ωλâ†λâλ + ~gλ(σ̂†âλ + â†λσ̂), (1.39)

where we consider gλ, the coupling between the QE and the EM mode. This is the
well-known Jaynes-Cummings Hamiltonian, obtained from the more general, Rabi one,
by performing the Rotating Wave Approximation, that assumes ωeg, ωλ >> gλ and no
counter-rotating or non-conserving excitations â†λσ̂† or âλσ̂ terms appear. This Hamilto-
nian describes S, consisting of a QE and a single EM mode, as a closed system. Through
the cavity mode λ, the system interacts with the environment . As anticipated, this inter-
action is described in the Markovian limit. The system is no longer described in terms of
pure states and the density matrix operator needs to be used (of the form ρ̂S = |ψ〉 〈ψ|
for a pure state). The dynamics of the system is described by the Liouville von Neumann
master equation [73]

d

dt
ρ̂S = −i

~
[ĤS , ρ̂S ] + γλ

2
(
2âλρ̂S â†λ − {â

†
λâλ, ρ̂S}

)
, (1.40)

where the last term (weighted by γλ) corresponds to the Lindblad superoperator de-
scribing the Markovian coupling between the EM mode λ and the environment as a
reservoir13. This means that, at any time, E is not altered by its interaction with S.
The dynamics of the excited state of the emitter in a spontaneous emission configura-

tion (single excitation manifold) given by Eq. (1.40) is equivalent to that obtained from
13Note that the interaction of the QE with free propagating fields in the environment can also be

accounted for in Eq.(1.40), omitted here for simplicity.
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the Schrödinger equation for the non-Hermitian Hamiltonian resulting by replacing ωλ
by ωλ−iγλ/2 in Eq. (1.39) [74, 75]. Following this procedure, for |ψ(0)〉 = ce(0) |e〉 = |e〉,
we obtain

d

dt
ce(t) = −

∫ t

0
ce(τ)K(τ − t)dτ (1.41)

where the Kernel K(τ − t) =
∫∞

0 J(ω)ei(ω−ωeg)(τ−t)dω is written in terms of the spectral
density J(ω) that contains information about the light-matter coupling, with dependence
on both QE and EM mode parameters14. For the case of the Hamiltonian in Eq. (1.39),
J(ω) has the form of the imaginary part of a Lorentzian [74]

J(ω) = g2
λ

π

γλ/2
(ω − ωλ)2 + γ2

λ

4

. (1.42)

In order to discriminate between the different coupling regimes, we analyze the eigenen-
ergies and the dynamics of the system under the described approach. When the effective
coupling between light and excitons is lower than the energies and the frequencies of
the loss channels associated to those transitions, interactions between light and matter
occur in the weak coupling regime. If we consider that the energy exchange, represented
by gλ is much lower than the losses γλ, we can assume the flatness of J(ω), the structure
of the kernel for ωeg = ωλ reduces to

K(τ − t) ≈ J(ωeg)
∫ ∞

0
ei(ω−ωeg)(τ−t)dω, (1.43)

and the temporal dynamics, using Eq. (1.42), reduces to
d

dt
ce(t) ≈ −

2g2
λ

γλ
ce(t). (1.44)

Eq. (1.44) implies an irreversible exponential decay15. In this limit, the interaction
can be interpreted as a perturbation that modifies the long-time decay, modifying the
spontaneous decay rate of the QE and the population of the excited state that can
be written in terms of the density of states linked to that EM environment with γ =
4g2

λ/γλ = 2πJ(ωeg) as the decay rate of the excited state. Invoking Eq. (1.35), Pf =
2πJ(ωeg)/γ0 is the quantification of the effect observed by Purcell [8] for the particular
case of a QE coupled to a single EM mode. In arbitrary environments, the spectral
density can be written in terms of the Green’s function [55]

J(ωeg) =
ω2
egµ

2

π~ε0c2 Im{n̂µG(r, r, ωeg)n̂µ}, (1.45)

14Apart from the references given in the main text, we suggest the derivation of this approach in
Ref. [76] to the reader.

15It becomes clear the meaning of the term Markovian as weak limit in the reservoir-mode coupling.
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and from the form of γ, it is clear that

Pf = J(ω)
J0(ω) (1.46)

where J0(ω) = ω3µ2/(6π2~ε0c3) is the free space spectral density, given by the three-
dimensional dyadic Green’s function Im{G(r, r, ω)} = ω/(6πc). The last expression
constitutes a central result that we will use in this thesis, since the enhancement of the
density of states in a given environment is determined by the Purcell factor, also known
in literature as generalized Purcell Factor [37, 77].
We can go further and inspact the eigenenergies of the Hamiltonian, including both the

cavity and the emitter losses, that we omitted in Eq. (1.40) for simplicity. Then, we define
the complex frequencies, ω̃eg = ωeg − iγeg/2 and ω̃λ = ωλ − iγλ/2. The eigenfrequencies
for the 2× 2 matrix read

E± = ω̃eg + ω̃λ
2 ± 1

2
√

(ω̃eg − ω̃λ)2 + 4g2
λ. (1.47)

In Figure 1.4(a), we represent the dynamics of the population of the excited state for
different values of the coupling gλ, as indicated in the legend, with ωeg = ωλ, γeg/ωeg =
0.02 and γλ/ωeg = 0.1. When the cavity coupling is zero, the decay is governed by the
loss rate, γeg, following an exponential law (blue line), as it follows from the dynamics
in the Markovian case. When the strength of the interaction increases, the dynamics
of the exciton cannot be characterized by an exponential decay (red line). We enter
in the so called intermediate coupling regime, that can be explained through higher
order perturbation theory applied to the system. The Markovian approximation for
the exciton dynamics breaks and the decay is monotonic but not exponential [78, 79].
Finally, when the coupling overcomes losses, the dynamics of the excited state population
is not a decay anymore, but reproduces several oscillations, indicating the new hybrid
nature of the system. In Figure 1.4(b), we plot the real part of the eigenfrequencies of
the system as a function of the detuning for a fixed coupling (gλ/ωeg = 0.1). Dashed
lines are the frequencies of each excitation. When the QE is off-resonance with respect
the cavity mode, the eigenfrequencies are similar to that of the constituents, but an
anticrossing between the energy lines appear in resonance, characteristic of the strong
coupling regime. The separation between the energies gives ΩR, the Rabi frequency of
the population oscillations. The states of the system within the so called strong coupling
regime are hybrid light-matter states called polaritons. Whereas an isolated emitter
has a frequency that determines its absorption or emission spectra, when both light
and matter excitation components are in resonance, the spectra presents two maxima,
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Figure 1.4: Regimes of light-matter coupling. (a) Population dynamics of the excited state for
different coupling strengths. (b) Real part of eigenfrequencies E± as a function of the detuning
between ωeg and ωλ. (c,d) Real and imaginary parts of E± as a function of the coupling strength
for the zero-detuning case.

corresponding to the upper and lower polaritons, whose energies are given by the curves
in Figure 1.4(b). As we can anticipate, we will deal with hybrid states with different
excitonic and plasmonic components, plexcitons or plasmon-exciton polaritons [80, 81].
Panels (c) and (d) in Figure 1.4 show how the eigenfrequencies depend on the coupling
for the resonant case. It is clear that below a certain value, the real part of E± does
not change while the imaginary part is modified starting from γλ/2 and γeg/2 for the
gλ/ωeg = 0 case. This corresponds to the regime of weak coupling. When the coupling
exceeds the losses, the system enters in the strong coupling regime where the splitting
arises and increases linearly for large values of gλ.
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1.4.5. Platforms for the study of light-matter interactions
Up to this point, we have referred to how the environment modifies the emission proper-
ties of QEs, and, specifically, plasmonic environments provide a large field enhancement
that support the modification of the density of states. Not surprisingly, there are more
scenarios in which the lifetime of excited states of QEs can be changed. In this final
section to the introductory chapter, we are going to overview different platforms widely
used during the last decades in the research of spontaneous emission modification, as
well as on the type of emitters used.

The field of cQED relies on the manipulation of matter excitations through the in-
teraction with EM modes of a cavity. The concept cavity is tremendously general, but
it sets a tag: the modes will not be the free-space ones. As we already commented,
the imposition of boundary conditions on the set of Maxwell’s equations grounds the
emergence of new modes, as we have seen in metallodielectric interfaces. Although our
treatment of light-matter interactions throughout this thesis does not properly rely on
cQED concepts, the large scope of this field invite us to provide a brief summary about
those and their link to our results.
The easiest route to engineer new EM modes is to bring face to face two mirrors,

separated by a distance Lcav on the order of the wavelength, λ, associated to the exci-
tonic transition of interest. This system constitutes an optical Fabry-Perot cavity and
it contains the set of parameters that determine the properties of any cavity. Modes
are characterized by their frequency, ωn, the quality factor, Qn, and the mode volume
Vn. Resonances are given by the condition in which standing waves appear in the cav-
ity, so λn/2 = πc/ωn ∝ Lcav. Qn is defined as ωn/γn, where γn are the losses of the
cavity. The boundaries in this type of system impose the discretization of modes in a
three-dimensional system, so the modes are quite similar to those of the bulk material,
or light-like, with an spatial extension related to λn, and consequently the mode volume
Vn ∝ λ3

n. The cavity mode is said to bounce back and forth between the mirrors, lead-
ing to a enhancement of the interaction with the emitter placed inside the cavity. We
highlight the particular interest on both Qn and Vn since they characterize the cavity
mode. The central target of cavity-based modifications of SE has been creating cavities
with the highest Qn/Vn, since the Purcell factor, Pf ∝ Qn/Vn [82]. The spatial exten-
sion of the mode, described by Vn, is linked to the amplitude of the electric field as
Vn = max(ε0E2)−1 ∫

V εE
2dV 16, relating the small mode volumes of highly confined fields

16The dispersive and lossy nature of plasmonic resonances makes difficult the proper characterization
of the mode volume, giving rise to detailed discussions [82, 83], as well as its definition in the context
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to the enhancement of emission. Fabry-Perot cavities made of a pair of mirrors have been
widely used in the research of cQED and quantum optics fields, where the nature of mat-
ter and radiation interaction has been examined in detail with atoms and quasiperfect
cavities that allow the determination of coupling and decay channels [13, 85].
Mirror-mirror systems typically operate in very specific regimes of microwave length

scales and cryogenic temperatures so those difficulties to manipulate and extent their
applicability turned the interest to solid state cavities in the context of nanophotonics.
Plasmonic systems, already discussed, are widely used in the study of emission enhance-
ment, even when their lossy character prevent in general the achievement of very large
quality factors, with typical values Q ∼ 10−100, compensated by their ultrasmall mode
volumes [86, 87] on the order of nanometer and picometer scales. On the other hand,
the use of periodicity in the dielectric constant on non-lossy materials gives place to the
emergence of photonic crystals [19], which can create photonic bandgaps in the same
way as electrons travelling in a periodic potential. In order to take advantage of the pe-
riodic environment, the wavelength of the light has to be comparable to the periodicity
of the lattice. The use of 1D periodically-structured semiconductor media in the optical
regime makes possible to design Bragg gratings with large reflectances that can be used
as effective mirrors. This is the procedure used in planar semiconductors cavities, where
the photon is confined in one direction while extended in the other two, usually in the
infrared regime for the study of polariton formation [88] and emission characteristics [89].
Micropillar configurations made of cylindrical Bragg reflectors provide larger confinement
of the cavity mode preventing propagation in the radial direction through total inter-
nal reflection [90], presenting large quality factors, ranging from Q ∼ 103 to ultrahigh
Q ∼ 1010 in spherically designed nanoresonators [91]. Furthermore, three-dimensional
material engineering of the material allow the presence of defects in the structure that
lead to light confinement. Arrays of defects permit the propagation of light along an
effective waveguide of holes [92, 93] whereas localized defects are able to trap light [94].
The capabilities of photonic crystals can be exploited to the study the modification of
SE, since emission from QEs whose resonance frequency lies within the band gap can
be enhanced or suppressed when those are placed in the defect or in the bulk crystal,
respectively.
The last component of the study of light-matter interaction is the matter component.

The election of the optimal emitter depends on the desired final performance. The ex-
ploitation of light-matter interactions for the obtention of quantum light would rely

of quasinormal mode theory [84].
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on QEs whose de-excitation is mainly followed by the emission of a photon. Therefore,
since the dissipation mechanisms can be characterized as radiative or non-radiative, non-
radiative losses should be overwhelmed by radiative ones. The more complex energy and
state structure, the more dissipation channels. On the other hand, if the final goal is
to achieve the entrance into the strong coupling regime, large transition moments are
desired. Finally, another feature to be considered is the integration of the QE in the
nanostructure. As a simple summary, atoms constitute a very suitable system in quan-
tum optics, with a strongly antibunched output of light while, due to their simplicity,
they do not show large decoherence effects and present narrow linewidths (∼ µeV).
They usually operate at low temperatures and presents difficulties to be integrated in
solid state cavities, been widely used in microwave (rubidium) and optical (cesium)
mirror-mirror cavities. On the other hand, the more complex structure of molecules and
quantum dots reveal larger decoherence mechanisms (couplings between the different
energy structures present in the system) and therefore, larger linewidths with respect
to atoms (∼ meV) and lower quantum yields ϕ = γr/(γr + γnr), due to the importance
of non-radiative mechanisms. At the same time, their characteristics make them suit-
able for isolation and manipulation in photonic and plasmonic optical cavities. Organic
molecules, despite their relatively large non-radiative dissipation rates, have remarkable
properties as QEs, with large transitions moments (a few Debye) and operability at room
temperature. Quantum dots also present large dipole moments and their main benefit is
the possibility of tuning their properties through design. The complexity of their energy
structure makes them more predisposed to suffer of non-radiative mechanisms, that can
be compensated through their operation at low temperatures.
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Single excitons in a plasmonic cavity

In this chapter, we investigate the interaction between the surface plasmons (SPs)
supported by a nanoparticle-on-mirror (NPoM) cavity and single quantum emitters

(QEs) of two types: those sustaining dipolar, and those supporting quadrupolar excitons.
We present a Transformation Optics (TO) approach which allows us to obtain analyti-
cal expressions for all the physical magnitudes characterizing the hybrid QE-SP system.
In this context, TO allows the quantization of the plasmonic modes supported by the
NPoM cavity and the parametrization of the QE-SP interaction Hamiltonian, in a similar
way as other recently proposed methods [38, 41, 95]. Our approach sheds deep insights
into two different plasmon-exciton phenomena: the near-field population dynamics in
a spontaneous decay configuration and the far-field scattering spectra under dark-field
laser illumination. Our model also accounts for finite-size effects associated with both
excitonic charge distributions. Throughout the chapter, the differences and similarities
in the light-matter coupling phenomenology for dipolar and quadrupolar transitions are
discussed and analyzed. Despite the fact that a full three-dimensional (3D) TO frame-
work for dipolar point-like sources is available [96], we employ here its two-dimensional
(2D) version [64]. There are three reasons justifying this choice. First, only the latter is
fully analytical, which is instrumental for the description of quadrupolar transitions [97]
and finite-sized QEs. Second, the 2D theory can be pushed beyond purely quasistatic ap-
proximation [98], which allows computing the SP dipole moments and therefore, far-field
spectra for the QE-SP system. Finally, as we also show, the comparison between 2D and
3D results reveals that the 2D treatment reproduces all the phenomenology reported in
3D [81].
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2.1. The approach: Transformation Optics
The invariance of Maxwell’s equations under coordinate transformations is the root of the
TO approach to control and manipulate electromagnetic (EM) fields. This fact opened
the road to the inverse design of the EM response of a material, exchanging the material
and spatial properties of the system. Then, TO provides the link between the desired
EM phenomenon and the material response which is required for its realization [99, 100].
The form-invariance of Maxwell’s equations satisfies that, for any arbitrary system with
coordinates r′ = (x′, y′, z′) and characterized by the material parameters ε′,µ′, the curl
equations read

∇′ × E′ = −iωµ′H′ (2.1)

∇′ ×H′ = iωε′E′. (2.2)

This primed geometry can be transformed in the form r = f(r′), and the form-
invariance provides

∇× E = −iωµH (2.3)

∇×H = iωεE. (2.4)

Then, the fields are spatially shaped in the same way as the material parameters,
yielding the form for ε,µ [101, 102]

ε =
Tfε

′TT
f

det Tf

; µ =
Tfµ

′TT
f

det Tf

(2.5)

where (Tf )ij = ∂xi/∂x
′
j is the Jacobian matrix of the transformation.

The advent of TO came together with that of optical metamaterials, devised with the
objective of moulding EM phenomena beyond the constraints of natural material features.
Those are artificial materials whose properties are determined by their structure, where
the collective response of their sub-wavelength constituents yields a variety of effective
permittivities and permeabilities, and a route for such design is provided by TO. The
use of TO has been focused in many fields, not only in the context of optics with
examples as cloaks [103] and field concentrators [65] but also beyond electromagnetics,
where TO has been revealed as a tool in the conception of mechanical metamaterials
and seismic cloaking [104–106]. TO and, particularly, conformal mapping (see below),
has been also used to obtain analytical solutions of Maxwell’s equations in different
nanophotonic systems, such as crescents [66, 107], rods [108], dimers [64, 109], bow-
ties [110] or tripods [111]. The spirit of this method was already considered in the initial
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proposal of the approach, which suggested that coordinate transformations would result
in easing the numerical solution of Maxwell equations in problems with very different
length scales [101].

2.1.1. Conformal mapping
The fundamentals of TO are also related to conformal mapping techniques. The nature
of two-dimensional systems makes available the theory of complex variable functions,
widely used in the context of solving not only Maxwell’s equations, but many types of
differential equations with boundary conditions [112]. Following this route, the behav-
ior of fields in complex geometries have been tackled spanning electromagnetics, heat,
hydrodynamics or elasticity. Conformal transformations are two-dimensional analytical
maps that preserve the angles between the original and transformed geometries, which in
the complex plane refers to analytic functions f(%) = u(x, z) + iv(x, z), with % = x+ iz.
We anticipate here the notation that we will use in the following sections. Instead of
referring to the complex number with the usual convention z, we denote the Cartesian
space in our reference system as (x, z). The conditions that enclose the analyticity are
the Cauchy-Riemann equations

∂u(x, z)
∂x

= ∂v(x, z)
∂z

and ∂u(x, z)
∂z

= −∂v(x, z)
∂x

. (2.6)

An important consequence in terms of simplicity arises from the fulfillment of Cauchy-
Riemann equations. Considering the in-plane transformation T (%) = %′ = x′ + iz′, the
electric permittivity (and thus the magnetic permeability) can be written

ε′ = ε′I = ε

det T̂ (%)

 ∂x′

∂x
∂x′

∂z
∂z′

∂x
∂z′

∂z

 I

 ∂x′

∂x
∂z′

∂x
∂x′

∂z
∂z′

∂z

 = ε

det T̂ (%)
det T̂ (%)I (2.7)

where I is the identity matrix. From Eq. (2.7), ε′ = ε, offering the advantage that the
in-plane permittivities (and permeabilities) remain unchanged after the transformation.
Furthermore, the differentiation of the Cauchy-Riemann equations yields the Laplace

equation
∇2u(x, z) = 0, and ∇2v(x, z) = 0, (2.8)

so the real and imaginary parts of an analytic function f(%) = u(x, z) + iv(x, z) are
harmonic. The importance of this equation is well known since many physical prob-
lems are described under its form. In particular, when considering nanometric length
scales and optical frequencies, the quasistatic approximation applies and then the elec-
tric field can be written in terms of a potential that satisfies the Laplace’s equation
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(see Section 1.4), which contains an intimate relation with the properties of conformal
mapping. Suppose we are able to map conformally from the %-plane to the %′-plane,
via %′ = T (%). Then, consider the electrostatic potential that satisfies ∇2φ(x, z) = 0,
which can be thought as an analytic function g(ρ). We can define an analytic function
G(%′) = g(T−1(%′)) = (g ◦ T−1)(%′), where the composition of two analytic functions is
also analytic. Then, a function Φ(x′, z′) = G(%′) can be written as

Φ(x′, z′) = G(%′) = g(%) = φ(x, z). (2.9)

Thus, if we know Φ(x′, z′) (that satisfies Laplace’s equation in %′-plane), and the con-
formal map taking %′ to %, we have solved the problem for φ(x, z). This is the well
known condition that ensures the preservation of the electrostatic potential under the
transformation.
Now, we present the geometry that stimulated our interest. Metallic nanostructures

with nanometric gaps support plasmonic resonances that provide large field enhance-
ments, such as plasmonic dimers as well as nanoparticles on top of metal films [113, 114].
In particular, NPoM cavities have emerged as suitable platforms for the study of strong
light-matter interactions. Those present an extreme confinement of the fields down to
a few nanometers, ease of fabrication through both lithographic and self-assembly ap-
proaches as well as the ability of acting as nanoantennas, coupling free space into these
modes and vice versa [115, 116]. These characteristics justify their utilization as plas-
monic platforms for the enhancement of light-matter interactions in the quantum regime.
Nanocubes on top of metal films have been demonstrated to realize ultrafast spontaneous
emission [117] while nanospherical-film structures have revealed single-molecule strong
coupling at room temperature [118] and single-molecule optomechanics [87]. Several the-
oretical works have analyzed the nature of the plasmonic resonances of this type of
structures, that can be interpreted as resulting from the hybridization between bright
and dark modes (the so called antenna and gap modes) [119, 120]. Furthermore, these
resonances show a strong dependence on the morphology and symmetries of the cavity,
where facets and atomic protrusions are crucial in the determination of their spectral
positions, couplings to far-field illumination and field enhancements [87, 121–123].
From now on, we will refer to the spherical NPoM. A TO approach for this system

has been proposed [81, 96] but it presents some limitations. The nature of the field de-
composition relies on the symmetry of the problem so only dipolar sources placed at the
axis of the cavity can be handled. Furthermore, higher order terms in the multipolar
expansion of the potentials cannot be treated analytically. Finally, even when the qua-
sistatic limit has been completed with the inclusions of spatial dispersion [124], there is
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Figure 2.1: Transformation Optics approach. (a-c) Illustration of cascaded transformations.
After the first conformal mapping (exp(%I)), the slab geometry maps into a concentric annulus
enclosed in the green region. A displaced inversion applied onto the second stage (1/(%II − 1))
provides the two-dimensional version of the NPoM cavity. (d) A microscopic dipolar (blue) or
quadrupolar (red) light source in the vicinity of a NPoM cavity with gap δ and diameter D.
(e) Geometry obtained under the mapping given by Equation (2.10): a metal-dielectric-metal
structure excited by a periodic array of transformed dipole and quadrupole sources. Note the
unprimed and primed coordinates used for original (d) and transformed (e) geometries.

not a phenomenological approach for the inclusion of radiative losses that would provide
insight into far-field magnitudes. The 2D model of the cavity brings several solutions
to those restraints. This approximation lacks of the exact description of the plasmonic
frequencies and spatial profiles of 3D cavities but it is justified by the resemblance of
near-field phenomenology in 2D and 3D geometries (see Section 2.3).

As already stated, the two-dimensional version of the geometry (presenting transla-
tional invariance along the out-of-plane y-direction) allows the use of TO techniques. We
start presenting the mapping as a cascaded conformal transformation. The double slab
problem (sketched in Figure 2.1(a)) is an ideal starting point, because the solution for
Laplace’s equation in this geometry is known. Green and violet shadows refer to each
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domain in order to show the explicit changes after each transformation. From the slab
configuration defined in the plane %I = xI+izI, the first step is given by the analytic func-
tion %II = exp(%I). The left semiplane is transformed into the central unit circle, and the
central slab into the intermediate shell. The right semiplane corresponds to the external
region. Next, we apply the displaced inverse transformation, given by %III = 1/(%II − 1).
An inversion maps circles into circles, obtaining the desired form of the 2D NPoM.

Once we know that there exists a transformation linking the 2D NPoM (unprimed co-
ordinates) and the slab (primed ones) geometries, we apply the following transformation

%′ = T (%) = log
(2iD

√
ρ(1 + ρ)

%− is
+ 1

)
, (2.10)

to map solutions between both frames. Note that Eq. (2.10) is the inverse version of
the cascaded transformations mentioned above. We have introduced two constants, the
ratio ρ = δ/D and s = δ + D

√
ρ/(
√

1 + ρ + √ρ), where δ and D are the gap and the
nanoparticle diameter that define the NPoM cavity (depicted in Figure 2.1(d)). Thus,
under Eq. (2.10), the cavity maps into a metal-dielectric-metal waveguide of adimensional
width d = 2 ln(√ρ+

√
1 + ρ), as sketched in Figure 2.1(e).

2.1.2. Dipolar and quadrupolar fields
The QE, which can be located anywhere in the surroundings of the nanostructure, is
generally a system with a complex microscopic structure (i.e., a molecule). The interac-
tion of such a system with light is determined by the electric (and magnetic) transition
moments characterizing the quantum transitions that the emitter can undergo in the
presence of a EM environment. Even when the size of such emitter is of the order of the
nanometric gap of a NPoM [118], it is well known that treating it as a point-like EM
source, characterized by its multipolar expansion, provides an accurate understanding of
the problem [125]. Then, in a first approximation to the problem, we use the Poisson’s
equation ∇2φ2D(x, z) = −ρ(x, z)/ε0 and its free space Green’s function G2D

0 (r, r′), with
the Cartesian notation for the in-plane vectors r = (x, z)

φ2D(x, z) = − 1
ε0

∫
ρ(r′)G2D

0 (r, r′)d2r′ = − 1
2πε0

∫
ρ(r′) log(|r− r′|)d2r′, (2.11)

to get the successive orders of the multipolar expansion. As usual, r′ refers to the volume
occupied by the distribution of charges. The Taylor expansion of log |r− r′| provides the
following terms

φ
(1)
2D(x, z) = −1

2πε0

∫
ρ(r′)(−r′∇) log r d2r′ = 1

2πε0
µ · r
r2 , (2.12)
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φ
(2)
2D(x, z) = −1

2πε0

∫
ρ(r′)1

2(−r′∇)2 log r d2r′ = 1
2πε0

∑
ij

Qij
xixj
r4 , (2.13)

for the first and second orders in the expansion, respectively1. We have already intro-
duced the dipolar moment µ =

∫
ρ(r′)r′ d2r′, which can be understood in terms of the

vector that connects the effective negative and positive charge distributions. Thus, we
can write µ = (µx, µz) = µ(sinα, cosα), where angle α is defined with respect to the
z-axis. On the other hand, the quadrupolar moment is defined by the components of the
traceless tensor, Q, with Qij = 1

2
∫
ρ(r′)(2x′ix′j− r′2)δij d2r′. By symmetry, there are only

two independent entries, Qxx and Qxz, which can be expressed in terms of the modulus
Q =

√∑
i,j Q

2
ij and the angle α as

Q =
 Qxx Qxz

Qzx Qzz

 = Q√
2

 sin 2α cos 2α
cos 2α − sin 2α

 . (2.14)

Under the conformal mapping, the multivalued character of the transformation (in-
herited from the logarithmic function) maps the point-like sources in the original frame
into a periodic array of sources at the transformed system. They are distributed along
the z′-axis and separated by 2π. Thanks to the conformal character of the mapping and
the nanometric nature of the cavity, the potential is transformed (see appendix A)

φµ(x, z) = 1
2πε0

Re
{
µx + iµz
%− %E

}
−→ φ

′

µ(x′, z′) = 1
2πε0

Re
{
µ′x′ + iµz′

%′ − %′E

}
, (2.15)

φQ(x, z) = 1
2πε0

Re
{
Qxx + iQzz

(%− %E)2

}
−→ φ

′

Q(x′, z′) = 1
2πε0

Re
{
Q′x′x′ + iQz′z′

(%′ − %′E)2

}
, (2.16)

where we define the position of the QE in the NPoM system as %E = xE + izE. The
position of the transformed sources is given by T (%E) = %′E + i 2πn. The index n,
ranging from −∞ to ∞, labels the different sources in the transformed frame resulting
from multivaluation. The primed electric moments read

µ′x′ + iµ′z′ = µx + iµz

(%E − is)
(

i(%E−is)
2D
√
ρ(1+ρ)

− 1
) , (2.17)

Q′x′x′ + iQ′x′z′ = Qxx + iQxz

(%E − is)2
(

i(%E−is)
2D
√
ρ(1+ρ)

− 1
)2 . (2.18)

Thus, the conformal nature of the mapping in Eq. (2.10) preserves the character of the
original source potential: a single dipole (quadrupole) source transforms into a periodic
array of dipoles (quadrupoles) distributed along the z′-direction.

1The different spatial dependence of both potentials and moments (see below) with respect to the 3D
case is given by the different form of the Green’s function in two- and three-dimensional systems.
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2.2. Coupling between QEs and electric fields: Purcell
Factor

The interaction between dipolar QEs and electric fields is described through the Green’s
function formalism. As a classical dipole oscillates, it radiates energy into the medium
in its surroundings. The time-averaged power radiated by the dipole, W , is equal to the
energy dissipation [55], that reads

W = −1
2

∫
Re{J∗(r′)E(r′)}d3r′. (2.19)

The Taylor expansion of the current density associated to a charge distribution provides
the point-like dipole’s current density term as J(r) = −iωµδ(r− rE) [55]. Thus, we find
the usual expression for the radiated power

W = ω

2 Im{µ
∗E(rE)}, (2.20)

given by the imaginary part of the field at the location of the source. The importance of
this result specially manifests when we deal with inhomogeneous environments, where
energy dissipation can be calculated by means of the electric field at the position of the
source instead of integrating the Poynting vector over a surface enclosing the emitter [55].
Equation (2.20) leads to the normalized rate of energy dissipation

W

W0
=

ω
2 Im{µ

∗E(rE)}
W0

= 1 +
ω
2 Im{µ

∗ES(rE)}
W0

, (2.21)

where in the last step of the equation we have used the convenient separation of the
total field into two contributions, the free space one, E0, and the scattering contribution
due to the environment, ES. The result in Eq. (2.21) is equivalent to the normalized
spontaneous emission rate, so the Purcell factor Pf = W/W0 can be determined through
the computation of the scattered field effects on a classical source. The free space contri-
bution, W0, can be calculated both through the evaluation of the free space electric field
at the dipole position,W0 = ω

2 Im{µ
∗E0(rE)}, or by the integration of the Poyting vector

through a surface enclosing the dipole. At the nanoscale regime, the confined character
of the scattered fields, ES, can be described in the quasistatic limit. Nevertheless,W0 has
to be calculated taking account the electrodynamic character of the source (see below).
Equation (2.21) shows explicitly that Pf is given by the ratio between two energy

terms, the free space one and the one given by the interaction with the environment. As
we are working in the quasistatic limit, this interactions can be described in terms of the
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electric potential energy. Then, we examine the form of the interaction energy

VE =
∫
ρ(r′)φ(r′)d3r′, (2.22)

where the potential is the external stimuli and the integral runs over the charge distribu-
tion volume. We are allowed to write Eq. (2.22) since, in the quasistatic limit, φ(r) and
ρ(r) have the same time dependence, mediated just by the same phase. If the potential
slowly varies over the volume of the charge distribution (point-like approximation), we
can expand φ(r) as a Taylor series and the two first orders of the expansion read2

V
(µ)
E = −µE(rE), (2.23)

V
(Q)
E = −1

2(Q∇)E|rE . (2.24)

Note that we do not consider the zeroth-order term in the expansion of Eq. (2.22),
V

(0)
E = qφ(rE), as there are not free charges involved in our system. Therefore, the

Purcell factor is equivalent to the normalization of the interaction energy in a certain EM
environment to the free space case. The calculation reduces to solve Laplace’s equation
in the geometry sketched in Fig. 2.1(d)

P µ
f (ω) = 1 +

V
(µ)
E,S

V
(µ)
E,0

= −Im{µ∇φµS(r, ω)|rE}
Im{µEµ

0(rE)} , (2.25)

PQ
f (ω) = 1 +

V
(Q)
E,S

V
(Q)
E,0

= −Im{(Q∇)∇φQS (r, ω)|rE}
Im{(Q∇)EQ

0 (rE)}
, (2.26)

where r = (x, z) and rE = (xE, zE) are the Cartesian vectors in the xz-plane. Note that
on the right side of Eqs. (2.25) and (2.26), we have introduced the expression of the
scattered electric field as the gradient of the quasistatic scattered potential, φiS. We have
also disregarded the constant term in front of the ratio between scattered and free space
VE interaction terms as typically V

(i)
E,S

V
(i)
E,0
� 1.

The free space terms for normalization, given by E0, are obtained through the computa-
tion of the electric field at the position of the source. The purely electrostatic calculation
does not provide any meaningful result, since electrostatic potentials, which are real, di-
verge at rE. To get the correct answer, the electric field has to be obtained by means of an
electrodynamic approach. As we are working in the 2D version of the NPoM cavity, we

2Naturally, the quadrupolar tensor in the expansion is defined in the form Q =
∫
ρ(r)r ⊗ r, which is

not traceless. Due to the condition of external field, ∇E = 0, we can add any gauge in the form
((Q − fI)∇)E. Subtracting 1/2r2I, the quadrupole tensor acquires a traceless form.
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use the scalar Green’s function for the Helmholtz equation, G2D
0 (r, r′) = −i

4 H
(1)
0 (k|r−r′|),

given by the Hankel function of the first kind, H(1)
0 . The electric field can be calculated

by means of the vector potential as [55]

E(r) = iω[I + 1
k2∇∇]A(r), (2.27)

where A(r) =
∫
V µ0J(r′)G2D

0 (r, r′)d3r′. The Green’s function can be expanded into a
multipolar series (see appendix A), yielding the dipolar and quadrupolar contributions
to the vector potential, which result in

Im{µEµ
0(rE)} = ω2µ2

8ε0c2 , (2.28)

Im{(Q∇)EQ
0 (rE)} = ω4Q2

32ε0c4 . (2.29)

As already mentioned, the problem is analytically solved in the slab-system and, after
the inverse transformation (provided by the preservation of the potential), the solution
is obtained for the NPoM system (see appendix A for the detailed derivation). The
potentials for both sources (i = µ,Q), given by Eqs. (2.15) and (2.16), are written in
the transformed slab-frame (see Fig. 2.1(e)) as

φi(x, z) −→ φi(x′, z′) =
∞∑

n=−∞
ζ
(
x′ − x′E, z′ − (z′E + i2πn)

)
, (2.30)

where the index n accounts for the multivalued character of the log function in the
transformation, which yields a periodic array of sources in the transformed frame along
z′-direction. In order to solve the Laplace’s equation, the primed quasistatic potentials
are Fourier transformed

φi(k) =
∫
φi(x′, z′)e−ikz′dz′ =

{
ai−(k)e+|k|(x′−x′E) if x′ < x′E

ai+(k)e−|k|(x′−x′E) if x′ > x′E
(2.31)

where the coefficients, which depend on the dipolar or quadrupolar character of the
source, read ai± = ∑∞

n=−∞ ã
i(k)δ(k − n). Then, we impose that the scattered poten-

tials have the same spatial dependence as the propagating SPs sustained by the metal-
dielectric-metal geometry.

φiS(k) =


x′ < 0→ c−(k)e+|k|(x′−x′E)

x′ ∈ [0, d]→ b−(k)e+|k|(x′−x′E)) + b+(k)e−|k|(x′−x′E)

x′ > d→ c+(k)e−|k|(x′−x′E)

(2.32)

Applying continuity conditions at the metal-dielectric interfaces, the four coefficients,
c±(k), b±(k) are found. Performing an inverse Fourier transform, we obtain the scattered
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2.2. Coupling between QEs and EM fields

potential in the central slab, x′ ∈ [0, d], which, after the inverse transformation given by
Eq. (2.10), corresponds to the scattered potential in the dielectric of the NPoM cavity,
written as

φµS(x, z) = 1
2πε0εd

εm − εd
εm + εd

∞∑
n=1

1
(√ρ+

√
1 + ρ)4n −

(
εm−εd
εm+εd

)2×

[
εm − εd
εm + εd

Re
{

(µ′x′ + iµ′z′)A−n (%, %E)
}

+ (√ρ+
√

1 + ρ)2nRe
{

(µ′x′ − iµ′z′)B−n (%, %E)
}]

φQS (x, z) = 1
2πε0εd

εm − εd
εm + εd

∞∑
n=1

n

(√ρ+
√

1 + ρ)4n −
(
εm−εd
εm+εd

)2×

εm − εd
εm + εd

Re{(Q′x′x′+iQ′z′z′)A+
n (%, %E)}−(√ρ+

√
1 + ρ)2nRe{(Q′x′x′−iQ′z′z′)B+

n (%, %E)}


where the expressions for A±n (%, %E) and B±n (%, %E) are given in appendix A. Inserting
the above solutions for the scattered potentials into Eqs. (2.25) and (2.26), we obtain
the Purcell factor spectra, P i

f for i = µ,Q sources, given by the derivatives of A±n (%, %E)
and B±n (%, %E) evaluated at % = %E.
From the above equations, scattered fields (and so on Purcell factors) can be inter-

preted as an discrete sum of modes. The index n is indeed the one labelling the periodic
transformed sources introduced in Eq. (2.30). Each mode gives rise to a resonance satis-
fying the condition

(√ρ+
√

1 + ρ)4n = Re
{(

εm(ω)− εd
εm(ω) + εd

)2}
, (2.33)

which reproduces the quasistatic condition for absorption maxima obtained under plane-
wave illumination [64].

The description of the spectra as a discrete sum of resonances can be understood as an
effect derived from the presence of the finite nanoparticle. In order to get some insight,
the SP resonances are obtained in the slab geometry, which resembles the typical metal-
insulator-metal (MIM) waveguides, widely studied in the field of nanoplasmonics [126,
127]. The dispersion relation of the even plasmonic modes (with even field component
along the x′-direction) in a MIM configuration (with m, d subindices denoting metallic
and dielectric media) is given by [56]

tanh
(
kdw

2

)
= −kmεd

kdεm
, (2.34)
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Figure 2.2: Plasmonic modes of NPoM cavities. (a) Free space (black), planar SP (grey) and
MIM SP dispersion relation (green) for vacuum-silver systems. Blue line renders the quasistatic
result for the MIM configuration equivalent to the NPoM system (D, δ = 30.0, 0.9 nm). Orange-
to-yellow dashed lines and points mark the pairs (ω,K) for the lowest four NPoM resonances.
(b) Inverse of the wavectors associated to panel (a). (c) Purcell factor for a dipolar QE in
a NPoM cavity, oriented along z-direction at rE = (0, δ/2), as a function of frequency and
normalized gap size.

where k2
i = K2 − (ω

c
)2εi is the component of the wavevector perpendicular to the metal-

dielectric interfaces and w is the width of the dielectric layer. K is the propagating
component of the wavevector. In the quasistatic limit, the dispersion relation simplifies
to

KQS = 1
w

log
(
εm − εd
εm + εd

)
. (2.35)

In Figure 2.2, we present the dispersion relation of the low-frequency surface plasmon
supported by a MIM waveguide for an almost lossless Drude metal (γm = 10−4ωp) and
air (εd = 1). In general throughout this chapter, figure plots will present frequencies in
energy units, with the convention ~ = 1, whereas we keep SI units for the equations the
main text. In black and grey, the light-line k = ω/c and the single surface SP dispersion
relation, kSP (given by Eq. (1.27)), respectively. The green line sets the full electrody-
namic dispersion relation of even modes for the MIM configuration that corresponds
with our slab system, given by the NPoM parameters, (D, δ) = (30.0, 0.9) nm. We have
to considerate the form of the conformal transformation to find w. Due to the multi-
valued transformation, the transformed frame, which resembles MIM structure, can be
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understood as a periodic system, determined by unit cells with width d and ∆z = 2π
in the z′-direction, as sketched in the inset of Figure 2.2(b). Periodicity is given by the
transformation acting on the circumference of the nanoparticle in the NPoM system,
where one period corresponds to 2πD/2, so the effective MIM configuration equivalent
to the NPoM cavity is given by a factor D/2, with width w = dD/2 = 5.2 nm. Blue
line plots the quasistatic result, which overlaps with the green line at high frequencies
but whose crossing with the light-line reflects the failure of the quasistatic approxima-
tion. Our resonance condition, given by Eq. (2.33) for the first four modes supported
by the NPoM is plotted in orange-like points. Fig. 2.2(b) plots frequency versus 1/K
in order to show more clearly the wavelength of each mode. As expected, 1/K reflects
an scaling with the n-th mode as D/(2n). Indeed, the allowed modes are those with
an integer number of effective SP wavelengths along the perimeter of the nanoparticle,
with their effective wavelength given by πD/n, revealing n as the azimuthal order of the
plasmonic mode. Then, the finite nanoparticle sets an spatial condition for the formation
of standing waves which correspond to the plasmonic resonances of the NPoM system.
In what follows, the metal permittivity is given by a Drude fitting to silver, εm(ω) =

ε∞ − ω2
p/(ω(ω + iγm)) with ε∞ = 9.7, ~ωp = 8.91 eV and ~γm = 0.06 eV, and the cavity

is embedded in a dielectric medium with permittivity εd = 4, which models a DNA
origami scaffolding [128]. We explore the spectral position of resonances of such a system
in Figure 2.2(c). We plot the Purcell spectra for a dipolar emitter, P µ

f , at the center of
the gap rE = (0, δ/2) as a function of frequency and δ/D for a fixed D = 30.0 nm. As the
gap is smaller, larger values for the Purcell factor are obtained due to the strong light
confinement. Furthermore, lowest order modes redshift more and more, reflecting the
strong hybridization between the nanoparticle and plane eigenmodes. On the contrary,
large separations provide a merging of the whole set of modes around the frequency
satisfying the resonance condition for the MIM (the same as the single surface), given
by Eq. (2.35)

εm(ωSP) + εd = 0→ ωSP = ωp√
ε∞ + εd

, (2.36)

forming an effective pseudomode [40, 96].
Now, we turn to study the different Purcell spectra for dipolar and quadrupolar illumi-

nation. Figure 2.3 shows the Purcell spectra for NPoM cavities of D = 30.0 nm diameter
and different gap sizes: 0.9 nm (blue), 1.8 nm (red) and 2.7 nm (green). Two different
QEs, placed at the gap center, zE = δ/2, are considered: (a) a dipolar source oriented
along z-direction (µ = µẑ = (0, µ)) and (b) a quadrupolar source with a purely non-
diagonal moment (Qxz = Qzx = Q/

√
2). In our parametrization, α = 0 for both QEs. As
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Figure 2.3: Purcell factor at gap center (zE = δ/2) of NPoM cavities with D = 30.0 nm and
three different gap sizes, δ, as indicated in legend. (a) Dipolar source oriented along z-direction.
(b) Quadrupolar source with vanishing diagonal terms in Q. In both panels, analytical (solid
lines) and numerical (dashed lines) spectra are compared.

retardation effects are neglected, our quasistatic results scale with the size of the system,
L, as L−2, with no change of the resonant frequencies of the plasmonic modes supported
by the NPoM structure. Analytical predictions obtained from our TO approach (color
solid lines) are compared against full numerical 2D calculations (black dashed lines).
Those were obtained using COMSOL Multiphysics exploring the size scaling of the qua-
sistatic regime. Both set of quasistatic spectra are in excellent agreement. We observe
that PQ

f (ω) is several orders of magnitude larger than P µ
f (ω) throughout the spectral

window considered, since plasmonic fields can interact largely with higher multipolar
emitters due to the dependence on the spatial field derivatives. However, the ratio be-
tween both magnitudes is largest around ~ω ' 2.40 eV, corresponding to the plasmonic
pseudomode formed by the spectral overlapping of high-order dark SP modes [40, 96].

2.3. Comparison between 2D and 3D results
In the previous sections, we have briefly commented the principal reason that justifies
our election of the 2D model of the NPoM cavity instead of its 3D counterpart, the
possibility of obtaining analytical results for the system response under illumination of
generic point-like sources. In this section, we address the direct comparison between the
numerical results obtained in 2D and 3D simulations and our analytical results derived
from the TO approach.
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We start considering the comparison between 2D and 3D numerical Purcell factors of a
single nanoparticle. Simulations were performed in the solver implemented in COMSOL
Multiphysics, integrating the total flux of power in a box enclosing the point-like source,
in presence/absence of the metal, described through a Drude-like permittivity, εm, for
silver embedded in vacuum (εd = 1). The system was defined by the diameter of the
particle, D = 40 nm (cylindrical or spherical depending on the dimensionality) and
the separation between the emitter and the metal surface, 0.5 nm. The ratio between
the Purcell factors, P i

f (3D)/P i
f (2D) is represented in Fig. 2.4, in panels (a) and (d) for

the dipolar and quadrupolar sources, respectively. As expected, the P i
f (3D)/P i

f (2D) is
larger than one, with more remarkable differences for the dipolar source than for the
quadrupolar one. The spectral form of the ratio makes clear the different position of the
dipolar plasmon in the sphere (εm + 2εd ' 0) with respect to the cylinder (εm + εd ' 0).
Panels (b) and (e) in Fig. 2.4 show the direct comparison between 2D calculations of

the Purcell factor for a Ag dimer, with the emitter placed at the center of the gap, as
sketched in panels (c) and (f). The analytical results, labelled as 2DQS and plotted in
red lines are obtained within the TO framework whereas numerical ones are calculated
by means of COMSOL. The system parameters are D = 40 nm and δ = 1nm. The main
differences between the numerical and analytical solutions occur at the lowest order
plasmons for the dipolar source (Fig. 2.4(b)), where radiative effects take part, both
enlarging the width and redshifting the spectral position of the plasmonic resonance,
with perfect agreement at high frequencies around the pseudomode, both in the dipolar
and quadrupolar cases.
Finally, in Fig. 2.4 (c) and (f), we show the direct comparison between 2D and 3D

results in the Ag dimer, same configuration as in previous panels. Green lines represent
the 3D simulations, with spherical particles. Red and blue lines correspond to the 2D
calculations, given by TO (2DQS) and numerical simulations (2D) in panels (b) and (e),
multiplied by the factor P i

f (3D)/P i
f (2D) for each case (see again panels (a,d)). Firstly,

we highlight that the phenomenology in 2D and 3D is quite similar. The dipolar emitter
couples to a set of different plasmonic modes that converge at the pseudomode. This is
the dominant mode in the case of the quadrupolar coupling, where discrepancies between
3D and 2D after introducing the correction factor given by the ratio P i

f (3D)/P i
f (2D) are

negligible. Secondly, the discrepancies between the numerical results for the 3D case and
the 2D case are similar to those between the 2D solutions, purely quasistatic and the
full electrodynamical one. Then, we conclude that besides a factor, the TO analytical
approach captures the main features of the plasmon-emitter coupling at these nanometric
systems.
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Figure 2.4: Comparison between 2D and 3D results for metallic nanocavities. Panels (a) and
(d) show the ratio between 3D and 2D Purcell factors, obtained through numerical simulations,
for a dipole and a quadrupole as sketched in the inset, separated 0.5 nm from the surface of a
single Ag nanoparticle (D = 40.0 nm). Panels (b) and (e) render the numerical-electrodynamic
(blue) and analytical-quasistatic (red) solutions for the Purcell factor in a 2D system, formed
by a Ag dimer and a single dipolar or quadrupolar emitter placed at the gap center. Panels
(c) and (f) show the comparison between 2D quasistatic (red), 2D full electrodynamic (blue)
and 3D full electrodynamic (green) results, where the 2D solutions have been multiplied by
the ratio in panels (a) and (d). The system sketched as an inset in (c) and (f) applies for
calculations with the Ag dimer in panels (b-c-e-f).

2.4. Spectral Density and Coupling Strengths
The Purcell factor, P i

f (ω), as a normalized ratio, contains exclusively the effects of the
cavity on the emitter without considering its own magnitude. We have shown that it can
be written in terms of the classical electric fields, and it is equivalent to the spontaneous
decay rate normalized by its value in free space. Then, the Purcell factor can be under-
stood as the local density of states (LDOS) or the spectral density J(ω) normalized to
their free space counterpart. The latter can be expressed in terms of the Purcell factor
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as
Ji(ω) = γi

2πP
i
f (ω), (2.37)

where i = µ,Q and γi is the QE decay rate in free space that provides the free space
spectral density J0

i (ω) = γi/(2π). The calculation of J(ω) through the spontaneous decay
rate in free space makes customary the introduction of the transition moments, which
appear in the expression of the spontaneous decay rates. The multipolar expansion of
the quantum light-matter interaction Hamiltonian has the same form as the classical
one introduced in Eq. (2.22) but in terms of momenta and field operators, yielding
the transitions between different states of the hybrid light-matter system. From now
on, we will refer to those dipolar or quadrupolar transition momenta, understood as
the expectation values of the dipolar or quadrupolar operators, µ̂ and Q̂, respectively,
between the ground and the excited state of the two-level system, in the form

µ2 = | 〈g| µ̂ |e〉 |2. (2.38)

Q2 = | 〈g| Q̂ |e〉 |2. (2.39)

We specially focus on J(ω) since it is the magnitude that encodes the strength of the
light-matter interaction. It is a local quantity that contains information about the elec-
tromagnetic modes supported by the cavity as well as the coupling strength between each
of them and the QE. Thus, it depends on the cavity geometry (diameter and gap size)
and permittivity, the exciton characteristics (natural frequency and dipolar/quadrupolar
moment) and its position and orientation. In order to calculate the spectral density expe-
rienced by dipolar and quadrupolar excitons in the vicinity of the NPoM cavity, we use
the 2D Purcell spectra obtained in the previous section. The decay rates in free space
are taken from 3D calculations [129],

γµ = ω3µ2

3πε0~c3 , (2.40)

γQ = ω5Q2

360πε0~c5 . (2.41)

As the fields, the spectral density for both dipolar and quadrupolar excitons are com-
posed by a number of SP contributions. From the solutions of the potentials, we can
write

φiS = 1
2πε0εd

∞∑
n=1

eα

e2nd − e2α

[
eαKi

1 + endKi
2

]
(2.42)

where we have defined the exponentials eα = εm−εd
εm−εd

and rewritten end = (√ρ+
√

1 + ρ)2n.
Ki

1, K
i
2 refer to the functions which accompany the exponentials in each case (i = µ,Q).
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The summation in Eq. (2.42) can be rewritten as

eα
[
eαKi

1 + endKi
2

]
e2nd − e2α = 1

2

Ki
1 +Ki

2
end − 1

εm − εd
εm + εd

end+1
end−1

− Ki
1 −Ki

2
end + 1

εm − εd
εm + εd

end−1
end+1

. (2.43)

Exploiting the Drude form of the metal permittivity (εm = ε∞ − ω2
p/(ω(ω + iγm))), and

using the high quality resonator limit [39] (γm � ω), we can write

εm − εd
εm + εdξn,σ

≈
−ωn,σ εd(1+ξn,σ)

ε∞+εdξn,σ

2((ω − ωn,σ) + iγm2 ) (2.44)

where we have introduced

ξn,σ = end + σ

end − σ
=

(√ρ+
√

1 + ρ)2n + σ

(√ρ+
√

1 + ρ)2n − σ
(2.45)

and
ωn,σ = ωp√

ε∞ + εdξn,σ
. (2.46)

as the SP frequencies. As the Purcell factors are given by the imaginary part of the
spatial derivatives of φiS, contained in the coefficients Ki

1,2, the spectral densities can be
expanded as a sum of Lorentzian SP terms of the form

Ji(ω) =
∞∑
n=1

∑
σ=±1

(gn,σi )2

π

γm/2
(ω − ωn,σ)2 + (γm/2)2 , (2.47)

where the imaginary part of the Lorentzian is apparent, defined by the SP frequency, ωn,σ
and the width γm, given by the Drude damping rate (note that SP radiative damping is
neglected in the quasistatic limit).
The Lorentzian decomposition shows that for each n, J(ω) is given by two contribu-

tions, denoted by σ. This double contribution can be directly related to the quadratic
condition of Eq. (2.33), which means that we can identify two different solutions for a
given n. The index σ labels SP modes with different parity, i.e., different parity of the
z-component of the electric field across the gap of the NPoM cavity. Even modes are
labeled as σ = 1 while odd ones correspond to σ = −1. SPs with increasing n approach
the pseudomode frequency, ωPS = ωp√

ε∞+εd
. Large ρ provides faster convergence of the

SPs frequencies to ωSP. It also reveals that the frequency of even modes increase to-
wards this value, whereas it decreases for the odd ones. The labelling is directly linked
to the MIM waveguide modes [56]. In Fig. 2.2(a), we plotted the dispersion relation
for the low-frequency SPs supported by this type of system, which corresponds to the
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Figure 2.5: Spectral density (blue line) at the gap center (xE, zE) = (0, δ/2) of the NPoM
cavity with D = 30.0 nm and δ = 0.9 nm. Dipolar and quadrupolar QEs are defined through
their moments with µ = 0.55 e·nm Q = 0.75 e·nm2. The orientation in (a) and (b) panels is
α = 0, the same as in Fig. 2.3. Panels (c) and (d) render the spectral densities of dipolar
and quadrupolar exciton with α = π/2 and α = π/4, respectively. In all panels, orange lines
plot the first few terms (n ≤ 10) in the decomposition in Eq. (2.47). By symmetry, the QEs
are coupled only to SP modes with σ = 1 in the top panels whereas only σ = −1 modes are
apparent in bottom ones.

MIM even modes. Those modes approach asymptotically the frequency for the single
metal-dielectric interface (given by ωPS above).
The weight of each term in Equation (2.47) is given by gn,σi , the QE-SP coupling

strength between the dipolar or quadrupolar exciton (i = µ,Q) and the SP mode of
azimuthal order n and parity σ. These constants contain all the information about the
QEs and the SP mode spatial profile. Appendix A presents the analytical expressions
for gn,σi that we obtain from our TO approach.
The blue lines in Figure 2.5 show the spectral densities for a dipolar (a, c) and a

quadrupolar (b, d) exciton, with cavity defined by (D, δ) = (30.0, 0.9) nm (light blue
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line in Figure 2.3). The QEs are placed at the gap center. In agreement with experi-
mental values [118], we set µ = 0.55 e·nm. We take Q = 0.75 e·nm2 for the quadrupole
moment, which yields a ratio between free space decay rates γQ/γµ ' 1 · 10−6 at the
center of the frequency window considered, ~ω = 2.0 eV. Despite this inherent difference
between both QEs, the spectral densities are equivalent at the pseudomode position,
Jµ(ωPS) = JQ(ωPS) ' 10−13 s−1. Therefore, the interaction strength between the NPoM
cavity and both QEs at ~ωPS ' 2.4 eV is very similar. Depending on the emitter ori-
entation, sketched in the insets of each panel, we clearly find differences in the modes
that contribute to the plasmon-exciton interaction. In Figure 2.5 panels (a) and (b), the
orientation of both emitters is α = 0, yielding the configuration in the inset which pro-
vides coupling with even modes (ωn,σ=+1 < ωPS). On the other hand, panels (c) and (d)
render the opposite orientation, α = π/2 (dipole) and α = π/4 (quadrupole). For these
configurations, the coupling between the QE and the cavity is given by odd-symmetry
modes, with resonant frequencies beyond the pseudomode. Both configurations show
that Jµ(ω) � JQ(ω) for frequencies ω ' ω1,σ, which indicates that the quadrupole ex-
citon couples more weakly than the dipolar one to low-order SPs (with small n), with
large contrast at the bright, dipolar SP, Jµ(ω1,+1) ' 102JQ(ω1,+1). In fact, the maximum
at ω1,+1 barely stands out of the low-frequency tail of the pseudomode maximum in the
quadrupolar spectral density (Fig. 2.5(b)). In the odd case, the dominance of the pseudo-
mode with respect the lowest-order modes is apparent for both excitons (see Fig. 2.5(c)
and (d)).
In Figure 2.6, we study the dependence of the light-matter coupling strengths on

the QE orientation for the different SPs supported by the NPoM cavity. Both dipolar
(µ = 0.55 e·nm) and quadrupolar (Q = 0.75 e·nm2) excitons are placed at the gap center
(xE, zE) = (0, δ/2). Fig. 2.6(a) and (b) display gn,+1

µ and gn,−1
µ , respectively, versus n

and α. These contourplots show that the maximum coupling takes place at n < 5 for
both σ, and that vertical (horizontal) dipolar QEs couple more efficiently to even (odd)
SPs. This can be clearly seen in Fig. 2.6(c) which plots gn,σµ for the three orientations
indicated by arrows in the previous panels. Only for α = π/4 (blue lines), the coupling
strengths to even (solid) and odd (dashed) SPs are comparable. Note that gn,+1

µ > gn,−1
µ

for very low azimuthal order, n, in this case. Fig. 2.6(d) and (e) display coupling strength
maps for gn,+1

Q and gn,−1
Q . They exhibit a similar dependence on n and α as their dipolar

counterparts. However, two main differences can be observed. First, although gµ ' gQ

for large n, the maximum coupling is always lower for quadrupolar QEs, within our
considered set of emitter strengths and system parameters. Second, the peak in gn,σi

always takes place at lower n for the dipolar excitons. These two circumstances are

50



2.4. Spectral Density and Coupling Strengths

Figure 2.6: Dependence of the coupling strength, gn,σi on n and α for dipolar (a-c) and
quadrupolar (d-f) excitons at the gap center. Panels (a) and (b) [(d) and (e)] display gn,σµ

[gn,σQ ] contourplots for σ = +1 and σ = −1, respectively. Panels (c) and (f) show cuts for
even (solid lines) and odd (dashed lines) modes and three different values of α (indicated by
colored horizontal arrows in the contourplots). The insets render the dipole and quadrupole
components as a function of α.

apparent in Fig. 2.6(f), which also shows that for a given n, gn,+1
Q ' gn,−1

Q at α = π/8
(blue lines).

Once we have studied the orientation-dependence of QE-SP couplings, we investigate
next the impact of the emitter position. We restrict our attention first to the symmetry
axis of the cavity (xE = 0) and the orientations for which emitters placed at the gap
center are only coupled with the plasmonic even modes, α = 0. Figure 2.7(a) and (b)
display gn,σµ maps as a function of n and zE/δ between the gap center and the vicinity of
the nanoparticle surface for both plasmonic parities. We can see that, in accordance with
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Figure 2.7: Dependence of the coupling strength on n and zE along the symmetry axis of the
cavity (xE = 0) for dipolar (a-c) and quadrupolar (d-f) excitons with α = 0. Panels (a) and (b)
[(d) and (e)] display gn,σµ [gn,σQ ] contourplots for σ = +1 and σ = −1, respectively. Panels (c)
and (f) show cuts for even (solid lines) and odd (dashed lines) modes at three different values
of zE/δ (indicated by colored horizontal arrows in the contourplots).

Fig. 2.6, the light-matter interaction is governed by low-order (n < 5) even SPs. Note that
the QE coupling to these modes barely depends on the emitter position. The associated
electric field profile is constant along the NPoM gap. On the contrary, in accordance with
the phenomenology reported for full 3D models [96], gn,σµ for both even and odd modes
of higher n increases as the QE approach the nanoparticle surface. This trend is visible
in Fig. 2.7(c), which evaluates gn,σµ for three zE values. A similar analysis is presented in
Fig. 2.7(d)-(f) for quadrupolar excitons. The gn,σQ maps reveal that, in contrast to dipolar
QEs, the coupling vanishes for SPs with very low n, and the maximum takes place for
n > 10. As we have already discussed, the QE only interacts with σ = +1 modes at the
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gap center. The emitter displacement towards the nanoparticle surface increases both
gn,+1
Q and gn,−1

Q . The light-matter interaction is then fully governed by the plasmonic
pseudomode. Indeed, the cuts at fixed QE positions in Fig. 2.7(f) show that the coupling
to even and odd SPs for large n is maximum, and very similar, at zE ≈ 0.8δ. Importantly,
the maximum coupling in this panel is higher than in Fig. 2.7(c). This indicates that, by
displacing the emitter from the gap center, the plasmonic interaction for quadrupolar
QEs becomes larger than for dipolar ones. Furthermore, we can conclude that there is a
trade-off in the maximum nth-plasmon-exciton coupling, since the metal supports modes
that are more and more confined to the surface, satisfying a direct relation between order,
field confinement and spatial decay.
We exploit the analytical power of our TO approach further and explore fully the

spatial distribution of the QE-SP coupling, gn,σi (rE), in the vicinity of the NPoM ge-
ometry. Figure 2.8 displays strength maps (in log scale) involving the dipolar (a,c) and
quadrupolar (b,d) excitons as well as the lowest-frequency SP (ω1,+1) (a,b) and the plas-
monic pseudomode (ωPS) (c,d). We set all the parameters as in previous figures. The
former mode corresponds to n = 1, σ = +1, the coupling constant for the latter is
calculated as [40]

gPSi =
√√√√ ∑
σ=±1

∞∑
n=nmin

(gn,σi )2, (2.48)

where the minimum order for even/odd parity is set by the condition |ωPS − ωnmin,σ| ≤
γm/2. Notice that nmin = 7 in Fig. 2.8(c)-(d) for both parities, which is in accordance
with Fig. 2.5. This figure only shows five distinguishable peaks in Ji(ω) below ωPS.
Figure 2.8(a) and (b) evidence that the coupling-strength maps associated to the lowest
(dipolar) SP are focused within the gap of the NPoM geometry. However, the localization
at the gap is significantly larger for the quadrupole QE (α = 0 for both excitons).
Whereas the region of high gµ spreads over the flat metal surface and the perimeter
of the nanoparticle, gQ decays abruptly within a few nanometer range from the gap
center. Let us remark again that all contourplots are in logarithmic scale. In contrast,
Fig. 2.8(c) and (d) demonstrate that the pseudomode yields coupling maps insensitive
to the cavity geometry. These are much more tightly bounded to the metal boundaries,
within a sub-nm length scale, both at the nanoparticle and substrate surface. The gap
does not seem to play any role in the spatial distribution of gµ and gQ, except for the
overlapping of their tails across it. In accordance with the top panels, the plasmon-
exciton coupling spatial distribution is also more confined in the case of the quadrupole
than the dipolar one.
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Figure 2.8: Spatial dependence of QE-SP coupling strengths (in log scale) within the xz-
plane (D = 30.0 nm, δ = 0.9 nm). Panels (a) and (b) show the dipolar and quadrupolar
exciton coupling strength to the lowest order, even SP mode (n = 1, σ = +1). Bottom panels
correspond to the (c) dipolar and (d) quadrupolar coupling to the plasmonic pseudomode.

We focus next in the NPoM gap and explore the spatial form of the QE-SP cou-
pling strength specifically this region. As a complement to Figure 2.8, we present in
Figure 2.9 the scanning of the gn,σi (rE) for different modes. Panels (a) and (b) render
g1,+1
i , corresponding to the same configuration as Figure 2.8 panels (a) and (b), making
clear the homogeneity of the coupling across the gap for the lowest-order even mode,
~ω1,+1 = 1.55 eV. Fig. 2.9(b) shows the less homogeneous character of the plasmon-
quadrupole coupling, as a result of the sensitivity of gn,σQ to field spatial derivatives.
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Figure 2.9: Spatial dependence of QE-SP coupling strengths (in log scale) across the NPoM
gap (D = 30.0 nm, δ = 0.9 nm). Panels (a-b) show the plasmon-emitter coupling for the lowest
even mode g1,+1

i for the dipole and quadrupole exciton, respectively. Panels (c) and (d) render
the coupling for the lowest odd mode g1,−1

i . Finally, in panels (e) and (f), we plot the dipolar
and quadrupolar coupling strength to the plasmonic pseudomode, gPSi . All calculations consider
α = 0 for both dipole and quadrupole orientations.

Panels (c) and (d) in Fig. 2.9 show the map of the coupling strength associated to the
lowest odd mode, g1,−1

i . As it was shown in Figure 2.7, odd modes become more im-
portant as the QE is closer to the metal surface, but also as it is displaced from the
symmetric position rE = (0, δ/2). Finally, in panels (e) and (f), we plot the pseudomode
spatial profile, as zoomed versions of Figure 2.8(c) and (d). We can see that the region of
largest coupling is tightly confined to the metallic surfaces, with higher strength for the
quadrupolar exciton. Those panels reveal that through the exploitation of higher order
SP modes and multipolar excitons, spatial resolutions in the light-matter coupling well
below the nanometer can be achieved [87].

2.5. Finite-size Effects
In this section, we extend our TO approach in order to address the emergence of meso-
scopic effects [130] in the light-matter interactions due to the finite size of the QE [131].
The extreme confinement of the plasmonic coupling strength maps shown in Fig. 2.8
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suggests that our NPoM cavity is an ideal platform to explore excitonic charge distribu-
tions beyond the point-like description of the EM source. As the spatial variation of gµ
or gQ approaches length-scales comparable to the QE dimensions, we can expect that
this approximation breaks down. By inspection of Fig. 2.9, we can anticipate that these
finite-size effects would be higher for the plasmonic pseudomode than for SPs with low
n.
A dipole EM source can be depicted as a pair of point-like charges of opposite sign

and magnitude |q|. The vector between both charge positions is ` = µ/|q|(sinα, cosα)
(note that we assume µ = |q|`). As we did with both the dipole and quadrupole, we can
solve the problem of scattered fields in the presence of the nanoparticle in the double
slab frame. The free space potential of a single charge at a position rq = (xq, zq), reads

φq(x, z) = −q
4πε0

log((x− xq)2 + (z − zq)2). (2.49)

In the transformed frame, the wire source becomes an array of wire sources, whose
potential, after being Fourier-transformed in order to solve the Laplace’s equation, can
be written as

φq(k) = q

2πε0

∞∑
n=−∞

δ(k − n)
|k|

e−|k||x
′−x′q |e−ikz

′
q , (2.50)

used to impose the continuity conditions at the metal-dielectric interfaces as we did in
Eq. (2.32). Performing the inverse Fourier transform and the inverse conformal transfor-
mation, the scattered potential for a single charge in the NPoM system reads

φqS(x, z) = 1
2πε0εd

εm − εd
εm + εd

∞∑
n=1

q/n

(√ρ+
√

1 + ρ)4n −
(
εm−εd
εm+εd

)2×

εm − εd
εm + εd

Re{A+
n (%, %q)} − (√ρ+

√
1 + ρ)2nRe{B+

n (%, %q)}
, (2.51)

where we have used the definition of the complex vector position %q = xq + izq. The
Purcell factor will no longer be given by Eq. (2.25). Instead, it reads now

P ext
µ (ω) = −µ/`

Im{µEµ
0(rE)}

∣∣∣∣ ∫ rE+ `2

rE−
`
2

Im
{
∇φ(2)

` (r)dr
}∣∣∣∣

= µ/`

Im{µEµ
0(rE)}

∣∣∣∣Im{φ(2)
`

(
rE − `

2

)
− φ(2)

`

(
rE + `

2

) }∣∣∣∣ (2.52)

where, as the QE dimensions are much smaller than optical wavelengths (` � 2πc/ω),
we normalize with the expression given by Eq. (2.28) for the power radiated by a pure
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Figure 2.10: Size effects in the spectral density (main panels) and coupling strengths (insets)
for the same NPoM cavity and QE parameters as in Fig. 2.5. (a) Dipolar and (b) quadrupolar
QEs with α = 0. (c) Dipolar and (d) quadrupolar QEs with α = π/2 and α = π/4, respectively.
The exciton charge distributions are sketched in all panels. The point-source approximation
(blue) and finite-size calculations for three different ` are shown: 0.05 nm (brown), 0.4 nm (red)
and 0.6 nm (orange).

dipole in free space. The quasistatic potential φ(2)
` (r) describes the EM fields scattered

by the NPoM cavity excited by the two opposite charges separated by distance `, given
by the sum of the contributions in Eq. (2.51) (note that, for simplicity, we have dropped
its frequency dependence above). For a generic discrete distribution of N charges, this
potential reads

φ
(N)
` (r) = |q|

2πε0εd
εm − εd
εm + εd

∞∑
n=1

1/n
(√ρ+

√
1 + ρ)4n −

(
εm−εd
εm+εd

)2×

εm − εd
εm + εd

Re
{ N∑

ν

sign(qν)A+
n (%, %ν)

}
− (√ρ+

√
1 + ρ)2nRe

{ N∑
ν

sign(qν)B+
n (%, %ν)

},
(2.53)

where we have labeled the charges through the greek index ν.
As we have done with the dipolar source, an extended quadrupole source corre-

sponds to a square-shaped distribution of four point-like charges with side vectors
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` = (Q/
√

2|q|)1/2(sinα, cosα) and `⊥ = (Q/
√

2|q|)1/2(cosα,− sinα) (Q =
√

2|q|`2).
The Purcell factor in this case is given by

P ext
Q (ω) = Q/`2

Im{(Q∇)EQ
0 (rE)}

∣∣∣∣Im{φ(4)
`

(
rE + `+

2

)
+ φ

(4)
`

(
rE − `+

2

)
− φ(4)

`

(
rE + `−

2

)
− φ(4)

`

(
rE − `−

2

)}∣∣∣∣, (2.54)

where `± = `± `⊥, with the corresponding normalization for a pure quadrupolar source
in free space given by Eq. (2.29).
Figure 2.10 reveals the complex phenomenology behind mesoscopic effects in QE-SP

coupling, which depends very much on the emitter orientation (see sketches in all panels).
Dipolar QEs with α = 0 (a) and α = π/2 (c) are displayed in the top panels, whereas
quadrupolar excitons with α = 0 (b) and α = π/4 (d) are shown in the bottom ones. The
geometric and material parameters are the same as in previous figures and the emitter is
placed at the gap center. Spectral densities calculated using the point-source approxima-
tion (blue) are compared against finite-size charge distributions for different `: 0.05 nm
(brown), 0.40 nm (red) and 0.60 nm (orange). As expected, the former coincides with the
point-source spectra in all cases, which proves the validity of Eqs. (2.52) and (2.54) in
the limit ` → 0.
Spectral densities for vertical and horizontal dipoles in Fig. 2.10(a) and (c) show the

opposite dependence on `, whereas Jµ(ω) increases for α = 0, it decreases for α = π/2.
These deviations occur mainly at the pseudomode spectral position, ~ωPS ' 2.40 eV,
whereas peaks in Jµ(ω) at lower (a) and higher (c) frequencies, which are associated
to low-order SPs with σ = +1 and σ = −1, respectively, are rather insensitive to `.
This is evident in the insets of both panels, which plot the coupling strengths obtained
from extended calculations normalized to the point-dipole predictions, with the latter
computed following the same procedure as described in Sec. 2.4. We can observe that
gext/g ' 1 for n < 6, whereas the ratio increases (a) or decreases (c) significantly with
` for larger n. The contrast between both descriptions is maximum at the pseudomode,
which allows us to gain insight into our findings through the maps in Fig. 2.9 (evaluated
for α = 0). Indeed, we can infer that the coupling enhancement in Fig. 2.10(a) is due
to the fact that the exciton charges approach the metal boundaries as ` increases for
α = 0, where gPSµ is maximum. On the contrary, they displace laterally, away from the
gap center and towards regions of lower gPSµ for α = π/2, yielding the coupling reduction
observed in Fig. 2.9(e).
The bottom panels of Fig. 2.10 show that, for QEs located at the gap center, the impact

of finite-size effects is smaller for quadrupolar excitons than for dipolar ones. Fig. 2.9(f)
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shows that gPSQ is more localized than its dipolar counterpart at the metal boundaries,
which explains the insensitivity of both JQ(ω) and gext/g ' 1 to QE dimensions up to
` = 0.4 nm for both orientations. Only for ` = 0.6 nm (orange lines) deviations from
the point-quadrupole approximation become apparent, which again, they take place
mainly at the pseudomode frequency. The spectral density and pseudomode coupling
are only slightly lower than the point-quadrupole prediction for α = 0, while they are
significantly higher for α = π/4. This higher impact of size effects in Fig. 2.10(d) can
be attributed to two factors. First, the distance between the nearest point charges in
the quadrupole distribution and the metal boundaries is smaller than in Fig. 2.10(c).
Second, by increasing `, these charges (located along the vertical axis) interact more
strongly with the odd (σ = −1) SPs supported by the cavity, while their counterparts
remain along the z = δ/2 axis, where gPSQ is minimum. Let us also stress that the coupling
strength calculations, specially in Fig. 2.10(d), must be taken carefully. The fact that the
pseudomode peak governs completely the spectral density means that the high quality
resonator limit [39], inherent to the modal decomposition of Ji(ω) in our approach, is
not a valid formal assumption in this case.

2.6. Exciton Population Dynamics
Once we have analyzed the dependence of the spectral density and coupling strengths
on the various parameters of the system, we explore next the onset of strong coupling
between dipolar/quadrupolar excitons and NPoM cavities. Our TO approach has allowed
us to write the spectral density in terms of the Purcell factor, related to the classical
description of the electric fields in the cavity [72]. As we reviewed in chapter 1, the
population dynamics of the QE-EM field combined system can be derived my means of
the Wigner-Weisskopf formalism

ċi(t) = −
∫ t

0

∫ ∞
0

Ji(ω)ei(ωi−ω)(t−t′)ci(t′)dωdt′, (2.55)

where Ji(ω) for i = µ,Q appears explicitly and ne(t) = |ci(t)|2 is the population of the
excited state. The above equation is usually expressed in terms of a kernel that accounts
for the frequency dispersion

K(t− t′) =
∫ ∞

0
Ji(ω)ei(ωi−ω)(t−t′)dω. (2.56)

The use of the Wigner-Weisskopf formalism, that we solve numerically (see below),
does not need of any decomposition of the spectral density. Nevertheless, the Lorentzian
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decomposition of J(ω) allows to write an effective Hamiltonian. Single mode Hamilto-
nians as the one in the Jaynes-Cummings model associate the density of states to a
single Lorentzian, weighted by the light-matter coupling, g. Using this interpretation,
we perform an heuristic parametrization of the Hamiltonian, and so on, of the master
equation, in terms of discrete set of bosonic lossy modes [96, 132]

Ĥ = ~ωiσ̂†i σ̂i +
∑
n,σ

~ωn,σâ†n,σân,σ + +
∑
n,σ

~gn,σi [σ̂†i ân,σ + σ̂iâ
†
n,σ], (2.57)

where σ̂i and ân,σ are the QE (i = µ,Q) and SP annihilation operators. The full density
matrix of the system is then given by the master equation,

∂ρ̂

∂t
= − i

~
[Ĥ, ρ̂] +

∑
n,σ

γm
2 Lân,σ [ρ̂], (2.58)

where γm is the Drude damping rate, and Lân,σ [ρ̂] = 2ân,σρ̂â†n,σ − {â†n,σân,σ, ρ̂} is the
Lindblad term that accounts for the absorption losses experienced by the SP mode
with indices n and σ3. In our further analysis, we prove that Eq. (2.58) yields the
same exciton population dynamics as the Wigner-Weisskopf solution of the problem
given by Eq. (2.55). Let us also stress that, more recently, a formal correspondence
between spectral densities and master equations have been established [42], in agreement
with this parametrization. We study the temporal evolution of the exciton population,
ne(t) = 〈e, {0}nσ| ρ̂(t) |e, {0}nσ〉 = ρ̂ee(t), in a spontaneous emission configuration. Note
that |e, {0}nσ〉 stands for the product of the QE excited state and the ground state of
all SP modes. Thus, we set the initial density matrix for the system to ρ̂(t = 0) =
|e, {0}nσ〉 〈e, {0}nσ| and investigate the population dynamics.
In the following, we will pay special attention to the occurrence of non-monotonic,

reversible dynamics in ne(t), which we can relate to the onset of QE-SP strong coupling.
In this regime, light and matter excitations mix together, giving rise to hybrid states
known as plasmon-exciton polaritons (PEPs) [133]. PEP characteristics can be controlled
through the weight of their two constituents. For quantum nanophotonics applications,
this phenomenon makes it possible to tune the balance between the high coherence of
SPs, and the high nonlinearities of optical transitions in QEs [118, 134, 135].
Figure 2.11 analyzes ne(t) for a vertically-oriented dipolar QE (µ = 0.55 e·nm) placed

at the gap of a NPoM cavity with δ = 0.9 nm and D = 30.0 nm. Fig. 2.11(a) plots
the spectral density at two different positions along the symmetry axis of the structure,
zE = δ/2 (solid line) and zE = 7δ/8 (dashed line). It shows a significant enhancement in

3The inclusion of radiative losses in the plasmonic modes does not change significantly the following
discussion about population dynamics.
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Figure 2.11: (a) Spectral density for a dipolar QE at two different positions within the
NPoM cavity in Fig. 2.8 (µ = 0.55 e·nm, α = 0). QE population versus time and position for
(b) ωµ = ω1,+1 = 1.55 eV and (c) ωµ = ωPS = 2.40 eV, see vertical arrows in panel (a). QE
population versus time and frequency for (d) zE = δ/2 and (e) zE = 7δ/8. The linear color
scale in all contourplots ranges from ne = 1 (yellow) to ne = 0 (dark blue).

Jµ(ω) as the emitter approaches the metal boundaries. Fig. 2.11(b) and (c) display the
exciton population as a function of time and zE for two different QE frequencies (indi-
cated by vertical arrows in panel (a)): ~ωµ = ~ω1,+1 = 1.55 eV and ~ωµ = ~ωPS = 2.40 eV,
respectively. If the QE is at resonance with the lowest-frequency SP, ne(t) undergoes a
smooth monotonic decay, as shown in panel (b). Importantly, this trend barely depends
on the QE position. Taking into account the uniform g1,+1

µ map in Fig. 2.9(a), we can con-
clude that the QE-SP interaction is governed by this mode in this case. On the contrary,
when the QE is resonant with the plasmonic pseudomode, ne(t) varies significantly, see
Figure 2.11(c). As expected from gPSµ distribution in Fig. 2.9(e), displacing the QE away
from the gap center translates into a faster decay initially, and in the occurrence of Rabi
oscillations in ne(t) for zE > 0.7δ. Note that their pitch, the Rabi frequency, diminishes
as zE increases further. They reveal the occurrence of QE-SP strong-coupling, and the
formation of PEPs, the new eigenstates of the system. Fig. 2.11(d) and (e) explore in
a comprehensive manner the dependence of ne(t) on the QE natural frequency. Panel
(d) corresponds to zE = δ/2, and shows that reversible dynamics does not take place at
any ωµ in this configuration. Notice though that the decay rate increases abruptly when
the emitter is at resonance with a SP mode. This is particularly evident at frequencies
approaching ωPS. Panel (e) is evaluated at zE = 7δ/8 and unveils the emergence of re-
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Figure 2.12: (a) Spectral density for a quadrupolar QE at two different positions within the
NPoM cavity in Fig. 2.8 (Q = 0.75 e·nm2, α = 0). QE population versus time and position for
(b) ωQ = ω1,+1 = 1.55 eV and (c) ωQ = ωPS = 2.40 eV, see vertical arrows in panel (a). QE
population versus time and frequency for (d) zE = δ/2 and (e) zE = 7δ/8. The linear color
scale in all contourplots ranges from ne = 1 (yellow) to ne = 0 (dark blue).

versible dynamics in the QE population. The Rabi oscillations become specially apparent
in the vicinity of the plasmonic pseudomode, where the evolution of the QE population
within the first 50 fs exhibits 5 well-defined maxima (ne > 0.6) and minima (ne ' 0).

Figure 2.12 reproduces the study in Fig. 2.11 but for quadrupolar QEs (Q = 0.75 e·nm2,
α = 0). Fig. 2.12(a) evidences the higher sensitivity of the quadrupole spectral density
on the emitter position. Whereas several SP maxima are apparent at the gap center
(solid line), JQ(ω) is completely governed by the pseudomode at zE = 7δ/8 (dashed line).
Fig. 2.12(b) and (c) reveal that, in agreement with the gn,σQ contourplots in Fig. 2.9(b)-(f),
ne(t) depends more strongly on zE than it does for dipolar QEs. As shown in Fig. 2.12(b),
the QE-SP interaction remains in the weak-coupling regime for ωQ = ω1,+1, although the
decay rate experiences a strong reduction as zE increases. On the contrary, oscillations in
ne(t) take place when the QE is only slightly displaced from zE = δ/2 for ωQ = ωPS (see
Fig. 2.12(c)). The system enters the strong-coupling regime in this case, yielding a clear
enlargement in the Rabi frequency as the emitter position approaches the metal surface.
Fig. 2.12(d) shows that, regardless of ωQ, the quadrupolar QE at the gap of the cavity
always experience a monotonic decay (highly Purcell enhanced at the pseudomode). In
contrast, Fig. 2.12(e) proves that ne(t) develops Rabi oscillations for all QE frequencies
when placed at the gap boundaries. As expected, their pitch depends only moderately
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Figure 2.13: Population dynamics in a NPoM cavity. Spectral densities at two different posi-
tions of the dipolar QE, zE = δ/2 (a) and zE = 7δ/8 (c), with the first even and odd Lorentzian
contributions in blue-to-violet and yellow-to-red colorscales, respectively. For each case, the QE
natural frequency is chosen to be ωµ = ω1,+1 and ωµ = ωPS, marked by the vertical dashed lines.
Panels (b) and (d) plot the different calculations of the population dynamics, both through the
Wigner-Weisskopf and the Lindblad master equation approaches. Colorscales follow the same
code as panels (a) and (c). The QE has been chosen µ = µẑ with µ = 0.55 e · nm.

on ωQ, as the QE-SP interaction is fully determined by the plasmonic pseudomode.
Our master equation formulation of the problem allows us to go further and inves-

tigate not only the excitonic population but also the plasmonic ones. In the following
discussion, we focus on the dipolar exciton and two of the most paradigmatic config-
urations considered above. Left panels in Figure 2.13 plot spectral density as well as
modal Lorentzian contributions for zE = δ/2 (a) and zE = 7δ/8 (c), where the domi-
nance of the pseudomode is clear. In both panels, the dashed black line marks the QE
transition frequency, in resonance with ω1,+1 and ωPS, respectively. Blue-to-purple lines
show the increasing azimuthal order for even (σ = +1) modes, while orange-like lines
render the odd ones, only apparent in panel (c). Green line plots the contribution of
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the pseudomode, ~ωPS = 2.40 eV, with gPSµ calculated from Eq. (2.48), and nmin = 10.
Right panels show the population dynamics. Black and yellow solid lines plot the exciton
population calculated through the Wigner-Weisskopf approach and the master equation,
ρ̂ee(t). They overlap exactly, which proves the validity of our TO parametrization of
Eqs. (2.57) and (2.58). Grey solid lines render the population of the ground state. The
rest of the lines plot the population of different plasmonic modes, following the same
color code as panels (a) and (c). As expected from previous panels, in Fig. 2.13(b), the
large coupling between the QE and the ω1,+1 plasmonic mode makes this mode the
initial receiver of excitation, even yielding a small feeding of population back into the
dipolar exciton. For larger n, the smaller coupling and the detuning between ωµ and
ωn,+1 yields faster oscillations and much lower plasmon populations. The pseudomode
does not play a relevant role in the dynamics. This is not the case in Fig. 2.13(d), since
both even and odd modes have comparable contributions to Jµ(ω), specially around the
pseudomode (Fig. 2.13(c), green line), whose contribution is dominant. We can observe
that the excited state undergoes a series of oscillations. The richer phenomenology now
involves the whole set of even and odd modes, where those with ωn ∼ ωPS play a role.
Note that the principal population exchange is assisted by the pseudomode (green line).
Those results prove that the NPoM cavity cannot be pictured as a single mode, not even
a single mode and the pseudomode.

2.7. Scattering Spectrum
After exploring QE-SP strong-coupling through the temporal evolution of the exciton
population, we turn our attention into the emergence of polariton signatures in far-field
magnitudes, which are accessible experimentally. Specifically, we model a dark-field spec-
troscopy setup [136, 137], sketched in Figure 2.14(a). The system is pumped coherently
by a laser field with amplitude EL and frequency ωL. The grazing laser provides no direct
reflection from the mirror within the numerical aperture of the confocal microscope, that
detects the fields scattered by the NPoM cavity along the vertical direction. Without
any emitter in the cavity, the different plasmonic modes sustained by the nanoparticle
couple to the laser field, through their modal effective dipole moment. The pure qua-
sistatic character of the TO results does not provide access to those radiative effects.
Nevertheless, several efforts have been made into the extension of the approach beyond
the quasistatic limit. Radiative losses can be included in the response by accounting for
the power absorbed by a fictive particle in the transformed frame [64, 67, 98]. Radiative
reaction effects accounting for the self-interaction between the nanostructure and its own
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scattered field can be also related to the field scattered by those fictive absorbers.
As we are interested in the interplay between plasmonic and emitter dipoles, we use a

procedure following Ref. [98], where the nanostructure is illuminated by a field perpen-
dicularly polarized with respect the structure axis. This way, we introduce the radiative
corrections, obtaining γn,σ = γm + γrn,σ, where the non-radiative losses are given by the
Drude metal absorption. The starting point is given by the resonance condition of the
modes, given by Eq. (2.33). The radiative-corrected resonance conditions [98] read

(√ρ+
√

1 + ρ)2n = εm − εd
εm + εd

(
1 + i

2nπω2

c2 (δ +
√
δ(δ +D))2

)
, (2.59)

(√ρ+
√

1 + ρ)2n = −εm − εd
εm + εd

, (2.60)

for σ = +1 (even) and σ = −1 (odd) modes, respectively
Then, we require the fulfillment of the above conditions for a general complex frequency

for each mode, ω̃n,σ = ωn,σ + iγn,σ. The expression for odd modes yields ω̃n,−1 = ωn,−1 +
iγm, where the only loss mechanism is given by the Drude losses (γrn,−1 = 0). In terms of
the spatial profile of the electric fields, the cancellation of the induced dipolar moment
along the z-direction originates from the odd character of Ez across the gap. On the
other hand, for even modes, we find the radiative decay rates associated to SPs, which
read

γrn,+1 = nπD2ωn,+1

c2

(
ρ+

√
ρ(ρ+ 1)

)2
×

×
ω2
p − ω2

n,1(ε∞ − εd)
(ε∞ + εd)(

√
ρ+
√

1 + ρ)2n − (ε∞ − εd)
, (2.61)

in agreement with an induced dipole moment in the nanostructure.
Once γrn,+1 are known, the even SP dipole moments can be obtained. γrn,+1 have been

obtained for a NPoM cavity in which the metallic substrate (mirror) is effectively infinite.
The total induced dipole moment can be written as the contribution of the nanoparticle
dipole moment and its reflection in the mirror by means of the method of images [64]. In
a first order approximation, we can write the total dipole, µNPoM, in terms of the dipole
induced in the nanoparticle, µn, as

µNPoM = µn

(
1 + εm − εd

εm + εd

)
(2.62)

where the second term in brackets represents the image contribution. Therefore, we write

µn = Re
{
εm(ωn,+1) + εd

2εm(ωn,1)

}√√√√3πε0~γrn,+1c
3

√
εdω3

n,+1
. (2.63)
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where the correction due to the subtraction of the image in the substrate is apparent.
Note that this dipole moment is the one relevant in dark-field experiments, where illu-
mination and detection are designed to minimize the effect of substrate reflection. We
account for the effect of the embedding dielectric, having γri = √εdγi (i = µ,Q), where γi
are the decay rates in vacuum. Figure 2.14(b) and (c) plot the radiative decay rates and
the dipole moments associated to the even plasmonic modes of the system, ωn,+1. Blue-
to-yellow lines render the results for different NPoM cavities, with fixed D = 30.0 nm
and increasing δ from 0.9 to 5.4 nm in steps of 0.9 nm. The larger overall size of the cavity
translates into larger radiative losses, but the frequency-dependent character of the im-
age correction, Re{ εm(ω1,+1)+εd

2εm(ω1,+1) } provides an almost constant µ1. Furthermore, increasing
δ supplies the predominance of the lowest order modes in the scattering contributions.
The Hamiltonian description for the dark-field experiment reads Ĥexp = Ĥ0 +ĤL. The

first term is the Hamiltonian given by Eq. (2.57), whereas the second term represents
the Hamiltonian for the coherent driving part [138, 139], representing the laser pumping
of the system,

ĤL =
∑
n,+1

(µnEL)
(
e−iωLtâ†n,+1 + e+iωLtân,+1

)
+ (µiEL)

(
e−iωLtσ̂†i + e+iωLtσ̂i

)
. (2.64)

Note that the pumping can couple both the emitter and the plasmonic modes. For the
case of the pure quadrupolar emitter, µQ = 0, so ĤL only couples light with the plasmonic
dipolar momenta of the even modes. Both the laser field and plasmonic momenta are
vertical, so in the following we assume that the dipolar exciton is also vertically oriented,
enabling us to replace the scalar products in Eq. (2.64) by the product of the modulus
of the incident field and dipole momenta.
The introduction of the coherent driving introduces time-dependences in our Hamilto-

nian, which can be removed by operating in the rotating frame. Under the use of unitary
transformations given by operator Û(t) = e−i~Ât, with

Â = ~ωL
(
σ̂iσ̂i +

∑
n,σ

â†n,σân,σ

)
, (2.65)

the Hamiltonian operator in the rotating frame, Ĥ ′i,exp = Û †(t)ĤexpÛ(t)− Â reads

Ĥ ′i,exp = ~(ωi − ωL)σ̂†i σ̂i +
∑
n,σ

~(ωn,σ − ωL)â†n,σân,σ +
∑
n,σ

~gn,σi (â†n,σσ̂i + h.c.)

+ (µiEL)(σ̂†i + σ̂i) +
∑
n

(µnEL)(â†n,+1 + ân,+1). (2.66)

In order to compute the dark-field scattering signal, we account for the radiative losses
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Figure 2.14: Scattering spectrum. (a) Schematics of the side-illumination dark-field setup. (b-
c) Plasmonic radiative decay rates and dipolar momenta as a function of the mode order n. Blue-
to-yellow colors set the different values for D = 30.0 nm and δ ∈ [0.9, 5.4] nm. (d) Normalized
scattering spectrum for the bare NPoM, (D, δ) = (30.0, 0.9) nm. Black solid line plots the TO
result while red dashed line renders the numerical solution of Maxwell’s equations. (e) Different
scattering spectra associated to NPoM cavities (D = 30.0 nm and δ ∈ [0.9, 5.4] nm in 0.9 nm
steps, with same color code as panels (b-c).)
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associated to both SPs and QEs in the master equation describing the dark-field setup,

∂ρ̂′

∂t
= − i

~
[Ĥ ′i,exp, ρ̂′] +

∑
n,σ

γn,σ
2 Lân,σ [ρ̂′] + γri

2 Lσ̂i [ρ̂
′], (2.67)

where ρ̂′ is the density matrix in the rotating frame. Under continuous pumping, the
scattering spectrum is obtained from the steady-state solution of Eq. (2.67), where tem-
poral derivatives vanish. Furthermore, in the limit of low intensity in the driving, several
simplifications can be done [138, 140]. Firstly, as most of the population remains in the
ground state, the refilling terms in the Lindblad superoperators (2Ô†ρ̂Ô in LÔ[ρ̂]) are
negligible. The master equation becomes equivalent to a Schrödinger equation with an
effective non-Hermitian Hamiltonian (for each case i = µ,Q)

Ĥ
′

i,eff = ~(ω̃i − ωL)σ̂†i σ̂i +
∑
n,σ

~(ω̃n,σ − ωL)â†n,σân,σ

+
∑
n,σ

~gn,σµ (â†n,σσ̂i + h.c.) + EL(M̂i + M̂ †
i ). (2.68)

As desired, the Hamiltonian given by Eq. (2.68) does not depend on time, and the laser
frequency introduces a detuning in the first two terms of the Hamiltonian. The opera-
tor M̂i = µiσ̂iδiµ + ∑

n µnân,+1 excludes the quadrupolar excitation under the coherent
pumping. The frequencies ω̃ are defined as complex magnitudes, i.e. ω̃ = ω + iγ2 , with
the corresponding losses of each case. Due to the low intensity, the Schrödinger equation
can be solved within perturbation theory and the steady state can be expanded in a
power series of the incident field EL. Subsequently, as the electric field in the far-field
is proportional to the collective dipole moment of the hybrid cavity-QE system [138] ,
the scattering spectrum, given by the expectation value of the far-field intensity, can be
written as

σsca(ωL) = 〈ψSS| M̂M̂ † |ψSS〉 . (2.69)

In Figure 2.14(d), we show that Eq. (2.69), restricted to the first excitation manifold
and in the limit of low pumping (EL → 0), reproduces σsca for bare NPoM cavities,
obtained through full electrodynamic calculations4 (black solid and red dashed lines,
respectively), normalized to the scattering maximum. Several peaks can be distinguished,
as well as the invisibility dips in between them. Those, which are a characteristic of the
scattering spectra which do not appears in the Purcell factor, are due to the destructive
interference between the bright modes [64]. Finally, Figure 2.14(e) plots the normalized

4Performed using the Maxwell’s Equation solver implemented in COMSOL Multiphysics.
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Figure 2.15: Far-field scattering spectra for a dipolar QE placed at a NPoM cavity. All
parameters are the same as in Fig. 2.9 and ωµ = ω1,+1. The QE is displaced away from the
gap center along (a) x and (b) z-directions. In both panels, grey dashed and blue solid lines
render the bare cavity cross section and the spectrum for the QE at the gap center, respectively.
Vertical arrows indicate the PEP frequencies for the spectrum in the corresponding color. Right
(left) insets plot the square of the Hopfield coefficients, ne, n1,+1 and nPS, for the upper (lower)
PEP as a function of the QE position.

scattering spectra for different gap sizes, showing the blueshifting of the maximum as δ
increases [141].
After a brief description of our calculation of far-field spectra, we investigate next

the scattering properties of the QE-SP hybrid systems considered in sec. 2.6. Mimicking
the experimental configuration, we fix the QE frequency at resonance with the lowest,
brightest SP mode, for which ω1,+1 = 1.55 eV and µ1 = 46 e·nm, and focus in a narrow
spectral window around it. As we have notice in Figure 2.14, radiative features occur
mainly at the lowest order modes. The normalization of the cross section is defined so
that σsca(ω1,+1) = 1 for the bare NPoM structure (in absence of QEs).
Figure 2.15 shows normalized scattering spectra for a vertically-oriented dipolar QE.

Grey dashed lines correspond to the bare cavity, and blue solid ones plot σsca(ωL) when
the QE is at the gap center (the spectra are the same in both panels). The former present
a symmetric Lorentzian maximum centered at the SP frequency. The latter exhibit a
well-defined Rabi doublet structure, with a central minimum at ωL = ω1,+1 and two
maxima at the upper (U) and lower (L) PEP frequencies [80, 138, 142]. This splitting
is considered the fingerprint of QE-SP strong-coupling regime, and has been thoroughly

69



2. Single excitons in a plasmonic cavity

analyzed in recent experimental reports on gap plasmonic cavities [118, 143, 144].
The gap-center spectrum (blue solid line) in Fig. 2.15 is clearly asymmetric, as the

maximum below the SP frequency (lower PEP) is significantly higher than the one above
it (upper PEP). In order to analyze the origin of this asymmetry [131], we use a reduced
Hamiltonian where the exciton is just coupled with the lowest even plasmon ω1,+1 and
with an effective pseudomode ωPS, obtaining the spectrum σsca(ωL) given by the cyan
dashed line plots. We can observe that the doublet is symmetric in this case, which allows
us to conclude that the height difference of the peaks in the full calculation originates
from the interaction between the QEs and even SP modes with azimuthal indices between
2 and nmin = 7 (see Eq. (2.48)). The green solid line corresponds to a QE displaced away
from the gap center by D/2 = 15 nm along x-direction. Fig. 2.8(a) shows that g1,+1

µ

is much lower in this position. The spectrum overlaps with the bare cavity, except in
the vicinity of ω1,+1, where it develops a Fano-like profile [145], characteristic of the
weak or intermediate coupling regimes [146]. The width of this feature is of the order of
~γrµ ' 10µeV, radiative losses of the dipolar QE in free space, and the sharp dip in the
spectrum is a consequence of the weak, coherent interaction between QE and cavity [145].
The insets plot the square of the Hopfield coefficients for the lower (left) and the upper
(right) PEP as a function of xE/D. These give the PEP content on the dipolar QE,
ne = |〈e, {0}n,σ|ψSS〉|2, (blue dots) and lowest SP mode, n1,+1 = |〈g, 11,+1|ψSS〉|2 (yellow
dots). They show that, as xE/D increases, the lower PEP becomes more QE-like while
the upper acquires a SP-character, due to the reduction of the QE-SP coupling,
Figure 2.15(b) explores the effect that moving the dipolar QE vertically has on the far-

field spectrum. Red solid line plots σsca(ωL) for emitter positions very close to the metal
surface (zE = 7δ/8). We can observe that both the Rabi splitting and the difference
between lower and upper PEP scattering maxima remain very similar to the ones at the
gap center. On the contrary, the whole doublet structure has shifted slightly to lower
frequencies (note that the scattering minima is no longer at ω1,+1). The orange dashed
line plots the same spectrum but considering only the lowest SP and the pseudomode
in the evaluation of Eq. (2.69). The position of the doublet is the same as in the full
calculation but, once again, the asymmetry in the peaks height has vanished. This fact
agrees with our interpretation, which links the differences in the scattering maxima with
intermediate even SP modes. This approximate spectrum exhibits the same redshift as
the exact one. Taking Fig. 2.9 into account, we can attribute this shifting of the Rabi
doublet to the stronger coupling between the QE and the plasmonic pseudomode caused
by the vertical displacement. The squared Hopfield coefficients in the insets of this panel
show that, similarly to Fig. 2.15(a), the balance between ne and n1,+1 in both PEPs is
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Figure 2.16: Far-field scattering spectra for a quadrupolar QE placed at a NPoM cavity. All
parameters are the same as in Fig. 2.9 and ωQ = ω1,+1. The QE is displaced away from the
gap center along (a) x and (b) z-directions. In both panels, grey dashed and blue solid lines
render the bare cavity cross section and the spectrum for the QE at the gap center, respectively.
Vertical arrows indicate the PEP frequencies for the spectrum in the corresponding color. Right
(left) insets plot the square of the Hopfield coefficients, ne, n1,+1 and nPS, for the upper (lower)
PEP as a function of the QE position.

lost as zE increases. Importantly, in contrast to the lateral displacement, this unbalance
is accompanied here by an exponential growth of nPS = |〈g, 1PS|ψSS〉|2 (green dots). This
verifies that, indeed, the redshift experienced by the scattering features originates from
the stronger interaction between the QE and the plasmonic pseudomode. In fact, it can
be interpreted as a result of the anticrossing between the upper PEP and another, even
higher frequency, PEP (not analyzed here) that is located around ωPS which emerges
due to the QE-pseudomode coupling [97].

Figure 2.16 presents an analysis similar to the one in Fig. 2.15 but for quadrupolar QEs.
Grey dashed and blue solid lines in both panels plot the bare cavity cross section and
the spectrum for (xE, zE) = (0, δ/2) (all system parameters are the same as in Fig. 2.15
except Q = 0.75 e·nm2). In contrast to its dipolar counterpart, the gap-center spectrum
does not exhibit a Rabi doublet, but a sharp Fano profile at ωL = ω1,+1. This is due to
the fact that g1,+1

Q � g1,+1
µ at the gap center, as shown in Fig. 2.9. As a result of the

weaker coupling, the PEP energies (see vertical arrows) are close together in this case.
Note that we use the term PEP to designate the state of the hybrid cavity-QE system
at the two laser frequencies given by the vertical arrow, although the system may not be
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in the strong coupling regime. Lighter blue dashed lines in Fig. 2.16(a) render σsca(ωL)
for the same configuration, but including only the lowest SP and the pseudomode in the
calculation. The deviations from the exact result are apparent mainly at the scattering
minimum, which reveals that intermediate SPs play a more minor role than in dipolar
QEs. Green solid line plots the σsca(ωL) for xE = D/2 = 15 nm. As expected from
the tight localization of g1,+1

Q at the NPoM gap in Fig. 2.8(b), this spectrum coincides
with the scattering cross section of the bare cavity, as QE-SP interactions vanish in this
position. The square of the PEP Hopfield coefficients in the insets shows that the system
remains in the weak-coupling regime for all xE/D values. They demonstrate that the
lower PEP (upper PEP) collapses into the quadrupole exciton (lowest SP mode) as the
emitter moves away from the center of the gap.
The sensitivity of the scattering cross section to variations in the vertical position of

the quadrupolar QE is analyzed in Fig. 2.16(b). Red solid and orange dashed lines plot
σsca(ωL) at zE = 3δ/4 obtained from the full NPoM plasmonic spectrum and including
only the lowest SP and pseudomode contributions in the calculation, respectively. The
differences between them are even smaller than at the gap center, see Fig. 2.16(a). We can
observe that, by approaching the emitter to the metal surface, the Fano-like profile in the
blue solid line shifts to lower frequencies, but no Rabi doublet structure emerges in the
spectrum. This means that the interaction between the QE and the lowest SP remains
in the weak-coupling regime, despite the enhancement experienced by their coupling
strength. Fig. 2.8(b)-(f) reveal that gPSQ grows much faster than g1,+1

Q with zE, which
explains why the main effect observed in σsca(ωL) is the red-shift of the Fano feature.
Again, this occurs due to the anticrossing with another PEP, whose initial content is
mainly pseudomode [97]. The square of the lower PEP Hopfield coefficients in the left
inset shows that for larger zE/δ, n1,+1 decreases, while nPS increases, modifying the
inherent character of this hybrid state, which now emerges from the hybridization of
the QE exciton and the plasmonic pseudomode. The right panel shows that the upper
PEP collapses into the lowest, bright SP in this process, decoupling completely from the
quadrupolar QE.

2.8. Conclusions
In this chapter, we have presented a Transformation Optics approach that exploits
two-dimensional conformal mapping to obtain a full analytical, insightful description of
plasmon-exciton interactions in a nanoparticle-on-a-mirror cavity. Two different quantum
emitters, supporting only dipolar or only quadrupolar transitions, have been thoroughly
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analyzed and compared. We have firstly computed the nanocavity spectral densities for
both emitter families, which can be decomposed in terms of Lorentzian contributions.
This enables us to identify the plasmon-exciton coupling strengths for the full nanocav-
ity electromagnetic spectrum, which becomes naturally quantized. Next, we have char-
acterized in detail the dependence of plasmon-exciton coupling strengths on the emitter
position and orientation. Special attention has been paid to mesoscopic effects taking
place when the dimensions of the exciton charge distribution are comparable to the gap
of the structure. Finally, the onset of the strong-coupling regime and the formation of
plasmon-exciton polaritons has been investigated in two different, complementary, stud-
ies. First, we have revealed the occurrence of Rabi oscillations in the temporal evolution
of the exciton population in a spontaneous emission configuration. Second, we have
shown the emergence of a Rabi doublet structure in the dark-field scattering spectrum
of the nanocavity-emitter system under laser illumination.
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Two excitons in a plasmonic cavity

In the previous chapter, we tackled the complete analysis of the light-matter coupling
for a single emitter in nanoparticle-on-mirror (NPoM) cavities. In this chapter, we

proceed to present our results on two different studies involving the presence of more
than a single excitonic level in the cavity. We remark that in our investigation, we will
restrict ourselves to electronic transitions, which couple directly to the EM modes of
the cavity, without any consideration about the complexity associated to the vibrational
structure of the emitter.
In the first part of the chapter, we focus on the case when two different dipolar

quantum emitters (QEs) are present in the system. We study two plasmonic cavities
where the presence of a QE as a distorter can alter the local density of states (LDOS)
(experienced by a probing QE). In section 3.1, we present our investigation, quantifying
the distortion in terms of the Purcell factor and the spectral density, calculated by
means of first-order scattering theory through the electromagnetic Green’s function. Our
theory reveals that J(ω) presents a series of non-Lorentzian resonances that arise from
the interaction between plasmonic fields and the distorting emitter, contrary to the
symmetric Lorentzian spectra of the bare plasmonic cavity even in the sub-wavelength
regime of our interest.
Additionally, plasmonic systems constitute an incomparable frame to examinate the

limits of the point-dipole approximation for QEs. Under the influence of free space plane
waves, the interaction of an emitter with the electric field is dominated by its dipolar
contribution. Nevertheless, the spatial confinement of plasmonic fields not only causes a
large field enhancement but also provides a very abrupt variation of the electromagnetic
fields over minimal spatial scales. Then, along a given direction, the electric field asso-
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ciated to plasmonic resonances presents wavevector components much larger than free
space waves, k � ω/c contributing to the quadrupolar coupling with an enhancement
|kE|2, where E is the electric field amplitude. This boost, vaster than the experienced
by dipolar momenta [147, 148] leads to the question if dipolar and quadrupolar transi-
tions coexist in the same time scales, making posible their interaction. In section 3.2, we
present our results about the inclusion of a second excited state (quadrupolar-like) in a
three-level-system QE. We study the phenomenology associated to the dynamics of the
excited state and scattering far-field spectrum in a NPoM cavity, finding the interplay
of light-allowed and light-forbidden states through plasmonic resonances.

3.1. Presence of a distorting emitter in the nanocavity
In this section, we focus our attention on the study of two QEs interacting with a nanocav-
ity that sustains plasmonic resonances. The general form of the system is presented in
Figure 3.1(a). The first QE, µ, probes the LDOS of the hybrid system, composed by the
metallic nanostructure and the second QE, µE. Our attention will be in analyzing how
this emitter distorts the spectral density of the bare cavity. In order to describe the effect
of the distorting QE in the system, we introduce the topic of macroscopic light-matter
interaction in terms of an scattering description following Ref. [55]. The primary field,
EI(r), which corresponds to the bare cavity solution, is written as

EI(r, ω) = ω2

ε0c2 GI(r, r′, ω)µ, (3.1)

in terms of the Green’s function GI(r, r′, ω) and the dipolar source, µ, placed at po-
sition r′. At this point, we consider the presence of the second emitter, which mod-
ifies the response of the system as a correction to EI(r), and we model this second
emitter through an effective permittivity, ε(r, ω). After the electric field EI(r, ω) spans
the region of interest, the inhomogeneity described by ε(r, ω) induces an scattered
field, ES(r, ω). The absence of charges provides the validity of the Helmholtz equation
(∇2 + ε(r, ω)

(
ω
c

)2
)EII(r, ω) = 0 for the total field EII(r, ω) = EI(r, ω) + ES(r, ω), which

implies ∇2 +
(
ω

c

)2
ES(r, ω) = −

(
ω

c

)2(
ε(r, ω)− 1

)
EII(r, ω). (3.2)

Equation (3.2) is an inhomogeneous Helmholtz equation for the scattered field where
the source term is given by ε(r, ω) and EII(r, ω) that can be solved formally in terms of
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the Green’s function

ES(r, ω) =
(
ω

c

)2 ∫
d3r′GI(r, r′, ω)

(
ε(r′, ω)− 1

)
EII(r′, ω), (3.3)

whose first order solution for the scattered field is then given by1

ES(r, ω) = ω2

ε0c2

∫
d3r′GI(r, r′, ω)P(r′, ω), (3.4)

where we have used D = ε0E + P. In the limit where the scatterer is small compared to
the spatial scales of the fields, this is equivalent to

ES(r, ω) = ω2

ε0c2 GI(r, rE, ω)pE(ω), (3.5)

where pE(ω) is the electric dipole induced in the inhomogeneity (distorting emitter). It
is written as a linear expression pE(ω) = α̃E(ω)EI(rE, ω) in terms of the polarizability
tensor α̃E(ω) = α̃E(ω)T(n̂E), where [T(n̂E)]ij = [n̂E]iδij accounts for the orientation of
the distorting QE (δij is the Kronecker delta). Thus, we are able to write the electric
field EII(r, ω) as

EII(r, ω) = ω2

ε0c2 GI(r, r′, ω)µ+ ω2

ε0c2 GI(r, rE, ω)α̃E(ω)EI(rE, ω). (3.6)

By means of the relation between the primary field and the probing QE given by
Eq. (3.1) we can rewrite Eq. (3.6) as

EII(r, ω) = ω2

ε0c2 GII(r, r′, ω)µ, (3.7)

where we have used GII(r, r′, ω), the Green’s function tensor for the hybrid cavity-QE
system, written in terms of its counterpart for the bare cavity as [55, 149],

GII(r, r′, ω) = GI(r, r′, ω) + Ψ0GI(r, rE, ω)α̃E(ω)GI(rE, r′, ω). (3.8)

Equation (3.8) presents the two different terms marked by arrows in Fig. 3.1(a). As
in previous chapters, we evaluate the impact of the environment on the probing emit-
ter at its own position, GII(r, r, ω), as indicated in the figure. The metallic resonator,
embedded in a surrounding medium (εd = 1), is described through a Drude-fitting to
Ag permittivity of the form ε(ω) = ε∞ − ω2

p/(ω(ω + iγm)) with parameters ε∞ = 9.7,
~ωp = 8.91 eV and ~γm = 0.06 eV, equivalent to the permittivity used in the previous
chapter. In the figures in this chapter, we use the convention ~ = 1 and parameters
related to frequency will have energy dimensions. The probing and distorting QEs are

77



3. Two excitons in a plasmonic cavity

Figure 3.1: Two QEs in a plasmonic cavity. (a) Sketch of the system under study. A QE, µ,
probes the LDOS of a plasmonic cavity, with metal permittivity ε(ω), modified by the presence
of a second emitter, µE. Grey arrows sketch the two terms in the first-order scattering theory
description of the total Green’s function. (b) Normalized LDOS experienced by an emitter in
free space when a second, parallel one, is placed in its surroundings. Color code (indicated in
the legend) corresponds to different separations between emitters (d = (rE − r) ⊥ µ).

characterized by their transition dipole momenta (µ = µn̂µ,µE = µEn̂E), their respec-
tive transition frequencies (ω, ωE) and their positions (r, rE).
The distorting emitter is described by a quasistatic atom-like polarizability can be

written in the form αE(ω) = µ2
E

~ LE(ω), where LE(ω) = 1
(ωE−iγE/2)−ω is the complex

Lorentzian function defined by ωE and γE, the absorption linewidth [68]. This expres-
sion does not satisfy the optical theorem, since the associated extinction cross-section
only assesses absorption but not scattering. Nevertheless, it can be refined through a
correction to the free space QE polarizability [67] in order to take into consideration the
effects of depolarization under the cavity field. It is expressed in terms of the bare cavity
Green’s function, and therefore does not only account for far-field radiation losses but
mainly for near-field plasmonic absorption. This correction is introduced in the theory
as the contribution of the associated self-induced field at the position of the induced
dipole, contained in Im{GI(rE, rE, ω)}, leading to

α̃E(ω) = αE(ω)
1− iβI(rE, rE, ω)αE(ω) , (3.9)

which is equivalent to the condition that emerges from the fulfillment of the optical the-
orem in the case of a small particle [150]. We have defined the function βI(rE, rE, ω) =
Ψ0Im{n̂EGI(rE, rE, ω)n̂E}, that accounts for the projection of the Green’s function along

1Equation (3.3) presents a recursive integral form, found in other typical scattering expressions as
Lippmann-Schwinger equation, that can be solved iteratively [55].
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the orientation of the distorting QE. In addition, we have introduced the frequency de-
pendent factor Ψ0, which depends on the problem dimensionality and it takes the values
Ψ0 = ω2

ε0c2 for three-dimensional (3D) calculations or Ψ0 = 4ω3

3πε0c3 if we consider two-
dimensional (2D) systems. Although the electric field in both 2D and 3D systems is
correctly defined, the difference in Ψ0 for each case relies on the different spatial depen-
dence of the dipole moment and the Green’s function depending on the dimensionality
of the problem [G3D(r, r, ω)] 6= [G2D(r, r, ω)].
As it has been already explained in previous chapters, the Purcell factor, Pf , corre-

sponds to the normalized LDOS. This is defined as

P f
i (ω) = Im{n̂µGi(r, r, ω)n̂µ}

Im{n̂µG0(r, r, ω)n̂µ}
, (3.10)

where G0(r, r, ω) = [I + c2

ω2∇∇]G0(r, r, ω) is the Green’s function tensor in free space
and G0(r, r, ω) is the scalar Helmholtz Green’s function [151]. Index i = I,II refers to the
bare and QE-distorted cavity, respectively. Figure 3.1(b) shows the modification of the
free space LDOS by a single QE, i.e. GI(r, rE, ω) = G0(r, rE, ω) in Eq. (3.8). A Purcell
factor peak emerges in the spectrum, that inherits its Lorentzian-like shape from the
QE absorption lineshape. Throughout this chapter, the QE parameters (µE = 0.4 e·nm,
~γE = 0.03 eV) are set in agreement with recent experimental characterization of dye
molecules [152]. In Fig. 3.1(b), the dipole moments of both QEs are parallel to each
other (n̂µ ‖ n̂E) and d = (rE− r) ⊥ n̂µ. The height of the LDOS maximum is set by the
dipole moment strength of the distorting QE and |d|, the distance between the emitters,
for which we chose three different values. We can observe Purcell enhancements as large
as 103 for QE-QE distances as small as 1 nm.

3.1.1. Emitter distortion of Purcell factor: NPoM case
We use the scattering formalism above to study the Purcell factor experienced by the
emitter µ in a NPoM cavity hosting the emitter µE. The system is characterized by the
following geometrical parameters: D, diameter of the particle, δ, gap size between the
particle and the mirror plane, and the positions of the probing and distorting QEs, r
and rE, respectively.
Figure 3.2(a) shows the variety of effects that the presence of the distorting QE in the

vicinity of the NPoM cavity can produce in the near-field emission spectrum (mainly
into non-radiative channels) of the probing one. The inset presents a sketch of the cavity
and the emitters. Black to grey dotted lines correspond to P f

I (ω), the normalized LDOS
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3. Two excitons in a plasmonic cavity

Figure 3.2: Distortion of the LDOS in NPoM cavities by a QE. (a) Normalized LDOS spectra
for NPoM cavities with D = 35nm and different gap sizes (δ ∈ [1, 4] nm from dark blue to
yellow in 1 nm steps) for a vertical QE at the gap center. Black to grey dotted lines represent
P fI (ω). Blue to yellow solid lines show P fII(ω), corresponding to the distorted spectra due to a
QE, displaced 0.5 nm horizontally from the probing one. (b) P fII(ω)/P fI (ω) for D = 35nm and
δ = 1nm. The blue solid line corresponds to full electrodynamic calculations whereas red dotted
one is the scattering theory calculation in the quasistatic limit. (c) Red and blue solid lines
plot the real and imaginary parts of the polarizability αE(ω) for the case ωE = ω1 = 2.25 eV.
Dashed lines show the same components of α̃E(ω), corrected due to the depolarization field
induced in the cavity.

spectrum, for a single emitter in different cavities, D = 35 nm and increasing δ, from 1
to 4 nm in 1 nm steps, placed at the center of the gap and oriented along the vertical
direction (see red marker in the inset). The LDOS of the bare cavity is composed by a
set of plasmonic modes characterized by their azymuthal order n and their frequency
ωn as shown in chapter 2. In this chapter, we are going to focus on the red side of the
pseudomode, (i.e frequencies below ωPS = ωp√

ε∞+1), where only even modes (σ = +1)
are apparent, so, for the sake of simplicity, we omit index σ. The lowest energy peak
corresponds to the dipolar plasmon (ω1). As Re{ε(ω)} diverges for low frequencies, the
shrinking of the gap provides that the contribution of the lowest order mode ω1 increases
and redshifts with respect ωPS, the pseudomode frequency at which high-order modes
converge.
Dark blue to yellow lines represent the Purcell spectra for the same cavities but consid-

ering the hybrid scenario, with the presence of µE at a horizontal distance |d| = 0.5 nm.
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3.1. Distorting QE in the nanocavity

The distorting QE is vertically oriented and characterized by the same parameters as
in Fig. 3.1(b) with ωE = ω1, i.e. it is always at resonance with the lowest order even
plasmon mode. For small gaps, comparable to those realized experimentally to achieve
plasmon-exciton strong coupling [87, 118], the presence of µE causes a clear dip in the
spectra. As the gap size increases, the dip disappears and the µE causes both an en-
hancement and blueshifting with respect to the bare cavity LDOS maximum at ω1. This
result demonstrates that the presence of more than one emitter interacting with gap
plasmons can enrich the light-matter coupling phenomenology, effectively increasing or
decreasing the LDOS depending on the cavity configuration.
In order to check the validity of our scattering approach, we perform finite-element

simulations using COMSOL Multiphysics. In our numerical calculations, the probing
QE, µ, is treated as a dipolar EM source in the presence of the bare metal cavity. Then,
we add an spherical particle with radius a as the object that effectively simulates the
absorbing character of the distorting QE, µE. Its effective permittivity is chosen to match
the atom-like polarizability. Using the quasistatic scattering of a dielectric sphere under
plane-wave illumination, we can write αE(ω) = 4πε0a3 εeff(ω)−1

εeff(ω)+2 , or εeff(ω) = 1+2η3D(ω)
1−η3D(ω) ,

where η3D(ω) = αE(ω)
4πε0a3 . The value of the free parameter a is set by means of free space

calculations similar to those in Fig. 3.1(b). The radius of the distorting QE is made
small enough to reach convergence in the Purcell factor spectrum. Note that the effective
permittivity used for simulations does not require the introduction of radiative reaction
corrections, since those emerge naturally in the numerical solution. Our model is similar
to others, applied for phenomena such as plasmon-QE strong coupling [153], plasmon-
assisted Förster resonance energy transfer [154], near-field exciton harvesting [155] and
energy transfer in nanocrystals [156]. We employ this modelling scheme also to test our
2D analytical calculations for the NPoM cavity, discussed in section 2.3. In this case,
the relationship between the polarizability and the permittivity of the distorting QE is
4ω
3πcαE(ω) = 2πε0a2 εeff(ω)−1

εeff(ω)+1 , where
4ω
3πc is the value of the ratio between 2D and 3D Ψ0

factors, needed for dimensionality correctness. In this case, the effective permittivity has
the form εeff(ω) = 1+η2D(ω)

1−η2D(ω) with η2D(ω) = 4ω
3πc

αE(ω)
2πε0a2 . Figure 3.2(b) shows the distorted

LDOS normalized to the bare cavity one, equivalent to the ratio P f
II(ω)/P f

I (ω) between
the Purcell factors for the hybrid cavity-QE and bare cavity systems for the case δ =
1nm. Blue solid line corresponds to the numerical calculation and red dotted one to our
scattering theory approach. They are in almost perfect agreement. In Figure 3.2(c) we
plot both real and imaginary parts of αE(ω) in solid blue and red, respectively. Dashed
lines display α̃E(ω) for δ = 1nm (~ω1 = 2.25 eV) when considering the correction 1 +
βI(rE, rE, ωE)Im{αE(ωE)}. In this configuration, the radiative correction is the strongest,
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Figure 3.3: LDOS dependence on the QEs relative position. (a) Normalized LDOS dependence
on the separation, |d|, between the emitters. Blue to yellow lines show P fII(ω) for µE displaced
horizontally (see coloured dots plotted in the inset). (b) Normalized LDOS dependence on the
orientation of the relative position d between the QEs for a fixed separation |d| = 0.5 nm. In
both panels (a) and (b), black dotted line plots the bare cavity spectrum and the probing QE,
µ is placed at r = (0, δ/2). (c) Weighted difference (P fII(ω) − P fI (ω))/P fI (ω) as a function of
both ω and ωE for the case where the distorting QE is displaced |d| = 0.5 nm horizontally.
(Darkest blue point in insets (a) and (b)). Grey solid line sets ω = ωE. In all panels, the NPoM
is defined by (D, δ) = (35.0, 1.5) nm.

but the polarizability keeps its Lorentzian functional form. It is clear that the action of
the depolarization field is relevant in the nanometric gaps in Figure 3.2 panels (a) and
(b).

The analytical character of the our approach permits us to explore the full set of
parameters that define the LDOS. Inspired by the experimental setups in which plasmon-
emitter strong coupling has been reported [118, 146], we focus on cavity configurations
where the probing QE is placed at the gap center. In Figure 3.3, we explore NPoMs
(with fixed (D, δ) = (35.0, 1.5) nm) in which the distorting QE is around this symmetric
position. It presents an exhaustive scan of the effects of the distorting emitter on the
Purcell factor. As in Figure 3.2, we center our attention on the case ωE = ω1 and both
µ and µE oriented along the vertical direction. , The bare cavity spectrum, P f

I (ω), is

82



3.1. Distorting QE in the nanocavity

plotted in black dotted line in Fig. 3.3(a) and (b). The solid blue-to-yellow lines in
Fig. 3.3(a) represent the different Purcell spectra P f

II(ω) as µE is displaced horizontally
in 0.5 nm steps (see the relative positions in the inset). The dip produced by the emitter
changes its character (from asymmetric to symmetric) and finally disappears as the
QE-QE separation increases. The interplay between the free space (dominant for the
smallest separations) and plasmonic contribution to GI(rE, r, ω) provides the difference
in the spectral features. When both emitters are far from each other (not shown here),
µE becomes decoupled from the cavity fields and GI(rE, r, ω) is negligible.
Figure 3.3(b) shows how the LDOS is modified depending on the orientation of the

relative position vector d (|d| = 0.5 nm). We consider five different orientations, with
angular steps of π/8. As in Figure 3.3(a), the color code relates each spectrum with
the distorting QE position as indicated in the inset. The apparent differences in the
Purcell spectra originate from the spatial dependence of GI(rE, r, ω) across the gap.
While the vertical component of the plasmonic field at ω1 is mainly uniform within the
gap, the free space contribution changes its sign around its center. This gives rise to
LDOS maxima at the low and high frequency sides of the bare cavity resonance, for
horizontal and vertical QE-QE relative positions, respectively. In between these two
configurations, around the position of the distorting QE that vanishes the free space
contribution to GI(rE, r, ω), a symmetric dip emerges in the spectrum. Figure 3.3(c)
analyzes the dependence of the Purcell factor on both ω and ωE in terms of the weighted
difference (P f

II(ω) − P f
I (ω))/P f

I (ω) for the horizontal configuration with |d| = 0.5 nm
(see dark markers in panels (a) and (b)). This magnitude quantifies the effect of the
distorting QE beyond the dipolar plasmon and within a broader frequency window. The
map shows clearly that the distorting QE affects significantly the Purcell factor even
when it is not at resonance with any plasmonic mode of the cavity. Differences between
distorted and bare cavity LDOS are apparent at all frequencies, mainly, but not only,
when the natural frequencies of both QEs overlap (ω = ωE, grey line). Furthermore, as
already commented above, the distorting QE can induce an increase or decrease in the
Purcell factor depending on the system configuration.

3.1.2. Spectral density and mode decomposition
In order to elucidate the nature of the changes induced by the distorting QE into the
cavity LDOS, we focus next into disentangling the different modal contributions to the
spectral density, JII(ω), that encodes the interaction strength between the probing QE
and its electromagnetic environment, written in terms of the Purcell factor P f

i (ω) as

83



3. Two excitons in a plasmonic cavity

Ji(ω) = γ0
2πP

f
i (ω), where γ0 = ω3µ2/(3πε0~c3) is the decay rate of the probing QE in

free space. As shown in sec. 2.4, the Drude-like form of the metal permittivity and the
high-quality resonator approximation allow us to express the Dyadic Green’s function
for the bare cavity as

GI(r, r′, ω) = G0(r, r′, ω) +
∑
n

Gn(r, r′)Ln(ω), (3.11)

where the first term in Eq. (3.11) is the free space dyadic Green’s function. The second
(scattering) one is decomposed into complex Lorentzian functions, Ln(ω) = 1

(ωn−iγm/2)−ω ,
centered at ωn, the resonant frequency of plasmon mode n, and whose width is given
by the metal damping frequency, γm [157]. Gn(r, r′) is the light-matter coupling tensor
that weights the contribution of mode n and contains all the spatial information on
the modal fields. Crucially, this term is mainly real. Thus, in bare nanocavities, where
the second term in Eq. (3.11) dominates, the spectral density acquires the form of a
sum of perfectly symmetric Lorentzian profiles, JI(ω) = ∑

n
g2
n

π
γm/2

(ω−ωn)2+γ2
m/4

with g2
n ∝

n̂µGn(r, r, ω)n̂µ [157].
By introducing Eq. (3.11) into Eq. (3.8), we can obtain the spectral density experienced

by the probing QE in the distorted cavity as JII(ω) = γ0
2πP

f
II = JI(ω) + JI-II(ω), where

the second term accounts for the effect of the second QE in the bare cavity LDOS. In
general, we can write

JI-II(ω) = 1
π
Im
{∑

n

χ1,nLn(ω) +
∑
n

χ2,n(Ln(ω))2 + χELE(ω)
}
, (3.12)

Eq. (3.12) shows clearly that JII(ω) does not have the same spectral form as JI(ω). The
presence of µE in the bare cavity modifies the spectral density through three different
physical mechanisms. Firstly, it alters the original plasmonic coupling strength constants,
gn, which are no longer real. Second, it induces modal-like plasmon interactions, yielding
quadratic, (Ln(ω))2, terms in the LDOS. Finally, the polarizability lineshape of the
distorting QE, LE(ω), also emerges naturally in the spectral density, as it does in the
free space configuration in Fig. 3.1(b). The different weights of the Lorentzians, χi can
be written as

χi = γ0Ψ0

2Im{n̂µG0(r, r, ωi)n̂µ}
n̂µQin̂µ, (3.13)

where the matrices Qi reflect the spatial and spectral characteristics of the plasmonic
modes and the QE polarizability. They are labeled as i = 1, n for the n-th plasmonic
linear term, i = 2, n for the quadratic term and i = E accounting for the distorting
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emitter absorption. They read

Q1,n = µ2
E/~

1 + βI(rE, rE, ωE)Im{αE(ωE)}×Mn0 + MT
n0 −Mnn +

∑
m 6=n

Mnm + MT
nm

,
Q2,n = (µ2

E/~)(ω̃E − ω̃n)
1 + βI(rE, rE, ωE)Im{αE(ωE)}Mnn,

QE = (µ2
E/~)

1 + βI(rE, rE, ωE)Im{αE(ωE)}

(
M00 −

∑
n

Q1,n

)
,

where we have used ω̃E = ωE− iγE/2, ω̃n = ωn− iγm/2 and the definition of the matrices
Mnm

M00 = G0(r, rE)T(n̂E)GT
0 (r, rE),

Mn0 = Gn(r, rE)T(n̂E)GT
0 (r, rE)

ω̃E − ω̃n
,

Mnn = Gn(r, rE)T(n̂E)GT
n (r, rE)

(ω̃E − ω̃n)2 ,

Mnm = Gn(r, rE)T(n̂E)GT
m(r, rE),

(ωm − ωn)(ω̃E − ω̃n) .

In the following subsections, we investigate how these different terms contribute to
the phenomenology presented in Figures 3.2 and 3.3 for a NPoM geometry and for a
three-dimensional system.

3.1.3. NPoM cavity
We commence examinating the different spectral features of the LDOS in NPoM cavities,
specifically around the frequency of the lowest-frequency plasmon mode, ω1. Figure 3.4
panels (a) and (b) show the different contributions to JII(ω) at the gap center of a
NPoM cavity with D = 35.0 nm and δ = 1.5 nm (red lines). The distorting QE is
displaced 0.5 nm horizontally (a) and vertically (b) from the probing one. The dipole
moment of both emitters is oriented vertically. The spectral parameters are the same
as in Fig. 3.3. The black solid line plots the spectrum for the bare cavity, JI(ω). The
components of JI-II(ω) (cyan line) in Eq. (3.12) are plotted in dotted lines. The quadratic
plasmonic Lorentzian contribution presents the same symmetric Lorentzian-like profile
in both panels (orange). On the contrary, the terms altering the coupling strength of the
bare cavity (blue) and the QE polarizability (green) are clearly asymmetric. This allows
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Figure 3.4: Modal decomposition of J(ω) at the gap center of a distorted NPoM cavity
(D = 35.0 nm, δ = 1.5 nm) around ω = ω1. (a,b) Bare and distorted spectral densities (solid
lines) for vertical and horizontal QE-QE displacement (|d| = 0.5 nm), respectively (both QEs
are oriented vertically). Dotted lines plot the different contributions in JI-II(ω). (c) Modal
weights of the different contributions in Eq. (3.12) versus the orientation of the QE-QE relative
position (θ = 0 corresponds to the vertical configuration). (d) Same as panel (c) but versus
distance |d| for the horizontal case (θ = π/2). In panels (c) and (d), solid (dashed) lines
correspond to the real (imaginary) the part of the modal amplitudes, normalized to g2

1, the
coupling strength for the bare cavity.

us to anticipate complex χ1,1 and χE amplitudes, as the asymmetries originate from the
real part of the complex Lorentzian functions in Eq. (3.12). Note as well that these two
mechanisms oppose each other in both panels, and present maxima (minima) that are
slightly redshifted (blueshifted) with respect to ω = ω1. This gives rise to the qualitative
differences in the asymmetry of JII(ω) (red solid line) in both panels.

To explore the spatial dependence of the three contributions in JI-II(ω), we plot in
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Fig. 3.4 panels (c) and (d) their weights. χ1,1 and χE, normalized to g2
1, the lowest-

order plasmon-emitter coupling strength for the bare cavity, while χ2,1 (note its different
dimensionality), is normalized to γmg

2
1. In Fig. 3.4(c), similarly to Fig. 3.3(b), these

amplitudes are evaluated at a fixed distance, |d| = 0.5 nm, and different QE-QE relative
position orientations from vertical (θ = 0) to horizontal (θ = π/2) alignments. We plot
real parts in solid lines and imaginary parts in dashed ones. We can observe that the
real parts are rather insensitive to the orientation of d within the gap. As anticipated,
χ2,1 is isotropic and purely imaginary, as a consequence of the uniform character of the
resonant near-fields (M11) for the underlying capacitor-like plasmonic mode. Moreover,
it is smaller than g2

1 even at distances significantly shorter than the gap size (|d| = δ/3).
On the contrary, not only the uniform fields, M11, but also the inhomogeneous off-
resonant modes in M1m and the product of plasmon and free space field components
given by M10 contribute to Im{χ1,1} and Im{χE}. Note that the QE contribution also
presents a dipole-like free space field part given by M00. The weights Im{χ1,1} and
Im{χE} are much larger and flip sign with θ, which gives rise to the qualitative differences
in JII(ω) shown in Fig. 3.3(a) and (b). The M10 term is the origin of the change of sign
in the imaginary part of the amplitudes. At resonance, ω̃E− ω̃1 = i/2(γm− γE) is purely
imaginary. The term M11 provides an almost constant background, as noticed in χ2,1,
whose slightly larger absolute value for θ ≈ 0 is due to the interplay between the fields
at the gap center and close to the metallic surface.
Figure 3.4(d) plots normalized χ1,1, χ2,1/γm and χE as a function of the QE-QE dis-

tance for θ = π/2 (horizontal displacement of the distorting QE). Both real and imagi-
nary parts decay with increasing |d|. The faster decay of the imaginary parts of χ1,1 and
χE, dominantly given by the dipole-like free space field M00, reflects the more homoge-
neous character of the plasmonic fields. As a result, at distances around 2 − 3 nm the
three terms in Eq. (3.12) acquire a purely symmetric Lorentzian spectral shape. At such
distances χE ≈ −χ1,1, but the negative sign of χE together with the narrower character
of the LE translates into a symmetric dip superimposed on JI(ω), as it was shown in
Fig. 3.3(a).

3.1.4. Bow-tie-like antenna
To show the general character and validity of our analysis, we apply the Green’s function
scattering formalism to a full three-dimensional system. The cavity of choice is sketched
in Figure 3.5(a). It is composed by two free-standing metallic (same Drude permittivity
as before) rounded cones with 15 nm diameter and 15 nm height. One of the cones is
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Figure 3.5: J(ω) distortion in a bow-tie cavity. (a) Sketch of the cavity formed by two rounded
cones (15 nm height and diameter) and the position of the probing (red) and distorting (blue)
QEs (both are oriented along z-direction). (b) Dyadic Green’s function components involved
in the calculation of JI-II(ω) in Eq. (3.12). (c) Imaginary part of αE(ω) (bright) and α̃E(ω)
(dark) of QEs with ωE = 2.20 (red) and 2.45 eV (blue). (d) Spectral density decomposition
for ωE = 2.20 eV. Solid lines correspond to JI(ω) (black) and JI-II(ω) (red), and dotted lines
show the three contributions to JI-II(ω). Dashed light grey line sets the spectra obtained from
numerical simulations using an effective permittivity modelling of the distorting QE. (e) Same
as panel (d) but for ωE = 2.45 eV.

oriented vertically (z-axis), the other horizontally (y-axis), in a bow-tie-like arrangement.
Again, the dipole momenta of both QEs are oriented vertically. The probing emitter
is placed 1 nm away from the vertices of both cones. The distorting one is displaced
|d| = 2nm away along the positive z-direction. The dyadic Green’s functions of the
bare structure, the only input required for the calculation of JII(ω) in our approach, are
computed by means of numerical simulations performed using the finite-element solver
of Maxwell’s Equations in COMSOL Multiphysics.

Figure 3.5(b) shows the Green’s tensor components involved in the second term of
Eq. (3.8), where the real and imaginary parts of n̂zGI(r, rE, ω)n̂z are plotted in dashed
and solid blue lines, respectively. The green solid line renders Im{n̂zGI(rE, rE, ω)n̂z},
which yields the depolarization correction to the free space polarizability of the distorting
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QE. By direct inspection, several symmetric Lorentzian contributions can be identified
in the imaginary spectra of Fig. 3.5(b), whereas a free space background is apparent in
Re{n̂zGI(r, rE, ω)n̂z}. Both Green’s functions were fitted using the form of Eq. (3.11),
with the need of only five plasmonic modes. This fitting allows us to obtain JI-II(ω)
and identify the contribution of the three terms in Eq. (3.12). Fig. 3.5(c) shows the
comparison between Im{α̃E(ω)} (dark lines) and Im{αE(ω)} (bright lines) for ~ωE = 2.20
(red) and 2.45 eV (blue), where the depolarization effects by the plasmonic fields become
clear.

Figure 3.5(d) and (e) show the spectral densities for two distorting QE frequencies,
~ωE = 2.20 and 2.45 eV, respectively. In each panel, the bare cavity spectrum, JI(ω),
is presented in black solid lines. It is calculated from Im{n̂zGI(r, r, ω)n̂z}, obtained
from full electrodynamic solutions for Maxwell’s equations. The different contributions
to JI-II(ω) are plotted by colored dotted lines, and JII(ω) is shown in red solid line. For
comparison, JII(ω) computed by means of COMSOL Multiphysics in which simulations
modelling the distorting QE as dielectric sphere of permittivity εeff(ω) (see section 3.1.1)
are rendered in light grey dashed line. We can observe that they are in very good agree-
ment with the prediction from our approach. In both panels, the absorption lineshape
of the distorting QE is clearly imprinted in the cavity LDOS. Therefore, the Lorentzian
contribution of the QE, LE(ω), with (mainly) real χE, dominates JI-II(ω). However, the
plasmonic contributions Ln(ω) (blue) and (Ln(ω))2 (orange) are not negligible either.
Both yield asymmetric profiles with maxima and minima not (only) at the QE natural
frequency, but in the vicinities of the resonant plasmonic frequencies, ~ω1 = 2.25 eV
and ~ω4 = 2.56 eV, which correspond to the dominant modes. Remarkably, panel (d)
in Fig. 3.5 reveals that the coupling of the probing QE to the mode ~ω4 = 2.56 eV is
significantly reduced by the distorting QE, even in situations with considerable detuning,
as rendered in Fig. 3.5(d), where ω4− ωE � γm, γE.

3.1.5. Hamiltonian picture

In order to gain insight into Eq. (3.12) and the physical interpretation of the three terms
contributing to JI-II(ω), we revisit here the hybrid QE-cavity system under a quantum
description. This could be done taking into account the full richness of the plasmonic
spectrum of the bare cavity, but, for simplicity, we will focus here on its single-mode
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version. The Hamiltonian for this simplified system reads

Ĥ = Ĥσ + Ĥcav + Ĥint

=
(
~ωσ̂†σ̂) +

(
~ωnâ†nân + ~ωEb̂

†b̂+ ~gn,Eâ†nb̂+ h.c.
)

+ (~gnâ†nσ̂ + h.c.
)
, (3.14)

where the first, second and third terms correspond to the probing QE (modelled as a two-
level system), its photonic environment (which involves the plasmon resonance, labelled
as n, and the distorting QE) and their interaction, respectively. Thus, ân, σ̂, and b̂ are the
annihilation operators for the cavity mode and the two QEs. Note that the distorting
emitter has been bosonized, in agreement with our scattering theory description, in
which it is treated as part of the LDOS. The plasmon mode is coupled to both QEs,
with strengths gn and gn,E, but the emitters are not interacting with each other.

Recently, a general approach has been proposed that sets the link between the Hamilto-
nian describing the interaction between a single QE and its photonic environment and the
spectral density for the system, J(ω) [42, 158]. This framework, based on Fano diagonal-
ization theory [159], is valid for Hamiltonians involving interacting modes, like Eq. (3.14).
Applying this formalism to our system, we can obtain the spectral density for our sys-
tem from the resolvent of the non-hermitian Hamiltonian for the photonic environment,
Ĥ ′cav = Ĥcav − i~γm2 â†nân − i~γE2 b̂†b̂. The origin of the complex frequencies in the Hamil-
tonian above resides in the master equation description of the system. This includes
Lindblad operators, Ln,E[ρ̂], accounting for the dissipation experienced by the cavity
(with rate γm) and the distorting QE (with rate γE), ∂tρ̂ = − i

~ [Ĥ, ρ̂]+ γm
2 Ln[ρ̂]+ γE

2 LE[ρ̂].
We can now express the spectral density in terms of the resolvent matrix as [42, 158]

JII(ω) = 1
π
Im
{
gT
(
H′ − Iω

)−1
g
}

= 1
π
Im
{

g2
n(ω̃E − ω)

(ω̃n − ω)(ω̃E − ω)− g2
n,E

}
, (3.15)

where we have used

H′ =
 ωn − iγm/2 gn,E

gn,E ωE − iγE/2

 , g =
 gn

0

 .
By keeping only the first-order correction in the Taylor expansion at g2

n,E = 0 of the
spectral density above, we obtain JII(ω) = JI(ω) + JI-II(ω) with

JI(ω) = 1
π
g2
nIm{Ln(ω)}, (3.16)

and

JI-II(ω) = 1
π
Im
{

g2
ng

2
n,E

(ω̃E − ω̃n)2LE(ω)−
g2
ng

2
n,E

(ω̃E − ω̃n)2Ln(ω) +
g2
ng

2
n,E

ω̃E − ω̃n
(Ln(ω))2

}
. (3.17)
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3.1. Distorting QE in the nanocavity

Thus, in the regime of weak interaction between cavity and distorting QE (gn,E �
ωn, ωE), in which Eq. (3.8) is valid, we obtain an spectral density in which the effect of
the distorting QE acquires exactly the same for as JI-II(ω) in Eq. (3.12). Thus, we can
now express the modal amplitudes in this expression in terms of the parameters of the
Hamiltonian as

χE = −χ1,n =
g2
ng

2
n,E

(ω̃E − ω̃n)2 , χ2,n =
g2
ng

2
n,E

ω̃E − ω̃n
, (3.18)

where ω̃n = ωn− iγm/2 and ω̃E = ωE− iγE/2 are the complex cavity and QE frequencies
that emerge naturally in Ĥ ′cav.
Let us stress that Eq. (3.18) sheds light into the results presented above for distorted

NPoM and bow-tie cavities. Firstly, they show that all modal amplitudes are propor-
tional to g2

ng
2
n,E, the square of the product of the plasmon-QE coupling constants. More

importantly, they are complex, in general. As we already discussed, this yields a non-
vanishing contribution of the real part of the complex Lorentzian functions in Eq. (3.12)
to the LDOS of distorted cavities. Particulary, when plasmon resonance and QE natu-
ral frequency are at resonance, ωn = ωE, Re{χ2,n} = 0, which explains the imaginary
character of this amplitude in Fig. 3.4(c) and (d) for all relative QE-QE positions. Fur-
thermore, as predicted by Eq. (3.18), both the real and imaginary parts of χ1,1 and χE

are, despite deviations contained in the QE dipole-like free space component, opposite
in sign in these two panels.
Finally, these single-mode amplitudes also help us interpret the findings in Fig. 3.5.

Note that the plasmonic mode components to the various JI-II(ω) contributions cannot
be disentangled in this case. However, focusing only on the distorting QE spectra, we
can observe that it presents a slight asymmetry in panel (d), where the QE is close to
resonance with the cavity mode at 2.22 eV, but it is fully symmetric in panel (e), where
the QE is further from resonance with the mode at 2.52 eV. We can link this observation
to the effect of cavity-QE detuning on χE in Eqs. (3.18). Note that, near the resonance
condition, this is complex, with similar real and imaginary parts if |ωn−ωE| ∼ (γm−γE)/2,
and becomes effectively real for |ωn−ωE| � (γm−γE)/2. Thus, we can conclude that the
off-resonant character of the distorting QE in Fig. 3.5(e) is behind its fully symmetric
contribution to the LDOS. We finalize remarking that the condition ω̃E = ω̃n is not
considered in our analysis since it does not allow the Lorentzian decomposition perfomed.
Nevertheless, even when in the described conditions non-Lorentzian effects are quite
related to the effects of different losses ratios for the plasmon-distorting QE mechanisms,
pure non-Lorentzian effects would arise even in the total resonance case, where cubic
Lorentzian terms become apparent.
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3. Two excitons in a plasmonic cavity

3.2. Light-allowed and light-forbidden transitions in a
plasmonic cavity

After presenting our results on how the presence of a second emitter can modify the
LDOS in a deeply sub-wavelength plasmonic cavity, we turn our attention to the is-
sue of considering a more complex structure in a single emitter, described as a three-
level system, including two different excited states, characterized by their dipolar and
quadrupolar nature.

Figure 3.6(a) sketches a NPoM cavity with diameter D = 30.0 nm and gap size δ =
0.9 nm. In the same fashion as already shown, the metal permittivity εm(ω) is given
by low-frequency Drude-fitting to Ag. In this case, we consider the whole plasmonic
structure embedded in εd = 4. We treat the QE as a point-like three-level system, placed
at rE = (xE, zE), with the origin of coordinates is located at the bottom of the gap.
We assume that the QE presents two transitions of interest, with energies in the visible,
each of them with different character. The light-allowed transition between the ground
|g〉 and the |eµ〉 state presents a transition dipole moment µ, with natural frequency ωµ,
and radiative decay rate in vacuum γµ = γµ(ωµ) = ω3

µµ
2/3πε0~c3. On the other hand,

the state |eQ〉 is assumed to have only quadrupolar component with zero net transition
dipole moment. Then, the transition from |g〉 to |eQ〉 is distinguished by a net transition
quadrupole moment Q and a frequency ωQ, giving a free space decay rate γQ = γQ(ωQ) =
ω5
QQ

2/360πε0~c5. The comparison between the free space decay rates, with γQ/γµ ∼
10−5, 10−6 provides the difference in time scales between the |eµ〉 , |eQ〉 states, which are
completely decoupled each other. For this reason, it is usually assumed that quadrupolar
transitions are very unlikely to interact with free space fields, acquiring a light-forbidden
character. In our study, internal nonradiative decay channels in the QE are neglected,
and the orientation of both excitonic moments is chosen to maximize plasmon-emitter
coupling. Based on the results already shown in chapter 2, this is given by the vertical
electric dipole µ = µn̂z and the antidiagonal electric quadrupole defined by the crossed
outer product Q = Q√

2 [n̂x⊗n̂z+n̂z⊗n̂x]. Within the Transformation Optics approach, we
can calculate the electric field scattered by the nanostructure for the cavity in Fig. 3.6(a).
In order to account for the radiative losses experienced by surface plasmon (SP) modes
and keep our calculations fully analytical for all system configurations, we model the
cavity geometry through its 2D counterpart [64], as we did in chapter 2.

In Figure 3.6(b), we render the ratio between quadrupolar and dipolar Purcell factors
PQ
f (ω)/P µ

f (ω) versus frequency and δ/D, for the QE at the gap center, rE = (0, δ/2).
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3.2. Light-forbidden transitions

Figure 3.6: (a) Sketch of a QE placed at the gap of a metallic NPoM cavity. The QE is mod-
elled as a three-level system with one dipolar (µ) and one quadrupolar (Q) exciton transitions.
(b) Ratio between the quadrupolar and dipolar Purcell factors at the gap center as a function
of frequency and normalized gap size.

The red dashed line plots the contour PQ
f (ω)/P µ

f (ω) = 105 and sets the parameter
region for which the time scales of light-forbidden and light-allowed exciton dynamics
become comparable, mediated by the impact of the cavity fields. We can observe that this
condition can only be satisfied for gap sizes in the sub-nanometric regime, much smaller
than the nanoparticle dimensions. For the geometry in Figure 3.6(a), we can identify
two spectral regions where this is the case (δ/D = 0.03): below the lowest-frequency SP
(~ω1,+1 = 1.55 eV) and at the pseudomode which emerges at ~ωPS = 2.40 eV from the
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3. Two excitons in a plasmonic cavity

Figure 3.7: (a) Spectral densities for the dipole and quadrupole excitons(µ = 0.55 e·nm,
Q = 0.75 e·nm2), in blue and red lines, respectively, evaluated at zE = δ/2 (dashed lines)
and 7δ/8 (solid lines). Inset: Coupling strengths for the lowest-frequency mode, g1,+1

i , and the
pseudomode, gPSi , as a function of zE in dashed and solid lines, respectively.

spectral overlapping of high-frequency SPs [96].

3.2.1. Spectral densities: Wigner-Weisskopf theory
We proceed to study the spectral features experienced by the emitter. Figure 3.7 shows
the spectral density, Ji(ω) = γi(ω)

2π P i
f (ω), for dipolar (i = µ) and quadrupolar (i = Q)

excitonic transitions within the cavity in Figure 3.6(a) with µ = 0.55 e·nm and Q =
0.75 e·nm2. This value is chosen so that the spectral density at the pseudomode is the
same for both excitons at zE = δ/2, although JQ(ω) decays much faster with decreasing
frequency. By displacing the emitter position to zE = 7δ/8, both spectral densities
increase. This enhancement is more pronounced in JQ(ω), which is fully governed by
the pseudomode and whose maximum is almost two orders of magnitude larger than
Jµ(ωPS). As we have already discussed in chapter 2, the analytical expressions obtained
for the spectral densities can be reshaped into a sum of Lorentzian terms of the form
Ji(ω) = ∑∞

n=1
∑
σ=±1

(gn,σi )2

π
Im{Ln,σ} where n is the SP azimuthal order, and σ the parity
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3.2. Light-forbidden transitions

(even/odd) of the electric field in the z-direction with respect to the gap center. The QE-
SP coupling constants, gn,σi , weighting the different Lorentzian contributions are plotted
in the inset of Figure 3.7 for both dipole and quadrupole transitions and for the lowest-
frequency SP and for the pseudomode, gPSi =

√∑
n≥7,σ(gn,σi )2. Whereas g1,+1

µ and g1,+1
Q

do not depend on zE, gPSµ and gPSQ grow exponentially as the QE approaches the metal
surface, being this enhancement significantly larger for the quadrupole exciton.
We use our approach to analyze first the influence that light-forbidden transitions have

in the exciton population dynamics. Specifically, we assume that initially (t = 0) only
the light-allowed state is occupied, this is nµ(0) = |cµ(0)|2 = 1 and nQ(0) = |cQ(0)|2 = 0,
and investigate how the excited state populations evolve in time. The Wigner-Weisskopf
problem for our system (see appendix B) consists in two coupled integro-differential
equations of the form

ċi(t) = −
∫ t

0

∫ ∞
0

Ji(ω)ei(ωi−ω)(t−t′)ci(t′)dωdt′

−
∫ t

0
Jij(ω)ei(ωi−ω)(t−t′)ei(ωi−ωj)t

′
cj(t′)dωdt′ (3.19)

where i, j = µ,Q,∀i 6= j, and Jij(ω) = Jji(ω) is given by the Lorentzian decompsition
with the corresponding gn,σij =

√
gn,σµ gn,σQ . This spectral density feeds the second term

in Eq. (3.19), which couples the dipolar and quadrupolar excitonic populations through
the full plasmonic spectrum supported by the NPoM. We proceed to study two different
system configurations, already introduced in Figure 3.7 and indicated in the top sketch
of Figure 3.8. In Fig. 3.8(a), the QE is placed at the gap center and the dipole and
quadrupole transition frequencies are at resonance with the lowest SP mode, ωQ = ωµ =
ω1,+1. In Figure 3.8(b), the QE is in the vicinity of the nanoparticle surface, zE = 7δ/8,
ωµ = ω1,+1 but the quadrupole transition is shifted to ωPS.
In the first case, where the QE is at the gap center and ωµ = ωQ = ω1,+1, the

quadrupolar exciton is very detuned from the dominant peak of JQ(ωPS). The left panel
in Figure 3.8(a) shows the dependence of the total population dynamics nµ(t) + nQ(t)
(ni(t) = |ci(t)|2) with the ratio between the spontaneous decay rates in free space, γQ/γµ,
calculated fixing µ and varying Q. It is clear that for small values of the quadrupole
moment, the interplay will be negligible and the QE population will show the trend of
a common decay, determined by the plasmon-dipolar exciton coupling. Nevertheless, in
an intermediate region, we find a suppression of the downfall. We plot in the right panel
the net populations evaluated at Q/µ = 3.2 nm, which corresponds to γQ/γµ = 6 · 10−6,
marked by the orange arrow in the contour map. The population of the light-allowed,
nµ(t), and light-forbidden, nQ(t), states are shown in blue and red lines, respectively, and
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3. Two excitons in a plasmonic cavity

Figure 3.8: Population dynamics. In the top panel, we represent the sketch of the QE positions
analyzed in panels (a) and (b), with the QE at the gap center and displaced towards the
nanoparticle, respectively. (a,b) Right panel renders the temporal evolution of the total, nµ+nQ,
exciton population as a function of the free space spontaneous decay ratio, γQ/γµ, that we
change varying the strength of the transition moment Q. As indicated, (a) panels correspond
to ωµ = ωQ = ω1,+1 and zE = δ/2, whereas (b) represents ωµ = ω1,+1, ωQ = ωPS and zE = 7δ/8.
Right panels show the cuts of the contour map, marked by the orange arrows, that correspond
to (a) γQ/γµ = 6 · 10−6 and (b) γQ/γµ = 5 · 10−5 besides each of the contributions, nµ(t) and
nQ(t). The dipole population in absence of the light-forbidden transition, n(0)

µ , is also shown.
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the orange line plots nµ(t)+nQ(t). For comparison, the dipole state population in absence
of the quadrupole exciton, n(0)

µ (t), is shown in black line. The right panel displays that the
effective decay of the total population is related to the feeding of population into nQ(t).
This grows initially, up to crossing nµ. At longer times, the quadrupole exciton feeds
population back into the dipole state, and induces a decay in the total QE population,
which is significantly slower than n(0)

µ (t). Both show a rather monotonic decay decorated
by very shallow oscillations, which can be linked to the onset of the plasmonic strong
coupling, within the two-level description of the QE.
The fingerprint of the quadrupole exciton is even more remarkable in Fig. 3.8(b). The

contour map in the left panel shows that small values of the Q transition moment do
no change significantly the decay of the dipolar state. Nevertheless, in a certain region
around γQ/γµ ' 5 · 10−5, a shortening fo the decay is observed. Right panel shows
the corresponding cuts for this value of the ratio, marked by an orange arrow in the
contour map. The panel shows the emergence of fast Rabi oscillations in nQ(t), which
originate from its strong coupling to the pseudomode, are quickly transferred to nµ(t).
The resulting total population profile oscillates and decays much faster than n(0)

µ (t).
The fast oscillations superimposed to the main oscillation can be understood from the
examination of the Wigner-Weisskopf expression, Eq. (3.19). Whereas for the previous
configuration ωµ = ωQ, now the difference in frequencies provides the emergence of
oscillations due to the exponential term ei(ωµ−ωQ)t′ in the integration kernel. We remark
that we vary the Q moment within the same interval of values in (a) and (b) panels,
being the different ωQ the responsible of the change by an order of magnitude in the
spontaneous decay ratio. Both configurations show that the strong modification of QE
lifetimes takes place only within a certain range of Q-values. We can conclude that
depending on the emitter position and exciton detuning, light-forbidden transitions can
effectively reduce or enlarge the QE lifetime, altering significantly the Purcell effect
obtained within the two-level system model.

3.2.2. Far-field effects: Scattering spectrum
In order to evaluate the impact that the quadrupole exciton has in the performance of
the QE-SP system as a photonic device, we study next its far-field scattering spectrum.
We recover the model introduced in chapter 2 for a dark-field spectroscopy set-up [118]
in which the NPoM is illuminated by a grazing laser field, EL, with frequency ωL and
polarization along z-direction. Due to its inherent open and lossy nature, describing the
scattering properties of the hybrid system would require, in principle, the computation
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of its steady-state density matrix out of a Liovillian formulation of the problem. As we
did in the previous chapter, we can use a non-hermitian Hamiltonian of the form

Ĥeff =
∑
i

~∆iσ̂
†
i σ̂i +

∑
n,σ

~∆n,σâ
†
n,σân,σ (3.20)

+
∑
i

∑
n,σ

~gn,σi (â†n,σσ̂i + h.c.) + EL(M̂ + M̂ †)

where â†n,σ (ân,σ) and σ̂†i (σ̂i) are the creation (annihilation) operators for SP and QE
excitations, and ∆n,σ = ωn,σ − ωL − iγn,σ2 and ∆i = ωi − ωL − iγi2 are the complex
detuned frequencies for the SPs and the QE dipole transition, respectively, given in
terms of ωi and laser frequency, ωL. The only difference with respect to Eq. (2.68) is the
consideration of both excitons.
The Hamiltonian in Eq. (3.20) is given by applying the same transformation procedure

the one behind the Wigner-Weisskopf approach after adding the external pumping, where
it is assumed that the only coupling between the far-field and the system is mediated by
the dipole moments of the various plasmon modes, M̂ = µσ̂µ +∑

n µnân,+1. As we did in
chapter 2, the SP dipole moments for the even modes (σ = +1) can be expressed in terms
of their radiative decay rates and we solve perturbatively the Schrödinger equation in
the rotating frame to obtain the steady-state wavefunction for the QE-SP system, |ψSS〉.
The scattering cross section is then calculated as Eq. (2.69), the expectation value of the
M̂ operator, σsca = 〈ψSS| M̂M † |ψSS〉.
We start our analysis considering the configuration with the emitter at the gap center.

Figure 3.9(a) panel renders the normalized scattering cross section versus laser frequency,
ωL and the free space spontaneous decay ratio γQ/γµ. The configuration is the same as
the considered in Figure 3.8(a), with both excitonic levels in resonance with the lowest
order plasmonic mode, ωµ = ωQ = ω1,+1. We choose this mode since its contribution to
the far-field signal is the largest. We plot σsca within a wider spectral window, spanning
beyond the scattering peak at ω2,+1, where it is apparent the presence of an invisibil-
ity dip [64] at ~ωL = 1.77 eV, which originates from superposition effects among the
coherent emission from different SPs. For low values of Q, which translate in negligible
quadrupole-plasmon coupling compared the dipolar counterpart, Figure 3.9(a) shows
the Rabi splitting of the bare NPoM scattering peak, an indication of the formation of
plasmon-exciton polaritons (PEPs) in the system due to the strong coupling between
the lowest SP and the dipolar exciton [118]. As the Q-coupling increases, the fingerprint
of the QE quadrupole transition becomes apparent only at larger γQ/γµ, giving rise to
a third peak in σsca(ω) at ω = ω1,+1. This maximum grows and broadens, and its po-
sition redshifts. Fig. 3.9(b) plots the cuts of this map, marked by the color arrows, for
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Figure 3.9: Scattering spectra for QE-SP systems with ωµ = ωQ = ω1,+1, zE = δ/2. (a)
Normalized scattering cross-section σsca vs laser frequency and free space spontaneous decay
ratio, γQ/γµ. Black lines represent the eigenenergies of a reduced Hamiltonian with four states:
LPEP (solid), MPEP1 (dashed) and MPEP2 (dotted). (b) Normalized σsca spectra for the
values indicated by arrows in panel (a) and for the bare cavity (black solid line). Bottom
panels: Squared absolute values of the PEP Hopfield coefficients as a function of γQ/γµ for
dipole (blue) and quadrupole (red) excitons, lowest-frequency SP (yellow) and pseudomode
(green).

γQ/γµ = 1 · 10−6 (blue) and γQ/γµ = 1 · 10−5 (red), showing the two-peak splitting and
three-peak spectra cases. As a comparison, the bare NPoM spectrum is plotted in black
solid line.
As in chapter 2, we study the eigenstates and eigenvalues of a reduced Hamiltonian,

just considering the excitons and two plasmonic modes, ω1,+1 and ωPS. The energies of
those hybrid states, termed as PEPs2, are shown in panel (a), labelled as lower PEP

2As in chapter 2, we refer to the hybrid states as PEPs even when their nature is purely plasmonic or
excitonic to highlight their general hybrid character.
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(solid lines), first middle PEP, MPEP1 (dashed lines) and second middle PEP, MPEP2

(connected-dotted lines). A fourth (upper) polariton (not shown) emerges at ωPS. The
Hopfield coefficients in the bottom panels of Figure 3.9 shed light into this strong modi-
fication of the Rabi doublet profile, obtained from the projection of the reduced hamilto-
nian eigenstates onto the bare exciton-plasmon basis. Those reveal that the peak at ω1,+1

develops when MPEP1 losses its light-forbidden exciton character (see red line in central
panel). This is in turn transferred to LPEP, whose associated peak becomes narrower.
In contrast, MPEP2 is barely affected in this process, and the corresponding scattering
maximum remains the same as in the two-level system model for the QE. Importantly,
the modification of the Rabi doublet spectrum takes place within the same parametric
region in which the QE lifetime is longest, see Figure 3.8(a).
Figure 3.10 evidences that the Rabi splitting phenomenology is modified even at lower

γQ/γµ in the second QE-SP configuration, with zE = 7δ/8 and ωQ = ωPS. As before,
we study the variation of σsca as Q increases. This higher sensitivity to the quadrupole
exciton is a consequence of the large enhancement that gPSQ experiences as the QE is
displaced across the cavity gap, see Fig. 3.7. For negligible plasmon-Q-exciton coupling,
dipolar exciton defines the spectrum. Due to the large detuning and coupling between
the dipolar level and the pseudomode, the scattering minima between the Rabi doublet
is no longer at ω = ω1,+1 but a bit redshifted in the spectrum, as discussed in section 2.7.
Remarkably, by increasing the quadrupole moment, the lowest frequency peak vanishes,
and the spectrum for the hybrid system resembles very much the one of the bare NPoM
(see red and black lines in Fig. 3.10(b)). This profile can be observed only within a narrow
range of Q-values, beyond which a symmetric Rabi doublet spectrum, very similar to the
one observed at Q ' 0 is recovered (blue line). The eigenenergies of the polaritons in the
reduced model and the Hopfield coefficients in the bottom panels clarify this evolution
of σsca(ω). In this case, MPEP2, which initially originates from the strong coupling
between the quadrupole exciton and the pseudomode (see red and green lines in MPEP2),
becomes strongly Rabi-shifted towards ω1,+1. For large enough Q, anti-crossing among
PEP bands takes place. As a result, LPEP and MPEP2 present a vanishing content on
the lowest SP mode (see yellow lines in PEP panels) at γQ/γµ = 5 · 10−5, which is fully
transferred to MPEP1 (central bottom panel in Fig 3.10). In these particular conditions,
light-allowed and light-forbidden QE states interact only through the pseudomode and
become completely dark. As a result, the Rabi doublet in σsca(ω) vanishes and, as shown
in Fig 3.8(b), the large excitonic couplings to the pseudomode lead to a fast oscillations
in the QE population and an effective shortening of its lifetime.
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Figure 3.10: Scattering spectra for QE-SP systems with ωµ = ω1,+1, ωQ = ωPS and zE = 7δ/8.
(a) Normalized scattering cross-section σsca vs laser frequency and free space spontaneous decay
ratio, γQ/γµ. Black lines represent the eigenenergies of a reduced Hamiltonian with four states:
LPEP (solid), MPEP1 (dashed) and MPEP2 (dotted). (b) Normalized σsca spectra for the
values indicated by arrows in panel (a) and for the bare cavity (black solid line). Bottom
panels: Square absolute values of the PEP Hopfield coefficients as a function of γQ/γµ for
dipole (blue) and quadrupole (red) excitons, lowest-frequency SP (yellow) and pseudomode
(green).

3.3. Conclusions
To conclude this chapter, we have investigated plasmonic cavities hosting more than one
exciton, revealing that the near field enhancement associated to plasmonic resonances
can lead to a rich and complex light-matter interaction phenomenology. In the first
section, we have presented an insightful approach based on first-order electromagnetic
scattering theory to investigate the distortion induced by a quantum emitter in the local
density of states of a nanocavity. The presence of the distorting emitter can modify
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strongly the near-field spectrum, enhancing or suppresing the local density of states
even when it is out of resonance with any plasmonic mode. The quasistatic character
of the system enables us to perform a complex Lorentzian decomposition of the dyadic
Green’s function, allowing us to identify and isolate three different mechanisms behind
the distortion due to the presence of the second emitter. On the other hand, the extreme
light confinement provided by plasmonic resonances leads to large spatial derivatives
of the electric field, making possible the interplay between dipolar excitons and higher-
order multipolar terms. Using our Transformation Optics approach, we have explored
the near-field population dynamics and the far-field scattering spectrum for a three-level
quantum emitter, with dipole-active and dipole-inactive (quadrupole) excited states. We
have focused on two system configurations in which the quadrupolar excited state leads
to opposite modifications of the Purcell effect and Rabi splitting phenomenology.
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4

Lattice resonances

During the previous chapters, we have analyzed the form of plasmon-emitter inter-
actions in different plasmonic cavities. In this chapter, we focus our study on

plasmonic resonances supported by nanoparticle arrays, exploring the possibilities of ar-
rangements that result in the observation of one or two different resonances, with special
emphasis in the broad or narrow character of the mode.

4.1. Introduction
As we have seen in previous chapters, metallic nanostructures are exceptional tools to
manipulate the interaction between light and matter at the nanoscale due to their ability
to support surface plasmons [56]. Up to this point in the thesis, we have restricted our-
selves to the study of the optical behavior of systems much smaller than the wavelength,
yielding the regime where radiation is neglected and EM phenomena have a near-field
character. At optical frequencies, the validity of the quasistatic approximation where
radiative effects are generally negligible with respect to evanescent fields extends up to
sizes of the order of 50 nm. In addition to plasmonic resonances, sub-wavelength-sized
metallic nanostructures also support collective modes when they form a periodic lattice.
The nature of such arrangements, which implies the interplay between the near-field
and far-field regimes, show a rich EM phenomenology. When the interparticle distance
is small compared to the size and the wavelength, the phenomena can be described in
terms of quasistatic concepts. Larger spacings, when the wavelength λ is of the order of
the interparticle separation, lead to long-range electrodynamic interactions and diffrac-
tion effects. In particular, we will focus on two-dimensional arrays of metallic nanopar-
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ticles. These systems support several types of collective resonances, from plasmon-like
localized surface plasmons (LSPs) to mixed plasmonic-photonic modes resulting from
the coupling between diffractive Rayleigh anomalies and individual LSPs, the so-called
lattice resonances.

The lineshape of plasmonic resonances is determined by its lifetime, related to the
damping mechanisms. Localized surface plasmons usually display relatively broad line-
shapes, with quality factors (i.e., the ratio of the resonance width to the central wave-
length of the resonance) in the range Q . 10− 20 [160, 161]. Resonance broadening can
occur through both non-radiative and radiative processes, proportional to the volume of
the resonator. Both individual and multiparticle structures can support multipolar plas-
mon modes. The magnitude of the associated dipole moments provides the distinction
between bright and dark modes as well as a characterization of the resonance linewidth.
Bright modes are broadened due to radiation associated to the net dipole arising from the
sum of the plasmonic dipole moments supported by the individual constituents. On the
other hand, the cancellation of the net dipole leads to dark resonances, with narrower
lineshapes. Bright and dark plasmons are classical analogues of the superradiant and
subradiant quantum optical phenomena, respectively [162, 163]. Surface plasmons with
a large bandwidth are useful for certain applications based on field enhancement and
absorption [164] while there are many others, such as biosensing [165], that benefit from
surface plasmons with large Q factors. By breaking the spatial symmetries in plasmonic
composites, bright and dark modes can couple each other, giving rise to asymmetric
spectral features and providing new degrees of freedom for the design of the optical
spectrum [166–168]. Lattice resonances constitute a promising approach to obtain large
field enhancements and narrow modes that display large Q factors [169–171]. Indeed, a
recent experimental work has reported quality factors Q ∼ 2400 in single-particle plas-
monic arrays1 [172]. Thanks to these extraordinary properties, periodic arrays of metallic
nanoparticles are being used in applications ranging from the design of different optical
elements such as light-emitting devices [173–175] to platforms for exploring new physical
phenomena [176, 177].

In this chapter, we focus our study on lattice resonances supported by bipartite
nanoparticle arrays, exploring the possibilities of arrangements that result in super- or
subradiant modes. We show that the considered bipartite arrays generally support two
different lattice resonances, but certain geometrical configurations determine the obser-

1Throughout the text, we will refer to periodic arrays as those in which the unit cell is formed by one
particle (single-particle arrays) or two particles (bipartite arrays).
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vation of an unique lattice resonance. Moreover, for those situations in which a single
resonance is found, depending on the relative position of the two particles within the unit
cell, it may display a super- or subradiant character. Not surprisingly, each of these two
behaviors leads to a very distinct optical response. Specifically, superradiant lattice reso-
nances produce large values of reflectance with broad lineshapes, as expected from their
increased radiative losses. On the other hand, the significant reduction of the radiative
losses associated with subradiant lattice resonances gives rise to very small linewidths
with maximum absorbance.

4.2. Nanoparticle arrays. The coupled dipole model
In this section, we present the theory that we have used to describe lattice resonances
in infinite periodic arrays of metallic nanoparticles under plane wave illumination. As
a starting point, we consider a square array of spherical particles, structured in single-
particle unit cells that pattern infinitely, with lattice constant a. If we illuminate the
array with an electromagnetic field Eext, the particles behave mainly as pure dipoles if the
incident wavelength is larger than both their size and the array period. Then, within the
linear and non-magnetic response assumptions, each nanosphere is assumed to respond
through a polarizability α (for simplicity of notation, we exclude the explicit frequency
dependence of the physical magnitudes). In the coupled dipole model approach [169, 178,
179], the induced dipole moment in a particle placed at r = ri is written as

p(ri) = αEext(ri) + α

ε0

∑
j 6=i

[k2I +∇∇]G0(ri, rj)p(rj), (4.1)

where k = 2π/λ, with λ being the wavelength of light, p(ri) is the dipole induced in the
particle located at ri = (Ri, 0), G0(ri, rj) = G0(|ri − rj|) = eik|ri−rj |/(4π|ri − rj|) is the
scalar Helmholtz Green’s function in 3D and I is the 3×3 identity matrix. The summation
in the second term indicates the contribution induced by the rest of the particles. As
the array is periodic, the solutions can be Fourier-transformed and expanded in periodic
functions as p(ri) =

∫
dk‖p(k‖)eik‖ri .

If we assume plane wave illumination Eext(r) = E0e
ik‖r and we consider isotropic

polarizabilities for the particle description, we can write:

p(k‖) = αE0 + α

ε0

∑
j 6=i

[k2I +∇∇]G0(|ri − rj|)p(k‖)eik‖(rj−ri), (4.2)

where we have used the fact that the array is placed in the xy plane and k‖ has zero
z-component. Then, the solution can be written as

p(k‖) = [α−1I− G(k‖)]−1E0, (4.3)

105



4. Lattice resonances

Figure 4.1: A generic approach to single-particle arrays. (a) Sketch of a square array, with
lattice parameter a, formed by a periodic pattern of metallic nanoparticles, described by their
polarizability, α. (b) Real (solid lines) and imaginary (dashed lines) parts of α as a function of λ,
defined through Lorentzian lineshapes, Lα(ω). From left to right, the trend observed is similar
to vary the size of the nanoparticle out of the quasistatic limit. (c) Real parts of Gxx(0) and
α−1. The lattice sum is calculated for an array with a = 800 nm, whereas the polarizabilities
are those given in panel (b). (d) Normalized |p|2 for the cases shown in the previous panels. A
similar analysis on nanodisk arrays can be found in Ref. [179].
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where we have introduced the term G(k‖) = (1/ε0)∑j 6=i[k2I+∇∇]G0(|ri−rj|)e−ik‖(ri−rj),
which is known as the lattice sum [178, 180]. This quantity contains the geometrical
response of the array2. Note that the denominator in Eq. (4.3) separates the properties
of the lattice, given by the lattice sum, from those of the particles, contained in the
polarizability.
We can gain insight into the form of the p(k‖) by inspecting the form of α and

G(k‖). On the one hand, the lattice sum can be numerically calculated using Ewald’s
method [178, 182]. However, as the lattice sum is defined by G0(|ri − rj|), an analytical
approach, shown in [179], consists in making use of the Weyl identity [55],

eikr

r
= i

2π

∫ ∫ eik‖Reikz |z|

kz
dk‖, (4.4)

which provides a plane-wave decomposition of the scalar Helmholtz Green’s function.
Following this route, it is found that

G(k‖) = i

2ε0a2

∑
q

(
k2 − kq ⊗ kq

)eikz |z|
kz

, (4.5)

with kz =
√
k2 − |k‖ + q|2 and kq = k‖+q, where q = (2πm/a, 2πn/a) are the reciprocal

lattice vectors [180]. Then, it is clear that G(k‖) diverges for the limit kz → 0, which
can be interpreted as the condition for which the diffracted light becomes grazing to the
plane of the array. These divergences of the lattice sum, known as Rayleigh anomalies
(RA), occur at specific wavelengths λm,n. For the paradigmatic case of normal incidence
(k‖ = 0), λm,n = a/

√
m2 + n2 gives the resonant wavelength, resulting in the degeneracy

for different diffracting orders [180].
On the other hand, the polarizability of the nanospheres can be calculated through

analytical or numerical approaches. Small particles can be described through α written
in the quasistatic limit including the damping correction discussed in chapters 1 and
3. Above 50 nm radii, the quasistatic approximation fails and the polarizability must
be obtained through numerical approaches. We anticipate that in subsequent sections
referring to bipartite arrays, we calculate α using the Mie theory to obtain the dipolar
contribution to scattering coefficients [183] (see appendix C). In this section, in order to
discuss the emergence of lattice resonances in single-particle arrays, we use a quasistatic
version of the polarizability.

The resonances of a square array under normal incidence are discussed in Figure 4.1.
Panel (a) renders the geometry of the periodic array, with a single particle per unit cell

2Lattice sums are widely used in the context of dipole-dipole interactions in extended systems, as those
in atomic arrays [181].
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with fixed lattice period, a. In order to illustrate the different type of resonances that
can be observed, we take the liberty of considering the polarizability of the particles
not defined by its corresponding Mie expression, but by a typical Lorentzian profile
Lα(ω) ∝ (ωα − iγα/2 + ω)−1, with the resonant wavelength λα = 2πc/ωα, associated to
a fundamental plasmon [179], and accounting for the radiative correction as we did in
sec. 3.1 [55]

α(ω) = Lα(ω)
1− i k3

6πε0Lα(ω)
. (4.6)

where the factor in front of Lα(ω) in the denominator is given by the Green’s function in
free-space. This definition of the polarizability allows us to explore how the resonances
change through the variation of their spectral position. This can be seen in Figure 4.1(b),
where we plot the real and imaginary parts of the polarizabilities (solid and dashed
lines) for different values of λα (with fixed ~γα = 0.15 eV), effectively resembling the
redshifting of the plasmon resonance frequency as nanoparticle size increases [56, 179]
(increasing λα from darker to lighter solid green lines). The array is illuminated by an
external field polarized along x-direction. For this configuration, by symmetry, the only
dipole component excited in the system is px, so the interaction is determined by Gxx(0)
[170, 179]. Figure 4.1(c) plots the two key magnitudes that define the lattice resonances:
the real part of the lattice sum (solid black line), calculated for an array with a = 800 nm,
and the real part of the inverse of the particle polarizabilities α−1 for different resonant
wavelengths. It is clear that, as the geometry of the lattice is fixed, the lattice sum does
not depend on the properties of the particles. It diverges at the Rayleigh anomalies, here
shown for the lowest order, λ = a. Both functions, Re{Gxx(0)} and Re{α−1} cross twice.
At those crossings, the bracket term in Eq. (4.3) vanishes, giving rise to the resonances
that can be seen in Figure 4.1(d), where we plot |p|2, given by Eq. (4.3) and normalized to
its maximum, which is closely related to the reflectance (see below). The first maximum
of |p|2 occurs near the maximum of Im{α} (λ ∼ λα), where the lattice sum is small,
giving rise to a plasmon-like resonance, with broad character, slightly blueshifted with
respect to the single-particle one (λ = λα). The second crossing, which happens on
the red side of the RA, is associated to the lattice resonance that propagates along the
system. This resonance is characterized by a narrow but non-vanishing width, associated
to the imaginary part of [α−1 − Gxx(0)]. It can be seen in both Fig. 4.1(c) and (d) that
this second peak only takes place when the LSP resonance is blueshifted with respect
to the RA. For λα > a, the lattice mode cannot be excited and only the plasmon-like
resonance is apparent in the spectrum. The asymmetries observed in Fig. 4.1 are those of
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typical Fano effects in the interaction between broad and narrow resonances [166, 168].

4.3. Breaking the symmetry. Bipartite arrays
Inspired by the collective enhancement of plasmonic radiative damping observed in mul-
tiparticle systems [184, 185], we turn our attention into bipartite arrays, with two differ-
ent particles per unit cell. As discussed above, they allow the exploration of symmetry
breaking effects that lead to the coupling between dark and bright modes in plasmonic
nanostructures [58, 186]. The interaction between bright and dark resonances results in
new hybridized modes in the system with some admixture of the bright mode, providing
certain visibility of the dark mode in the optical spectrum. When the dark mode is far
away from the bright one in the spectra, it would appear as a weak symmetric signa-
ture. As the modes become resonant, the Fano interference results in a resonance with
a characteristic asymmetric lineshape, even antisymmetric [58].
A nice approach to understand the resonances of multiparticle arrays can be found in

Ref. [180]. Multiparticle arrays can be understood as a superposition of several identical
single-particle arrays, displaced with respect to each other along the plane where they
lie. In terms of a plasmonic hybridization approach [61], the response of the array is
determined by the interaction of the lattice resonances supported by the individual lat-
tices in the same way as the bonding and antibonding modes in the near-field plasmonic
scheme. Nevertheless, the extended nature of plasmonic resonances leads to a far-field
coupling, very different to the studied through the quasistatic limit in nanometric finite
structures.
We consider a bipartite square array, formed by two different particles, sketched in

Figure 4.2(a). One of the particles (particle 1) is placed at the origin of our coordi-
nate system for the unit cell, r1 = (0, 0), whereas the second particle is at a position
r2 = (x2, y2) in the xy plane of the array, with lattice parameter a. We further assume
that the array is illuminated with an external field of amplitude E0, which propagates
along the z-axis (i.e., perpendicularly to the array) and is polarized along the x-axis.
Under such conditions, and due to the square symmetry of the array, the dipole induced
in the nanoparticles is also polarized along the x-axis and it can be written in terms of
a Bloch solution. Therefore, the x-component of dipole induced in a given nanoparticle
reads

pi = αiE0 + αi
ε0

∑′

ν

2∑
j=1

Gij,ν0pj,ν , (4.7)

where we use greek indices to denote the unit cell to which the particle belongs and
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latin ones to label each of the two particles within the unit cell. The prime in the first
summation indicates that the term ν = 0 is excluded from it when i = j, since a dipole
does not interact with itself, and Gij,ν0 is the dipole-dipole interaction tensor exactly of
the same form as the dyadic Green’s function in Eq. (4.2). It is defined as

Gij,ν0 = [k2 + ∂x∂x]
eik|ri−rj−Tν |

4π|ri − rj −Tν |
, (4.8)

with Tν being the vector connecting the unit cell that we have taken as an origin for
the calculation and the corresponding ν unit cell. Thanks to the periodicity of the array,
Eq. (4.7) admits a solution in the form of Bloch waves with amplitude p1

p2

 = E0

F

 α−1
2 − G11 + G12

α−1
1 − G11 + G12

 . (4.9)

Here, F = (α−1
1 −G11)(α−1

2 −G11)−G2
12 and Gij = (1/ε0)∑ν Gij,ν0 are the components

of the lattice sum, calculated by means of the Ewald’s method [178]. As expected (see
appendix C), G11(k‖ = 0) and G12(k‖ = 0) components have the same dependence on kz
as G(k‖) discussed in the previous section for single-particle arrays, so those diverge in
the vicinity of Rayleigh anomalies, which for normal incidence, appear at wavelengths
λq = 2π/|q|. The vectors q represent the reciprocal lattice vectors of the array, q =
(2πm

a
, 2πn

a
), with lattice constant a.

The geometry of the bipartite unit cell is just the superposition of two identical single-
particle arrays with the same periodicity and displaced in the xy-plane. The diagonal
terms, G11, which are equal for both arrays, determine the position of the lattice res-
onances for the single-particle array. On the other hand, the off-diagonal terms, G12,
represent the interaction between the single-particle arrays corresponding to particles 1
and 2. Therefore, the lattice sum determines the existence of the lattice resonances, which
emerge on the red side of the Rayleigh anomalies, corresponding to the poles, given by the
vanishing condition of F , of the total dipole induced in the unit cell p = p1 +p2 [179, 180]

p = E0(α−1
1 + α−1

2 − 2(G11 + G12))
(α−1

1 − G11)(α−1
2 − G11)− G2

12
. (4.10)

We are interested in the optical response of the array due to the lowest order lattice
resonance, which, under normal incidence illumination, occurs in the spectrum at wave-
lengths satisfying λ ' a. It can be characterized by analyzing its reflectance, R, and
absorbance, A. As shown in appendix C, these two quantities can be written in terms
of p as

R = |p|2/(2Π0)2, A = Im{p}/Π0 − 2|p|2/(2Π0)2, (4.11)
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Figure 4.2: Resonances in bipartite nanoparticle arrays. (a) Sketch of the system under study,
built from the periodic repetition of a unit cell containing two silver nanospheres (shaded area)
over a square lattice with periodicity a. Particle 1 (red), with diameter D1, is placed at the
origin of the unit cell, while particle 2, D2, is located at a position (x2, y2). (b,c) Reflectance,
R, and absorbance, A, spectra for a bipartite array with a = 800 nm, D1 = 200 nm and
D1 = 216 nm. Red and blue solid lines correspond to y2 = 0 and y2 = a/2, respectively, with
x2 = a/2 in both cases. For comparison, we plot R and A of a single-particle array with the
same periodicity a, made of particles D = 200 nm and D = 216 nm (darker and lighter green
lines, respectively). In all cases, discussed in this chapter, we assume illumination at normal
incidence and polarized along the x-direction.

where Π0 = ε0a
2E0/k. Using these expressions we calculate the reflectance and the

absorbance for two different bipartite arrays. Both of them have the same period a =
800 nm, particle 1 is placed at position r1 = (x1, y1) = (0, 0) and particle sizes are D1 =
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200 nm and D2 = 216 nm. However, for one of them, particle 2 is located at (x2, y2) =
(a/2, 0), while, for the other, it is placed at (x2, y2) = (a/2, a/2) (see Figure 4.2(a),
which presents the sketch of the bipartite array). In the following, we are going to
restrict ourselves to cases in which x2 = a/2. The corresponding results are shown in
Figure 4.2(b) and (c), with red curves for y2 = 0 and blue lines for y2 = a/2. Clearly,
both bipartite arrays support a single lattice resonance; however, its optical properties
are very different. Specifically, the lattice resonance of the array with y2 = 0 gives rise
to a very large reflectance, R ∼ 0.98, and an almost negligible absorbance, A ∼ 0.02,
both with a significantly broad lineshape. On the contrary, the bipartite array with y2 =
a/2 supports a very narrow lattice resonance, resulting in a moderate reflectance, R ∼
0.39, and an absorbance that almost saturates the theoretical limit for two-dimensional
systems, A = 0.5 [187]. These characteristics can be linked to the formation of super- and
subradiant lattice resonance resulting from the hybridization of the lattice resonances
supported by the two single-particle arrays into which these bipartite arrays can be
divided. Indeed, analyzing the reflectance and absorbance of a single-particle array with
the same periodicity, made of particles with diameter either D = 200 nm or D = 216 nm
(darker and lighter solid green curves, respectively), we observe that the width of the
lattice resonances supported by these single-particle arrays is significantly smaller than
that of the bipartite array with y2 = 0, but larger than the one of the array with y2 =
a/2. This is consistent with the increase and decrease of the radiative losses expected,
respectively, for a super- and a subradiant mode.
We can gain further insight into the properties of these lattice resonances by analyzing

their dependence with respect to the relative size of the two particles in the unit cell.
In Figure 4.3, we plot the reflectance and the absorbance of the two bipartite arrays
with y2 = 0 and y2 = a/2, both of which have a = 800 nm and D1 = 200 nm, as shown
schematically in the corresponding insets of bottom panels. Each of the curves in these
plots corresponds to a different value of D2, ranging from 152 nm, for the leftmost curve,
to 248 nm, for the rightmost one, increasing in steps of 4 nm (colorscale from cyan to
violet). As expected from our previous results, the resonance for the y2 = 0 case displays
much broader lineshapes than its y2 = a/2 counterpart. Furthermore, for both arrays,
the increase of D2 produces a redshift of the lattice resonance. However, while the values
of the reflectance and absorbance for the y2 = 0 array are not significantly modified
with the change of D2 (R ≈ 0.98 and A ≈ 0.02 for all values of D2 in Fig. 4.3(b)
and (d) respectively), the y2 = a/2 lattice resonance undergoes dramatic changes as
D2 approaches to D1 (see panels (a) and (c)). Interestingly, as shown in Figure 4.3(c),
the absorbance of the subradiant lattice resonance is greatly increased on both sides of
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Figure 4.3: Role of particle size on lattice resonances. Spectral dependence of the reflectance
(a,b), absorbance (c,d) for the y2 = a/2 and y2 = 0 array configurations. We consider arrays
with a = 800 nm, D1 = 200 nm, and D2 varying from 152 nm (leftmost curves) to 248 nm
(rightmost curves) in steps of 4 nm.

the critical condition D2 = D1. In particular, for D2 = D1, this resonance completely
disappears. All of these results are obtained assuming normal incidence and deviations
from this condition would result in spectral shifts on the lattice resonances.

4.3.1. Super- and subradiant lattice resonances
In order to confirm the super- and subradiant nature of the lattice resonances supported
by the bipartite arrays with y2 = 0 and y2 = a/2, we perform a detailed analysis of
the total dipole induced in the unit cell. Specifically, defining β = 2/(α−1

1 + α−1
2 ) and

δ = α−1
1 − α−1

2 , we can rewrite p as (see appendix C)

p = ζ+E0

β−1 − Ω+
+ ζ−E0

β−1 − Ω−
, (4.12)
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where ζ± = 1 ± G12√
G2

12+δ2/4
and Ω± = G11 ±

√
G2

12 + δ2/4. In principle, this expression
predicts the existence of two lattice resonances associated with the cancelation of the
denominator of each of the two terms but up to this point, for the cases y2 = 0, a/2
we found a single resonance. Figure 4.4(a) renders the real parts of the lattice sums G11

and G12 involved in the two configurations shown in previous figures. It is clear that
Re{G12} ≈ Re{G11} for y2 = 0 and Re{G12} ≈ −Re{G11} for y2 = a/2. Assuming that
the two particles in the unit cell have similar sizes, i.e., |βδ| � 1 and |δ/G12| � 1, we
have that

ζ± ≈ 1± sign(Re{G12})
1 + δ2/(8G2

12) Ω± ≈ G11 ± |Re{G12}| (4.13)

The above equations in Eq. (4.13) explain that arrays with y2 = 0 and y2 = a/2
support a single lattice resonance associated with the first (Ω+) term of Eq. (4.12), since,
importantly, in these two cases, the vanishing condition of the second term (β−1 − Ω−)
is not met (β−1 � Ω−). The single resonance appears in the spectrum approximately
at wavelengths for which Re{β−1 − 2G11} ≈ 0. As we noticed in Figure 4.3, the lattice
resonance redshifts as D2 increases. This behavior can be understood from the condition
Re{β−1−2G11} ≈ 0, which shifts to larger wavelengths, for which Re{G11} takes smaller
values (see Figure 4.4(a)) as β−1 decreases. Furthermore, the disappearance of the mode
for the y2 = a/2 is explained by the value of ζ+, which vanishes when δ = 0. At that point,
the subradiant mode becomes a perfectly dark mode or bound state in the continuum,
as recently shown [188].
As the character of the Ω+ lattice resonance is very different depending on the y2

values, we turn our attention onto its imaginary part. As shown in the appendix C, for
|βδ| � 1, the imaginary part of the denominator of the first term in Eq. (4.12) can be
written as

Im{β−1 − Ω+} ≈ −
k3

12πε0
(ξ1 + ξ2)− k

2ε0a2 − Im
{√
G2

12 + δ2

4

}
, (4.14)

where ξi = σabsi /σscai is the ratio between the dipolar absorption, σabsi = (k/ε0)(Im{αi}−
k3|αi|2/(6πε0)), and scattering, σscai = k4|αi|2/(6πε20), cross sections of particle i in isola-
tion (see appendix C). We can distinguish that the first term on the right-hand side of
Eq. (4.14) corresponds to the material losses of the lattice resonance, determined by the
material and geometrical properties of the nanoparticles. The rest of the terms, which
depend mostly on the array geometry through the lattice sum and the lattice parameter,
a, can be interpreted as the lattice losses, and these can be assumed as purely radiative.
As a result, the single lattice resonance supported by the bipartite arrays with y2 = 0
and y2 = a/2 has lattice losses proportional to −k/(2ε0a2) − Im

{√
G2

12 + δ2/4
}
.
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Figure 4.4: Lattice sums and particle size. (a) Wavelength dependence of Re{Gij} for y2 =
0 and y2 = a/2. (b) Real part of G12 in the region of Ω+ lattice resonance. Blue and red
dashed lines plot the arrays with y2 = a/2 and y2 = 0, respectively. (c) Imaginary part of
the

√
G12 + δ2/4 for y2 = a/2 and, y2 = 0 with (D1, D2) = (200, 184) nm. (d,e) Imaginary

part of the dipole induced in the array nanoparticles, normalized to Π0. Cyan-to-violet and
red-to-yellow solid lines represent the dipole in particles 1 and 2, respectively. We consider
arrays with a = 800 nm, under normal incidence, with D1 = 200 nm and D2 varying from 152
nm to 248 nm (from leftmost to rightmost curves) in steps of 8 nm.
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Then, comparing these expressions for the lattice losses with the corresponding one for
a single-particle array, −k/(2ε0a2) (see appendix C), we conclude that the lattice losses
in the bipartite array are totally dominated by both the amplitude and the phase of G12.
Depending on the values of this magnitude, these radiative losses can be significantly
enlarged or reduced for the array. Then, in Figure 4.4(b), we plot Re{G12} for y2 = 0 and
y2 = a/2, in red and blue dashed lines, respectively, in the region where the Ω+ mode
arises at λ ∼ [820, 840] nm. We find that for the subradiant case (y2 = a/2, dashed blue
line), the slightly larger value of |Re{G12}| implies a more significant change in lattice
losses. Nevertheless, not only the larger absolute value of the lattice sum is responsible
for the change in the resonance character, but also the change of sign in G12. Figure 4.4(c)
renders Im

{√
G2

12 + δ2/4
}
for y2 = 0 and y2 = a/2, providing the negative correction

to k/(2ε0a2) that corresponds to the subradiant case (y2 = a/2). δ is calculated for the
values (D1, D2) = (200, 184) nm. Again, this is the expected behavior for super- and
subradiant modes. Therefore, based on this analysis, we conclude that the bipartite
arrays with y2 = 0 and y2 = a/2 support a super- and subradiant lattice resonance,
respectively.
All of these trends are consistent with the behavior of the dipole moment induced

in the nanoparticles. As expected from the hybridization model [180], the change of
sign between G11 and G12 depending on the array configuration leads to the different
eigensolutions of the system, as shown in Figure 4.4(d) and (e) for the subradiant and
superradiant lattice resonance. We plot the imaginary parts of the first, p1 and p2 terms in
Eq. (4.9), normalized to Π0, as a function of the incident wavelength, λ. We use cyan-to-
violet solid curves to denote the dipole induced in particle 1 in arrays with a = 800 nm
and D1 = 200 nm under normal incidence. The colorscale indicates the result for D2

varying from 152 nm (leftmost curve) to 248 nm (rightmost curve) in 8 nm steps. Red-to-
yellow lines plot the imaginary components of the dipoles induced in particle 2. In the
subradiant case (Fig. 4.4(d)), the induced dipoles have opposite signs, meaning that the
two dipoles oscillate in antiphase. In the superradiant counterpart (Fig. 4.4(e)), the two
dipoles oscillate in phase, resulting in a stronger combined dipole moment that gives rise
to large reflectance values.
So far, we have focused on bipartite arrays in which the second particle in the unit cell

is placed at either y2 = 0 or y2 = a/2, which support a sole lattice resonance. However,
this is not the expected behavior for arbitrary values of y2 lying between these two limits.
In these cases, Eq. (4.12) predicts the existence of two different lattice resonances whose
optical properties are largely determined by the interplay between G12 and δ. This is
confirmed in Figure 4.5, where we analyze the spectral position and optical properties of
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Figure 4.5: Transition from super- to subradiant lattice resonances in bipartite nanoparticle
arrays. (a) Real part of G12 for y2 ∈ [0, a/2]. (b,c) Reflectance, R, and absorbance, A, spectra
as a function of λ, the incident wavelength, and the y-position of the second particle in the
unit cell, y2 for (D1, D2) = (200, 184) nm, which yields δ 6= 0. (d) χ = |p1 − p2| / |p1 + p2|, as
a function of both wavelength and y2. Red markers plots the maxima of R in panel (b). (e,f)
Reflectance, R, and the absorbance, A, spectra as a function of λ, the incident wavelength, and
the y-position of the second particle in the unit cell, y2 for (D1, D2) = (200, 200) nm, (δ = 0).
In all cases, we consider arrays with a = 800 nm.
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the lattice resonances supported by arrays as a function of the incident wavelength and
the position of the second particle, r2 = (a/2, y2). We consider arrays with a = 800 nm
and D1 = 200 nm. The emergence of the two different resonances can be understood by
noticing that, as shown in Figure 4.5(a), in the transition from y2/a = 1/2→ 0 (red to
blue solid lines), Re{G12} takes very different values. Fig. 4.5 panels (b) and (c) display,
respectively, the reflectance, R, and the absorbance, A, as a function of both λ and y2,
with D2 = 184 nm, as indicated. We observe that there are two lattice resonances whose
spectral positions merge as the value y2 approaches a/4. This coalescence occurs since the
lattice sum components satisfy Re{G12} � Re{G11} for y2 = a/4 (see Fig. 4.5(a)), which
results in Ω+ and Ω− having similar values. It is worth mentioning that the wavelengths
of the peaks of the absorbance and reflectance spectra do not exactly coincide, which
is consistent with the fact that the reflectance is directly proportional to |p|2 while the
absorbance depends on the interplay between Im{p} and |p|2, as shown in Eq. (4.11).
Figure 4.5(d) sheds light into the sub- or superradiant character of the resonances

observed for the (D1, D2) = (200, 184) nm case. The function χ = |p1 − p2| / |p1 + p2|
serves to characterize the nature of the lattice resonance since its value ranges from zero,
for a perfectly superradiant mode with p1 = p2, to large values for subradiant modes
for which p1 ≈ −p2. The maxima of R, plotted in red markers, show that, for values
of y2 below a/4, the lattice resonance located at longer wavelengths has a superradiant
character, as inferred from the large R (Fig. 4.5(b)) and the vanishing value of χ. On
the other hand, the lattice resonance closer to the Rayleigh anomaly (i.e., λ = a) ex-
hibits non-negligible values of absorbance and large values of χ, thus corresponding to
a subradiant mode. This trend changes completely for the cases where y2 ∈ (a/4, a/2).
There, the resonance appearing at longer wavelengths displays the subradiant character,
while the closer to the Rayleigh anomaly corresponds to the superradiant mode.

When the two particles are identical (i.e., D1 = D2 → δ = 0), only one resonance is
visible in the spectra of R and A (see Fig. 4.5 (e) and (f), respectively). The subradiant
mode becomes completely dark and hence disappears. As expected from the analysis of
Eq. (4.12), only one resonance is visible, since the weights ζ± become zero depending on
the sign of G12. In this case, not shown, it is clear that χ = 0.

4.3.2. Conditions for maximum absorbance
The results shown in previous figures demonstrate that the single subradiant lattice
resonance that takes places in bipartite arrays with r2 = (a/2, a/2) is characterized by
a very large absorbance. Interestingly, the maximum values are reached on both sides
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Figure 4.6: Conditions for maximum absorbance in bipartite nanoparticle arrays. (a) Value
of the reflectance, R, (red, left scale) and absorbance, A, (blue, right scale) for the lattice
resonance of the sub- and superradiant arrays, calculated at the wavelength of the maximum
absorbance as function of D2. (b) Normalized magnitude of the total dipole |p| = |p1 + p2|,
induced in the unit cell (orange, left scale), and its corresponding phase φ (green, right scale),
calculated in the same conditions as panel (a). We use filled dots to display the subradiant
array and empty dots for the superradiant configuration. All the calculations are performed
for arrays a = 800 nm and D1 = 200 nm. The vertical dashed lines mark the values of D2 at
which maximum absorbance is reached, A = 0.5 (horizontal dashed line in (a)).

of the critical condition D1 = D2 (see Figure 4.3(c)). We explore this phenomenon in
more detail in this section, where we focus again on configurations which show a single
resonance, with super- or subradiant character.
In the spirit of Figure 4.3, we proceed to study, as a function of the size of the second

particle, D2, the value of the reflectance and absorbance at the wavelength for which
A is maximum. We plot those values in red and blue, respectively, in Figure 4.6(a).
We use empty and filled dots, respectively, for the super- (y2 = 0) and subradiant
(y2 = a/2) cases, with a = 800 nm and D1 = 200 nm. We vary D2 in steps of 2 nm
for increased resolution with respect to Figure 4.3. As discussed before, the reflectance
and absorbance for the superradiant case (y2 = 0) remain almost constant as the value
of D2 is varied, whereas, for the subradiant system, we observe significant changes. In
particular, the value of reflectance monotonically decreases as D2 approaches D1 from
either side. However, the absorbance displays two maxima at D2 = 184 nm and D2 =
216 nm (see the crossings between dashed lines that mark the positions of the maxima).
At these points, the absorbance reaches 0.5, which is the theoretical maximum value for
a two-dimensional system [187].

119



4. Lattice resonances

We can understand this behavior by examining the expression of the absorbance given
in Eq. (4.11). We can generally write p = p1 + p2 = |p|eiφ. With that expression, and
taking the derivative of A with respect to p, we find that its maximum is reached at
p = iΠ0, for which A = 0.5. Interestingly, for that value of p, the reflectance becomes
R = 0.25, in complete agreement with the results of previous works [187]. It is clear
that to maximize the absorption, the total induced dipole p must be purely imaginary
(dephased π/2 with respect to the incident field) since any real component only serves
to reduce this quantity.
Indeed, noticing that, for a perfectly periodic array, the absorption and scattering

efficiencies can be assimilated to A and 2R, respectively, this condition can be seen
as a manifestation of the well-known result that states that the maximum absorption
of a dipolar system is reached when its absorption and scattering efficiencies become
equal [189, 190]. In order to verify these arguments, in Figure 4.6(b), we plot the mag-
nitude (orange) and the phase (green) of p for the same systems analyzed in panel (a).
Again, we use empty and filled dots for the super- and subradiant arrays, respectively.
Clearly, the magnitude of p for the subradiant system approaches Π0 and its phase
becomes π/2 for D2 = 184 nm and D2 = 216 nm, in excellent agreement with our pre-
dictions. On the other hand, for the superradiant system, the magnitude and phase of p
remain at 2Π0 and π/2, respectively. Substituting these values in Eq. (4.11), we obtain
R = 1 and A = 0, in complete consistency with the results of Figure 4.6(a).

4.3.3. Quality factors
A distinct feature of the lattice resonance supported by the subradiant bipartite array is
its reduced lineshape as compared with its superradiant counterpart. Consequently, the
subradiant lattice resonance displays a much larger quality factorQ. We focus then on the
comparison of Q between super- and subradiant configurations, as shown in Figure 4.7(a).
We use filled and empty blue dots, respectively, to plot Q for the super- (y2 = 0) and
subradiant (y2 = a/2) arrays as a function of D2. We consider systems with a = 800 nm
and D1 = 200 nm, and vary D2 from 152 nm to 248 nm, in steps of 2 nm, as in Figure 4.6.
We will calculate Q = λE

∆λ from the spectrum of the extinction efficiency, where λE and
∆λ are the central wavelength and the full-width at half maximum (FWHM) of the
extinction resonance, respectively. For infinite arrays, within the dipolar approximation,
the extinction is defined as

E = 2R + A = Im{p}
Π0

. (4.15)
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Figure 4.7: Analysis of the quality factor of the lattice resonances. (a) Quality factor for the
lattice resonance of the super- and subradiant arrays, plotted as a function of D2. We assume
D1 = 200 nm and use empty (filled) dots to display the results for the array with y2 = 0
(y2 = a/2). (b) Quality factor for the lattice resonance of the subradiant array plotted as a
function of D1 for different ratios D2/D1, as indicated in the legend. For comparison, we plot
the results for a single-particle array with D = D1 using black dots. The dashed black line
indicates a scaling of ∼ (a/D)9.

This expression can be understood from the fact that an infinite array, within the coupled
dipole model, behaves as a thin layer formed by point-like dipoles. The field scattered
by this kind of system has to be symmetric, since not phase is acquired by the field
while travelling through the vanishing width of the array [187]. Therefore, we can iden-
tify the normalized scattered power with 2R. The definition of the extinction is then
natural, as the sum of scattering and absorption contributions. Examining the results of
Figure 4.7(a), we observe that the quality factor of the superradiant lattice resonance
is always below 100 for the values of D2 analyzed. On the contrary, for the subradiant
lattice resonance, Q is beyond 1000 for D2 in the range 174− 220 nm, reaching two local
maxima of ≈ 2400 for D2 = 192 nm and ≈ 2000 for D2 = 208 nm. Interestingly, these
values of D2 are not far from the ones that maximized the absorbance D2 = 184 nm and
D2 = 216 nm, for which Q is ≈ 1500 and ≈ 1300, respectively.
It is also important to remark that the quality factor of the subradiant bipartite array

is also larger than that of a single-particle array with similar period and particle size. It
has been recently demonstrated [191] that the quality factor of the lattice resonance of a
single-particle array with period a and particle sizeD scales asQ ∼ (a/D)9. Therefore, by
using single-particle arrays with increasing a/D, it is possible to obtain lattice resonances
with larger quality factors [172]. This can be seen in Figure 4.7(b), where the black dots
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4. Lattice resonances

represent the value of Q for the lattice resonance of a single-particle array with period
a = 800 nm and particle diameter D = D1. However, for a given value of D1, it is possible
to construct a subradiant bipartite array supporting a lattice resonance with Q larger
than that of a single-particle array with the same periodicity. Note that the density of
particles is two times larger in the bipartite array, which in principle could reduce Q.
However, as it can be seen in Figure 4.7(b), the quality factor for the lattice resonance
of a subradiant array can be larger. Coloured filled dots render Q for bipartite arrays
satisfying different particle-size ratios D2/D1. As shown, by decreasing this ratio, it is
possible to further increase the quality factor. Interestingly, for the largest sizes under
consideration, all the ratios D2/D1 result in a value of Q that is almost one order of
magnitude larger than that of the single-particle array. However, as D1 decreases, it is
necessary to use an increasingly smaller D2/D1 ratio to achieve the same improvement.

4.4. Conclusions
To conclude this chapter, we have provided a comprehensive analysis of the lattice reso-
nances supported by nanoparticle arrays, inspired by the hybridization of both plasmonic
and lattice resonances. Using a rigorous coupled dipole model, we have shown that it is
possible to obtain modes with either a super- or subradiant character, depending on the
relative position of the two particles within the unit cell of a bipartite array, which result
in very different optical responses. In particular, superradiant lattice resonances result
in increased radiative losses that lead to large reflectance values and broad lineshapes.
In sharp contrast with this phenomenology, subradiant lattice resonances display much
narrower lineshapes, and therefore much higher quality factors, as well as large values of
the absorbance. The reflectance and absorbance features are well understood in terms
of the induced dipoles in the particles and the losses associated to the lattice. We have
found that the lattice sum that mediates the interaction becomes crucial, and, for gen-
eral configurations, the different values taken by the lattice sum lead to the emergence of
two different resonances, each one with a different superradiant or subradiant character.
Finally, we have found that, while the relative size of the two particles has a minimal
impact on the response of the superradiant array, the optical response of the subradiant
one undergoes dramatic transformation as the particle size is changed, making it possible
to reach perfect absorbance and high quality factors.
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5

Plasmon-assisted Purcell effect and
Förster resonance energy transfer

In this chapter we are going to explore how plasmonic resonances can affect the pho-
tophysical properties of fluorophores. In particular, we are going to present several

results that give theoretical support to experiments based on the molecular self-assembly
techniques related to the use of DNA complexes. We will briefly review this technique
in section 5.2, that provides an accurate control on positioning the building blocks of
nanophotonic structures. Subsequently, in section 5.3, we will show our results on how
plasmonic resonances can enhance the fluorescence capability of molecules, through ex-
ploitation of the competition between radiative and internal photochemical processes.
Finally, in section 5.4, we provide an approach to the study of plasmon-assisted energy
transfer between a donor-acceptor pair in the vicinities of metallic nanoparticles. Our
findings are the result of the collaboration with the group of Prof. Guillermo Acuña,
currently at the Université de Fribourg, Switzerland.

5.1. Introduction
In many situations, specially in the context of theoretical electromagnetics, electric and
magnetic fields are just God-given magnitudes. We usually place them wherever and
study the system response under their influence. Nevertheless, if we go a step back, the
roots of any light field are intimately related to photophysical and photochemical pro-
cesses where energy excitations are converted into photons. Apart from those taking
place in nature, the future of many technological applications relies on the phenomena
assisted by such processes, specially within the scope of nanotechnology. Photochemical
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5. Plasmon-assisted Purcell effect and FRET

processes present plenty of potential applications, from energy storage to optical mem-
ories and switches [192, 193], often inspired by living-like processes. However, they also
show detrimental effects (i.e., efficiency reduction) that should be avoided [194, 195].
Photophysical processes are at the basis of the design of fluorescent compounds for a
wide set of sensing applications and single-photon sources [196, 197].

In chapter 1, we overviewed the basic concepts of quantum emitters, nanometer (or
sub-nanometer) -sized systems, whose interaction with light is described by absorption
and emission spectra having a number of well-defined maxima. We recommend the reader
Ref. [198], where this topic is treated in detail. Light excitation with a photon promotes
the molecule from its ground state, |g〉, to an excited one, |e〉. Once in this state, |e〉, and
after no external pumping of energy, several channels provide its spontaneous photophys-
ical deactivation, with processes that can be seen in a typical Jablonski diagram [198].
If the deactivaction occurs without the emission of a photon, it is said radiationless or
non-radiative. It occurs between isoenergetic vibrational levels of different excited elec-
tronic states, leading to an increase of entropy that makes them essentially irreversible.
Non-radiative transitions between states of equal spin multiplicity are called internal
conversion [199], whereas intersystem crossing denotes transitions where spin is not con-
served (singlet-triplet transitions) [198, 200, 201]. The contrary, a radiative process of
deactivation, implies the emission of a photon and it is mainly determined by the light-
matter interaction Hamiltonian. The spontaneous emission of light from any substance
is known in general as luminescence but the importance of the measurements on samples
based on molecular spectroscopy, specially in situations dealing with organic dyes pro-
vided the use of the term fluorescence. In particular, we are going to refer to fluorescent
radiative processes, which denote the deactivation of the excited electronic state to the
ground state with the same spin multiplicity (typically singlet-singlet states), accompa-
nied by the emission of a photon1. As the rate of internal conversion is large, emission
can usually be observed only from the lowest excited state (Kasha’s rule) [198]. If the
excited and ground state potential energy surfaces present different structure, there is
a shift between absorption and emission spectra for the same transition (Stokes shift).
Furthermore, excited states can achieve deactivation by a variety of chemical processes
not shown in the Jablonski diagram.

Because of triplet-state excursions, fluorescence emission shows patterns: high count
rates associated to singlet-singlet transitions are interrupted by temporally dark peri-

1The complexity in the molecule structure can lead to phosphorescence, i.e. radiative deactivation
between states with different spin multiplicity, not considered here [202].
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ods [55]. This phenomenon, known as blinking, is particularly important in quantum
dots more than in organic fluorescent dyes. In addition, molecules eventually cease to
fluorescence completely. In this case, the fluorophore undergoes photobleaching, mostly
due to photochemical reactions. Photobleaching imposes a fundamental limit to the total
of number of photons that can be harvested. The excited state decays with a lifetime
that mixes different deactivation processes in the terms of the rates

τ =
(∑

i

γi

)−1
.

Therefore, the decay from the excited state is usually a competition among several
processes with rates γi, which usually correspond to the chemical (γb), radiative (γr)
and non-radiative (γnr) contributions.

5.2. DNA origami technique
The arrangement of individual photonic blocks is crucial for the creation of systems
that present tailored optical properties and functionalities. Top-down approaches for
nanophotonics as colloidal techniques or lithographic definition of optical antennas and
plasmonic systems have provided much insight into the nature of light-matter interac-
tions [203, 204]. However, these techniques do not offer reproducible control over tiny
spaces needed for certain situations involving tightly confined electromagnetic fields.
The main limitation is the lack of precision in the positioning of single light sources at
the plasmonic hot-spots of the system [205]. Molecular self-assembly offers an alterna-
tive that complements the top-down original approach [141, 206]. In particular, DNA
origami techniques exploit the design of origami structures with almost any shape, that
can serve as templates for assembly with nanometer precision [207–209].
In Figure 5.1 we sketch briefly the procedure of DNA origami fabrication. The basic

ingredients are two chains of single-stranded DNA: a long one, called scaffold, and a set
of short ones, called staples. Each staple strand has a defined sequence and it can be
linked to the scaffold at specific places. The geometry of the structure is pre-designed, see
Fig. 5.1(a), and translated into a certain nucleid configuration of the strands, that serves
to fold the scaffold into the designed two- or three-dimensional shape after performing a
thermal annealing to the scaffold-staples mixture represented in Fig. 5.1(b), with black
and color lines for scaffold and staples, respectively. As illustrated in Fig. 5.1(c), it
is also possible to add capture strands at certain positions that allow the binding of
the nanoscale components, including proteins, nanoparticles and emitters. The purified
structure has the symbolic forms sketched in Fig. 5.1 (c) and (d). The structure can
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Figure 5.1: DNA origami design and assembly. (a) Computer-aided designing of DNA origami.
(b) DNA origami mixture consisting of two different types of single-strand DNA chains: a longer
one (black line), the scaffold, and several short ones (colored lines), the staples. (c) Example of
the complete scaffolding-staple layout, with coloured staples linking the different parts of the
scaffolding. (d) Cylindrical representation of the macroscopic structure corresponding to panel
(c).

be also represented in the typical cylindrical geometry that render usual DNA origami
structures, denoting the three-dimensional character of the scaffold strand after the
origami formation.
The utilization of DNA for assembly of metal nanoparticles was first demonstrated in

the mid-90s [210]. About ten years later, DNA origami technique allowed the fabrication
of well-defined plasmonic clusters [207]. The possibilities offered by the technique opened
the way to construct plasmonic structures with novel optical properties like helical assem-
blies or reconfigurable plasmonic systems with dynamically controlled optical responses,
where dynamic DNA origami templates can be switched by external stimuli [211, 212].
In the context of plasmon-emitter interactions, the origami technique allows unique spa-
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tial addressability, ranging from a few to hundreds of nanometers with a nanometric
positioning accuracy. This excellent self-assembly capacity provides new degrees of free-
dom for the design of hybrid systems, combining metallodielectric nanostructures and
fluorescent molecules. Currently, much work is focused on achieving control over the
emitter orientation, an aspect that, so far, remains elusive. DNA origami arrangements
have enabled investigations on FRET between fluorophores, with definitions of energy
paths through arrays of molecules [213], as well as detailed studies of the manipulation of
luminescence under plasmonic influence [214]. DNA-origami-based antennas have been
employed towards fluorescent imaging and Raman scattering, exploiting the unprece-
dented control over molecule position and detection [215]. Arrays of nanoparticles bound
to DNA structures have been shown to work as plasmonic waveguides, yielding reversible
energy transfer in chains of nanoparticles and light-harvesting [216, 217].

5.3. Enhancing photostability through plasmonic
coupling

Most experimental works on plasmonic optical antennas have focused on their capacity
to concentrate propagating radiation into sub-wavelength volumes to enhance fluores-
cence intensity, mostly through an increment of the excitation rate [72, 204, 218]. Fewer
addressed the function of optical antennas in emission, where those can modulate the
decay rates and the emission directionality [219, 220].
Perhaps the main reason behind the lack of experimental studies on the effect of

nanoantennas on the photostability of single molecules lies in the fact that measure-
ments are intrinsically demanding. The total number of photons emitted by a single
fluorophore is in first approximation independent of excitation intensity in the low pump-
ing limit. Photobleaching is a stochastic process, and in ideal cases, the total number
of emitted photons by a set of fluorophores follows an probability distribution, so the
obtention of the total number of emitter photons, N , requires of the determination of an
exponential distribution. Then, the procedure involves the realization of single molecule
measurements until the occurrence of a photobleaching event. Furthermore, during this
photobleaching time, which can take up to several minutes, the distance between the
optical antennas and the single fluorophores has to be adjusted with nanometer accuracy
due to the local character of the density of states, as seen in previous chapters.
The plasmonic effect on photobleaching can be modeled within a simplified two-level

system approach. The molecule absorbs photons with a rate, γexc in the excitation pro-
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cess. The evolution in the excited state is determined by the competition between two
processes. First, the relaxation, that can be radiative or non-radiative, represented by
rates γr and γnr. The second process is photobleaching with a rate γb. Looking at the
dynamic equations of the ground and excited states [221], those are not symmetric due
to the photobleaching rate present in the excited state dynamics. Usually, working in
the low power regime, γb is assumed to be a constant [222] and the average time that a
fluorophore emits photons until it bleaches is approximated as [221]

τp = 1
ϕ

γr
γbγexc

, (5.1)

where ϕ = γr/(γr + γnr) is the quantum yield of the fluorophore.
On the other hand, the total number of photons emitted by the fluorophore until the

occurrence of bleaching,N , is known as the photobleaching limit. It is a more appropriate
quantity to measure the effect, avoiding the dependence on excitation intensity, which
reads [221, 223]

N = γr
γb
. (5.2)

Equation (5.2) shows that the total number of photons harvested from a single molecule
can be enlarged through the modification of its radiative decay rate. As photobleaching
deteriorates the emission capability, many efforts have been devoted to suppress this
effect based on chemical approaches [224, 225]. Furthermore, plasmonic platforms man-
ifest as a good candidate to suppress photobleaching. The spontaneous emission from
the excited state can be largely altered through the Purcell effect2. As the molecules
spend shorter periods in the excited state before the emission of a photon, it performs
more cycles before losing its fluorescent capability. The effect of increasing photostability
of fluorophores by means of the local density of states (LDOS) was firstly predicted in
Ref. [227] but it remained unexplored until recently, with approaches to fluorophores
incorporated to nanoshells [221], in a ensemble of fluorophore-nanoparticle systems. A
clear experimental proof of the LDOS mechanism on photostability was absent due to the
highly precise control needed in the positioning on emitters in the plasmonic resonators
surroundings.
In the following, we present numerical results of enhancement of radiative decay rates

of a fluorophore in a plasmonic environment. By the obtention of numerical solutions of
the Maxwell’s equations, we can compute the effects of light-matter coupling between a

2In the context of quantum emitters, the modification of the LDOS has been shown to affect also
blinking [226].
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fluorescent molecule and the plasmonic resonances of a metallic dimer in terms of the
radiative Purcell factor, giving support to experimental results. Those consisted in the
obtention of the total number of emitted photons before bleaching, N , by time-resolved
fluorescent measurements of single molecule emission in Ag dimers, designed by means
of DNA origami technique. The comparison of N for different samples can be linked to
the radiative Purcell enhancement mediated by the plasmonic resonances.

5.3.1. Enhancement of the radiative decay rate: Purcell
factor

Figure 5.2(a) sketches the optical antenna employed to enhance the photostability of
fluorophores and measure the enhancement of the radiative decay rate. It consists of
a pillar-shaped three-dimensional (3D) DNA origami structure, thinned at the top to
a diameter of approximately 6 nm and immersed in an aqueous solution. Two silver
nanospheres with radius R = 40 nm are incorporated at the top of the origami structure
in order to fabricate dimers by with a set capturing strands attached at each nanoparticle.
Within the nanofabrication protocol followed [128], samples can contain a distribution
of DNA origami structures with dimers, monomers, and no nanoparticles (reference). In
the 12-nm gap between the nanoparticles, a single fluorophore Alexa488 is incorporated
within the DNA. This dye presents excitation and emission peaks centered at λ = 490
and 525 nm, respectively, with a high quantum yield, ϕ = 0.92.
Three sets of samples were studied, DNA origami structures with different concen-

trations of capturing strands in order to have the three described configurations. The
reference sample only contained fluorescent dyes but both the monomer and dimer sam-
ples did not exclusively contain monomer and dimer structures. References were present
in the monomer sample whereas dimers, monomers and references appeared in the dimer
sample. Each sample contained a large amount of DNA structures. Figure 5.2(b) shows
the typical fluorescence transients that were measured in the laboratory, where only a
single step occurs, indicating photobleaching from a single molecule. The sample was
scanned sequentially and the time-resolved fluorescence emission was measured until
photobleaching occurs. From the fluorescence transients, the total number of emitted
photons, N , for each DNA structure in the corresponding sample was extracted. The
stochastic character of the photobleaching process provides that N follows a Poissonian
probability distribution, and looking at individual cases does not provide meaningful
information, since N can acquire arbitrarily high values [223]. Then, many different sys-
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Figure 5.2: Photobleaching reduction through plasmonic coupling. (a) Sketch of the plas-
monic system, consisting of two 80-nm-diameter Ag nanoparticles, self-assembled onto a three-
dimensional (3D) DNA origami structure. In the 12-nm gap between the particles, a single
fluorophore (Alexa488) is positioned. (b) Example of fluorescence transients extracted from
dimer, monomer and no-particle (reference) samples, with the single step, signature of single-
molecule photobleaching.

tems in the sample were observed to extract the probability distribution of the sample,
which was modeled following a exponential trend according to

Pi(n) ∝ e−n/Ni , (5.3)

with n as the number of photons and the sub-index i will denote the reference and
the monomer samples. Following this analysis, the average numbers of emitted photons,
measured in the large ensemble of samples, before photobleaching for the reference and
the monomer are Nref = (28 ± 1) · 103 and Nm = (110 ± 10) · 103, respectively, which
translate into a factor 4 in radiative enhancement for the monomer structure. On the
other hand, the third sample contained both monomers and dimers, whose contribution
had to be distinguished. This was done by adjusting the probability distribution of the
dimer sample as a sum of two exponential terms, representing the monomer and dimer
contribution (given by κ) as

Pd(n) ∝ e−n/Nm + κe−n/Nd . (5.4)

In this case, the average numbers of photons obtained are Nm = (116 ± 13) · 103 (in
agreement with the only-monomer sample) and Nd = (840 ± 210) · 103, for the dimer
contribution. Thus, Nd reveals a 30× enhancement factor in the average number of
emitted photons.
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As shown in Equation (5.2), the total number of emitted photons, N , is a direct mea-
sure of the radiative rate. Therefore, we can directly compare the changes of the radiative
rate with finite element simulations of an emitter next to plasmonic structures. We per-
formed numerical simulations in order to gain insight into the experimental findings. Due
to the Purcell effect, γr varies from one structure to the other, whereas γb is assumed
to be inherent to the fluorophore itself. Thus, we can identify the ratio between average
photons emitted in different samples with the numerically-calculated ratio between the
corresponding radiative decay rates. In the fashion of the experimental measurements,
the decay rate in the absence of metal nanoparticles, γ0

r , is taken as the reference in
the simulations. We performed our calculations using the RF Module implemented in
COMSOL Multiphysics, based on the finite element method to solve Maxwell’s equa-
tions in the frequency domain. We computed the power radiated by the source through
the calculation of the flow of the time-averaged Poynting vector, 1

2Re{E ×H∗} across
a numerical aperture NA = 1.4 solid angle along the vertical direction, in the presence
or absence of the silver dimer. The non-radiative components were calculated by inte-
grating the power dissipated within the metallic regions. The spectra were obtained by
averaging the fluorophore orientation as

P i
f = γi

γ0
i

=
W i
x + 2W i

y

3W0
, (5.5)

where x-direction is defined parallel to the dimer axis (see inset in Figure 5.3(b)).
Subindex i = r,nr, represents the radiative or non-radiative contribution and W0 is
the power in free space.
Special efforts were devoted to mimicking the experimental set-up and samples as ac-

curately as possible in our theoretical model. The DNA origami and metal nanoparticles
were placed on top of a silica substrate SiO2 (with refractive index nSiO2 = 1.5) [228] and
embedded in an aqueous environment (nH2O = 1.33). The origami was modeled as a 6 nm
diameter, 110-nm-height cylinder with homogeneous refractive index nDNA = 2.1 [229].
The frequency-dependent silver permittivity for the R = 40 nm radius nanoparticle
was fitted to the experimental data in the fashion of a Drude-Lorentz model [230] (see
sec. 1.4) and nonlocal effects in the metal permittivity were neglected [231]. The plas-
monic monomer and dimer were attached to the DNA origami, 60 nm above the silica
substrate in a similar way as sketched in Figure 5.2(a). The refractive index of the DNA
strands surrounding the nanoparticles was approximated to the refractive index of wa-
ter. Our preliminary simulations, as well as previous simulations of Au dimers [232],
predicted large enhancements of the radiative rates, so we attributed the mismatch to a
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5. Plasmon-assisted Purcell effect and FRET

Figure 5.3: Numerical simulations results for normalized rates. (a) Normalized radiative decay
rate as a function of the wavelength, λ and nanoparticle oxidation level, expressed in terms
of the inner Ag radius, RAg. Red solid line renders the contour γr/γ0

r = 30, obtained in the
experiments. (b) Spectrally averaged decay rate as a function of oxidation level for monomers
and dimers. The inset represents a top-view sketch of the geometry. (c) Radiative decay for
both axial (blue) and normal (red) fluorophore orientations. Solid and dashed lines represent
non-oxidized and oxidized dimers, respectively. (d) Radiative and non-radiative normalized
decay rates for four different positions (see coloured dots in the inset).
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possible impact of oxidation. We modeled the oxidized nanoparticles through a core-shell
geometry, with a silver inner core of radius RAg and an outer layer of oxide Ag2O with
thickness dAg2O and refractive index nAg2O = 2.5 [233].
Figure 5.3(a) shows the normalized radiative decay rate, γr/γ0

r , or radiative Purcell
factor, for the dimer structure within the spectral window ∆λ corresponding to the
emission band of Alexa488 as a function of the level of nanoparticles oxidation. In all
cases, the decay rate spectra are governed by a broad maximum that originates from the
dipolar plasmonic resonance supported by the plasmonic system at λ ≈ 550 − 600 nm.
Note that this peak lowers, broadens, and redshifts slightly with increasing the external
oxide coating. The red solid line renders the contour γr/γ0

r = 30 (the measured radiative
enhancement factor). Our results indicate that significant oxidation must be introduced
in the numerical calculations in order to reproduce the experimental results.
Figure 5.3(b) renders the spectrally averaged radiative enhancement factor

〈γr/γ0
r 〉 = 1

∆λ

∫
∆λ
γr/γ

0
r dλ, (5.6)

which accounts for the spectral emission range of the fluorophore employed. The scarce
variation of γ0

r over the spectral window provides the equivalence of Eq. (5.6) with
〈γr〉/〈γ0

r 〉. We find that a 10 nm oxide layer (RAg = 30 nm) leads to values for this aver-
aged magnitude, which are in agreement with experiments for both monomers (5.4) and
dimers (30.2). The inset shows the system geometry and fluorophore orientations, paral-
lel (blue) and normal (red) to the dimer axis. Figure 5.3(c) plots the two contributions
to the total decay rate for a non-oxidized (solid lines) and an oxidized (dashed lines)
dimer. The latter presents a 10-nm-thick oxide layer, the configuration closer to the
experimental results in Figure 5.3(a) and (b). We can observe that the parallel contribu-
tion completely governs the spectra, although the contribution due to normal orientation
increases slightly in the oxidized case.
Finally, Fig. 5.3(d) shows the little dependence of γr/γ0

r on the fluorophore position
within the bulk of the DNA origami. The radiative decay rate evaluated at three dif-
ferent positions (green, blue, and red lines) was displaced 2 nm from the origami center
(black line) overlap. We have also calculated the corresponding non-radiative decay rates,
which vary more significantly in space. These spectra show a narrow peak at shorter
wavelengths (λ ∼ 490 nm) compared with the radiative ones. This is caused by the ex-
citation of a higher order, quadrupole-like, dark plasmonic resonance in the dimer. We
can observe that the non-radiative decay channel becomes faster as the fluorophore ap-
proaches one of the metal nanoparticles, as expected from previous theoretical reports
on emitter-plasmon strong coupling in dimer geometries [96].
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5. Plasmon-assisted Purcell effect and FRET

To conclude this section, we have presented our work on giving theoretical support
to experiments based on measuring the radiative Purcell effect mediated by plasmon-
emitter coupling. Experimental results demonstrated the enhancement of photostability
in fluorophores through the plasmon-assisted modification of radiative decay rates, in
agreement with our numerical results. Our calculations also made possible to discern
the relevant effects of the oxidation of plasmonic resonators in aqueous environments,
determining the upper limit of the Purcell enhancement.

5.4. Plasmon-assisted energy transfer
When two or more fluorophores are brought together, interactions among then can oc-
cur, leading to new channels of deactivation. Energy transfer occurs when excitations
jump from one molecule to another during the lifetime of the excited state. There are
different mechanisms that control such hopping. From the electromagnetic point of view,
the interaction between quantum emitters can be treated within a Coulombic scheme,
assuming that the interaction occurs in a regime where their inner structure remains
unchanged and excluding processes as electron transfer [55]. The multipolar expansion
leads to the dipole-dipole interaction, that accounts for the Förster resonance energy
transfer (FRET). This is a non-radiative process that dominate over short distances.
FRET is a typical near-field process, with large spatial decay, between a pair of dipolar

molecular transitions. The energy transfer rate, γFRET, from the donor to the acceptor
is given by [55]

γFRET ∝
1
τD

(
R0

R

)6
, (5.7)

where R and τD are the donor-acceptor distance and the donor lifetime in free space,
respectively. R0 is known as the Förster distance, defined as the distance at which the
efficiency, ηFRET is about 1/2 [198]. This quantity is defined as

ηFRET = γFRET
γFRET + γ0

D
(5.8)

with γ0
D = γD,r + γD,nr given by the radiative and non-radiative contributions to the

decay rate. In the donor perspective, its total decay rate is effectively modified by the
presence of the acceptor, γD = γ0

D+γFRET. This increase is directly linked to non-radiative
channels, due to the radiationless character of FRET.
The Förster distance, R0, encodes the dependence of energy transfer on donor-acceptor

spectral and spatial configuration [55]

R6
0 ∝ [n̂An̂D − 2(n̂rn̂D)(n̂rn̂A)]2

∫
fA(ω)fD(ω)dω, (5.9)
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where n̂A,n̂D and n̂r are the unit vectors for the acceptor orientation, donor orientation
and relative position from donor to acceptor. The first term in brackets in Eq. (5.9)
accounts for the orientation of the dipolar emitters whereas the integral over frequencies
sets the spectral overlap of the acceptor absorption and donor emission.
In the previous section, we showed how plasmonic resonances can affect the photo-

physical properties of fluorophores through the modification of their decay rates. In re-
cent years, the possibility of manipulating photophysical interactions between molecules,
which lead to energy transfer, has attracted much attention due to the implications that
FRET phenomenology has in biophysical and light-harvesting processes [234–236]. The
effects of the near-field of plasmonic resonances onto the energy transfer phenomena
are still controversial [237]. Contradictory phenomena have been reported, ranging from
FRET efficiency reduction [237, 238] to enhancement [239], together with different de-
pendences on the FRET rate on the LDOS [237, 240]. From an experimental point of
view, the lack of conclusive results can be attributed mainly to two factors. First, the
technological challenge behind the positioning of a FRET pair in the near field of a
resonator with nanometer precision. Second, the inherent difficulty of isolating the im-
pact of plasmons on FRET efficiency and rate. Therefore, conclusive results can only be
drawn if FRET is studied at the single nanoparticle-fluorophore pair level.
DNA scaffolding techniques have been extensively employed to self-assemble FRET

pairs with nanometer precision [241]. Several works have exploited this approach to reveal
how plasmonic resonances modify the FRET between diffusing donor–acceptor pairs in
Refs. [242, 243]. These works were only able to account for the spatially averaged effect of
the metallic structures on FRET because the donor–acceptor pair was allowed to freely
diffuse across the plasmonic system. Indeed, the photophysics of single donor-acceptor
pairs cannot be monitored to determine the FRET efficiency in terms of the donor-
acceptor lifetime. In order to overcome those limitations, the group of Prof. Acuña
at Université de Fribourg designed a DNA origami scaffolding to position both the
metallic nanoparticle and the donor-acceptor pair to perform single-molecule fluorescence
measurements. Figure 5.4 includes an sketch of the system, with a rectangular DNA
origami structure with thickness 2.0 nm. The FRET pair consists of two molecules: donor
(ATTO532) and acceptor (ATTO647N), attached to the DNA structure, with a distance
of 3.4 nm between the fluorophores. On the other hand, a single metal Au nanoparticle
is bound on the upper side of the DNA origami. Four different particles with diameter
D = 5 nm to 20 nm (5 nm steps) were employed. The distance between the metal
surface and the FRET pair is approximately 10 nm. These particles exhibit an extinction
cross section with a resonance at λ ≈ 520 nm that overlaps with the absorption and
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5. Plasmon-assisted Purcell effect and FRET

Figure 5.4: DNA origami structure for FRET characterization. (a) General view of the rect-
angular DNA structure, with the Au nanoparticle bound on the upper side. The FRET pair
consists of ATTO532 (donor) and ATTO647N (acceptor) molecules, placed on the lower side of
the DNA scaffolding. Panels (b) and (c) correspond to the front and top views of the structure,
respectively, with the distances that separate the different components of the system. (d) Nor-
malized emission (dashed) and absorption (solid) spectra for the FRET pair used. Grey solid
line plots the Lorentzian spectra used to model the effective permittivity of the acceptor.
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5.4. Plasmon-assisted energy transfer

Figure 5.5: Example of a fluorescence transient obtained through laser alternation for single-
molecule FRET determination using the acceptor bleaching approach. In I, only the green
laser is on to monitor the intensities IDA (green excitation–green detection) and IAD (green
excitation–red detection). In II and III, only the red laser is switched on to measure IA (red
excitation–red detection) until the acceptor bleaches (III). In IV and V, only the green laser is
exciting to determine ID until the donor bleaches (V).

emission spectral ranges of the donor (strongly) and acceptor (moderately) fluorophores.
Experimental reports indicate that 10 nm is the distance where fluorescence quenching
of molecules by metal particles is roughly 50% and therefore this is a very relevant
and sensitive distance range, as FRET applications require far-field detection [244, 245].
Figure 5.4(d) renders the emission (dashed) and absorption (solid) spectra of the donor
and acceptor molecules (green and red lines), showing the typical Stokes shift. In our
simulations, the emission of the donor in the presence of the acceptor was performed
modeling a semiclassical scheme for FRET with a Lorentzian profile (see grey line), as
explained below.

For each FRET pair, fluorescence transients were recorded in different steps, (see
Roman numerals in Fig. 5.5), allowing to extract the intensities and the fluorescence
lifetimes, alternating donor and acceptor excitation. In I, donor and acceptor intensity
profiles were extracted upon donor excitation at 532 nm, IDA and IAD, in green and
orange, respectively. Afterwards, the sample was excited in the red spectral range (II)
and the acceptor intensity, IA, is obtained until photobleaching (III). Finally, the donor
was excited again until bleaching (IV and V) and ID was measured. Two donor lifetimes,
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τDA and τD, with and without the presence of the acceptor, respectively, and the acceptor
lifetime, τA, were obtained for both the no-nanoparticle case (reference) and the four
considered particle sizes.
Our work consisted in complementing the experimental results on energy transfer. We

performed numerical electromagnetic simulations modelling the experimental setup us-
ing COMSOL Multiphysics, in a similar way as we explained in the previous section. We
used measured values for the geometric parameters as those in Figure 5.4. The refrac-
tive index of DNA origami was set to nDNA = 2.1 and the Au permittivity was taken
from experimental data [246]. In order to account for the different bounding between the
FRET pair and the metal nanoparticle to the rectangular DNA origami, the distances
of the FRET pair to the origami were adjusted differently with respect to the used for
the nanoparticle ones. We carried out two different sets of simulations. In the first one,
we modeled the single molecule (donor or acceptor) as a point-dipole-like electromag-
netic source. By averaging over three perpendicular orientations, we computed the total
Purcell spectrum as

P i
f =

W i
x +W i

y +W i
z

3W 0 , (5.10)

by means of the total power radiated by the source aligned with the three different
directions, (Wx,Wy,Wz) and ∑

jW
i
j = W i, calculated through the integration of the

Poynting vector. The superindex i indicates the location of the dipolar source at the
donor or acceptor position, with i = D,A, respectively. The term W 0 represents the
total power radiated in vacuum. The procedure was repeated for the four cases with the
different Au particles. The results can be seen in Figure 5.6(a) and (b), for the donor
(D) and acceptor (A) cases, respectively. The different colors indicate the size of the
nanoparticle, as indicated in the legend, from cyan to violet as D increases. Performing
the spectral average within the dye emission window, marked in green and red following
the widths of the spectra as plotted in Fig. 5.4(d), the normalized lifetime τi/τ 0

i reads

τi
τ 0
i

= 1
ϕiP i

f + (1− ϕi)
, (5.11)

including the intrinsic quantum yield of each fluorophore ϕD = 0.8 and ϕA = 0.6. The
lifetime τ 0

i is the one in the absence of the Au nanoparticle.
In order to account for the donor-acceptor interaction, we designed a second set of

numerical calculations. We modeled again the donor as a point-dipole source but the ac-
ceptor as an absorbing dielectric sphere. In the same way as in chapter 3, its permittivity
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was set to reproduce a two-level system polarizability,

αA(ω) = µ2
A/~

(ωA − iγαA/2)− ω , (5.12)

which results in an effective permittivity, similar to models proposed in the context of
plasmon-assisted exciton transport [155]

εeff(ω) = 1 + 2η3D(ω)
1− η3D(ω) (5.13)

where η3D(ω) = αA(ω)
4πε0a3 . The radius of the distorting QE is made small enough to reach

convergence in the Purcell factor spectrum and was finally set to 0.25 nm. The pa-
rameters of the acceptor were chosen in accordance with experiments: µA = 0.3 e·nm,
~ωA = 1.9 eV and ~γαA = 0.1 eV. Our Lorentzian model (see Fig. 5.4(d), grey solid line)
for the acceptor spectra is approximated to lie between its emission and absorption spec-
tra. We anticipate that this choice yielded a very good agreement with the experimental
results. We calculated the Purcell factor in the fashion of Eq. (5.10) as

PDA
f =

WDA
x +WDA

y +WDA
z

W 0,A
x +W 0,A

y +W 0,A
z

= WDA

W 0,A , (5.14)

where the numerator terms are calculated for a point-like dipolar source representing
the donor in the presence of both the Au nanoparticle and the acceptor, whereas the
denominator W0,A is obtained when considering only the FRET pair. The results are
shown in Fig. 5.6(c), where the presence of the acceptor clearly causes a reduction of the
values of the averaged Purcell factor with respect to PD

f (see Fig. 5.6(a)).
The intensity profiles obtained in the time-fluorescent measurements allow the deter-

mination of the FRET efficiency, ηFRET, which reads

ηFRET = 1− IDA
ID

(5.15)

where ID and IDA are the fluorescence intensities of the donor fluorophore in the absence
and presence of the acceptor respectively, plotted in Fig. 5.5 in green and orange. This
result assumes that there is not direct excitation of the acceptor by the external light
[247]. Furthermore, far from saturation, the intensities are proportional to the molecular
quantum yields [247], which read

IDA ∝
γD,r

γD,r + γD,nr + γFRET
(5.16)

ID ∝
γD,r

γD,r + γD,nr
(5.17)
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Figure 5.6: Numerical calculations for plasmon assisted FRET. Purcell factor spectra for the
(a) donor (D), (b) acceptor (A) and (c) donor in presence of the acceptor (DA). Cyan-to-violet
lines represent the spectra for increasing size or the Au nanoparticle. Green and red transparent
patches mark the emission window for the donor and acceptor, respectively, as shown in Fig. 5.4.
(d) FRET efficiency as a function of the wavelength for different Au nanoparticle sizes. The
dashed black line plots the case without nanoparticle. (e) FRET rate spectra, normalized to
the no nanoparticle case, γFRET/γ0

FRET, for different nanoparticle sizes.
.

yielding the definition of the FRET efficiency in terms of the lifetimes as

ηFRET = 1− τDA
τD

= 1− γD
γDA

(5.18)

where we have used τi =
(∑

i γi

)−1
. The last term of Eq. (5.18) allows us the compu-

tation of ηFRET in terms of the powers, γD/γDA = WD/WDA. This quantity is plotted
in Fig. 5.6(d), where we indicate the spectral window of donor emission for averaging.
Furthermore, we added η0

FRET, calculated in the absence of nanoparticle (labeled as No
NP).
From the definition of the total decay rate, the FRET rate γFRET, can be estimated

from the donor’s fluorescence experimental lifetimes in the presence and absence of the
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Figure 5.7: Plasmon assisted energy transfer. The averaged and normalized (to the absence
of nanoparticle value) fluorescence lifetimes measurements and numerical calculations are ren-
dered in panels (a) τnormD , (b) τnormA and (c) τnormDA , with experimental data in hollow symbols
with error bars. Panels (e) and (f) plot the experimental and numerical results for the FRET
efficiency and the FRET rate, respectively.

acceptor as

γFRET = 1
τDA
− 1
τD
. (5.19)

From the theoretical point of view, we computed the FRET rate spectra through the
electromagnetic power absorbed by the dielectric sphere in our model, writing γFRET ∝∫
VA
|E|2dV inside the volume of the acceptor scatterer in our simulations [248]. The

results of this approach are shown in Figure 5.6(e), normalized to the free space spectrum,
γ0
FRET, without significant changes among the different configurations.
The spectral averaging of the results in Figure 5.6 is shown in Figure 5.7. Panels (a),

(b) and (c) render the normalized lifetimes to the reference (no NP). The results obtained
through numerical calculations are plotted in red circles whereas values obtained from
fluorescence measurements are represented in square markers with their corresponding
error bars. Remarkably, both are in very good agreement, with theoretical predicitions
lying within the experimental error bars in most cases. The plots reveal a 2× and 4×
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total plasmon-mediated Purcell enhancement for the acceptor and donor molecules, re-
spectively. The comparison between τnormDA and τnormD demonstrates that the presence of
the acceptor disminishes the effect of the metal in the donor fluorescence characteristics.
The strong modification of τnormD with respect to τnormA is mediated by donor’s closer spec-
tral character to the plasmonic resonance as the FRET pair distance to the nanoparticle
is in practice the same.
Introducing the measured donor lifetimes into Equations (5.18) and (5.19), both γFRET

and ηFRET were calculated from experimental results. For the normalized FRET rate,
γFRET, the numerical results were obtained in the direct calculation through the spectral
averaging of

∫
VA
|E|2dV within the acceptor volume. Both numerical and experimental

results indicate that the presence of the metal nanostructure does not have a significant
impact on the FRET rate constant. We can also observe that Au nanoparticles decrease
the FRET efficiency, being the reduction in ηFRET of 25% for the largest structure (20
nm diameter). Note that, following previous equations, ηFRET can be also written as

ηFRET = γFRETτDA (5.20)

revealing that that the decrease in this quantity is a direct consequence of the reduction
of the donor lifetime in the presence of the acceptor, mediated by the nanoparticle
plasmons. Eq. (5.20) also clarifies why the FRET efficiency is not significantly modified
by the metal nanoparticle, since it is governed by τDA, whose decay with size in Fig. 5.7(c)
indicates its lower sensitivity to plasmon fields with respect to τD and τA.

5.5. Conclusions
In this chapter, we have described our theoretical support to two different experiments
in the context of plasmon-emitter interactions. In particular, we have focused on plas-
monic modification of fluorescence in nanophotonic structures built on a DNA origami
scheme, that provides a fundamental and accurate control of positioning of both the
emitters and the plasmonic resonators. In the first work, we have studied the Purcell
effect of Ag dimers on the emission of single fluorophores, complementing experimental
measurements on molecular photostability. Our numerical calculations on radiative and
non-radiative components of the Purcell factor showed that dimer structures yielded
an enhancement factor of 30, in agreement with the experimental results. Furthermore,
our findings helped to determine that the oxidation of the nanoparticles had a relevant
impact in the optical measurements. In a second study, we focused on the interaction
between single Au nanoparticle and a fluorescent donor–acceptor pair, used to analyze
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the effect on the FRET induced by different nanoparticles of different size. The measure-
ments allowed the determination of the plasmon-assisted FRET rate and efficiency based
solely on the measurement of the donor’s fluorescence lifetime in the presence/absence
of the acceptor. We implemented two sets of numerical calculations for the calculation of
the power radiated by point-like dipolar sources, representing the FRET pair. Moreover,
a semiclassical model for FRET was devised, in terms of a Lorentzian model for acceptor
absorption, to account for the lifetimes of the donor in the presence of the acceptor. Our
theoretical findings, in agreement with experimental results, contradict previous works
using colloidal particles and DNA, in which an enhancement of the FRET rate with the
LDOS was reported. The single-molecule measurements and calculations presented here
reveal that, despite the significant plasmon-assisted fluorescence lifetime reduction and
quenching experienced by both donor and acceptor molecules, the Au particles have a
minor effect on the FRET rate in the experimental samples.
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General conclusions

6.1. English

This work consists of a compilation of the research activity carried out during four
years focused on the EM phenomena at the nanoscale, with special interest in the

study of light-matter interaction between excitons and plasmonic resonances. Chapters
2 and 3 present our approximation to the description of electromagnetic fields in terms
of Transformation Optics, in a two-dimensional version, which allows for analytic/quasi-
analytic descriptions of light-matter coupling, population dynamics of the excited state
and scattering spectrum. We want to highlight that the principal objective of this part
of our investigation was the analysis of the interaction between plasmonic fields and
quadrupolar excitons, second order in the multipolar expansion of the light-matter Hamil-
tonian.
Moreover, successive opportunities gave us the chance to go in depth in different

aspects of light-matter interaction. Firstly, in chronological order, our collaboration with
the experimental group of Prof. Guillermo Acuña (Université de Fribourg) allowed us to
address the study of the modification of the fluorescent emission by plasmonic resonances
in DNA origami structures where the positioning of single emitters is attained with high
precision. In this way, we tackled the theoretical study and analysis of radiative Purcell
factors and plasmonic influence in energy transfer processes between a FRET pair in
nanoplasmonic structures. We have presented these results in chapter 5.
Finally, in the last part of the doctorate, in collaboration with the group of Prof.

Alejandro Manjavacas (University of New Mexico), we investigated the form of plasmonic
resonances in periodic structures of metallic nanoparticles, presented in chapter 4.
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Plasmon-exciton coupling
One of the essential points in this thesis has been to unveil the spatial and spectral
form of the coupling between plasmonic modes and quantum emitters, in particular
dipolar and quadrupolar active ones. For the sake of obtaining a complete description,
a Transformation Optics approach based on conformal mapping permitted us to obtain
the analytical solutions for the scattered electric fields, customary for the computation of
Purcell factors. This magnitude quantifies the modification of the local density of states
that mediates the radiative and non-radiative decay of a quantum emitter. By means of
a modal expansion, we have shown that the density of states can be written as a sum
of Lorentzian terms, where the modal coupling strengths appear explicitly. Once these
were known, we have analyzed their dependences on the position and orientation of the
emitter and determined the order of the plasmonic mode that gives maximum coupling.
We have also investigated finite-size effects due to the non point-like character of the
emitter.
Our theory allowed us to address the quantization of plasmonic fields and the study

of both the population dynamics of the excited state and the scattering spectrum under
coherent pumping. On the one hand, the results on the population dynamics allowed us
to prove that the heuristic quantization made of our spectral density was correct, since
the excited state population calculated by means of the Wigner-Weisskopf formalism
and master equation (Hamiltonian) formalisms were exactly the same. On the other
hand, the introduction of coherent pumping in the Hamiltonian description enabled
us to investigate the far-field spectral properties of hybrid plasmon-exciton systems.
Our results show the emergence of Rabi oscillations and Rabi splittings, typical of the
strong coupling regime that can be reached in these cavities in the limit of a few or
even single emitter [118]. Furthermore, the analysis of the population dynamics and the
asymmetries in the scattering spectra took us to the conclusion that it is not always
possible to describe the plasmonic environment in terms of a single mode at resonance
with the emitter natural frequency. The presence of higher-order plasmonic resonances,
and, overall, a pseudomode at high-frequencies, play a role even when they are highly
detuned. We have shown that, despite the fact that our description makes use of a two-
dimensional mapping of the cavity, our model reproduces the same phenomenology as the
three-dimensional geometry. The difference between two- and three-dimensional systems
stems from a frequency-dependent scale factor, which translates into the fact that we
can renormalize our results through the magnitude of the transition moment that we
use for our calculation in order to compare with experimental results. Our exhaustive
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study serves as a guidance for the design and interpretation of experiments aiming to
harness plasmon-exciton strong-coupling at the single emitter level beyond the dipolar
approximation.
With the analytical description of nanoparticle-on-mirror cavities under control, we

have shown its application to configurations involving more than one excited state. In the
first part of chapter 3 we have considered the modification of the density of states in the
cavity for a dipolar emitter due to the presence of a second emitter of the same sort. In
our approach, we exploit a scattering formalism in terms of the dyadic Green’s function
tensor and an effective polarizability that accounts for the distorting emitter, whose
presence can enhance or suppress the local density of states even when both emitters are
out of resonance. As we showed in chapter 2, Green’s functions can be written in terms of
a Lorentzian sum and the modified spectral density can be understood as a sum of three
different contributions: linear and quadratic plasmonic ones, and another one accounting
for the absorption by the distorting emitter. Our findings are in concordance with recent
studies about the connection between spectral densities and Hamiltonian models [42],
as well with reports of exotic photonic environments where quadratic contributions can
appear [249, 250]. Our study also reveals that the plasmon mediated coupling between
quantum emitters in nanocavities effectively gives rise to non-Lorentzian features in
the density of states within the sub-wavelength regime that characterizes our system.
Our work offers a new perspective on quantum emitter interactions at the nanoscale,
especially in the context of exciton transfer phenomena, quantum optical metamaterials,
as well as on picocavity design and engineering, where sub-nanometer features alter
greatly the local density of states.
In the second part of chapter 3, we have investigated the presence of a three-level emit-

ter, with a dipolar and a quadrupolar excited states, without internal coupling between
different excitons to study the dynamics of the dipolar excited state and the far-field
scattering spectrum. The analysis of the phenomenology associated to the plasmonic
coupling of the quadrupole exciton, weighted by its transition quadrupole moment, per-
mitted us to find configurations where the emitter decay can be faster or slower that the
experienced by the dipolar excited state isolated. We have also found the emergence of
Rabi oscillations related to the strong coupling regime between the quadrupolar excitonic
component and the plasmonic modes of the system. The shape of the scattering spec-
tra sheds light on the hybrid nature of the eigenstates of the system (plasmon-exciton
polaritons). Our findings reveal excitonic degrees of freedom that can be present in the
light-matter interaction, beyond the dipolar approximation and usually hidden to propa-
gating fields. Our work presents that the extreme field confinement reveals opportunities
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to access light-forbidden states, mediating the interplay between different type of exci-
tonic states, bringing together different time scales, yet to be uncovered in polaritonic
and optical applications.

Lattice resonances
In addition to our work in the plasmon-exciton interaction in the near field, in chapter
4 we have presented a detailed analysis of plasmonic resonances in periodic arrays of
nanoparticles, in collaboration with the group of Prof. Manjavacas. In particular, our
results were focused on the study of lattice resonances in bipartite arrays. In the same
vein as recent studies, plasmonic resonances of these type of systems can be understood
as the result of the hybridization of plasmonic modes of simpler constituents, as the
modes of plasmonic cavities in the sub-wavelength regime. We have found that these
structures can support the existence of two resonances under plane-wave illumination
and, under certain conditions, it is only possible to excite one of them. Each of these
resonances shows a totally different character, that we can describe as super- and sub-
radiant in terms of the analysis of both the dipolar momenta induced in the particles
and the radiative losses of the array. Our results show that the size of the particles
can have a negligible/critical impact depending on whether the resonance is super- or
subradiant, respectively. Moreover, we have demonstrated that the quality factor of sub-
radiant resonances in these systems is larger than in single-particle arrays of the same
size. Our findings are of interest for the investigation of lattice resonances in metallic
nanostructures, since we focus on their design and tailoring through the lattice geometry,
complementing other studies where the quality factor is enhanced through the particle
characteristics. We highlight the applicability of these type of resonances in the spec-
troscopy and sensing fields, where minimal changes can drastically modify the response
of the system. In this line, lattice resonances in bipartite arrays present a remarkable
robustness against finite-size effects, acquiring a relevant advantage over other periodic
systems. We also highlight their near-field characteristics, where lattice resonances show
remarkable field enhancements and spatial extensions much larger than those of the
localized surface plasmons.

Purcell Factor and plasmonic effects in energy transfer
Finally, in chapter 5, we have presented our work in collaboration with the group of Prof.
Acuña, complementing with our theoretical investigations their experimental findings on
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single molecule flourescence next to metallic nanostructures bound by means of DNA
origami techniques, described in the initial part of the chapter. Our theoretical analysis
of the radiative Purcell factor allowed the interpretation of the experimental results, and
revealed the impact of oxidation in the optical properties of plasmonic dimers in aqueous
environments. Particularly, we have shown that it can greatly diminish light-matter
coupling strength in these systems. Our work also confirmed that plasmonic resonances
can improve the photostability of fluorophores through the Purcell effect, demonstrating
that the light-matter coupling can increase the total number of photons emitted by
a molecule before losing its fluorescence capabilities due to permanent changes in its
structure (photobleaching). Additionally, our collaborators designed ad hoc a structure
to quantify the effects of the plasmon-emitter interaction in a FRET pair. Our theoretical
study was focused on understanding how the presence of a metallic nanoparticle can
modify the emission of both acceptor and donor, and, in terms of an effective model
for the acceptor, how the donor emission changes in the presence of the acceptor. We
calculated the total Purcell factors, the efficiency of the energy transfer and the decay rate
associated to the mechanism of non-radiative energy transfer between donor and acceptor.
In contrast with other works that reported an enhancement of the energy transfer rate
proportional to the density of states, our theoretical and experimental results determine
that, in the limit of a single FRET pair in the regime of moderate quenching, the effect
of plasmon-exciton coupling in the energy transfer process is negligible. On the contrary,
the FRET efficiency decreases as the plasmon-emitter strength increases, due to the
enhancement of decay rates associated to the plasmonic interaction.
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6.2. Castellano

Este trabajo contiene la compilación de nuestra actividad investigadora llevada a
cabo durante cuatro años en torno a la fenomenología electromagnética en la na-

noescala, con especial énfasis en el estudio de la interacción luz-materia entre excitones
y plasmones. Los capítulos 2 y 3 contienen nuestra aproximación a las soluciones de
los campos electromagnéticos a través del método de Óptica de transformación, en
una versión dos-dimensional, que permite una descripción analítica del acoplamiento
luz-materia y cuasi-analítica de las dinámicas de población del estado excitado y del
espectro de dispersión. Hemos de destacar que el principal objetivo de esta parte de
nuestra investigación fue el estudio de la interacción de los campos plasmónicos con los
excitones cuadrupolares, segundo orden de la expansión multipolar del hamiltoniano de
interacción luz-materia.
Además de esta rama principal de investigación, sucesivas circunstancias nos dieron la

oportunidad de profundizar en otros aspectos de la interacción luz-materia. En primer lu-
gar y de forma cronológica, la colaboración con el grupo experimental del Prof. Guillermo
Acuña nos permitió abordar el estudio teórico la influencia de las resonancias plasmóni-
cas en la emisión de fluorescencia en el límite de una sola molécula. Concretamente,
abordamos el estudio y análisis teórico del factor de Purcell radiativo y de la influencia
de los campos plasmónicos en la transferencia de energía en nanoestructuras plasmóni-
cas, diseñadas y construidas por medio de las técnicas de origamis de ADN, tal y como
hemos presentado en el capítulo 5.
Finalmente, en la última parte de la tesis, en colaboración con el grupo del Prof.

Alejandro Manjavacas, se desarrolló un estudio sobre la forma de resonancias plasmónicas
en redes periódicas de resonadores plasmónicos, cuyos resultados han sido presentados
en el capítulo 4.

Acoplamiento entre plasmones y excitones
Uno de los puntos esenciales de esta tesis ha sido desgranar la forma espacial y espectral
del acoplamiento entre modos plasmónicos y emisores cuánticos, en particular, de tipo
dipolar y cuadrupolar. En aras de obtener una descripción completa de esta, los métodos
de mapeo conforme asociados a la óptica de transformación nos ha permitido abordar
las soluciones analíticas de los campos electromagnéticos escatereados necesarias para la
obtención del factor de Purcell, que mide la modificación de la densidad de estados fotóni-
cos a los que la excitación material puede decaer, y por tanto, la densidad de estados del
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sistema. A través de una expansión modal, hemos mostrado como la densidad de estados
se puede escribir como suma de términos lorentzianos, donde el acoplamiento aparece
explícitamente. Una vez obtenidas las expresiones de los acoplamientos, hemos analizado
sus dependencias en la posición y orientación del emisor, así como el orden del modo plas-
mónico que da un acoplamiento mayor y hemos hecho a aproximación a la comprensión
de los posibles efectos derivados del carácter no puntual de los emisores. Nuestra teoría
nos ha permitido abordar el estudio de la dinámica del excitón y del espectro del sistema
bajo iluminación coherente. Del primer estudio extraemos que la cuantización heurística
hecha de nuestra densidad espectral es correcta, dado que la dinámica del estado exci-
tado calculada por medio de la densidad espectral y el formalismo del Wigner-Weisskopf
sin aproximación Markoviana es igual que la obtenida a través de una master equation
con el Hamiltoniano efectivo obtenido. Nuestros resultados de las dinámicas de las pobla-
ciones y de la forma de los espectros muestran tanto la aparición de oscilaciones de Rabi
como de Rabi splittings, huellas del régimen de acoplamiento fuerte que se puede dar
en estas cavidades en el límite de uno o pocos emisores. Asimismo, las dinámicas de
las poblaciones de los modos plasmónicos y la asimetría de los espectros nos llevan a
concluir que no es posible describir de forma general este tipo de cavidades plasmónicas
en términos de un único modo, ya que la presencia de los modos intermedios y, sobre
todo, de un pseudomodo efectivo a altas frecuencias juegan un papel incluso fuera de
resonancia. Hemos de puntualizar que aún cuando nuestra descripción hace uso de un
mapeado dos-dimensional de la cavidad, hemos mostrado resultados de cómo nuestro
modelo reproduce la misma fenomenología que el caso tridimensional. La diferencia en-
tre ambos resultados estriba en un factor de escala dependiente de la frecuencia, lo que
se traduce que nuestros resultados renormalizado a la magnitud del dipolo de transición
que usamos para nuestro cálculo para una completa comparación con los resultados ex-
perimentales. Finalmente, consideramos que nuestros hallazgos pueden servir como guía
en el diseño e interpretación de experimentos enfocados en la exploración del régimen
de acoplamiento fuerte entre plasmones y excitones, en el límite de un solo emisor más
allá de la aproximación dipolar.
Con la descripción analítica del acoplamiento bajo control, hemos explicado su apli-

cación a sistemas más complejos con presencia de más de un estado excitado. En la
primera parte del capítulo 3 hemos considerado la modificación de la densidad de esta-
dos de la cavidad plasmónica para un emisor dipolar por parte de un segundo emisor de
la misma especie. Hacemos nuestro estudio a través de un formalismo de scattering en
términos de la funcion de Green diádica en el que el segundo emisor entra a través de una
polarizabilidad efectiva. Nuestros resultados muestran que la presencia de este segundo
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emisor puede aumentar o disminuir la densidad de estados incluso con los emisores fuera
de resonancia mutua. Como hicimos en el capítulo 2, las funciones de Green pueden de-
scomponerse como una suma de Lorentzianas y la densidad espectral modificada se puede
entender en términos de tres contribuciones, plasmónica lineal, plasmónica cuadrática
y absorción del emisor. Estos resultados están de acuerdo con resultados muy recientes
sobre las conexiones entre la densidad espectral y el formalismo Hamiltoniano. Nuestro
estudio muestra que el acoplamiento entre emisores, mediado por los plasmones, da lu-
gar a fenomenología no-Lorentziana en la densidad de estados, incluso en el régimen de
campo cercano, en distancias mucho menores que la longitud de onda, que nos ocupa.
Creemos que este trabajo ofrece una perspectiva nueva en las interacciones luz-materia
en la nanoescala y enfatizamos su relevancia especialmente en el contexto de transferen-
cia de energía, metamateriales cuánticos y el diseño de picocavidades, donde variaciones
sub-nanométricas pueden modificar drásticamente la densidad de estados.

En la segunda parte del capítulo 3 hemos abordado a partir de nuestros hallazgos en
el capítulo 1, la presencia de excitones cuadrupolares en la cavidad plasmónica, en este
caso dentro de un emisor cuántico de tres niveles, sin acoplamiento directo interno entre
niveles excitados. A través de la descripción hamiltoniana en términos del acoplamiento
estudiamos la dinámica del decaimiento del excitón dipolar y el especrtro de dispersión
en el campo lejano. El estudio de la fenomenología en términos del acoplamiento plasmón-
exciton cuadrupolar, mediado por el transition cuadrupole moment, nos ha permitido
encontrar configuraciones donde el decaimiento puede ser más rápido o más lento que el
del excitón dipolar en solitario, con emergencia de oscilaciones de Rabi relacionadas con el
acoplamiento fuerte entre el excitón cuadrupolar y los modos plasmónicos del sistema. La
forma del espectro ayuda a entender esta fenomenología gracias a la naturaleza híbrida de
los modos (polaritones plasmón-excitón) del sistema. Remarcamos que tanto estos como
los resultados referidos a cuadrupolos del capítulo 1 constituyen un acercamiento teórico
al acceso de grados internos de libertad más complejos que los referidos a la aproximación
dipolar, a través de los plasmones, y normalmente velados a la interacción con los campos
en espacio libre. Nuestro trabajo presenta que el confinamiento plasmónico se presenta no
solo como una oportunidad para acceder a estados light-forbidden, sino como un medio
para explorar el interplay entre estados excitados de distinto carácter, haciendo solapar
sus escalas temporales de desexcitación, aún por desvelar en aplicaciones polaritónicas
y óptico-cuánticas.
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Resonancias plasmónicas de red

Además de nuestro trabajo en la interacción plasmón-excitón en regímenes de campo
cercano, en el capítulo 4 hemos presentado un análisis detallado de las resonancias plas-
mónicas que pueden aparecer en sistemas extendidos, en colaboración con el grupo del
Prof. Manjavacas. En particular, nuestros resultados principales se centran en el estudio
de resonancias de red de estructuras periódicas donde la celda unidad del sistema está
constituida por dos partículas. En la línea de estudios recientes, las resonancias plas-
mónicas de este tipo de sistemas extendidos pueden entenderse como resultado de la
hibridación de los modos plasmónicos de los constituyentes del sistema, al igual que los
modos de cavidades mucho más pequeñas que la longitud de onda. Hemos encontrado
que este tipo de estructuras bipartitas pueden soportar la existencia en general de dos
resonancias bajo iluminación de campo lejano y que, bajo ciertas condiciones, solo es
posible excitar uno de los modos. Cada una de estas resonancias muestra un carácter
totalmente distinto, que podemos calificar de superradiante y subradiante a partir del
análisis de los dipolos inducidos en el sistema y de las pérdidas radiativas. Nuestros re-
sultados muestran que el tamaño de las partículas puede tener un impacto despreciable
o crítico en función de si la resonancia es de carácter superradiante o subradiante, re-
spectivamente. Asismismo, hemos demostrado que el factor de calidad de las resonancias
subradiantes de este sistema es mayor que el de estructuras similares basadas en una
única partícula. Consideramos que nuestros resultados pueden ser de interés para el estu-
dio resonancias de red en nanoestructuras metálicas, donde aportamos un análisis sobre
el diseño de las resonancias a partir de la propia estructura de la red, complementando
los estudios donde el factor de calidad puede mejorarse a través de las características
de las propias partículas. Destacamos la aplicabilidad es este tipo de resonancias en los
campos de espectroscopía y fotodetección, donde cambios mínimos pueden modificar de
forma drástica la respuesta del sistema y donde las resonancias de red han sido pro-
fusamente utilizadas. En esta línea, este tipo de resonancias también se revelan como
más resistentes a efectos de tamaño finito del sistema, generando una ventaja frente a
sistemas periódicos que necesitan de un gran número de elementos. Finalmente, apunta-
mos a su posible impacto en el régimen de campo cercano, donde presentan mejoras de
campo notables y al mismo tiempo extensiones espaciales mucho mayores a las de las
resonancias plasmónicas localizadas.
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Factor de Purcell radiativo y efectos plasmónicos en
transferencia de energía
En el capítulo 5 hemos presentado nuestro trabajo en colaboración con el grupo del Prof.
Acuña, complementando con nuestro análisis teórico sus resultados experimentales en
sistemas en el límite de una sola molécula diseñados por medio de técnicas de origamis
de ADN, descritas en la primera parte del capítulo 5. En cuanto a nuestros resultados,
nuestro estudio de la componente del Purcell radiativo sirvió tanto como confirmar los
resultados experimentales como para determinar la importancia que la oxidación del
material puede tener en la eficiencia del acoplamiento, que logramos cuantificar y que
para este sistema reduce notablemente el acoplamiento plasmón-excitón. Nuestro tra-
bajo se enmarca en el estudio sobre la modificación de la fotoestabilidad de fluoróforos a
través del efecto Purcell, demostrando que el acoplamiento luz-materia puede incremen-
tar el número total de fotones emitidos por una molécula antes de perder su capacidad
de emisión debido a cambios permanentes en su estructura (photobleaching). Por otro
lado, nuestros colaboradores diseñaron ad hoc un sistema para medir los efectos de la
interacción entre plasmones y un par aceptor-donor para el estudio de transferencia de
energía no radiativa. Nuestro estudio teórico se basó en analizar cómo la presencia de
la nanopartícula cambia la emisión, tanto del aceptor como del donor, y, en términos
de un modelo efectivo para el donor, cómo cambia la emisión del aceptor en presencia
del donor, permitiéndonos calcular los factores de Purcell radiativos, la eficiencia de la
transferencia de energía y la tasa de decaimiento asociada al mecanismo de transferencia
no radiativa. Al contrario que otros trabajos que reportaron mejora de la tasa de trasnfer-
encia proporcional a la densidad de estados, nuestros resultados teóricos confirman las
medidas experimentales, que determinan, en el límite de una sola molécula, el efecto
despreciable que tiene el acoplamiento plasmón-excitón en la transferencia de energía en
este sistema. Al contrario, la eficiencia FRET disminuye con el tamaño de las partículas
consideradas debido al aumento de las tasas de decaimiento asociadas al acoplamiento
plasmón-excitón.
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Details of the Transformation
Optics derivations

In this appendix A, we provide several proofs and derivations used throughout chapters
2 and 3 in our study of light-allowed and light-forbidden transitions in a NPoM cavity by
means of conformal mapping approaches. We will start with the preservation of the source
character under conformal mapping, that allows us to write the transformed potential
as a superposition of potentials. Then, we will give details about the calculations of the
scattered potentials in chapter 2.

Transformation Optics: preservation of the source
character under conformal mapping
We start considering the form of the potential of a single point charge in a two-
dimensional space, which reads

φq(x, z) = −q
2πε0

log(
√

(x− xq)2 + (z − zq)2). (A.1)

Let us introduce the complex notation for the potential just writing the positions in
the (x, z) plane as complex numbers, % = x + iz

φ̃q(%, %q) = −q
2πε0

log(%− %q). (A.2)

In order to simulate a dipolar source, we write the potential made of a distribution
of two charges with different sign ±q, placed at positions %± respectively. This potential
reads

φ̃µ(%, %+, %−) = −q
2πε0

log
(
%− %+

%− %−

)
(A.3)
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which, after imposing the condition %′− = %′+ + ε′, and applying a Taylor expansion of
the logarithm for ε′ � %′±, can be written as

φ̃µ(%, %+, %−) = −q
2πε0

ε′

%− %+
(A.4)

with the typical inverse dependence on distance. At this point, we proceed to study
the form of a similar potential in a transformed frame, which would be defined by the
function (%′ − %′0)−1, and we apply the conformal mapping from the transformed to the
original frame

1
%′ − %′0

= 1

log
(

ig
%−is + 1

)
− log

(
ig

%0−is + 1
) = 1

log
(
i(g−s)+%
i(g−s)+%0

%0−is
%−is

) . (A.5)

where we used g = 2D
√
ρ(1 + ρ), s = δ + D

√
ρ/(
√

1 + ρ + √ρ) and ρ = δ/D. In the
region of interest, within the gap %0 << g − s, and we can expand the denominator as

log
(
i(g − s) + %

i(g − s) + %0

%0 − is
%− is

)
' −ig
s(g − s)(%− %0) (A.6)

which results in
1

%′ − %′0
= is(1− s/g)

%− %0
(A.7)

which demonstrates that, under certain conditions, the potential of a source in the orig-
inal frame maps to the potential of an effective source (mediated by a geometric factor)
with the same character in the transformed frame.

Interaction of a pure point-like dipolar source with a
NPoM cavity
It is well known that the three-dimensional derivation of the multipolar expansion is
done in terms of the scalar Helmholtz Green’s function integration

φ3D(x, y) = 1
4πε0

∫ ρq(r′)
|r − r′|

d3r′ = − 1
ε0

∫
ρq(r′)G3D(r, r′)d3r′ =

= − 1
ε0

∫
ρq(r′)

−1
4π

1
|r − r′|

d3r′, (A.8)

which in the two-dimensional case becomes

φ2D(x, y) = − 1
ε0

∫
ρq(r′)G2D(r, r′)d2r′ = − 1

2πε0

∫
ρq(r′) log(|r − r′|)d2r′. (A.9)
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The multipolar expansion arises just from the direct Taylor series expansion of the
G(r, r′)

1
|r − r′|

→ f(r + a) = f(r) + (a∇)f(r) + 1
2(a∇)2f(r)... (A.10)

which reads
log |r − r′| ≈ log(r)− (r′∇) log(r) + 1

2(−r′∇)2 log(r) (A.11)

and provides the first-order term in the expansion φ(1)
2D(x, y):

φ
(1)
2D(x, y) = −1

2πε0

∫
ρq(r′)(−r′∇) log r d2r′ =

= 1
2πε0

∫
ρq(r′)r′ d2r′

r

r2 = 1
2πε0

µ · r
r2 = φµ(x, z) (A.12)

that represents the potential or a pure point-like dipolar source. Under the conformal
transformation, the multivalued character of the mapping results in a periodic array of
sources in the z′-direction in the transformed frame

φµ(x′, z′) = 1
2πε0εd

∞∑
n=−∞

µ′x(x′ − x′E) + µ′z(z′ − z′n)
(x′ − x′E)2 + (z′ − z′n)2 =

= 1
2πε0εd

∞∑
n=−∞

µ′x(x′ − x′E) + µ′z(z′ − (z′E + 2nπ))
(x′ − x′E)2 + (z′ − (z′E + 2nπ))2 (A.13)

The first step is to obtain the Fourier transform φµ(k) from this potential:

φµ(k) =
∫
φµ(x′, z′)e−ikz′dz′ =

=
∫ ∞
−∞

1
2πε0εd

∞∑
n=−∞

µ′x(x′ − x′E) + µ′z(z′ − (z′E + 2nπ))
(x′ − x′E)2 + (z′ − (z′E + 2nπ))2 e−ikz

′
dz′ =

= 1
2ε0εd

∞∑
n=−∞

(
µ′x sign(x′ − x′E)− iµ′z sign(k)

)
e−|k||x

′−x′E|e−ik(z′E+2nπ), (A.14)

so we can write

φµ(k) =

 aµ−(k)e+|k|(x′−x′E) if x′ < x′E

aµ+(k)e−|k|(x′−x′E) if x′ > x′E
(A.15)

with

aµ±(k) = 1
2ε0εd

∞∑
n=−∞

(
± µ′x − iµ′zsign(k)

)
e−ikz

′
Eδ(k − n) (A.16)

where we have used the identity
∞∑

n=−∞
ei2πkn =

∞∑
n=−∞

δ(k − n) (A.17)
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Now, we proceed to calculate the field induced by the metal plates under illumination,
that is assumed to have the same functional form as the incident field. The dielectric-
metal interfaces in the transformed frame are placed at x′ = 0 and x′ = d.

φµ(k) =


x′ < 0→ c−e

+|k|(x′−x′E)

x′ ∈ [0, d]→ b−e
+|k|(x′−x′E) + b+e

−|k|(x′−x′E)

x′ > d→ c+e
−|k|(x′−x′E)

(A.18)

and the corresponding coefficients are determined by the imposition of Boundary Condi-
tions (BCs) for the fields (E‖, D⊥) at x′ = 0 and x′ = d, with the corresponding system
of equations

BCs =



c−(k) = aµ−(k) + b−(k) + b+(k)e2|k|x′E

εm
εd
c−(k) = aµ−(k) + b−(k)− b+(k)e2|k|x′E

c+(k) = aµ+(k) + b+(k) + b−(k)e2|k|(d−x′E)

− εm
εd
c+(k) = −aµ+(k)− b+(k) + b−(k)e2|k|(d−x′E)

(A.19)

and the coefficients that determine the scattered field inside the dielectric slab (x′ ∈ [0, d])
are written as

b−(k) = R− 1
R + 1

1
e2|k|d −

(
R−1
R+1

)2

(
aµ−(k)R− 1

R + 1 − a
µ
+e

2|k|x′E

)
(A.20)

b+(k) = R− 1
R + 1

1
e2|k|d −

(
R−1
R+1

)2

(
aµ+(k)R− 1

R + 1 − a
µ
−e

2|k|(d−x′E)
)
. (A.21)

where we have used R = εm/εd. To obtain the expression of the scattered potential in
the real space we just apply the inverse Fourier Transform

φµ(x′, z′) ∀ x ∈ [0, d] = 1
2π

∫ (
b−e

+|k|(x−x0) + b+e
−|k|(x−x0)

)
eikzdk =

= 1
2πε0εd

∞∑
n=1

R− 1
e2nd(R + 1)2 − (R− 1)2

[
(R− 1)Re

{
(µ′x + iµ′z)(e−n∆%′ − en∆%′)

}

+ end(R + 1)Re
{

(µ′x − iµ′z)(e−n∆%′e−2n(x′E−d/2) − en∆%′e2n(x′E−d/2))
}]

(A.22)

where we have used the notation

e∆%′ = e%
′−%′E with %′ = x′ + iz′, %′E = x′E + iz′E (A.23)

The preservation of the potential under the mapping provides that, after the inverse
transformation, the scattered potential in the NPoM (diameter D and gap δ) system

158



reads

φµS(x, z) = 1
2πε0εd

εm − εd
εm + εd

∞∑
n=1

1
(√ρ+

√
1 + ρ)4n −

(
εm−εd
εm+εd

)2

[
εm − εd
εm + εd

Re
{

(µ′x + iµ′z)A−n (%, %E)
}

+ (√ρ+
√

1 + ρ)2nRe
{

(µ′x − iµ′z)B−n (%, %E)
}]

(A.24)

where we have used
e%
′ = ig

%− is
+ 1 (A.25)

in terms of the position in the original frame with the complex notation % = x + iz.
The transformation is defined through g = 2D

√
ρ(1 + ρ), ρ = δ/D and s = δ +

D
√
ρ/(
√

1 + ρ + √ρ) and we have written

A−n (%, %E) =
[(

ig + %− is
ig + %E − is

%E − is
%− is

)−n
−
(
ig + %− is
ig + %E − is

%E − is
%− is

)n]
(A.26)

B−n (%, %E) =
[
e−2n∆

(
ig + %− is
ig + %E − is

%E − is̃
%− is

)−n
− e2n∆

(
ig + %− is
ig + %E − is

%E − is
%− is

)n]
(A.27)

∆ = Re{log(ig/(%E − is) + 1)} − log(√ρ+
√

1 + ρ) (A.28)

The electric field along the j-direction is directly obtained from differentiation

Ej(x, z) = −∂φ(x, z)
∂xj

= −1
2πε0εd

εm − εd
εm + εd

∞∑
n=1

1
e2nd −

(
εm−εd
εm+εd

)2

[
εm − εd
εm + εd

Re
{

(µ′x + iµ′z)
∂A−n (%, %E)

∂xj

}
+ (√ρ+

√
1 + ρ)2nRe

{
(µ′x − iµ′z)

∂B−n (%, %E)
∂xj

}]
.

(A.29)

Interaction of a pure point-like quadrupolar source with
a NPoM cavity
As we already did in the dipolar case, we proceed to analyze the second order of the
multipolar expandion of the scalar potential, φ(2)

2D(x, y):

φ
(2)
2D(x, y) = −1

2πε0

∫
ρq(r′)

1
2(−r′∇)(−r′∇) log r d2r′ =

= −1
4πε0

∫
ρq(r′)[x

′2∂2
x + 2x′y′∂x∂y + y

′2∂2
y ] log r d2r′ =

= 1
2πε0

∑
ij

(∫
ρq(r′)

1
2(2x′ix′j − r′2δij) d2r′

)
xixj
r4 = 1

2πε0
∑
ij

Qij
xixj
r4 (A.30)

159



A. Details of the Transformation Optics derivations

This term is now the illumination in our transformed system ((x′, z′) (slabs at x′ = 0
and x′ = d)), as an array of sources:

φQ(x′, z′) = 1
2πε0εd

∞∑
n=−∞

∑
ij

Q′ijx
′
ix
′
j(

(x′ − x′E)2 + (z′ − (z′E + 2nπ))2
)2 (A.31)

The first step is to obtain the Fourier transform φ0(k) from this potential:

φQ(k) =
∫
φQ(x′, z′)e−ikz′dz′ = 1

4ε0εd

∞∑
n=−∞

e−|k||x
′−x′E|e+ik(z′E+2nπ)×

(
Q′xx

1 + |k(x′ − x′E)|
|x′ − x′E|

− i(Q′xz +Q′zx)k sign(x′ − x′E) +Qzz
1− |k(x′ − x′E)|
|x′ − x′E|

)
(A.32)

and using the traceless condition

φQ(k) = 1
2ε0εd

∞∑
n=−∞

e−|k||x
′−x′E|e+ik(z′E+2nπ)

(
Q′xx
|k||x′ − x′E|
|x′ − x′E|

− iQ′xzk sign(x′ − x′E)
)

(A.33)
So:

φQ(k) =

 aQ−(k) exp(+|k|(x′ − x′E)) if x′ < x′E

aQ+(k) exp(−|k|(x′ − x′E)) if x′ > x′E
(A.34)

with:
aQ±(k) = 1

2ε0εd

∞∑
n=−∞

e−ikz
′
Eδ(k − n)k

(
Q′xx sign(k)∓ iQ′xz

)
(A.35)

where we used the identity between exponential sums and delta distributions. These
coefficients are equivalent to those obtained for the dipole case, with an extra dependence
on k due to the different spatial dependences in the quadrupolar potential. As we already
did, we impose the same functional form to the scattered fields by the metal plates in
the transformed system. The coefficients of the expansion are obtained from the same
system of equations that in the dipolar case after the imposition of boundary conditions,
and the coefficients for the scattered field in the dielectric space are written as

bQ−(k) = R− 1
R + 1

1
e2|k|d −

(
R−1
R+1

)2

(
aQ−(k)R− 1

R + 1 − a
Q
+e

2|k|x′E

)
(A.36)

bQ+(k) = R− 1
R + 1

1
e2|k|d −

(
R−1
R+1

)2

(
aQ+(k)R− 1

R + 1 − a
Q
−e

2|k|(d−x′E)
)

(A.37)

where we used R = εm/εd. The potential in the real (transformed frame) space is obtained
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by performing the inverse Fourier Transform

φQS (x′, z′) ∀ x′ ∈ [0, d] = 1
2π

∫ (
bQ−e

+|k|(x′−x′E) + bQ+e
−|k|(x′−x′E)

)
eikz

′
dk =

= 1
2πε0εd

(
R− 1
R + 1

) ∞∑
n=1

n

e2nd −
(
R−1
R+1

)2

(R− 1
R + 1

)
Re
{

(Q′xx + iQ′xz)(e−n∆%′ + en∆%′)
}

− endRe
{

(Q′xx − iQ′xz)(e−2n(x′E−d/2)e−n∆%′ + e2n(x′E−d/2)en∆%′)
} (A.38)

which after the inverse conformal mapping, can be expressed in terms of the coordinates
in the original frame as

φQS (x, z) = 1
2πε0εd

(
εm − εd
εm + εd

) ∞∑
n=1

n

(√ρ+
√

1 + ρ)4n −
(
εm−εd
εm+εd

)2

(εm − εd
εm + εd

)
Re
{

(Q′xx+iQ′xz)A+
n (%, %E)

}
−(√ρ+

√
1 + ρ)2nRe

{
(Q′xx−iQ′xz)B+

n (%, %E)
}

(A.39)

where we have used
e%
′ = ig

%− is
+ 1 (A.40)

in terms of the position in the original frame with the complex notation % = x+ iz. The
transformation is defined through g = 2D

√
ρ(1 + ρ), ρ = δ/D, s = δ +D

√
ρ/(
√

1 + ρ+
√
ρ) and d = 2log(√ρ+

√
1 + ρ) we have written

A+
n (%, %E) =

[(
ig + %− is
ig + %E − is

%E − is
%− is

)−n
+
(
ig + %− is
ig + %E − is

%E − is
%− is

)n]
(A.41)

B+
n (%, %E) =

[
e−2n∆

(
ig + %− is
ig + %E − is

%E − is
%− is

)−n
+ e2n∆

(
ig + %− is
ig + %E − is

%E − is
%− is

)n]
(A.42)

∆ = Re{log(ig/(%E − is) + 1)} − log(√ρ+
√

1 + ρ) (A.43)

and the fields are obtained straightforwardly from the spatial derivatives of A+
n ,B+

n .

Expressions for light-matter coupling strengths
Our TO approach yields the following analytical expressions for the light-matter coupling
strengths that weight the various SP contributions to the spectral density as a sum of
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A. Details of the Transformation Optics derivations

Lorentzians

gn,σµ =

√√√√4σnD2ρ(1 + ρ)µ2ω2
n,σ

3π2~cε0
1 + ξn,σ

ε∞ + εdξn,σ

Re{Kn(α)}+ σRe{Λn(α)}
(√ρ+

√
1 + ρ)2n − σ

,

(A.44)

gn,σQ =

√√√√8σn3D4(ρ(1 + ρ))2Q2ω2
n,σ

45π2~cε0
1 + ξn,σ

ε∞ + εdξn,σ

Re{K′n(α)}+ σRe{Λ′n(α)}
(√ρ+

√
1 + ρ)2n − σ

(A.45)

where α is the angle defining the QE orientation and

Kn(α) = − (sinα + i cosα)2

(%E − is)2(2iD
√
ρ(1 + ρ) + %E − is)2

(A.46)

Λn(α) = cosh(2n∆)
|%E − is|2|2iD

√
ρ(1 + ρ) + %E − is|2

(A.47)

K′n(α) = − (sin 2α + i cos 2α)2

(%E − is)4
(
2iD

√
ρ(1 + ρ) + %E − is

)4 (A.48)

Λ′n(α) =
cosh(2n∆) + 2D

√
ρ(1+ρ)−2(i%E+s)

2D
√
ρ(1+ρ)n

sinh(2n∆)

|%E − is|4|2iD
√
ρ(1 + ρ) + %E − is|4

(A.49)

Power radiated by a quadrupole in 2D
From the minimal coupling Hamiltonian, quasistatic limit means that transversal fields
are negligible. Only remain the velocities and the electrostatic potential. In its classical
version, we write the energy of the interaction between a quasistatic potential and a
distribution of charges as [251]

VE =
∫
ρ(r)φ(r)d3r (A.50)

which reads as the purely electrostatic version since, in the quasistatic limit, the potential
and the charges are assumed to have the same time dependence through a phase. The
potential is the external stimuli and the integral runs over the charge distribution volume.
If the potential slowly varies over the volume of the charge distribution, we can expand
as a Taylor series

φ(r) ≈ φ(0) + (r∇)φ|0 + 1
2(r∇)2φ|0 (A.51)
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where, in the xz-plane, ∫
ρ(r)φ(0)dV = qφ(0) (A.52)∫

ρ(r)(r∇)φ|0dV = −
(∫

ρ(r)rdV
)

E(0) = −µE(0) (A.53)

∫ 1
2ρ(r)(r∇)2φ|0dV = 1

2

∫
ρ(r)

(
− x2Ex|0 − z2∂zEz|0 − xz∂xEz|0 − zx∂zEx|0

)
=

− 1
2

∫
ρ(r)

(x2 xz

xz z2

∂x
∂z

 Ex(0)
Ez(0)

) = −1
2(Q∇)E|0 (A.54)

The quadrupolar term is given by the Q tensor, defined in the form Q =
∫
ρ(r)r⊗ r

in order to have V (2)
E = −1

2(Q∇)E. This implies that the out-of-diagonal terms are in
the form xy, consistent with our definition of the quadrupolar electrostatic potential. We
have already presented the derivation of the quasistatic scattered quadrupolar fields, but
the computation of the Purcell factor requires of the radiated power in free space, given
by the purely electrodynamic component of the Green’s function. Therefore, we just
have to compute the imaginary part of the interaction Hamiltonian to get the radiated
power as

PQ
0 = ω

4 Im
(
[Q∇]Einc(0)

)
. (A.55)

To get the quadrupolar term, we take the 2nd order of the Taylor expansion of the
two-dimensional Green’s function of the Helmholtz equation

G2D
0 ≈

−i
4
(
H(1)

0 (kr) + (r′∇)H(1)
0 (kr)

)
(A.56)

and we can write the quadrupolar order of the vector potential as

A1 = µ0

∫ −i
4 (r′∇)H(1)

0 (kr) j(r′) dr′ = iµ0

4 kH(1)
1 (kr)

∫
(r′n) j dr′. (A.57)

Using the triple vector product and taking only the symmetric part (the antisymmetric
is a vector product related to the magnetic dipole)

Symmetric part of
(
r′n
)
j = 1

2
[
(n r′) j + (n j) r′

]
(A.58)

and integrating by parts plus using the continuity equation

A1 = iµ0

4 kH(1)
1 (kr)

∫
(r′n) j dr′ = iµ0µ

4 kH(1)
1 (kr)

(
−iω

2

∫
r′ (nr′)ρ(r′) dr′

)
(A.59)
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A. Details of the Transformation Optics derivations

so we can rewrite the full expresion

1
2

∫
r′ (nr′)ρ(r′) = 1

2

∫  x′2 x′z′

x′z′ z′2

 x/r
z/r

 ρ(r′) = 1
2Qn (A.60)

where it is clear that the quadrupole moment has the form Q, satisfying both the def-
initions in both interaction Hamiltonian an the potential. The vector potential is just
given by:

A1 = µ0ωk

8 H(1)
1 (kr)Qn. (A.61)

The electric field E can be calculated as

E1 = iω
[
1 + 1

k2∇∇
]
A1 (A.62)

Therefore, we have to find the imaginary part of the interaction Hamiltonian with our
definition of Q at the emitter position

(Q∇)E = ω2kµ0

8

(
Q∇

)[
1 + 1

k2∇∇
](
iH(1)

1 (kr)
)
Qn (A.63)

and

Im
(Q∇)[1 + 1

k2∇∇
]
iH(1)

1 (kr)Qn


r′=0

= 1
2k(Q2

xx +Q2
xz) (A.64)

Arranging the whole set of results, we can write the imaginary part of the interaction
Hamiltonian

Im
{(

Q∇
)
E
}

= ω4µ0

16c2 (Q2
xx +Q2

xz) = ω4Q2

32ε0c4 (A.65)

and so on, the power radiated in free space by a pure quadrupolar emitter

PQ
0 = ω

4 Im
(

[Q∇]E
)

= ω5Q2

128ε0c4 (A.66)

where we have used Q2 = 2(Q2
xx +Q2

xz).
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B

Spontaneous emission and far-field
spectra derivations

In this appendix B, we provide the derivations related to the study of excited state
population dynamics and scattering spectra used throughout chapters 2 and 3 in our
study of light-allowed and light-forbidden transitions in a NPoM cavity. We will start
with the derivation of the Wigner-Weisskopf problem for a three-level system with dipolar
and quadrupolar excited states. Then, we will give details about the calculations of
the scattering spectrum through the introduction of a coherent pumping term in the
Hamiltonian.

Spontaneous decay of a three-level system (dipole and
quadrupole)
In this section, we address the Wigner-Weisskopf approach for the calculation of the
population dynamics when considering a single three-level system with two different
excited states, as we did in chapter 3, coupled to a set of plasmonic modes. We start
with the second quantization form of the Hamiltonian in terms of the energies and the
couplings

Ĥ0 = ~ωµσ̂†µσ̂µ + ~ωQσ̂†Qσ̂Q +
∑
n,σ

~ωn,σâ†n,σân,σ

+
∑
n,σ

~gn,σµ (â†n,σσ̂µ + h.c.) +
∑
n,σ

~gn,σQ (â†n,σσ̂Q + h.c.), (B.1)

where both excitons, dipolar µ and quadrupolar Q, respectively, are coupled to the
plasmonic fields but not direct coupling between excited states exists. The quantum
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B. Spontaneous emission and far-field spectra derivations

state for this Hamiltonian within the single-excitation subspace reads

|φ(t)〉 = cµ(t)e−iωµt |eµ, 0, {0}〉+ cQ(t)e−iωQt |0, eQ, {0}〉 (B.2)

+
∑
n,σ

cn,σ(t)e−iωn,σt |0, 0, {1n,σ}〉 . (B.3)

In order to determine the dynamics of such an state, we apply the Hamiltonian oper-
ator in order to get the unitary evolution given by the Schrödinger Equation

Ĥ0 |φ(t)〉 = ~ωµcµ(t)e−iωµt |eµ, 0, {0}〉+ ~ωQcQ(t)e−iωQt |0, eQ, {0}〉

+
∑
n,σ

~ωn,σcn,σ(t)e−iωn,σt |0, 0, {1n,σ}〉

+
∑
n,σ

~gn,σµ
(
cµ(t)e−iωµt |0, 0, {1n,σ}〉+ cn,σ(t)e−iωn,σt |eµ, 0, {0}〉

)
+
∑
n,σ

~gn,σQ
(
cQ(t)e−iωQt |0, 0, {1n,σ}〉+ cn,σ(t)e−iωn,σt |0, eQ, {0}〉

)
= i~

d |φ(t)〉
dt

and we project onto the basis states on both sides, 〈u| Ĥ0 |φ(t)〉 = ih 〈u| ∂t |φ(t)〉 with
|u〉 = |eµ, 0, {0}〉 , |0, eQ, {0}〉 and |0, 0, {1n,σ}〉, respectively. Therefore, we obtain the
following expressions

~ωµcµ(t)e−iωµt +
∑
n,σ

~gn,σµ cn,σ(t)e−iωn,σt = i~
(
− iωµcµ(t)e−iωµt + ċµ(t)e−iωµt

)
(B.4)

~ωQcQ(t)e−iωQt +
∑
n,σ

~gn,σQ cn,σ(t)e−iωn,σt = i~
(
− iωQcQ(t)e−iωQt + ˙cQ(t)e−iωQt

)
(B.5)

~ωn,σcn,σ(t)e−iωn,σt+~gn,σµ cµ(t)e−iωµt+~gn,σQ cQ(t)e−iωQt = i~
(
−iωn,σcn,σ(t)e−iωn,σt+ ˙cn,σ(t)e−iωn,σt

)
(B.6)

where we have used the dot convention for denoting time derivatives. Then, the final
form for the system of equations that define the dynamics reads

ċµ(t) = −i
∑
n,σ

gn,σµ cn,σ(t)e−i(ωn,σ−ωµ)t (B.7)

˙cQ(t) = −i
∑
n,σ

gn,σQ cn,σ(t)e−i(ωn,σ−ωQ)t (B.8)

˙cn,σ(t) = −i
(
gn,σµ cµ(t)e−i(ωµ−ωn,σ)t + gn,σQ cQ(t)e−i(ωQ−ωn,σ)t

)
(B.9)

The last equation provides a direct integration

cn,σ(t) = −i
∫ t

0

(
gn,σµ cµ(t′)e−i(ωµ−ωn,σ)t′ + gn,σQ cQ(t′)e−i(ωQ−ωn,σ)t′

)
dt′ (B.10)
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where we directly assumed cn,σ(0) = 0. Hence

ċµ(t) = −
∫ t

0

∑
n,σ

((
gn,σµ

)2
cµ(t′)e−i(ωµ−ωn,σ)t′ + gn,σµ gn,σQ cQ(t′)e−i(ωQ−ωn,σ)t′

)
dt′e−i(ωn,σ−ωµ)t

(B.11)

˙cQ(t) = −
∫ t

0

∑
n,σ

((
gn,σQ

)2
cQ(t′)e−i(ωQ−ωn,σ)t′ + gn,σµ gn,σQ cµ(t′)e−i(ωµ−ωn,σ)t′

)
dt′e−i(ωn,σ−ωQ)t

(B.12)
The next step is using a kernel equivalence expanding the sum as an integral1. As an
example, considering no presence of the quadrupolar level and using

δ(x− x0) = lim
γ→0

1
π

γ

(x− x0)2 + γ2 (B.13)

for the limit of delta functions (and τ = t− t′)∑
n

(
gn,σµ

)2
ei(ωµ−ωn)τ =

∫ ∞
−∞

∑
n

(
gn,σµ

)2
ei(ωµ−ω)τδ(ω − ωn)dω ≈

≈
∫ ∞
−∞

∑
n

(
gn,σµ

)2

π

γ/2
(ω − ωn)2 + γ2/4e

i(ωµ−ω)τdω ≈

≈
∫ ∞

0
Jµ(ω)ei(ωµ−ω)τdω (B.14)

that can be applied straightforward to the three-level case. Therefore, we can rewrite
the dynamics equations as

ċµ(t) = −
∫ t

0

∑
n,σ

(
gn,σµ

)2
cµ(t′)ei(ωµ−ωn,σ)(t−t′)dt′

−
∫ t

0

∑
n,σ

gn,σµ gn,σQ cQ(t′)ei(ωµ−ωn,σ)(t−t′)ei(ωµ−ωQ)t′dt′ =

= −
∫ t

0

∫ ∞
0

Jµ(ω)ei(ωµ−ω)(t−t′)cµ(t′)dωdt′ −
∫ t

0
JµQ(ω)ei(ωµ−ω)(t−t′)ei(ωµ−ωQ)t′cQ(t′)dωdt′

(B.15)

where we can define
Kij(t− t′) =

∫ ∞
0

Jij(ω)ei(ωi−ω)(t−t′)dω (B.16)

Scattering spectrum for a collection of N plasmonic
modes and single emitter
In this section, we derive the approach based on an effective Hamiltonian to obtain the
scattering cross-section of the hybrid emitter-cavity system under coherent illumination.

1This approach can be also done introducing imaginary parts in the energies of the Hamiltonian and
using the equivalence between exponential functions and delta distributions [74, 252].
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B. Spontaneous emission and far-field spectra derivations

We start again with the the Hamiltonian just considering an emitter with a single excited
dipolar state

Ĥ0 = ~ωµσ̂†µσ̂µ +
∑
n,σ

~ωn,σâ†n,σân,σ (B.17)

+
∑
n,σ

~gn,σµ (â†n,σσ̂µ + h.c.) (B.18)

where the exciton is coupled to the even and odd plasmonic fields. We add to the Hamil-
tonian the coherent driving part, representing the pumping of the system at a certain
frequency. Then

ĤL = Ω̂†e−iωLt + Ω̂eiωLt (B.19)

where the pumping is understood to affect both the emitter and the plasmonic modes.
Due to the is a far-field character of the excitation, the only coupling is assumed to be
given by the dipolar modes in the system as

Ω̂ = µELσ̂µ +
∑
n,+1

µnELân,+1 (B.20)

where µ = µn̂µ with µ being the transition dipole moment only even plasmonic modes,
µn = µnn̂n, couple to the far-field, with EL = ELn̂L. The introduction of the coherent
driving introduces time-dependences in our Hamiltonian. Then, it is useful to consider
the transformation into another frame where the Hamiltonian does not show the ex-
plicit dependence (transformation to a rotating frame). The transformation is done by
considering an unitary operator

Û = e−i/~Ât −→ ĤRF = Û †(t)(Ĥ0 + ĤL)Û(t)− Â (B.21)

where the operator Â
Â = ~ωL

(
σ̂†µσ̂µ +

∑
n,σ

â†n,σân,σ

)
(B.22)

yielding the form for the operator Û

Û = e
(−iωLt)

(
σ̂†µσ̂µ+

∑
n,σ

â†n,σ ân,σ

)
= e(−iωLt)σ̂†µσ̂µ

∏
n,σ

e(−iωLt)â†n,σ ân,σ (B.23)

The application of this operator provides

Û †(t)(Ĥ0)Û(t) =
(
e(iωLt)σ̂†µσ̂µ

∏
n,σ

e(iωLt)â†n,σ ân,σ
)
Ĥ0

(
e(−iωLt)σ̂†µσ̂µ

∏
n,σ

e(−iωLt)â†n,σ ân,σ
)

(B.24)
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We use the properties from the distinguishability of the states (orthogonality)

eξ|φ〉〈φ| |φ〉 = eξ |φ〉 (B.25)

eξ|φ〉〈φ| |ν〉 = |ν〉 (B.26)

so the energies of the emitter and plasmons provide

Û †(t)
(
~ωµσ̂†µσ̂µ

)
Û(t) = e(iωLt)σ̂†µσ̂µ

(
~ωµσ̂†µσ̂µ

)
e(−iωLt)σ̂†µσ̂µ = ~ωµσ̂†µσ̂µ (B.27)

where the orthogonality between exciton and plasmon states implies the not phase in-
duction from â terms. On the other hand

Û †(t)
(∑
n,σ

~ωnσâ†nσânσ
)
Û(t) =

∏
n,σ

e(iωLt)â†n,σ ân,σ
(∑
n,σ

~ωnσâ†nσânσ
)∏
n,σ

e(−iωLt)â†n,σ ân,σ =
∑
n,σ

~ωnσâ†nσânσ (B.28)

Due to orthogonality of states, from the product, only induces a phase the term corre-
sponding to the same one in the summation. The last part of Ĥ0 is the coherent coupling

Û †(t)
(∑
n,σ

~gnσ
(
â†nσσ̂µ + σ̂†µânσ

))
Û(t) =

e(iωLt)σ̂†µσ̂µ
∏
n,σ

e(iωLt)â†n,σ ân,σ
(∑
n,σ

~gnσ
(
â†nσσ̂µ + σ̂†µânσ

))
e(−iωLt)σ̂†µσ̂µ

∏
n,σ

e(−iωLt)â†n,σ ân,σ

Let’s look carefully to the first term

efe|e〉〈e|ef1|1〉〈1|ef2|2〉〈2|ef3|3〉〈3|
(
~g1 |1〉 〈e|

)
e−fe|e〉〈e|e−f1|1〉〈1|e−f2|2〉〈2|e−f3|3〉〈3|

where we just expressed the productory in a simplified way. From the left, the only term
that induces phase is ef1 and from the right, e−fe . As those are the same, the term
remains equal

Û †(t)
(∑
n,σ

~gnσ
(
â†nσσ̂µ + σ̂†µânσ

))
Û(t) =

(∑
n,σ

~gnσ
(
â†nσσ̂µ + σ̂†µânσ

))
So, as expected, the independence of time of the original Hamiltonian provides that in
the rotating frame

Û †(t) Ĥ0 Û(t) = Ĥ0 (B.29)

On the other hand, the unitary transformation of the pumping (first term)

Û †(t) ĤL Û(t) =

e(iωLt)σ̂†µσ̂µ
∏
n,σ

e(iωLt)â†n,σ ân,σ
(
µEL

(
e−iωLtσ̂†µ + e+iωLtσ̂µ

))
e(−iωLt)σ̂†µσ̂µ

∏
n,σ

e(−iωLt)â†n,σ ân,σ
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B. Spontaneous emission and far-field spectra derivations

yielding
Û †(t) ĤL Û(t) = µEL

(
σ̂†µ + σ̂µ

)
(B.30)

and exactly the same for the second term, where the summation runs over the even
modes. Then, the Hamiltonian in the rotating frame reads (after subtracting the A
terms)

ĤRF = ~(ωµ − ωL)σ̂†µσ̂µ +
∑
n,σ

~(ωn − ωL)â†n,σân,σ

+
∑
n,σ

~gn,σµ (â†n,σσ̂µ + h.c.)

+ µEL(σ̂†µ + σ̂µ) +
∑
n,+1

µnEL(â†n,+1 + ân,+1)

As our system presents losses (non-radiative and radiative), the dynamics is given by
the master equation including the Lindblad terms

∂tρ̂ = i

~
[ρ̂, ĤRF ] +

γrµ
2 Lσ̂[ρ̂] +

∑
n,,σ

γrn,σ + γnrn,σ
2 Lâ[ρ̂] (B.31)

The refilling terms in the Lindblad operators ensure the normalization of the density
matrix. In the limit of low-pumping regime, the population concentrates at the ground
state, so the Lindblad operators can be approximated neglecting the refilling terms

Lâ ≈ −a†aρ− ρa†a (B.32)

and so on in the σ-superoperator. Then, the master equation reduces to a Schrödinger
equation with an effective non-hermitian Hamiltonian

Ĥeff = ~
(
ωµ − ωL − i

γµ
2

)
σ̂†µσ̂µ +

∑
n,σ

~
(
ωn − ωL − i

γrn,σ + γnr,σ
2

)
â†n,σân,σ

+
∑
n,σ

~gn,σµ (â†n,σσ̂µ + h.c.) + µEL(σ̂†µ + σ̂µ) +
∑
n,+1

µnEL(â†n + ân) (B.33)

The Schrödinger equation can be solved within perturbation theory for an small pumping

Ĥeff = Ĥ0
eff + ELV̂ (B.34)

The steady state can be expanded in a power series of the incident field EL. Substituting
this in the equation Ĥeff |ψ〉 = 0, we find the terms of the expansion. Zeroth order is
|ψ〉 = |0〉, and first order

|ψ〉 = |0〉+ EL |φ1〉 (B.35)
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Hence, the steady-state solution of the Schrödinger equation satisfies

Ĥeff |ψ〉 = 0 −→ Ĥ0
eff |φ1〉+ V̂ |0〉 = 0. (B.36)

We solve the last identity in the basis |eµ, 0〉 , |0, 1n,σ〉 and once the state is known,
|ψ〉 = |0〉+EL |φ1〉, we obtain the scattering intensity, given by the field operator in the
far-field

ÊFF = ω2

c2ε0
G(rFF, rµ, ω)µσ̂µ + ω2

c2ε0

∑
n,+1

G(rFF, rp, ω)µn,+1ân,+1 (B.37)

where rFF denotes the position where we calculate the field ans rµ, rp refer to the positions
of the emitter and the particle in the NPoM system. As the difference in positions inside
the cavity is negligible, |rµ− rp| � rFF, we ignore the effects of retardation between the
dyadic Green’s functions, and simplify

ÊFF ' M̂ = µσ̂µ +
∑
n,+1

µn,+1ân,+1 (B.38)

to obtain
σsca(ω) = 〈ψ| M̂M̂ † |ψ〉 (B.39)

The introduction of a quadrupolar emitter in this scheme is trivial since, under our
assumptions, the only coupling between the coherent pumping and the hybrid emitter-
cavity system is mediated by the even plasmonic modes in that case.
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C

Super- and subradiant lattice
resonances derivations

In this appendix C, we review the coupled dipole model theoretical approach for the
study of lattice resonances, providing a detailed derivation of the expressions given in
Chapter 4.

Polarizability
The polarizability of the different metallic nanoparticles is calculated from the dipolar
Mie scattering coefficient as [180, 183]

α = − 3c3

2ω3
−j1(κ0)[κmj1(κm)]′ − [κ0j1(κ0)]′j1(κm)
h1(κ0)[κmj1(κm)]− [κ0h1(κ0)]′j1(κm) (C.1)

where j1(x) and h1(x) are the spherical Bessel and Hankel functions of the first kind,
repectively. Since in all of our calculations we consider metallic particles in vacuum,
the corresponding κ0 = (ω/c)D/2 and κm = √εm(ω/c)D/2, with εm as the metallic
dielectric function, taken from tabulated data [253] and D, the diameter of the spherical
nanoparticle.

The coupled dipole model
Consider an square array of spherical particles, structured in N -particle unit cells that
pattern infinitely in the xy plane. If we illuminate the array with an electromagnetic
field Eext, the particles behave mainly as pure dipoles if the incident wavelength is larger
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C. Super- and subradiant lattice resonances derivations

than both their size and the array period. Then, the nanosphere response can be modeled
through a frequency-dependent polarizability α. Within the coupled dipole model, the
induced dipole moment in a particle placed at r = ri is written as

p(ri) = αiEext(ri) + αi
4πε0

∑
j 6=i

[k2I +∇∇]e
ik|ri−rj |

|ri − rj|
p(rj), (C.2)

where k = 2π/λ = ω/c, with λ being the wavelength of light, p(ri) is the dipole induced
in the particle located at ri = (Ri, 0), and I is the 3× 3 identity matrix. As the array is
periodic, the solutions can be Fourier-transformed and expanded in periodic functions
p(ri) =

∫
dk‖pi(k‖)eik‖ri , where we have used the fact that the array is placed in the xy

plane, and k‖ has zero z-component.
If we assume plane wave illumination Eext(r) = E0e

ik‖r and we consider isotropic
polarizabilities for the particle description (α = αI), we can write

pi(k‖) = αiE0 + αi
4πε0

∑
j 6=i

[k2I +∇∇]e
ik|ri−rj |

|ri − rj|
pj(k‖)eik‖(rj−ri). (C.3)

We can split the summation over the whole set of particles into two sums, one over
the unit cells and another over the N particles in the unit cell, so we write

pi(k‖) = αiE0 + αi
ε0

′∑
ν

N∑
j=1

Gij,ν0pj(k‖)eik‖(rj−ri+Tν), (C.4)

where we are now defining ri as the i-th particle position in the unit cell that we take as
an origin of our coordinate system. Tν is the position vector of the ν-th unit cell with
respect the cell chose as an origin. We have also used the definition of the dyadic Green’s
function

Gij,ν0 = [k2I +∇∇] eik|ri−rj−Tν |

4π|ri − rj −Tν |
. (C.5)

The latin indices refer now to the particle positions in the unit cell and the greek ones
to the different unit cells over the whole system. The prime index in the sum indicates
that we exclude the combinations for which ri − rj − Tν = 0.

Bipartite arrays
In general, the tensor Gij,ν0 involves several components in the solution. Nevertheless,
the solution under the specific illumination of a E0 = (E0, 0, 0)eikz provides pi(k‖) =
(pix, 0, 0) due to the system symmetry. Therefore, the only contribution from the Gij,ν0
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tensor is Gxx
ij,ν0 = Gij,ν0 = [k2I + ∂x∂x] e

ik|ri−rj−Tν |

4π|ri−rj−Tν | [178]. As we are interested in the
solution of the bipartite array where N = 2, Eq. (C.4) can be written asp1

p2

 =
α1I 0

0 α2I

E0

E0

+
α1I 0

0 α2I

G11 G12

G21 G22

p1

p2

 (C.6)

where pi is the x-component of the induced dipole in the i-particle of the unit cell,
described by the scalar polarizability αi. Gij = (1/ε0)∑′ν Gij,ν0 are the components of
the lattice sum for normal incidence. This sum, evaluated by using the Ewald’s method,
contains information about the interaction between i-th and j-th particles across the
lattice.
The explicit solution for the induced dipole has the formp1

p2

 =
α−1

1 I − G11 −G12

−G12 α−1
2 I − G11

−1 E0

E0

 =

= E0

(α−1
2 − G11)(α−1

2 − G11)−
(
G12

)2

α−1
2 − G11 − G12

α−1
1 − G11 − G12

 (C.7)

and the total dipole induced in the unit cell becomes

p = p1 + p2 = α−1
1 + α−1

2 + 2(G12 − G11)
(α−1

1 − G11)(α−1
2 − G11)− (G12)2E0, (C.8)

where it is clear that this solution for N = 2 provides the N = 1 just considering that
there is no a second particle in the system (G12 = 0). The equations decouple and the
unique p1 = p has the form

p = E0

α−1 − G11
(C.9)

The total dipole p can be decomposed as a sum of two resonances if we use 2β−1 =
α−1

1 + α−1
2 and δ = α−1

1 − α−1
2 . Then

α−1
1 = β−1 + δ/2 and α−1

2 = β−1 − δ/2 (C.10)

and the denominator in Eq. (C.8) , can be expressed as

(α−1
1 − G11)(α−1

2 − G11)− G2
12 = (β−1 − Ω+)(β−1 − Ω−) (C.11)

where we defined Ω± = G11 ±
√
G2

12 +
(
δ
2

)2
. Thus, the expression for p reads

p = p1 + p2 = α−1
1 + α−1

2 + 2(G12 − G11)
(α−1

1 − G11)(α−1
2 − G11)− (G12)2E0 = ζ+E0

β−1 − Ω+
+ ζ−E0

β−1 − Ω−
(C.12)
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with
ζ+ = 1 + G12√

G2
12 +

(
δ
2

)2
and ζ− = 1− G12√

G2
12 +

(
δ
2

)2
. (C.13)

Furthermore, since the resonant behaviour is related to the vanishing real part of the
denominator in p, its imaginary part provides insight into the resonance linewidth. As
shown in [178, 179], we can expand the tensor G making use of the Weyl identity [55]

G11(k‖) = 1
4πε0

∑
ν 6=0

eik‖Tν [k2I +∇∇]e
ik|Tν |

|Tν |
=

= 1
4πε0

lim
z→0

∑
ν 6=0

eik‖Tν
i

2π

∫ ∫ dk′‖
k′z

[k2I +∇∇]e−ik
′
‖Tνeik

′
z |z| (C.14)

G12(k‖) = 1
4πε0

∑
ν=0

eik‖(r2−r1+Tν)[k2I +∇∇] eik|r1−Tν−r2|

|r1 −Tν − r2|
=

= 1
4πε0

lim
z→0

∑
ν=0

eik‖(r2−r1+Tν) i

2π

∫ ∫ dk′‖
k′z

[k2I +∇∇]e−ik
′
‖Tνe

ik′‖(r1−r2)
eik
′
z |z|. (C.15)

By making use of ∑ν 6=0 e
i(k′‖−k‖)Tν = 4π2

a2
∑

q δ(k′‖ − k‖ − q) and assuming normal
incidence, the x-component of G11 and G12 can be written as

G11 = 1
4πε0

(2πi
a2

∑
q

1
kzq

[k2 − q2
x]−

i

2π

∫ dk‖
k

[k2 − k2
‖,x]
)
, (C.16)

G12 = 1
4πε0

(2πi
a2

∑
q

1
kzq

[k2 − qx]
)
, (C.17)

where we have used the reciprocal lattice vectors q = (2πm
a
, 2πn

a
) and kzq =

√
k2 − q2

x − q2
y.

On the red side of the first Rayleigh anomaly (λ > a), we can neglect the sum and just
take the first term due to the evancescent character of the higher order modes [178, 180]
so the imaginary parts have the form

Im{G11} = k

2ε0a2 −
k3

6πε0
,

Im{G12} = k

2ε0a2 .

On the other hand, the imaginary part of the polarizability can be written as

Im{α−1} = −
Im{α} − k3

6πε0 |α|
2

|α|2
+ k3

6πε0
= − k3

6πε0
σabs

σsca
+ k3

6πε0
(C.18)
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where σabs(sca) is the absorption (scattering) cross-section of the particle, described by α
in the form σabs = 4πk/ε0(Im{α} − k3/(6πε0)|α|2) and σsca = k4/(6πε20)|α|2.
For the case N = 1, the imaginary part of the denominator in p can be written as:

Im
{
α−1 − G11

}
= − k3

6πε0
σabs

σsca
− k

2ε0a2 (C.19)

while performing the same approach with the N = 2 case, the imaginary part of the
denominators [Im

{
β−1 − Ω±

}
] can be written in terms of the expressions above as

Im{β−1 − Ω±} ≈ −
k3

12πε0
(ξ1 + ξ2)− k

2ε0a2 ∓ Im
{√
G2

12 + δ2

4

}
, (C.20)

where as explained in the main text, we have assumed that |βδ| � 1. We have also
defined ξi = σabsi /σscai in terms of the cross section of particle i in isolation. We can
distinguish that the first term (defined by ξ1,2) is related to the non-radiative losses. The
± signs denote the different character for the radiative losses for each mode, compared
to those in the N = 1 case.
Once pl(k‖) and therefore p(rl) are known, we can obtain the explicit form of the

electric field, at a position r = (R, z), scattered by an square array of particles,

Escat(r) = 1
4πε0

∑
l

[k2I +∇∇]e
ik|r−rl|

|r− rl|
p(rl). (C.21)

We can split the summation over the whole set of particles into two sums, one over
the unit cells and another over the N particles in the unit cell. Then, using the Weyl
identity [55], this expression can be rewritten as

Escat(r) = 1
4πε0

∑
j∈(1..N)

ν

[k2I +∇∇] i2π

∫ dk‖
kz

eik‖(R−Rj−Tν)eikz |z|p(Rj + Tν) (C.22)

with kz =
√
k2 − (k‖)2. The sum over rl in the lattice is equivalent to sum Rj particle

positions within the first unit cell and then a sum over unit cells with the translation
vector Tν . The periodicity of the array and the plane-wave illumination allows us to
write p(Rj + Tν) = pj(k‖)eik‖(Rj+Tν).

Escat(r) = 1
4πε0

∑
j∈(1..N)

ν

[k2I +∇∇] i2π

∫ dk‖
kz

eik‖Reikz |z|pj(k‖)ei(k
′
‖−k‖)(Rj+Tν)

. (C.23)

Furthermore, thanks to the periodicity of the array, we have that [178]

∑
ν

e
i(k′‖−k‖)Tν = 4π2

a2

∑
q
δ(k‖ − k′‖ − q), (C.24)
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where q are the reciprocal lattice vectors of the array and a is its period. Therefore,
the expression for the electric field is given by the double sum (j,q) where we have
performed the integration involving the delta function and called the final k′‖ as k‖

Escat(r) = i

2ε0a2

∑
j∈(1..N)

q

[k2I +∇∇] 1
kzq

ei(k‖+q)Reikzq|z|pj(k‖)e−iqRj . (C.25)

Then, we assume the conditions introduced in the main text. The array is defined in
the xy plane and it is illuminated by a plane wave with amplitude E0 = E0x̂, which
propagates with wavevector k = (2π/λ)ẑ. Under this conditions, only the x-component
of the dipole is excited (pj(k‖) = pjx(0) = pj), and the scattered field can be written as

Ex(r)
Ey(r)
Ez(r)

 = i

2ε0a2

∑
q

N∑
j=1


1− q2

x

k2

−qxqy
k2

± qxkzq
k2

 pj k
2

kzq
eikzq|z|eiq(R−Rj) =

∑
q

2∑
j=1

Eq(r), (C.26)

where kzq =
√
k2 − q2 and the upper (lower) signs apply for z > 0 (z < 0).

The flux of energy through a surface parallel to the array plane can be written in
terms of the time-averaged Poynting vector, Ssca

Ssca = c2ε0
2 Re{E×B∗}, (C.27)

where using B = i
ω
∇× E

dPsca

dA
= ẑ · Ssca(r) = cε0

2k
∑

q
kzq

∣∣∣ N∑
j=1

Eq(r)
∣∣∣2. (C.28)

As we are interested in the contributions beyond the Rayleigh anomaly, the unique
non-evanescent mode that contributes to the far field is the first term (q = 0). The
normalization of the outcoming power flux with dPinc/dA = ε0cE

2
0/2 gives the reflectance

R = k2

4ε20a4E2
0

∣∣∣∣∣∣
N∑
j=1

pj

∣∣∣∣∣∣
2

= |p|2

(2Π0)2 (C.29)

where we used p as the total dipole induced in the unit cell and Π0 = ε0a
2E0/k.

On the other hand, for the transmittance calculation we have to consider both the
incident and the scattered fields

Stra(r) = cε0
2k

(
Re
{
k
}
|E0|2 +

∑
j,q
kzq|Eq(r)|2 + 2kRe

{
E0Eq=0

})
(C.30)
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Since our interest is in λ > a, we again restrict ourselves to the q = 0. The first term
is just the contribution of the incident field whereas the second is exactly the scattering
considered just above. The correspondent normalization of ẑ · Stra(r) with dPinc/dA

provides the transmittance, T

T = 1 + k2

4ε20a4E2
0

∣∣∣p∣∣∣2 − k

ε0a2E0
Im
{
p
}

(C.31)

Just using energy conservation, the absorbance, A becomes

A = 1−R− T =
Im
{
p
}

Π0
− 2|p|2

(2Π0)2 (C.32)

Finally, our interest in extinction efficiency arises from the fact that we can calculate
the quality factor of the resonances based on the extinction description. For an infinite
array, within the coupled dipole model, our array behaves as a thin layer in which the
nanoparticles are point-like dipoles. The field scattered by this kind of system has to be
symmetric, since no phase is gained by the field while crossing the dipole width [187].
Therefore, the total scattering has to be related to 2R. Then, the extinction, defined as
the combined effects of scattering and absorption, has to be described in terms of 2R+A.
Hence

E = 2R + A =
Im
{
p
}

Π0
. (C.33)

As shown in Ref. [191], the quality factor of lattice resonances can be extracted from
the field enhancement produced by the resonances. In this way, as we have showed, the
scattered field by an N = 1 array of particles is given by the induced dipole in the unit
cell p = E0/(α−1−G11), so the enhancement is proportional to |α−1−G11|−2. Thus, the
quality factor Q has the form:

Q ≈
(

1 + 4π
3 ξ

)−1( 1
2
(
λLR
a
− 1

))3/2

(C.34)

which is valid for wavelengths around the resonance (λLR/a ≈ 1). Furthermore, forD <<

a, 4πξ/3 << 1. Therefore, the quality factor reduces to Q ∼ (λLR/a − 1)−3/2. On the
other hand, the lattice resonance is given by the condition Re

{
α−1

}
= Re

{
G11

}
. Those

can be written as Re
{
α−1

}
∼ D−3 and, as shown in Refs. [178] and [254], Re

{
G11

}
≈

4π2/(a3√2)(λLR/a− 1)−1/2 − 118, so we conclude (λLR/a− 1) ∼ (D/a)6, allowing us to
write the scaling of the quality factor in terms of a/D as

Q ∼
(
a

D

)9

. (C.35)
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