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Transmission of Light through a Single Rectangular Hole
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We show that a single rectangular hole in a metallic film exhibits transmission resonances that appear
near the cutoff wavelength of the hole waveguide. For light polarized with the electric field pointing along
the hole’s short axis, it is shown that the normalized-to-area transmittance at resonance is proportional to
the ratio between the long and short sides, and to the dielectric constant inside the hole. Importantly, this
resonant transmission process is accompanied by a huge enhancement of the electric field at both entrance
and exit interfaces of the hole.
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FIG. 1. Diagram of a single rectangular hole of sides ax and ay
perforated on a metal film of thickness h. The structure is
illuminated by a p-polarized plane wave with its angle of
incidence with respect to the normal being �.
Since the pioneering work by Ebbesen et al. [1] report-
ing extraordinary optical transmission (EOT) through two-
dimensional (2D) hole arrays perforated in optically thick
silver films, the study of the transmission properties of
subwavelength apertures has become a very active area
of research in electromagnetism. Very recently, several
experiments have focused on the influence of hole shape
on the optical transmission properties of both 2D hole
arrays [2– 4] and single subwavelength holes [5]. These
studies showed that transmission through a rectangular
hole presents strong polarization dependencies and higher
transmittance than square or circular holes with the same
area. Interestingly, it was also found that single rectangular
holes can support transmission resonances, even in the
subwavelength regime.

In this Letter we present—to our knowledge—the first
theoretical study about the dependence on hole shape of the
transmittance through a single hole. We find that, as a
difference with circular holes [6], single rectangular holes
can exhibit strong transmission resonances. One of these
resonances appears close to cutoff, with a peak transmit-
tance controlled by the ratio between the long and short
sides of the rectangle. Additionally, we show that the
presence of a dielectric filling the hole greatly boosts the
transmittance. Associated to these transmission reso-
nances, there is a very strong enhancement of the electric
field at the hole.

Figure 1 shows schematically the system under study: a
rectangular hole of sides ax and ay perforated on a metallic
film of thickness h. The system is illuminated by a
p-polarized plane wave with wavelength �, the in-plane
component of the electric field pointing along the x direc-
tion. The metal is treated within the perfect conductor
approximation (PCA), so our results have quantitative
value in the THz or microwave frequency regimes. In the
optical regime PCA is approximate, failing when the di-
mensions of the structure are of the order of (or smaller
than) the skin depth [7]. Even in this case, the range of
validity of PCA can be greatly extended by simply consid-
ering effective hole dimensions enlarged by the (metal and
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wavelength dependent) skin depth [8]. What PCA does not
capture are effects related to absorption and surface plas-
mons. However, PCA serves both as the starting point for
more elaborated approximations (as the one considering
surface impedance boundary conditions) and for clarifying
which effects are due to geometry and which have a
dielectric origin. With these caveats in mind, the results
presented in this Letter apply to different frequency re-
gimes, by simply rescaling all lengths by the same factor.

Let us briefly describe the formalism used for calculat-
ing the transmittance through the structure (a detailed
account of this method which was developed in order to
treat an arbitrary number of indentations, can be found in
[9]). In this method, electromagnetic (EM) fields in both
reflection (I) and transmission (III) vacuum regions are
expressed in terms of the EM eigenmodes j ~k	 > , charac-
terized by the in-plane component of the wave vector ~k,
and the polarization 	. Inside the hole, the EM field is
expanded in terms of all EM waveguide eigenmodes. After
matching appropriately the EM fields at the two interfaces
(z � 0 and z � h), the formalism provides the full EM
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FIG. 2 (color online). Normalized-to-area transmittance (T)
versus wavelength (in units of the cutoff wavelength, �c �

2ay), for a normal incident plane wave impinging on a rectan-
gular hole, for different ratios ay=ax. Metal thickness is h �

ay=3. For comparison, the inset shows T versus wavelength for a
single square (black line) and circular (red line) holes.
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field in all spatial points as a function of the projection onto
waveguide eigenmodes of the electric field at both hole
entrance and exit interfaces. In all calculations ax; ay < �
and we have checked that considering just the first TE
eigenmode (jTEi) is enough to obtain very accurate results
for the transmittance so, for simplicity, we present our
formalism just for this case. In this way, the electric field
bivector ~E � �Ex; Ey�

T (T standing for transposition) at
the hole entrance and exit can be written in terms of the
modal amplitudes E and E0 as j ~E�z � 0�i � EjTEi and
j ~E�z � h�i � �E0jTEi, respectively. Here we have used
Dirac’s notation, with the wave field in real space of the
first jTEi mode, h ~rjTEi, written as �1; 0�T sin	��y=ay 

1=2��=

�������
N

p
, N � axay=2 being a normalization factor.

The equations that E and E0 must satisfy are [10]

�G�	�E�GVE0 � I0; �GVE
�G�	�E0 � 0; (1)

where I0 takes into account the external illumination.
Normalizing the incident EM field (j ~k0pi) such that the
incoming energy flux over the hole area is unity, we obtain

I0 
 2iY ~k0p
h ~k0pjTEi �

4
���
2

p

i�
sinc	k!ax sin�=2�����������

cos�
p ; (2)

where � is the angle of incidence and k! � 2�=� [11].
In Eq. (1), 	 and GV are magnitudes which only de-
pend on the characteristics of the TE mode inside the

hole: 	 � YTE= tan�qzh� and GV � YTE= sin�qzh�; qz �������������������������������
k2! � ��=ay�2

q
is the propagation constant of the funda-

mental TE mode and YTE � qz=k! its admittance.
The self-illumination of the hole, via vacuum modes, is

controlled by G � 	i=�2��2�		
R
d ~kY ~k	jhTEj

~k	ij2. For
the case of rectangular holes,
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; (3)

where k2 � k2x 
 k2y. Notice that, in our formulation,
Re�G� comes from the coupling to evanescent modes in
vacuum and Im�G� from the radiative modes. The z com-
ponent of the Poynting vector inside the hole can be ex-
pressed as a function of E and E0 yielding to a normalized-
to-area transmittance T � GV Im	E�E0�.

Figure 2 renders T��� for normal incident radiation for
the case h � ay=3 and several values of the ratio ay=ax. As
clearly shown in this figure, a transmission peak develops
at approximately �c � 2ay, with increasing maximum
transmittance and decreasing linewidth as ay=ax increases.
In the case of square or circular holes there is also a
resonance close to cutoff, but a very faint one (see inset
of Fig. 2). In these last two cases, below cutoff the
normalized-to-area maximum transmittance is of the order
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of 1, i.e., approximately the amount of light that is directly
impinging on the hole. In all cases, above cutoff T de-
creases strongly with �, due to the fact that the fields inside
the hole are evanescent and that, in the extreme subwave-
length regime, an incident wave couples very poorly to the
hole [12].

It is interesting to comment here on the dependence of
the transmission on the angle of incidence. In the set of
Eqs. (1), the only term that depends on � is I0. Then, the
location of the resonant peaks observed in Fig. 2 does not
shift when � is increased. Moreover, in the subwavelength
limit, the term sinc in I0 approaches 1 yielding to a simple
1= cos� dependence for the peak heights in the normalized-
to-area transmittance spectra. Note that this means that if
instead of considering unit incoming energy flux, it is the
total intensity of the impinging light that is fixed, we
predict that the transmittance spectra would be almost
independent of �.

The resonant characteristics of the transmittance
through rectangular holes, and their dependence on geo-
metrical parameters can be worked out analytically from
the set of Eqs. (1). For the case we are analyzing (a
symmetric structure with respect to the plane z � h=2),
maximum transmission appears when the electromag-
netic energy at the entrance and exit sides of the aper-
ture are equal, i.e., jEj � jE0j. From (1), this occurs when
jG�	j � jGV j, a condition that, after some algebra,
implies

2Re�G� �
jGj2 � Y2

TE

YTE
tan�qzh�: (4)
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FIG. 3 (color online). T for a normal incident plane wave
versus wavelength for a rectangular hole with ay=ax � 10 and
different values of � inside the hole. Metal thickness is h �

ay=3. Dashed and dotted lines show the behavior of Eqs. (5) and
(6), respectively. Inset: enhancement of the E-field intensity
obtained for the previous cases; black curve renders Eq. (7).
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There are several wavelengths at which this transcendent
equation is satisfied. Ignoring the shift in the spectral
dependence due to the EM coupling to vacuum modes
(this is, setting G ! 0, which is the appropriate limit for
ax; ay � �), Eq. (4) transforms into YTE tan�qzh� � 0,
which is the usual Fabry-Perot condition for the existence
of a standing wave inside the hole. Note that this last
equation allows the solution qz � 0, so a transmission
peak located at around the cutoff wavelength is expected,
irrespective of the geometrical parameters ay=ax (see
Fig. 2) and h. Equation (4) also predicts the emergence
of transmission resonances appearing at � < �c as the
depth of the hole is increased. These are canonical
Fabry-Perot resonances (qz � 0), similar to those found
in subwavelength 1D slits [13–15].

Using the resonance condition [Eq. (4)], we obtain that
the normal-incidence T at resonance, Tres is given by

Tres �
jI0j2

4 Im�G�
: (5)

A very accurate analytical approximation to Tres can be
obtained realizing that, in the extreme subwavelength limit
(ax; ay � �), Eq. (3) gives Im�G� � 32axay=�3��

2�. We
have checked that this expression holds even for ay � �=2
therefore, for � > 2ay we find

Tres �
3

4�
�2
res

axay
: (6)

Recalling that T is the normalized-to-area transmission,
this expression implies that the total amount of light
emerging from a rectangular hole is, at least for the reso-
nance appearing close to cutoff, independent of the length
of the short side. Although derived for rectangular holes,
Eq. (6) seems to be more general as the same expression
was found for circular holes [16], with the term axay
replaced by the area of the circular hole. The important
point in rectangular holes is that, for the polarization
chosen, the transmittance peak appearing at cutoff only
depends on the long side (�res � 2ay), resulting in a trans-
mittance Tres � �3=��ay=ax close to cutoff. This is the
main result of this Letter, as it predicts a huge transmission
enhancement in a single rectangular hole with large aspect
ratio.

Additionally, even for a fixed aspect ratio ay=ax, Eq. (6)
gives us a clue for further enhancing the transmission:
namely, filling the hole with a material with dielectric
constant � > 1, as this increases the cutoff wavelength.
In fact, in the definition of quantities appearing in
Eq. (1), the only place in which � enters is in the propaga-
tion constant associated to mode jTEi which now reads

qz �
�������������������������������
�k2! � ��=ay�2

q
. Therefore, the spectral position of

resonances depend on qz (and therefore on �) but the
transmittance at resonance is still given by Eq. (5). As a
result, filling the hole with a dielectric would redshift the
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transmission peak appearing close to cutoff to � 2
���
�

p
ay

and, more importantly, increase its transmittance. This is
illustrated in Fig. 3, which renders the transmission spectra
for rectangular holes of aspect ratio ay=ax � 10, in a
metallic film of thickness h � ay=3, for several values of
�. Note that this way of increasing the transmission
through the hole by filling it with material with � > 1
can be also operative for the case of circular [17] or square
holes. Remarkably, in rectangular holes this mechanism
acts almost independently of the enhancement due to the
aspect ratio, so Tres is proportional to both ay=ax and �.

Associated to this resonant phenomenon, there is an
enhancement of the EM fields. Naively, one would expect
that the intensity of the E field at the entrance and exit sides
of the hole (jEj2 and jE0j2) should be proportional to the
transmittance. However, the direct evaluation of jEj2 �
jE0j2 at the resonant condition given by Eq. (4) yields

jEj2res � jE0j2res �
jI0j2

4	Im�G��2
; (7)

leading to an enhancement of the intensity of the E field
(with respect to the incident one) that scales with �res as
�4
res=�ayax�

2, much larger than the enhancement in the
transmittance (see inset of Fig. 3). This implies that in
the process of resonant transmission, light is highly con-
centrated on the entrance and exit sides of the hole but only
a small fraction of this light is finally transmitted. This
finding opens the possibility of using rectangular holes for
spectroscopic purposes and for exploring nonlinear effects.

In order to illustrate this E-field enhancement, we plot in
Fig. 4 the amplitude of the E field at two different planes
(y � 0 top panel and z � 0� bottom panel) for the case
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FIG. 4 (color online). Enhancement of the E-field amplitude
with respect to the incident one, for a rectangular hole with
ay=ax � 3 and h � ay=3 at two different planes: cut through the
center of the rectangle (y � 0, top panel; wave impinging from
the bottom) and entrance surface (z � 0�, bottom panel). In both
cases, the E-field amplitude is evaluated at the resonant wave-
length.
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ay � 3ax and h � ay=3 (blue curve in Fig. 2) evaluated at
the resonant wavelength. The cut through y � 0 shows that
the E field amplitude is practically constant inside the hole,
as corresponds to the excitation of a standing wave with
zero propagation constant. On the other hand, the pattern of
the E-field amplitude at the entrance surface clearly re-
veals the localized character of the resonance and its
dipolar nature. This figure also shows that the E-field
intensity maxima are at the ridges of the hole. An analysis
of the vector components shows that inside the hole only
the x component of the E field is present, whereas at the
ridges there is an additional enhancement coming from the
z component.

Some comments on the comparison of our results with
published experimental data in the optical regime [5] are
pertinent. Our theoretical results agree with the phenome-
nology found in these experiments (increase of transmit-
10390
tance at resonance with increased aspect ratio and field
enhancement localized at the ridges of the hole), which
indicates that the localized modes analyzed in this Letter
capture the basic ingredients of the transmission reso-
nances observed in the optical regime for single holes.
However, the authors of Ref. [5] attributed their experi-
mental results to the excitation of localized surface plas-
mons. As explained before, surface plasmons are not
included within our approach. Therefore, the role played
by these modes in the optical regime is a point that de-
serves further theoretical investigation.

Additionally to its interest in the optical regime, these
effects (huge enhancements of both transmission and
E-field intensity) should be readily observable in the mi-
crowave or THz frequency ranges, which present the ad-
vantage that holes with very large aspect ratio can be
manufactured and, furthermore, dielectric materials pre-
senting large positive dielectric functions are available.
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