PRL 101, 014301 (2008)

PHYSICAL REVIEW LETTERS

week ending
4 JULY 2008

Theory of Resonant Acoustic Transmission through Subwavelength Apertures

J. Christensen,' L. Martin-Moreno,” and F.J. Garcia-Vidal**

'Departamento de Fisica Tedrica de la Materia Condensada, Universidad Auténoma de Madrid, E-28049 Madrid, Spain
*Departamento de Fisica de la Materia Condensada-ICMA, Universidad de Zaragoza-CSIC, E-50009 Zaragoza, Spain
(Received 10 December 2007; revised manuscript received 2 April 2008; published 1 July 2008)

A complete landscape is presented of the acoustic transmission properties of subwavelength apertures
(slits and holes). First, we study the emergence of Fabry-Perot resonances in single apertures. When these
apertures are placed in a periodic fashion, a new type of transmission resonance appears in the spectrum.
We demonstrate that this resonance stems from the excitation of an acoustic guided wave that runs along
the plate, which hybridizes strongly with the Fabry-Perot resonances associated with waveguide modes in
single apertures. A detailed discussion of the similarities and differences with the electromagnetic case is

also given.
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The properties of periodically distributed acoustic scat-
terers are receiving growing attention within the physics
community. The so-called ‘““phononic crystals” [1-5] or
the acoustic metamaterials [6] are just two examples of this
type of structures. When exploring the transferability of the
phenomenon of extraordinary optical transmission (EOT)
[7] to the acoustic case, several studies have also focused
on the acoustic properties of periodic arrays of subwave-
length apertures [8—12]. Although there are some simi-
larities between the electromagnetic (EM) and acoustic
cases, the nonexistence of a cutoff wavelength for acoustic
modes propagating through a subwavelength aperture puts
some caveats when elaborating the analogy. Moreover, to
use the results in acoustics to reveal the underlying phys-
ics of EOT, as done in Ref. [11], might lead to wrong
conclusions.

In this Letter we present a complete study of the acoustic
transmission properties of subwavelength apertures. By
using a theoretical framework ideally suited to deal with
subwavelength indentations, we start considering the case
of a single two-dimensional (2D) square hole and a single
one-dimensional (1D) slit perforated on a plate made of a
perfect rigid body. Cavity resonances dominate the trans-
mission spectrum and analytical expressions for the trans-
mittance at resonance are given. Next, with the same
theoretical formalism, we underpin the physics behind
the new transmission resonances appearing in the case of
periodic arrays of holes or slits.

The theoretical formalism used throughout this Letter is
based on a modal expansion of the pressure field in the
different regions defining the structure. We expand the
scalar field in a supercell of area L X L in the xy plane
for the case of holes or in a supercell of length L for the
case of slits. This supercell is real when we analyze an
infinite periodic array or artificial if we study a single
aperture. When the structure is finite, the limit L — oo
must be taken, leading to analytical expressions for the
magnitudes governing the acoustic coupling within the
structure. Plane wave expansions are used in the reflection
and transmission regions and the direction of propagation
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of the incident plane wave is chosen to be along the z axis.
From now on we denote a plane wave characterized by an

in-plane momentum k as |l€) Inside the apertures, the field
is written as a linear combination of their eigenmodes
(labeled as |a)). For the case of square holes of side a,
these eigenmodes have analytical expressions and are
characterized by two indexes, [ and m with / = 0 and m =
0. The z component of the wave vector of mode « is

expressed as g% = \/k% — (P + m*)m/a®, where ky, =
27/ A is the wave number. The important point to realize
is that there is no cutoff wavelength for acoustic waves
propagating through a 2D hole. When treating 1D slits and
ky, = 0, only one index (/) characterizes the mode with [ =
0 (no cutoff). As a function of these eigenmodes, the
pressure field (p) is expanded within the aperture as

P, 2) = S (g€l + Bue #5)xla) (1)

where (r|a) is the in-plane wave field associated with
mode «. Note that, as we are assuming that the material
forming the perforated plate is a perfect rigid body, the
pressure field outside the aperture(s) is zero. This perfect
rigid approximation is an excellent starting point when
treating stiff materials like steel or brass, materials used
in the experiments of Refs. [10,11]. The expansion coef-
ficients in the linear expansion of Eq. (1) are determined
after applying the boundary conditions at the two interfa-
ces (z = 0 and z = h, h being the plate thickness). It is ap-
propriate to define the quantities v, = A, — B, and v/, =
—(A, e’ — B e 4") which are related to the a-modal
amplitudes of the z component of the velocity field at both
sides of the aperture. The system of linear equations for the
expansion coefficients [v,, v/,] is written as

(Gaa - Ea)va + Z GaBU,B - vaix = Ia’
BFa

(Gaa = 2V + D Gaply — Ghv, =0,
B#a

2
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where the analytical expressions for different terms a-
ppearing in Eq. (2) are the following. The independent
term, /, depends on the overlap integral between mode
|a) and the incident acoustic plane wave, |]_€)0>, 1,

2i{alky). The coupling between both sides of the aper-
ture is mediated by GY = q%/[kysing®h] whereas
2, = q%cosq?h/[kysing®h] takes into account the
multiple rebounds of the acoustic wave inside the aperture.
The propagator G,z measures the coupling between

modes « and B via the diffracted plane waves: G,g =

S Wilalk)(K| B), where Wy = ko/k.(k), k, = |k — kI,
being the z component of the plane wave of in-plane
momentum k. Once the different modal amplitudes are
calculated, the transmittance through the structure 7 is
obtained: T = 3, Im(GYv,v)).

First, we analyze the case of a single aperture perforated
on a plate of thickness 4. We have chosen to study a square
hole of side @ = 1.06 mm, which presents the same area as
the circular holes forming the 2D array studied in Ref. [10].
In the inset of Fig. 1(a), a contour plot of the normalized-
to-area transmittance (normalized to the acoustic energy
flux impinging directly at the hole opening) for a normally
incident plane wave is shown as a function of A and /4. A set
of resonances emerges in the transmission spectrum whose
peak wavelengths depend linearly with A, suggesting a
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FIG. 1 (color online). (a) Normalized-to-area transmittance
(T) spectrum for a normally incident plane wave impinging at
a square hole of side a = 1.06 mm. The thickness of the plate is
h =2 mm. Inset: contour plot of T versus A and & for a square
hole with the same a. (b) |(G — €)sinkgh| and |G sinkyh|
versus A for the case analyzed in panel (a). Vertical dashed lines
mark the condition sinkyh = 0.

Fabry-Perot type origin. Although the existence of these
resonances was reported many years ago for circular [13]
and rectangular [14] holes, little attention has been paid to
analyze in detail their physical origin. When dealing with
subwavelength apertures, a very good approximation for
the total transmittance is obtained when considering only
the first eigenmode (a = 0) inside the hole (slit). For this
mode, the wave field is constant in the xy plane. In this
case, the system of Egs. (2) becomes two coupled equa-
tions:

(G—2)v -GV =1, (G-—3)'—-G"v=0,

3

where 3 = 3, = coskoh/sinkgh and GY =G} =
1/ sinkyh are the same for both a single hole and a single
slit. The main difference between the transmission proper-
ties of 1D and 2D single apertures originates from the
acoustic coupling between the fundamental eigenmode
and all the diffractive waves, i.e., the term G = Gy, in
Egs. (3). For a square hole of side a, this term can be
written explicitly as

) ginc? (k‘Ta
k2

2k sinc?
hole (l; )g [ f dk dk (
\/k(z) TR T k;
with sinc(x) = sinx/x. A similar expression is obtained for
a 1D slit of width a:

zako +°°
sht

As seen in Fig. 1, the spectral locations of the transmission
peaks are associated with the condition |v| = |v/| (i.e.,
|G — 2| = |G"]) in Egs. (3). After some algebra, this
condition can be written as

) 4

— 2 )

2ReG
IGI* — 1

In the limit of extremely small apertures (G — 0), this last
equation predicts the appearance of transmission peaks
close to the condition sinkgh = 0. It is even possible to
extract some analytical expressions for the normalized-to-
area transmittance at resonance (7,.) for the case of a
single hole or a single slit. By incorporating the resonant
condition [Eq. (6)] into the equation for 7', it is found that
T.s = |Iy|>/[4Im(G)]. Analytical expressions for T, c
be obtained by taking the limit a << A of Im(G) as glven in
Egs. (4) and (5). This leads to Thlc = #22 and Tt = A
This is a very interesting finding, as it implies an increase
of T, as the resonant wavelength is increased. In the EM
case, there are no cavity transmission resonances for sub-
wavelength holes due to the existence of a cutoff wave-
length. However, this is not the case for a single slit and
p-polarized light. Fabry-Perot EM transmission reso-
nances similar to the ones found in the acoustic case
have been already reported [15,16].

tankyh = (6)
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Now we analyze the case of periodic arrays of holes or
slits, which can be still analyzed with a system of equations
like Egs. (2). The only change is that now G, needs to be
calculated by assuming that only a discrete number of
diffracted waves can be excited. In Fig. 2(a), transmittance
(in this case normalized to the flux impinging at one unit
cell of the structure) for a normally incident plane wave is
shown as a function of A and 4. The side of the square holes
is like in Fig. 1 (¢ = 1.06 mm) whereas the period L =
2 mm, as in the experiments reported in Ref. [10].
Transmission resonances (leading to 100% transmission)
whose wavelengths scale linearly with £ also appear in the
spectrum. However, for wavelengths close to the period of
the array, transmittance features are very different to the
ones previously found in single holes. For A = L, trans-
mittance is zero and, depending on the thickness of the
plate, an extremely narrow transmission peak (also reach-
ing 100%) might emerge at a wavelength slightly larger
than L [see Fig. 2(b)]. This behavior can be understood by
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FIG. 2 (color online). (a) Normalized-to-unit-cell transmit-
tance for a normally incident plane wave impinging at a 2D
array of square holes of side ¢ = 1.06 mm and period L =
2 mm as a function of A and Ah. (b) The same magnitude for
three particular /’s: h = 0.2, 2, and 2.25 mm as a function of A.
The inset presents a zoom of the three spectra near A = 2 mm.
(©) (G — €) sinkyh| and |GV sinkyh| versus A for h = 2.25 mm.
Vertical dashed lines mark the condition sinkyh = O.

looking at the simpler system of Eqgs. (3) for the case of
periodic arrays where G is now given by

a? ko . L(Kia\ . ,(kia
G= lﬁ;g‘kg’"’) sinc ( > )smc <T> (7

where k! = ko, +2Tn, k§ = ko, +2Zp, and kP =

\/k(z) — (k7)? — (k§)?. At normal incidence, for A = L,
k, =0 for n = *1 or p = *1 leading to a divergence in
G [see Fig. 2(c)] and, consequently, to zero acoustic trans-
mission at that particular A. Because of the rapid variation
of G with A close to that divergence, for some /4’s, there is a
cut between |G — €| and |G| occurring at a wavelength
slightly larger than L [see the case h = 2.25 mm in
Fig. 2(c)] and leading to an extremely narrow peak in the
transmission spectrum. Note that the appearance of this
peak is very sensitive to the plate thickness. This sensitivity
demonstrates the complex interplay between the Fabry-
Perot resonances and the resonant features appearing close
to A = L in hole arrays. The transmission properties of a
1D periodic array of slits are analogous to the case of a 2D
array of holes. This is due to the fact that both a single slit
and a single hole present no cutoff. In Fig. 3(a),
normalized-to-unit cell transmission through an array of
slits of width @ = 0.5 mm, period L = 4.5 mm, and thick-
nesses & = 2,4, and 8§ mm is plotted as a function of A. The
geometrical parameters correspond to the ones used in the
experiments of Ref. [11]. As expected, extremely narrow
peaks spectrally located near L also emerge in the spec-
trum. In Ref. [11], this type of resonances were attributed
to the coupling between the composition of diffracted
waves and the resonant Fabry-Perot modes inside the
apertures. In what follows, we demonstrate that the under-
lying physics of these resonances is better explained in
terms of the excitation of a leaky acoustic guided mode.
Although the surface of a perfect rigid body presents no
surface modes, when it is perforated with a periodic array
of indentations, surface modes are built up [17]. If the plate
is drilled with a 1D array of slits, these acoustic surface
modes are always strongly coupled via the waveguide
modes in the slits. The result is a mode which is guided
along the plate and decays outside it, i.e., an acoustic
guided mode. Our theoretical formalism can be used to
calculate the dispersion relation (frequency versus k,) of
these acoustic guided modes. In the case of subwavelength
slits, the system of Eqgs. (3) is still valid but now the system
is driven by an evanescent wave of momentum k, larger
than w/c,, c, being the velocity of sound. In this particular
case, by neglecting diffraction effects, G in Egs. (3) is a
real magnitude, G = ¢ ko and the denominator in

Egs. (3) can be exactly zero at the condition

/k)ZC — kﬁ _a sinkyh ®)
Tk L coskyh =1’
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FIG. 3 (color online). (a) Normalized-to-unit-cell transmit-
tance spectra for a normally incident plane wave impinging at
an array of slits of width a = 0.5 mm and period L = 4.5 mm.
Three different thicknesses are analyzed i = 2, 4, and 8 mm.
(b) Left part: the same magnitude as a function of wave number
and k, for the case h = 4 mm. Right part: dispersion relation of
the acoustic guided modes as obtained from Eq. (8).

where the sign (+) must be taken when sinkyh > 0 and
sign (—) when sinkyh < 0. Equation (8) gives the disper-
sion relation of the acoustic guided modes for a 1D peri-
odic array of slits in the effective medium limit (A > L, a).
In Fig. 3(b) we show this dispersion relation (white lines in
the right part of the panel) for the geometrical parameters
of the structure analyzed in Fig. 3(a) with # = 4 mm. Two
regimes are clearly distinguishable: a linear part close to
the “sound line” (w = c,k,) and flat parts that are asso-
ciated with the Fabry-Perot cavity resonances (sinkgh =
0). The important point to realize is that if A < 2L, these
guided modes become leaky and can be excited by an
impinging propagating plane wave. The connection be-
tween these leaky guided modes and the transmittance
peaks is highlighted in Fig. 3(b). In the left part of this
panel transmittance versus wave number and &, within the
sound cone is rendered. It is clear that the location of
transmittance peaks can be extracted by just folding the
guided modes bands inside the sound cone. We have
checked that for the case of 2D hole arrays, this connection
between transmission peaks and acoustic guided modes
also holds.

Some remarks on the similarities and differences with
respect to the EM case are pertinent here. The existence of
geometry-induced surface EM modes in 2D hole arrays
perforated on perfect conductor plates has been reported
recently [18]. These surface EM modes are at the origin of
the EOT phenomenon in metals at the THz or microwave
regimes. These EM modes have some similarities with the
guided modes discussed in this Letter for acoustic waves.
However, there is a fundamental difference: in the acoustic
case, these modes are not truly surface modes as the two
surfaces of the plate are always connected via a propagat-
ing wave. This fact provokes that acoustic guided modes
always hybridize strongly with the Fabry-Perot resonances
associated with the hole or slit cavities.

In conclusion, we have presented a detailed study of the
acoustic transmission properties of subwavelength aper-
tures (isolated or forming a periodic array). We expect that
this complete study will serve as a well-founded basis in
the transferability of the large amount of phenomena found
for electromagnetic waves to the acoustic case.

Funded by the Spanish MEC (No. MAT2005-06608-
C02).

Note added in proof.—During the review process, the
authors were aware of another work [19], in which similar
conclusions regarding the transmission properties of 2D
hole arrays are reached.
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