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Abstract
In this paper we explore the existence of surface electromagnetic modes in
corrugated surfaces of perfect conductors. We analyse two cases:
one-dimensional arrays of grooves and two-dimensional arrays of holes. In
both cases we find that these structures support surface bound states and that
the dispersions of these modes have strong similarities with the dispersion of
the surface plasmon polariton bands of real metals. Importantly, the
dispersion relation of these surface states is mainly dictated by the geometry
of the grooves or holes and these results open the possibility of tailoring the
properties of these modes by just tuning the geometrical parameters of the
surface.
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1. Introduction

Since the appearance of the paper by Ebbesen et al [1]
reporting extraordinary optical transmission (EOT) in two-
dimensional (2D) arrays of subwavelength holes in metallic
films, the study of the optical properties of subwavelength
apertures has become one of the most exciting areas in optics
research. In this seminal paper [1], the relation between
transmission resonances appearing in the spectra and the
excitation of the surface plasmon polaritons (SPPs) of the
metallic surface was already pointed out. The link between
EOT and surface plasmons was corroborated theoretically
three years after that [2]. Interestingly, in this last paper we also
showed that similar anomalous transmission appears in arrays
of subwavelength hole arrays perforated in a perfect conductor.
It is well known that the surface of a perfect conductor does
not support surface plasmons. This seemed to suggest that the
physical origins of EOT in real metals and in perfect conductors
were different, leading to discussions as regards the true origin
of the EOT phenomenon.

In this paper we solve this paradox by showing that
although a flat perfectly conducting surface supports no bound
states, the presence of any periodic indentation of the flat

surface (for example, 1D arrays of grooves or 2D hole arrays)
provokes the appearance of surface bound states that have
strong similarities with the canonical SPPs of a flat metal
surface [3, 4]. Importantly, we also show that, as long as
the size and spacing of the holes are much smaller than the
wavelength, a perforated perfectly conducting surface behaves
as an effective medium. This medium is characterized by
an effective dielectric function that has a plasmon form with
a plasma frequency dictated by the geometry of the hole
or the groove. In other words, the system behaves as a
plasmonic metamaterial in which its electromagnetic response
is governed by the surface modes that decorate its surface. It
is worth commenting that this new class of metamaterials has
some links with the metallic metamaterials invented in recent
years in connection with the concept of negative refraction [5].

2. 1D arrays of grooves

First, we analyse the case of a 1D array of grooves drilled
in a perfect conductor (see figure 1(a)); a is the width of the
grooves, h is the depth and d the period of the array. We are
interested in looking at the surface EM modes supported by
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(a)

(b)

Figure 1. (a) A one-dimensional array of grooves of width a and
depth h separated by a distance d . We are interested in p-polarized
surface modes running in the x direction with E lying in the x–z
plane. (b) In the effective medium approximation the structure
displayed in (a) behaves as an homogeneous but anisotropic layer of
thickness h on top of a perfect conductor.

this structure. The procedure for calculating the dispersion
relation of these surface modes, ω(kx ), is the following. First,
we calculate the reflectance of an incident p-polarized incident
plane wave with parallel momentum kx . As we are interested
in a truly surface mode, we will then analyse the expression
for the reflectance for the particular case in which the incident
plane wave is evanescent, kx > ω/c0 (a truly surface mode has
to live outside the light cone). The locations of the divergences
in the reflectance will give us the desired dispersion relation
for the surface EM modes.

The electromagnetic (EM) fields associated with the
incident wave are

�E inc = 1√
d

eikx x eikz z

( 1
0

−kx/kz

)

�H inc = 1√
d

eikx x eikz z

( 0
k0/kz

0

) (1)

where k0 is the wavenumber, ω/c0, and kz =
√

k2
0 − k2

x . The
reflected wave associated with the n-diffraction order can be
written as

�E ref,n = 1√
d

eik(n)
x x e−ik(n)

z z
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x /k(n)

z

)
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where k(n)
x = kx + 2πn/d (n = −∞, . . . , 0, . . . ,∞) and

k(n)
z =

√
k2

0 − (k(n)
x )2.

As we assume that the wavelength of light is much larger
than the width of the grooves (λ0 � a), in the modal expansion
of the EM fields inside the grooves we only consider the

fundamental TE mode:

�ETE,± = 1√
a

e±ik0 z

( 1
0
0

)

�HTE,± = 1√
a

e±ik0 z

( 0
1
0

)
.

(3)

Then, the EM fields in region I (vacuum) can be expressed
as a sum of the incident plane wave and the reflected ones:

�E I = �E inc +
∞∑

n=−∞
ρn �E ref,n

�H I = �H inc +
∞∑

n=−∞
ρn �H ref,n

(4)

where ρn is the reflection coefficient associated with the
diffraction order n. In region II (inside the grooves), the EM
fields can be written as a linear combination of the forward and
backward propagating TE modes:

�E II = C+ �ETE,+ + C− �ETE,−

�H II = C+ �HTE,+ + C− �HTE,−.
(5)

By applying the standard matching boundary conditions
(at z = 0 continuity of Ex at every point of the unit cell and
continuity of Hy only at the groove’s location and at z = h; Ex

must be zero), we can easily extract the reflection coefficients,
ρn:

ρn = −δn0 − 2i tan(k0h)S0Snk0/kz

1 − i tan(k0h)
∑∞

n=−∞ S2
nk0/k(n)

z

(6)

where Sn is the overlap integral between the nth-order plane
wave and the TE mode:

Sn = 1√
ad

∫ a/2

−a/2
eik(n)

x x dx =
√

a

d

sin(k(n)
x a/2)

k(n)
x a/2

. (7)

In principle, we could calculate the surface bands of our
system by just analysing the zeros of the denominator of
equation (6) [6]. The calculation is much simpler if we assume
λ0 � d. Then, all the diffraction orders can be safely neglected
except the specular one and ρ0 takes the form

ρ0 = − 1 + iS2
0 tan(k0h)k0/kz

1 − iS2
0 tan(k0h)k0/kz

. (8)

For the case kx > k0

(
kz = i

√
k2

x − k2
0

)
, we can calculate

the dispersion relation of the surface bound state by calculating
the location of the divergences of ρ0:√

k2
x − k2

0

k0
= S2

0 tan(k0h). (9)

This is the dispersion relation of the surface EM modes
supported by a 1D array of grooves in the limit λ0 � d and
λ0 � a.

It is interesting to note here that the same dispersion
relation could be obtained if we replaced the array of grooves
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Figure 2. The dispersion relation (ω(kx )) of the surface bound
states supported by a 1D array of grooves with geometrical
parameters a/d = 0.2 and h/d = 1 as obtained with equation (14).

by a single homogeneous but anisotropic layer of thickness h
on top of the surface of a perfect conductor (see the schematic
drawing in figure 1(b)). The homogeneous layer would have
the following parameters:

εx = d/a εy = εz = ∞. (10)

As light propagates in the grooves in the y or z directions with
the velocity of light,

√
εx µy = √

εxµz = 1 (11)

and, hence,

µy = µz = 1

εx
µx = 1. (12)

After some straightforward algebra the specular reflection
coefficient, R, for a p-polarized plane wave impinging at the
surface of a homogeneous layer of thickness h with ε and µ

given by equations (10) and (12) can be written as

R = (εx kz − k0) + (k0 + εx kz)e2ik0h

(εx kz + k0) − (k0 − εx kz)e2ik0h
. (13)

Again, by extending this formula to the case kx > k0 and
looking at the zeros of the denominator of R we can calculate
the dispersion relation of the surface modes:√

k2
x − k2

0

k0
= a

d
tan(k0h). (14)

Note that this expression coincides with equation (9) in
the limit kx a � 1. In figure 2 we plot the dispersion relation
(equation (14)) for the particular case a/d = 0.2 and h/d = 1.
We have checked that this expression (equation (14)) gives
accurate results for the range of wavelengths analysed in
this case (λ0 > 4h) by comparing them with the dispersion
relation obtained by calculating the zeros of the denominator
of equation (6) in which the approximation λ0 � d is not
applied. It is worth commenting on the similarities between
this dispersion and the one associated with the bands of SPPs
supported by the surfaces of real metals. In a SPP band, at large

z

x

y

Figure 3. A two-dimensional square array (d × d) of square holes
(side a) perforated on a semi-infinite perfect conductor.

kx , ω approaches ωp/
√

2, whereas in this case, ω approaches
πc0/2h—that is, the frequency location of a cavity waveguide
mode inside the groove (in the limit a/d → 0, the locations
of the different cavity waveguide modes correspond to the
condition cos k0h = 0).

3. 2D hole array

Now we consider the case of square holes of side a arranged on
a d × d lattice perforated on a perfect conductor semi-infinite
structure (see figure 3) [7]. We assume that the holes are filled
with a material whose dielectric constant is εh. As in the case
of the array of grooves, we are interested in looking at the
possible surface states supported by this system by looking at
divergences of the reflection coefficient of a p-polarized plane
wave impinging at the perforated surface. As we are interested
in the long wavelength limit (λ0 � d), now we only take into
account the specular reflected wave.

The normalized EM fields associated with the incident and
specular reflected waves are

�E inc = 1

d
eikx x eikz z

( 1
0

−kx/kz

)

�H inc = 1

d
eikx x eikz z

( 0
k0/kz

0

) (15)

�E ref = 1
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( 1
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)
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d
eikx x e−ikz z

( 0
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0

)
.

(16)

Inside the holes, as we are interested in the limit λ0 � a,
we assume that the fundamental eigenmode will dominate
because it is the least strongly decaying. The EM fields are
zero inside the perfect metal but inside the holes they take the
form

�ETE =
√

2

a
eiqz z sin

πy

a

( 1
0
0

)

�HTE = −
√

2

a
eiqz z sin

πy

a

( 0
qz/k0

iπ/ak0

) (17)

where qz =
√

εhk2
0 − π2/a2.
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Again, the EM fields in region I can be expressed as a sum
of the incident plane wave and the reflected one:

�E I = �E inc + ρ0 �E ref �H I = �H inc + ρ0 �H ref (18)

where ρ0 is the specular reflection coefficient, and in region
II (inside the holes), as we are dealing with a semi-infinite
structure, we only have to consider the decaying mode:

�E II = τ �ETE �H II = τ �HTE (19)

where τ is the transmission coefficient.
In the matching procedure at z = 0, Ex must be continuous

over the entire unit cell (x and y ranging from 0 and d) whereas
Hy has to be continuous only at the hole. This would yield

ρ0 = k2
0 S2

0 − qzkz

k2
0 S2

0 + qzkz
(20)

where S0 is the overlap integral of the incident plane wave and
the fundamental mode inside the hole:

S0 =
√

2

ad

∫ a

0
eikx x dx

∫ a

0
dy sin

πy

a
dy = 2

√
2a

πd

sin(kx a/2)

kx a/2
.

(21)
By analysing the zeros of the denominator of ρ0 and

extending the expression to kx > k0, we can extract the
dispersion relation of the surface states supported by the 2D
hole array: √

k2
x − k2

0

k0
= S2

0k0√
π2/a2 − εhk2

0

. (22)

As in the case of 1D arrays of grooves, we would like
to test whether the semi-infinite perfect conductor perforated
with holes could be replaced by a semi-infinite homogeneous
system, characterized by an effective dielectric constant and an
effective magnetic permeability. Due to the symmetry of the
structure, εxeff = εyeff ≡ εeff and µxeff = µyeff ≡ µeff . As the
dispersion of the waveguide mode inside the hole is unaffected
by parallel momentum, εzeff = µzeff = ∞.

In a homogeneous structure, the reflection coefficient for
a normally incident plane wave can be expressed as a function

of the impedance of the medium, Z =
√

µ

ε
:

R0 = Z − 1

Z + 1
. (23)

Then, the effective impedance of a 2D hole array
perforated on a perfect conductor can be easily calculated by
analysing equation (20) in the particular case of a normally
incident plane wave (kx = 0, kz = k0):

Zeff =
√

µeff

εeff
= S2k0

qz
(24)

where S ≡ S0(kx = 0) = 2
√

2a/πd. The other equation
linking εeff and µeff can be obtained from

qz = k0
√

εeffµeff = i

√
π2

a2
− εhk2

0. (25)

Figure 4. The dispersion relation (ω(kx )) of the p-polarized surface
bound states supported by a 2D array of holes with a/d = 0.6 and
filled with a dielectric material with index of refraction nh = 3, as
obtained with equation (29).

Combining equations (24) and (25) we can write down
the effective magnetic permeability and effective dielectric
permittivity of our system:

µxeff = µyeff = S2 (26)

εxeff = εyeff = εh

S2

(
1 − π2

a2εhk2
0

)
= εh

S2

(
1 − π2c2

0

a2εhω2

)
(27)

which is the canonical plasmon form with a plasma frequency,
ωpl = πc0/

√
εha. This frequency is just the cut-off frequency

of a square waveguide of side a filled with a material
characterized by a dielectric constant εh.

The next step is to calculate the dispersion relation of the
surface modes supported by this effective medium and compare
it with equation (22). For an interface between vacuum and a
semi-infinite structure characterized by εeff , the surface modes
have to fulfil the equation

k ′
z +

qz

εeff
= 0 (28)

where k ′
z = −i

√
k2

x − k2
0 is the inverse of the decaying length

of the surface mode inside the vacuum, e|k′
z |z , and qz is the

analogue magnitude in the effective medium. By using εeff

from equation (27) we obtain√
k2

x − k2
0

k0
= S2k0√

π2/a2 − εhk2
0

(29)

which coincides with equation (22) in the long wavelength
limit (when the effective medium approximation makes sense),
kx a � 1. In figure 4 we plot the dispersion relation of these
surface modes for the particular case a/d = 0.6 and εh = 9.

3.1. 2D arrays of holes of finite depth (dimples)

It is quite interesting to analyse also the case of a 2D square
array (d × d) of square holes (side a) of finite depth, h. The
procedure for calculating the dispersion relation of the surface
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modes supported by this type of structure is quite similar to
the one presented for the previous case. The only difference is
that in equation (19) we have to consider not only the decaying
mode e−|qz |z but also the growing one, e+|qz |z:

�E II = C+ �ETE,+ + C− �ETE,−

�H II = C+ �HTE,+ + C− �HTE,−.
(30)

Apart from the continuity equations at z = 0, we have to
add the condition Ex = 0 at the bottom of the hole, z = h.
By doing straightforward algebra, we end up with a dispersion
relation of the surface modes:√

k2
x − k2

0

k0
= S2k0√

π2/a2 − εhk2
0

1 − e−2|qz|h

1 + e−2|qz|h . (31)

Note that in the limit h → 0, kx → k0 (light line) and for
h → ∞ we recover equation (29), as we should.

4. Conclusions

We have demonstrated that a semi-infinite perfect conductor
perforated with a one-dimensional array of grooves or a two-
dimensional array of holes can be optically described in the
long wavelength limit as an effective medium characterized
by a dielectric function of plasmon form in which the plasma
frequency only depends on the geometry of the indentation
(groove or hole). The surface modes supported by this system
have close resemblances with the surface plasmon polaritons
of a real metal.

In these new plasmonic metamaterials, their electromag-
netic response could be engineered by tuning the geometrical
parameters defining the corrugated surface. Then, these tai-
lored surface plasmons could be modified at will at almost any
frequency because metals are nearly perfect conductors from
zero frequency up to the threshold of the THz regime.

Surface electromagnetic modes excited at a metal
surface can also be analysed as propagating waves in two
dimensions [8, 9]. Our results could be used as an alternative
way to control the flow of light in the surface of a metal by
just playing with the geometry (size and separation) of the
indentations disposed at the surface.
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