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We study in detail the appearance of the phenomenon of resonant transmission of matter waves �cold
noninteracting atoms� through subwavelength apertures. We show how the emergence of this effect, first
reported for electromagnetic waves, is associated with the excitation of surface matter waves, the analog of
surface plasmon polaritons in the electromagnetic case. We describe the similarities and differences for the
one-dimensional �array of slits� and two-dimensional �array of holes� cases. In this last structure, extraordinary
transmission of matter waves is theoretically predicted. Finally, we also study the existence of the beaming
effect for matter waves in single apertures flanked by periodic corrugations.
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I. INTRODUCTION

Since the discovery by Ebbesen and co-workers �1� of
extraordinary optical transmission �EOT� through two-
dimensional �2D� periodic arrays of holes, many theoretical
and experimental works have been devoted to the analysis of
the transmission properties of perforated metallic films. In
addition to EOT in 2D periodic hole arrays �2–6�, enhanced
transmission has been reported in several other structures:
One-dimensional �1D� periodic slit arrays �7–13�, 1D peri-
odic hole chains �14�, 2D quasiperiodic hole arrays �15–17�,
and single apertures �18–20�. For the mentioned isolated ap-
ertures, it has been also demonstrated that it is possible to
tailor the flow of the electromagnetic �EM� fields transmitted
through the film by corrugating its output side, thus creating
a highly collimated light beam emerging from the aperture
�21,22�.

From a fundamental point of view, it is now widely ac-
cepted that surface EM modes play a key role in the appear-
ance of EOT phenomena. These surface waves transfer light
efficiently from the input side of the structure to the output
region. For metals in the optical regime, these EM modes are
surface plasmon polaritons �SPPs� �23�, which require finite
negative values of the metal electric permittivity to exist. In
the case of perfectly conducting films, which do not support
SPPs, the surface texturing plays an active role in creating
the corresponding EM modes, as explained in Refs. �24,25�.

In the last years, several papers have been presented ana-
lyzing the transfer of EOT and beaming phenomena to other
undulatory entities such as cold atoms �matter waves�
�26,27� or sound �acoustic waves� �28–30�. These reports
demonstrate that enhanced transmission and beaming are
very general wave processes based on the excitation of sur-
face waves on perforated films. Recently, other electromag-
netic phenomena such as optical cloaking �31–33� have been
also exported to matter �34� and acoustical �35� waves.

In this paper we describe in detail the existence of EOT
and beaming phenomena for noninteracting cold atoms in
various geometries. We will show how the resonant excita-
tion of surface matter waves �SMWs� on both sides of a
perforated impenetrable film allows the appearance of effi-
cient transmission channels that assist cold atoms to pass

through apertures much smaller than their de Broglie wave-
length ��dB�. As a difference with SPPs, which propagate on
bare vacuum-metal interfaces, SMWs require an attractive
potential close to a solid surface in order to be supported. We
will focus on a very simple model of SMWs based on square
wells which nevertheless contains all physical mechanisms
that are behind the resonant transmission and beaming phe-
nomena.

The issue of a feasible experimental implementation of
these ideas is worth addressing here. In Ref. �26�, we pre-
sented a possible experimental scenario for the 1D case �ar-
ray of slits�. The realistic attractive potential supporting
SMWs at temperatures around 1 �K �corresponding to a ki-
netic energy of 10−11 eV� could be realized by combining the
intrinsic van der Waals attractive interaction between a neu-
tral atom and a dielectric surface—whose typical energies
are around 10−3 eV �36�—and an external repulsive optical
potential created by a blue-detuned laser field propagating
along an array of dielectric fibers �37,38�. It is possible that a
similar scenario could be used for the practical implementa-
tion of the 2D structure �array of holes�. We do not attempt to
present a detailed implementation here, nevertheless the
range of the geometrical parameters necessary to observe
resonant transmission for the 1D case, as presented in Ref.
�26�, will serve as a guide for the design of all structures
analyzed throughout this paper.

The paper is organized as follows: Section II is dedicated
to the design and analysis of SMWs supported by square
potential wells. Section III gives a brief overview of the reso-
nant transmission of cold atoms through 1D periodic slit ar-
rays. In Sec. IV we report on the EOT phenomenon in 2D
periodic hole arrays. Section V is devoted to beaming effects
associated to resonant transmission of matter waves for the
case of a single slit flanked by grooves arranged periodically.
Finally, general conclusions are presented in Sec. VI.

II. SURFACE MATTER WAVES

SMWs are solutions of the Schrödinger equation confined
in the direction normal to a vacuum-solid interface and
propagating along it. Unlike Maxwell equations, which ad-
mit confined waves at bare metal-dielectric interfaces, the
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Schrödinger equation requires an attractive potential close to
the material surface for the existence of such waves. The
simplest potential supporting SMWs is depicted in Fig. 1 a
semi-infinite square well along the z direction �normal to the
material surface�, translationally invariant in the surface
plane. The energies of the bound states �En�0� associated
with this potential well are given by the transcendental equa-
tion �39�

tan��2m

�2 �En − V0�h� = −�V0 − En

En
, �1�

where V0�0 is the potential depth, h its width, and m the
mass of the noninteracting atoms forming the SMW.

In what follows, we consider a potential well supporting
one single bound state of energy E0. The dispersion relation
of the associated SMWs is

E�k� = E0 +
��k�2

2m
, �2�

where E and �k are the energy and in-plane momentum of
the SMW, respectively. In Fig. 1 a cross cut of the potential
function along the z direction is shown. Blue solid line cor-
responds to the bound state energy E0, whereas red dashed
line renders its wave function. The associated SMWs propa-
gate parallel to the impenetrable surface �modeled by an in-
finite potential barrier� and decay in the z direction outside
the potential well.

Due to energy and momentum conservation principles,
SMWs cannot be excited by plane matter waves impinging
on the above described structure. It is well known that the
periodic corrugation of a flat metallic surface allows the cou-
pling of incident EM radiation with SPPs �23�. The analo-
gous process involving matter waves is shown schematically
in Fig. 1: Incident cold atoms of energy Ein �green line� are
transferred to SMWs after receiving the scattering momen-
tum �k supplied by the structure corrugation. This coupling
between plane matter waves and SMWs will later allow the
appearance of the resonant transmission phenomenon
through perforated films.

With this motivation we calculate the dispersion relation
of the SMWs supported by a corrugated structure, namely a
groove array of period � surrounded by a square potential
well of depth V0�0 and thickness h �Fig. 1, inset�. The
grooves width and depth are w and t, respectively. We de-
velop a quasianalytical formalism based on the modal expan-
sion of the matter wave function ��� within the different
regions forming the structure. Taking advantage of the peri-
odic character of the system, we can apply Bloch’s theorem
and solve Schrödinger equation only inside the unit cell of
length �. In region I �see inset of Fig. 1�, � is written as a
sum over diffracted waves as

��I�z�	 = 

n=−�

�

�n�kn	eikz
�n�z, �3�

where �n are unknown complex coefficients, kn=kx+n 2	
� and

kz
�n�=�k0

2−kn
2 are the wave-vector components of the Bloch

mode �kn	 along x and z directions, respectively. The SMW
modal wave vector is kx, and k0 is the wave-vector modulus
in vacuum k0=�2mE /�=2	 /�dB, where E is the SMW en-
ergy and �dB is the de Broglie wavelength. Finally, the wave
function in real space for the nth diffracted Bloch mode is
�x �kn	= eiknx

��
.

In region II, the wave function is expanded again in terms
of Bloch modes as

��II�z�	 = 

n=−�

�

�Aneiqz
�n�z + Bne−iqz

�n�z��kn	 , �4�

where An and Bn are the unknown expansion coefficients and
qz

�n�=�
k0
2−kn

2, with 
=1+
�V0�
E , is the wave-vector component

along the z direction.
In our analysis, we consider groove widths much smaller

than �dB and �dB /�
 �the de Broglie wavelength inside the
grooves�. In this subwavelength regime, taking only the first
groove waveguide mode in the expansion of � inside region
III results in a very good approximation. This mode governs
the SMW behavior as it is the least evanescent wave along
the z direction inside the grooves. Thus, in region III we have

��III�z�	 = C sin��z���WM	 , �5�

where C is unknown. Note that as �dB /�

w, the wave
vector �=�
k0

2− �	 /w�2 is imaginary and sin��z� can be re-
placed by i sinh����z� in Eq. �5�. The wave function in real
space for the first groove waveguide mode is �x ��WM	
=� 2

wsin� 	
w �x+w /2�� inside the groove ��x��w /2�, and

FIG. 1. �Color online� Cross cut along the z direction of the
potential function supporting SMWs �black line�. The potential well
has only one bound state of energy E0 �blue line�. The correspond-
ing wave function �red dashed line� is confined in the z direction.
The indicated transition �dashed arrow� from a collision state Ein

�green line� to the SMWs associated to E0 is only possible once the
surface is modulated. Inset: 2D potential landscape resulting from
the corrugation of the material surface. Colors code the potential as
follows: Orange �region I�: V=0; blue �region II�: V=V0�0; and
red �region III�: V= +�. For the parameters considered in our cal-
culations �h=0.30 �m and V0=−1.06�10−11 eV�, E0=−0.095
�10−11 eV.
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�x ��WM	=0, otherwise. We have chosen z=0 at the groove
bottom so that �x ��III�0�	=0.

In order to obtain the set of modal expansion coefficients
��n, An, Bn, and C
, we impose continuity conditions on �
and its z derivative at the interfaces of the system �z= t and
z= t+h�. The wave function and its derivative must be con-
tinuous in all space, except at the infinite potential barriers
modeling the impenetrable surface, where �z� presents a
discontinuity. Thus, in order to remove their dependence on
the x coordinate, we project the matching equations at z= t
+h onto Bloch modes, whereas equations at z= t associated
to � ��z�� must be projected onto �kn	 ���WM	�. Defining the
quantity �=C sin��t�, which corresponds to the amplitude of
� at the openings of the grooves, we obtain a single conti-
nuity equation of the form

�G − ��� = 0. �6�

The term �=� / �k0 tan��t�� contains the effect of the pen-
etration of matter waves inside the grooves. Its physical
meaning can be clarified by comparison with the case of
wide grooves, where � is a real number, and thus propagat-
ing modes are supported inside each groove. In such case the
zeros of the denominator in � correspond to resonances
within the grooves due to bouncing of the groove mode at
the bottom and opening of the indentation. For the chosen
subwavelength grooves, � is imaginary and no propagating
modes nor resonances exist, but the interpretation of � is
analog. The G term reflects the coupling of the matter wave
function at different grooves through diffracted waves and is
given by

G = 

n=−�

�
iqz

�n�

k0
f�kn,h���kn��WM	�2, �7�

where the function f�kn ,h� is

f�kn,h� =
kz

�n� cos�qz
�n�h� − iqz

�n� sin�qz
�n�h�

qz
�n� cos�qz

�n�h� − ikz
�n� sin�qz

�n�h�
. �8�

For kn=0, the denominator in f�kn ,h� vanishes for ener-
gies satisfying Eq. �1�. This fact indicates the close link be-
tween the bound states supported by the potential well sur-
rounding the modulated surface and resonances in the G
term, which governs the coupling between different grooves.
The dispersion relation of the SMWs propagating along the
structure is obtained by imposing the condition �G−��=0,
leading to nonzero solutions of Eq. �6�. This condition can be
rewritten as

cot��t� = 

n=−�

�
iqz

�n�

�
f�kn,h���kn��WM	�2. �9�

In Fig. 2, �G−�� for an array period of �=0.80 �m is
plotted. The groove dimensions are w= t=0.16 �m. The at-
tractive potential depth is V0=−1.06�10−11 eV and its width
h=0.30 �m. As explained above, this set of parameters is
tuned to observe resonant transmission for the 1D case.
Black regions correspond to �G−�� values close to zero,
showing the dispersion relation of the SMWs supported by
the structure. In our calculations, we have considered that

SMWs are composed of cold 87Rb atoms �m=1.45
�10−25 kg�. Kinetic energy versus momentum for free 87Rb
atoms is depicted as the dashed green line. Note that SMWs
are strictly guided modes only below this line. The solutions
of kx of Eq. �6� have an additional imaginary part. This
means that above this line SMWs are leaky, radiating while
they propagate along the structure.

An approximate expression for the dispersion relation of
SMWs on corrugated surfaces can be extracted from Eq. �2�
by simply applying Bloch’s theorem to the parallel momen-
tum component k=kx. This leads to different bands of energy
En�kx�=E0+ ��2 /2m��kx+n 2	

� �2 shown as red dotted line in
Fig. 2. For the potential well considered in our calculations,
E0=−0.095�10−11 eV is much lower than the kinetic energy
close to the n=1 band edge, h2 /2m�2=1.48�10−11 eV. As
we can see in Fig. 2, this approximated expression is in very
good agreement with the exact SMWs dispersion relation.

III. RESONANT TRANSMISSION THROUGH 1D SLIT
ARRAYS

Once we have designed SMWs with properties similar to
those of SPPs, we study the appearance of the extraordinary
transmission phenomenon for cold atoms �26�. We go further
with our simple model and consider a material slab perfo-
rated with a periodic array of narrow slits and surrounded by
a square potential well �see right-hand inset of Fig. 3�. Such
structure supports SMWs at both film sides which, as in the
electromagnetic analog, will play a crucial role in the reso-
nant transmission process. The close correspondence be-

FIG. 2. �Color online� Dispersion relation of the SMWs sup-
ported by the groove array depicted in the inset of Fig. 1. The array
period is �=0.80 �m and the groove dimensions, w= t=0.16 �m.
The potential well depth and thickness are V0=−1.06�10−11 eV
and h=0.30 �m, respectively. The SMWs are composed by cold
87Rb atoms �m=1.45�10−25 kg�. Red dotted lines correspond to
the approximated bands obtained from Eq. �2�. Green dashed line
renders E versus kx for free 87Rb atoms.
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tween the Schrödinger equation and Maxwell equations in
two dimensions leads to several similarities between EOT in
slit arrays for cold atoms and s-polarized light �40�.

We extend the modal expansion formalism presented
above to study the transmission of a plane matter wave im-
pinging from the top �z�0� on the perforated film. The wave
function in region I �see Fig. 3� can be written as an incident
plane wave with parallel momentum kinc=�2mE /� sin �
=2	 sin � /�dB �where � is the incidence angle� plus a sum
over reflected propagating and evanescent Bloch modes �kn	,
with kn=kinc+n 2	

� . Inside the attractive potential well sur-
rounding the material slab �regions II and IV�, � is given by
Eq. �4�, whereas the transmitted matter wave �region V� can
be expanded in terms of diffracted Bloch modes �kn	.

For subwavelength slits �w
�dB,�dB /�
� the behavior of
the matter waves inside region III is accurately described by
considering only the first slit waveguide mode ��WM	 in the
expansion

��III�z�	 = �Cei�z + De−i�z���WM	 . �10�

Imposing continuity conditions on the wave function and
its z derivative at the structure interfaces, we end up with a
set of two linear equations in the amplitudes of the matter
wave function at the entrance, �=C+D, and exit, ��
=−�Cei�t+De−i�t�, of the slits,

�G − ��� − GV�� = I ,

�G − ���� − GV� = 0. �11�

Extending the physical picture that we have associated to
Eq. �6�, the upper �lower� equation in system �11� controls
the matter wave behavior at the input �output� film surface.
Thus, the inhomogeneous term I= �2�2i /	�
 / �
 cos�
k0h�
− i sin�
k0h�� present only in the upper equation, gives the
overlap between the incident matter plane wave and the slits
waveguide mode ��WM	. The term GV=� / �k0 sin��t�� de-
scribes the coupling of � at both sides of the film through
the slits, whereas � remains the same as in the previous sec-
tion. Finally, G, which describes the coupling of the matter
wave function at different slits openings, is given by Eq. �7�.

Solving Eqs. �11�, amplitudes � and �� are obtained. The
matter wave function in each point of the space and also the
transmissivity �T� of the structure can be then calculated.
Within our formalism, the last one is given by

T =

�
�

jz
t�x�dx

�
�

jz
i�x�dx

= GV Im��*��� , �12�

where jz
t�i��r�= �� /m�Im��t�i��r�*�z�

t�i��r�
 is the z compo-
nent of the probability density current associated to the trans-
mitted �incident� matter waves.

Figure 3 renders, in logarithmic scale, the transmittance of
cold 87Rb atoms impinging at normal incidence on a film of
thickness t=0.16 �m perforated with a periodic array of slits
of width w=0.22 �m. The potential depth is V0=−1.06
�10−11 eV and its width h=0.3 �m. Three different array
periods are considered: �=0.80 �m �black solid line�; �
=0.78 �m �red dashed line�; and �=0.82 �m �green dotted
line�. Spectra are normalized to the current flux impinging on
the array period. Close to �, all of the structures display a
sharp dip in transmittance �T=0 within the numerical preci-
sion of our calculations� followed by two adjacent narrow
100% transmission peaks. Note that these two peaks cannot
be distinguished in Fig. 3 due to the wide spectral region
displayed. In the electromagnetic analog, these are the main
fingerprints of the presence of EOT �11�. Their appearance in
Fig. 3 indicates that the resonant transmission phenomenon
for cold atoms occurs in our model structures.

The physical origin of EOT relies on the resonant excita-
tion of SPP modes supported by metallic films �3�. In order
to confirm that SMWs are the key actors in the formation of
the analogous phenomenon for matter waves, we compare
the spectral position of the transmission resonances with the
approximate predictions obtained from the dispersion rela-
tion of SMWs on uncorrugated interfaces �2�. Since the cou-
pling between the incident atom beam and SMWs is mainly
governed by first-order processes �n= �1�, at normal inci-
dence the parallel momentum of the SMWs propagating
along the film surface is k�=2	 /�. Thus, the corresponding
de Broglie wavelength is

�dB
SMW =

�

�1 + �2mE0/h2��2
� ��1 +

2m�E0��2

h2 � , �13�

where we have taken into account that, for the parameters we
are considering �E0�
h2 /2m�2. For the three arrays of Fig.

FIG. 3. �Color online� Cold 87Rb atoms transmission spectrum
through a film of thickness t=0.16 �m perforated with a periodic
array of slits of width w=0.22 �m. Three different array periods are
considered: �=0.80 �m �black solid line�; �=0.78 �m �red
dashed line�; and �=0.82 �m �green dotted line�. Vertical arrows
indicate the values of �dB

SMW obtained from Eq. �13� for each case.
Left-hand inset renders T versus �dB for �=0.80 �m and three
different incidence angles: �=0° �black solid line�; �=2° �blue
dashed-dotted line�; and �=4° �orange dashed-double-dotted line�.
Right-hand inset: 2D display of the perforated material film �h
=0.30 �m and V0=−1.06�10−11 eV�. Regions I, V: V=0; II, IV:
V=V0; III: V= +�.
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3, �dB
SMW �indicated by vertical short arrows� coincides with

the position of the sharp dip in transmission spectra. In the
EOT phenomenon, this close correspondence between the
position of the so-called Wood’s anomaly and the frequency
of the SPPs supported by the uncorrugated metal surface has
been also observed �10�. In the preceding section, we showed
that the exact SMWs dispersion relation �9� leads to lower
energies than predicted from this approximation. This fact,
together with the interaction through the slits of the SMWs at
both sides of the film shifts the spectral location of the trans-
mission peaks to larger �dB.

Although the dispersion relation of the SMWs supported
by the film predicts the position of the resonant peaks in
transmission spectra, it does not contain any information
about the peaks shape. In order to understand the asymmetric
profile of the transmission maxima in Fig. 3, a more complex
interpretation based on a Fano-type picture �41� is required.
Such scheme, which has been successfully applied to the
analysis of EOT in its electromagnetic version �42�, distin-
guishes between two different contributions to the transmis-
sion process: A resonant contribution due to the excitation of
surface waves on the film sides and a nonresonant contribu-
tion due to the direct scattering of the incident radiation
through the apertures. The interference between these two
channels induces the observed asymmetry in the transmis-
sion maxima. According to this picture, the Wood’s anomaly
can be associated to the destructive interference between
these two channels.

In the left-hand inset of Fig. 3, T versus �dB for an array
of period �=0.80 �m and three different incidence angles
��� is shown. For non-normal incidence, �=2° �blue dashed-
dotted line� and �=4° �orange dashed-double-dotted line�, T
displays the characteristic resonant features twice, located at
larger and lower �dB than at normal incidence �black solid
line�. This splitting of the resonances with the angle of inci-
dence can be understood again in terms of SMWs on uncor-
rugated interfaces. For ��0, the incident atom beam excites
SMWs with two different parallel momenta k�

=2	�sin � /�dB�1 /��. This leads to the formation of two
very efficient transmission channels with different resonant
energies E�kx

��. For small �, a simple expression for the �dB
associated to these SMWs can be obtained,

�dB
SMW���� = �dB

SMW�1 �
�

�1 + �2mE0/h2��2� , �14�

where �dB
SMW is given by Eq. �13�. This result is in very good

agreement with the spectra depicted in the left-hand inset of
Fig. 3. As predicted, for small angles the transmission peaks
deviate linearly with � from the normal incidence position.

IV. RESONANT TRANSMISSION THROUGH 2D HOLE
ARRAYS

The next step in our analysis is to transfer the resonant
transmission phenomenon from 1D structures �slit arrays� to
2D ones �hole arrays�, for which EOT was first reported �1�.
As in the 1D case, the 2D SMWs are supported by a square
potential well surrounding the material film drilled with the

hole arrangement. SMWs propagate along the film surface
�xy plane� and decay in the z direction for increasing dis-
tances from the film.

We study the scattering of cold atoms by rectangular ar-
rays of holes �see the inset of Fig. 4� by means of an exten-
sion of the formalism applied to 1D structures. For 2D peri-
odic arrays, Bloch’s theorem labels the parallel momentum
associated to the discrete diffraction orders with two indexes
�n and m�,

knm = kinc + n
2	

�x
x̂ + m

2	

�y
ŷ , �15�

where the incident parallel momentum kinc
=�2mE /��sin � sin �x̂+sin � cos �ŷ� is characterized by the
polar ��� and azimuthal ��� angles, and �x and �y are the
array periods in the x and y directions, respectively. Bloch
modes, �knm	, form the eigenmode basis onto which the mat-
ter wave function is expanded outside the film. The associ-
ated wave functions in real space are �r� �knm	
=eiknmr� /��x�y, where r� =xx̂+yŷ.

We focus our analysis on two different aperture shapes:
Rectangular holes �characterized by the hole sides wx and
wy� and circular holes �characterized by the hole radius rc�.
In both cases, the hole dimensions are much smaller than the
de Broglie wavelength, i.e., wx ,wy ,rc
�dB /�
. Thus, as for
1D slits, it is a good approximation to consider only the first
hole waveguide mode ��WM

2D 	 in the description of � inside
the slab, having

��III�z�	 = �Cei�2Dz + De−i�2Dz���WM
2D 	 , �16�

where, for rectangular holes, the waveguide mode is given
by

FIG. 4. �Color online� Transmittance of cold 87Rb atoms
through a film of thickness t=0.16 �m drilled with a periodic array
of square holes of side w=0.28 �m as a function of �dB. Three
different structures are considered. Black solid line: Square array
with �x=�y =0.800 �m. Red dotted line: Rectangular array with
�x=0.790 �m and �y =0.810 �m. Green dashed line: �x

=0.785 �m and �y =0.815 �m. Inset: Schematic view of the
structure.
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�r���WM
2D 	 = �x��WM	�y��WM	

=
2

�wxwy

sin� 	

wx
�x +

wx

2
��sin� 	

wy
�y +

wy

2
��

�17�

inside the hole and �r� ��WM
2D 	=0, otherwise. The z component

of the wave vector is �2D=�
k0
2− �	 /wx�2− �	 /wy�2.

For circular holes, the wave function for the fundamental
waveguide mode inside the hole is

�r���WM
2D 	 =

1

�	rc
2�J1�r01��2

J0� r01

rc
r� , �18�

where J0�r� and J1�r� are the zero and first-order Bessel func-
tions of the first kind, respectively, and r01�2.4048 is the
first zero of J0�r�. The wave vector along the z direction is
�2D=�
k0

2− �r01 /rc�2. Note that the fundamental waveguide
mode of the hole depends only on the radial coordinate r
=�x2+y2.

The continuity equations obtained from the modal expan-
sion procedure for 2D hole arrays keep the same form as for
1D slit arrays �Eqs. �11��, where now the unknowns, � and
��, are equal, except for a phase factor, to the wave-function
amplitudes at the hole openings. The physical interpretation
and the definition of the different terms also holds, with the
only difference that wave vector � must be replaced by its
2D counterpart �2D. G=G2D is the only term within Eqs. �11�
which varies substantially from its 1D version. It includes
now a double sum over diffraction orders,

G2D = 

n,m=−�

�
iqz

�nm�

k0
f�knm,h���knm��WM

2D 	�2, �19�

where f�knm ,h� is given by Eq. �8� substituting kz
�n� and qz

�n�

by kz
�nm�=�k0

2− �knm�2 and qz
�nm�=�
k0

2− �knm�2, respectively.
Once the set of matching equations is solved, T can be evalu-
ated from Eq. �12�, where now the total probability current
fluxes are integrated inside the 2D unit cell of area �x��y.

Figure 4 shows the transmittance of cold 87Rb atoms at
normal incidence through a material slab �t=0.16 �m�.
Three different periodic arrays of square holes are consid-
ered. In all three cases wx=wy =0.28 �m. Black line corre-
sponds to a square array of period �x=�y =0.80 �m. It
shows the characteristic twin maxima accompanied by a
sharp dip close to the period already analyzed for 1D struc-
tures. In contrast to Fig. 3, in Fig. 4 the two resonant peaks
are clearly distinguishable since the wavelength range dis-
played is much narrower. As in the 1D case, both resonant
maxima are linked to the excitation of SMWs at both film
surfaces. However, since the coupling of the SMWs through
the apertures �both slits and holes� is evanescent �� and �2D
are imaginary for the geometrical parameters considered�,
two different configurations of the matter wave function
arises. The two possible profiles of � correspond to the sym-
metric and antisymmetric superposition of the isolated
SMWs through the apertures. It is discussed below how the
symmetric �antisymmetric� profile with respect to the middle

of the film is higher �lower� in energy, leading to a resonant
peak at a shorter �larger� �dB in the transmission spectrum.

The transmittance versus �dB for two rectangular arrays of
periods �x=0.790 �m, �y =0.810 �m �red dotted line�, and
�x=0.785 �m, �y =0.815 �m �green dashed line� is also
plotted in Fig. 4. Although both arrays are almost square, the
transmission spectra are very different from the square one.
Rectangular arrays present the usual resonant features twice.
This splitting can be understood again turning back to Eq.
�2�. In 1D arrays under non-normal incidence, nonzero kinc
allows the excitation of SMWs with two different wave vec-
tors k�, leading to different resonant energies E�k��. In 2D
rectangular hole arrays, it is the fact that �x��y what makes
the resonant energies associated to SMWs propagating along
x and y direction different, i.e., E�k10��E�k01�. As expected,
transmission resonances for both rectangular arrays in Fig. 4
are located close to �x and �y. This splitting of transmission
resonances in rectangular hole arrays does not occur in the
electromagnetic case, where the incident light excites only
SPPs traveling along the direction defined by the electric
field component parallel to the metallic film. Thus, the po-
larization of the incident light defines a preferred direction at
the film surface and only transmission resonances associated
to the structure periodicity along that direction appear in the
spectra �14�.

In order to study the dependence of the transmission prop-
erties of hole arrays on the hole shape, the transmission spec-
tra for square arrays of period �x=�y =0.800 �m and four
different hole geometries are shown in Fig. 5. The geometri-
cal parameters of the perforated film are the same as in Fig.
4. The hole area is fixed to 7.84�10−3 �m2. Black solid line
renders the transmittance for square holes of side wx=wy
=0.28 �m. Green dotted and red dashed-dotted lines corre-
spond to rectangular arrays of side wx=0.21 �m and wy
=0.37 �m, and wx=0.14 �m and wy =0.56 �m, respectively.
The transmission spectrum for circular holes of radius rc
=0.16 �m is plotted as red dashed line. The profile of the
transmission maxima for the four structures is very similar,

FIG. 5. �Color online� Cold 87Rb atoms transmission through
square arrays ��x=�y =0.800 �m� of holes of area equal to 7.84
�10−2 �m2. Four different hole shapes are considered �see main
text�. The rest of the parameters defining the structure are the same
as in Fig. 4.
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whereas their width and position change. Thus, although the
width of the peaks for square and circular holes is the same,
the spectral position is shifted to shorter �dB in the circular
case. This blueshift of the transmission resonances also oc-
curs for rectangular holes, accompanied by a reduction of the
peaks width. The ratio between hole sides control this effect:
For larger wy /wx, the transmission peaks approach the peri-
odicity while they become narrower.

In Fig. 6, the wave-function modulus, ��� passing through
the hole arrays of Fig. 4 is depicted. Upper panels show ���
in the output side �z=0.36 �m� of the square array of Fig. 4.
Panel �a� corresponds to the transmission dip at �dB
=0.829 �m and panel �b� to the peak at �dB=0.837 �m. As
expected from Eq. �12�, the wave-function modulus at the
holes exit presents a minimum �maximum� at the resonant
dip �peak� in the spectrum. However, in both cases it dis-
plays a maximum in the center of the square formed by four
neighbor holes in the array. These maxima do not appear in
the electromagnetic case �43� due to the asymmetry of the
electric field induced by the incident polarization. Panels �c�
and �d� show a cross cut of the matter wave function inside

the xz plane for the same structure. They correspond to the
resonant transmission peaks at �dB=0.837 �m and �dB
=0.840 �m, respectively. They show clearly that the maxi-
mum at higher �lower� �dB is linked to a symmetric �anti-
symmetric� profile of � with respect to the middle plane of
the perforated film. As a result, the modulus of the wave
function inside the holes vanishes at z= t

2 in panel �c�,
whereas ��� presents a minimum different from zero inside
the holes in panel �d�.

Finally, lower panels in Fig. 6 render the matter wave
function at resonance in the output surface of the rectangular
hole array in green in Fig. 4. Panel �e� is evaluated at �dB
=0.816 �m and panel �f� at �dB=0.850 �m. These two pan-
els demonstrate that the resonant transmission process for
�dB��x is controlled by SMWs propagating along the x
direction, whereas for �dB��y, SMWs traveling in the y
direction assist it.

V. RESONANT TRANSMISSION AND BEAMING
THROUGH SINGLE APERTURES

In this section we study the phenomenon of resonant
transmission and beaming through single apertures for matter
waves. It is well known that SPPs, which are key actors in
the electromagnetic version of EOT, also constitute a route to
mold the flow of light �21�. SMWs can be tailored in a simi-
lar way to SPPs in order to control the diffraction of matter
waves exiting from a single aperture �27�. We consider a
simple 1D structure composed by a central slit flanked by an
array of grooves symmetrically disposed at both sides �right
and left� of the aperture in both faces �input and output� of
the film.

We extend our theoretical formalism to deal with finite
structures. We consider an artificial supercell of length L
containing the structure shown in the right-hand inset of Fig.
7: A material slab of thickness t perforated with a single slit
of width w surrounded by 4�N grooves of width wg and
depth tg. As �dB�w ,wg, the wave function inside the film is
accurately described by considering only the first waveguide
mode inside each indentation. If we label the indentations
with index �, the wave function inside the film can be writ-
ten as

���z�	 = 

�=−N

N

���z���WM
� 	 , �20�

where the function ���z� contains the dependence on z of �
inside indentation �. We label the central slit with �=0. The
associated waveguide mode in real space is �x ��WM

0 	
=�2 /wsin�	 /w�x+w /2�� for �x��w /2, and vanishes other-
wise. As we see in Sec. III, the dependence on z is given by
�0�z�=C0ei�z+D0e−i�z, with �=�
k0

2− �	 /w�2.
The waveguide mode supported by groove � ���0� has

the form �x ��WM
� 	=�2 /wgsin�	 /wg�x−x�+wg /2�� if �x−x��

�wg /2 �where x� is the groove position� and �x ��WM
� 	=0,

otherwise. The fact that the grooves are arranged periodically
allows us to write x�=��, where � is the array period. For
grooves milled in the input side of the structure �0�z� tg�,
we have ���z�=C� sin �g�z− tg�, whereas for grooves in the

FIG. 6. �Color online� Modulus of the matter wave function
passing through periodic hole arrays at resonance. Panels �a� and
�b�: At the output surface of the square array considered in Fig. 4
for �dB=0.829 �m and �dB=0.837 �m, respectively. Panels �c� and
�d�: Cross cut in the xz plane for �dB=0.837 �m and �dB

=0.840 �m. Panels �e� and �f�: ��� at the output surface for the
rectangular array in green in Fig. 4 evaluated at �dB=0.816 �m and
�dB=0.850 �m. ��� increases from blue �black� to yellow �white�.
Black squares indicate hole positions.
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output side �t− tg�z� t�, ���z�=D� sin �g�z− t+ tg�. In both
cases, the z component of the wave vector inside the grooves
is �g=�
k0

2− �	 /wg�2.
We take into account the finiteness of the structure by

making the supercell length L tending to infinite �L→��. As
a result, discrete diffraction orders cannot be defined and the
matter wave function must be expanded in terms of a con-
tinuum of diffracted waves. As for periodic structures, we
define the quantities �� �����, which give the amplitude of �
at the openings of the indentations perforated in the input
�output� surface of the film. At the central slit, we have �0
=C0+D0 and �0�=−�C0ei�t+D0e−i�t�, whereas for ��0, ��

=−C� sin��gtg� and ��� =−D� sin��gtg�. Imposing continuity
of the wave function at the interfaces of the structure, we
obtain a set of �4N+2� equations in the unknowns ��� ,���

of the form

�G�� − ����� + 

���

G���� − GV�0���0 = I�,

�G�� − ������ + 

���

G����� − GV�0��0 = 0. �21�

The role played by the various terms in Eqs. �21� remains
the same as in Eqs. �11�. The upper �2N+1� equations con-
trol the flow of the matter waves at the input surface of the
film, where I�= �2�2i /	�
 / �
 cos�
k0h�− i sin�
k0h�� reflects
the overlap between the normal incident plane wave and the
waveguide mode supported by indentation �. The term ��

describes the penetration of the matter waves inside the in-
dentations. For �=0, it has the form �0=� / �k0 tan��t��
whereas for ��0, ��=�g / �k0 tan��gtg��. The term GV

=� / �k0 sin��t�� takes into account the overlap of � at both
sides of the film through the slit. It is only present in the

equations associated to �0 and �0�. Finally, G��

= ��WM
� �Ĝ��WM

� 	 describes the coupling of the matter waves
coming from indentations � and � through the SMWs trav-
eling along the film surfaces. The representation of the

propagator Ĝ in real space is

G�x,x�� =
1

2	
�

−�

�

dkx
iqz

k0
f�kx,h�eikx�x−x��, �22�

where the wave vector along the z direction is kz=�k0
2−kx

2 in
vacuum, and qz=�
k0

2−kx
2 inside the potential well surround-

ing the film. The function f�kx ,h� is given by

f�kx,h� =
kz cos�qzh� − iqz sin�qzh�
qz cos�qzh� − ikz sin�qzh�

. �23�

The quantities ��� ,���
 are found by solving Eqs. �21�, and
once they are known, the matter wave function in all the
space can be constructed. The transmissivity of the structure
is then given by the ratio between the transmitted and inci-
dent probability density current fluxes through the slit. This
ratio can be expressed as a function of the matter wave am-
plitudes at the slit openings as T=GV Im��

0
*�0��. As a differ-

ence with the preceding sections, the incident wave is now
normalized to the slit width w and T corresponds to the
normalized-to-area transmittance.

Figure 7 represents T versus �dB for normal incidence of
the atoms. The red dashed line corresponds to the single slit
case �w=0.3 �m and t=0.16 �m�. As �dB�w, T�1 and the
transmission spectrum shows an exponentially decaying be-
havior as �dB increases. When grooves �wg=0.22 �m and
tg=0.065 �m� are milled surrounding the slit on both sur-
faces of the film, T develops a resonant peak close to the
periodicity of the groove array �=0.8 �m. As the number of
grooves increases from N=5 �blue dashed-dotted line� to N
=15 �green dashed-double-dotted line�, the transmission
peak becomes higher and spectrally narrower. This is a clear
fingerprint of the excitation of SMWs running along the film
surfaces. For higher N, the coupling between the incident
plane matter wave and the SMWs becomes more efficient,
leading to a better defined resonant transmission peak. In the
left-hand inset of Fig. 7, the comparison between the trans-
mission spectrum for a single slit surrounded by N=10
grooves in both the input and output sides of the film �solid
black line� and the same slit surrounded by N=10 grooves
only in the input side �red dashed line� is shown. It is clear
that the total transmission is mainly controlled by the corru-
gation placed at the input surface of the structure.

In order to study the shape of the beam emerging from the
structure, we calculate the transmitted matter wave function
��t� in the vacuum region below the structure �z� t+h, see
right-hand inset of Fig. 7�. It can be written as a superposi-
tion of plane waves of the form

�t�x,z� = �
−�

�

dkxt�kx�eikzzeikxx, �24�

where the transmission coefficient t�kx� depends on the am-
plitudes ��� as

FIG. 7. �Color online� Normalized-to-area transmittance for four
different structures. Dashed red line, single slit. Blue dashed-dotted
line, single slit flanked by N=5 grooves located at each side �right
and left� of the central slit at both the input and output surfaces.
Black solid line and green dashed-double-dotted lines, same as be-
fore but with N=10 and N=15, respectively. Left-hand inset renders
T versus �dB for N=10 grooves milled at the two surfaces �black
solid line� or only at the input surface �red dashed line�. Right-hand
inset: Structure supercell containing the central slit surrounded by
4N grooves.
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t�kx� =
qze

−ikz�t+h�

�qz cos�qzh� − ikz sin�qzh��

� 

�=−N

N � cos�kxw�/2�e−ikxx�

w���	/w��2 − kx
2� ���� . �25�

Once �t is obtained, the radial probability density current
jr
t = �� /m�Im��t*�r�

t
 can be calculated. Figure 8 renders jr
t

in the far field �r=150�� as a function of the exiting angle �
and �dB for the structure with N=15 grooves perforated on
both film surfaces. At �dB=0.85 �m, jr

t shows a maximum
around �=0° which leads to a collimated beam emerging
from the single slit in the forward direction. This �dB coin-
cides with the position of the transmission peak in the spec-
trum �green dashed-double-dotted line in Fig. 7�. This fact
indicates that both phenomena, resonant transmission and
beaming, have the same physical origin: The excitation of
SMWs propagating along the film surfaces. We have also
studied jr

t for films corrugated only in the input surface. The
angular patterns of jr

t obtained display the uniform behavior
characteristic of a wave emerging from a single aperture
much smaller that the wavelength. From this result, we can
conclude that the corrugation of the output surface of the
film governs the shape of the atom beam exiting from the
central slit.

Figure 9 renders the amplitude of the matter wave func-
tion emerging from a single slit flanked by N=15 grooves
evaluated at two different de Broglie wavelengths �indicated
by white dashed lines in Fig. 8�. Wave function in panel �a�
is associated to the peak �T=2.5� in transmission spectrum at
�dB=0.85 �m �see Fig. 7�. At resonance, the scattering of the
SMWs with the grooves perforated in the output surface of
the film leads to a coherent reemission of matter waves. The
interference of these matter waves with those stemming from

the central slit gives rise to a very collimated beam along the
z direction. Panel �b� is evaluated out of resonance ��dB

=0.96 �m�. The transmissivity of the structure is T=0.25,
much lower than in panel �a�. As expected from Fig. 8, two
different beams emerge from the structure, traveling with an
angle �� �8°. The matter wave reemission by the surface
corrugation is now much less efficient than at resonance.
This fact allows us to see clearly the SMWs traveling away
from the central slit along the film surface.

VI. CONCLUSIONS

We have analyzed theoretically the formation of surface
matter waves in vacuum-solid interfaces, with properties
similar to surface plasmon polaritons. In contrast to the elec-
tromagnetic case, the Schrödinger equation requires an at-
tractive potential surrounding the material surface in order to
support such bounded solutions. By means of a simple model
based on square wells, we have studied the appearance of the
resonant transmission phenomenon of matter waves through
periodic arrays of apertures.

We have demonstrated the appearance of the extraordi-
nary transmission phenomenon for cold atoms in two-
dimensional hole arrays. Moreover, we have shown how the
scalar character of the matter wave function leads to impor-
tant differences with the electromagnetic case, where polar-
ization effects play a relevant role. We have also analyzed in
detail the dependence of the phenomenon on the array geom-
etry and hole shape.

Surface matter waves can also lead to an enhancement of
matter waves transmission through a single aperture flanked
by a periodic array of indentations. We have studied how a
collimated beam emerging from the aperture can be obtained
by tailoring the corrugation at the output side of the film.

FIG. 8. �Color online� Radial probability density current jr
t

emerging from a single slit as a function of the exiting angle � and
the de Broglie wavelength �dB. The slit �w=0.22 �m� is flanked by
N=15 grooves of width wg=0.30 �m and depth tg=0.065 �m dis-
posed periodically ��=0.80 �m� at both surfaces of a film of
height t=0.16 �m. White dashed lines indicate the �dB values con-
sidered in Fig. 9.

FIG. 9. �Color online� Amplitude of the matter wave function
emerging from the structure considered in Fig. 8 at two different
wavelengths: �a� At resonance ��dB=0.85 �m� and �b� out of reso-
nance ��dB=0.96 �m�. Note that the color scale is different in each
panel.
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Apart from their fundamental interest, surface matter
waves constitute the bridge to transfer all phenomenology
associated to surface plasmons in classical optics to the do-
main of atom optics. In this manner, they can help to enhance
the control of neutral atoms with promising applications in
fields like atom lithography �44� and interferometry �45�. En-
hanced transmission and beaming phenomena have been suc-
cessfully demonstrated with plasmons, photonic crystal
modes, and acoustic waves. The robustness of such surface

wave assisted phenomena makes us confident that careful
design of the atom-surface interaction should enable the ex-
perimental verification of these effects.
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