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Abstract. Surface electromagnetic modes supported by metal surfaces have a
great potential for use in miniaturized detectors and optical circuits. For many
applications, these modes are excited locally. In the optical regime, surface
plasmon polaritons (SPPs) have been thought to dominate the fields at the
surface, beyond a transition region comprising 3–4 wavelengths from the source.
In this work, we demonstrate that at sufficiently long distances SPPs are not
the main contribution to the field. Instead, for all metals, a different type of
wave prevails, which we term Norton waves (NWs) for their resemblance to
those found in the radio-wave regime at the surface of the Earth. Our results
show that NWs are stronger at the surface than SPPs at distances larger than 6–9
SPP absorption lengths, the precise value depending on wavelength and metal.
Moreover, NWs decay more slowly than SPPs in the direction normal to the
surface.

4 Author to whom any correspondence should be addressed.
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The confinement of the electromagnetic (EM) field associated with surface plasmon polaritons
(SPPs), and their intrinsic speed, make them very interesting candidates for use in photonics
[1, 2]. Due to this, the study of the EM fields radiated by localized sources (like defects [3],
nano-gratings or apertures [4]) placed on a surface has received a renewed interest in the
last decade. This is an old problem, which came to prominence in the early 1900s due to its
possible relevance to the transmission of radio signals. The seminal works of Zenneck [5] and
Sommerfeld [6] unveiled the existence of surface waves running along the Earth, which can be
considered as a lossy dielectric. The interest in these works waned after the realization that radio
transmission does not occur via the exponentially damped surface modes, but through reflection
at the ionosphere. Nevertheless, Norton subsequently showed that, in the long distance limit,
radio waves decay algebraically at the surface [7]. This result triggered a debate on the range of
validity of Zenneck–Sommerfeld and Norton waves (NWs) in the radio regime that has persisted
to the present day (see [8] for more details and a historical account). Recently, advances in
nanofabrication have allowed the scaling down of old radio devices into the optical regime [9].
Metallic surfaces are especially interesting because they support SPPs, which are surface EM
modes strongly confined to the plane. The analysis of the surface EM fields created by a
localized source in a metal surface has revealed the existence of a near-field region, extending
for 3–4 wavelengths, where the field presents a complex dependence [10, 11]. SPPs have been
thought to dominate the EM field beyond this region. In this work, we show that, irrespective
of the metal considered, the long-distance asymptotic limit of the EM field at the metal surface
is not the SPP but a different type of wave, which we denote as NWs due to their resemblance
to those found in dielectric surfaces. We show the range of validity of SPPs and NWs and the
distance and field amplitude after which the latter dominate.

Although we will show later how the obtained results apply to dipole sources, let us
concentrate first on the EM fields emerging from a subwavelength slit, placed in an optically
thick metal film. The film is back-illuminated by normal-incident p-polarized light with
wavelength λ (i.e. the wavevector in vacuum is g = 2π/λ). The frequency-dependent dielectric
constant of the metal is εm. This system has been chosen for analytical simplicity (the full
EM field can be expressed in terms of the magnetic field along the slit axes, Hy(X, Z)) and,
also because it is a configuration that has been amply studied both theoretically [12]–[17] and
experimentally [18]–[21]. Figure 1 is a snapshot of the radiated Hy(X, Z) (computed with the
finite difference time domain (FDTD) method) for slit width of A = 100 nm and λ = 540 nm, for
both a perfect electrical conductor (PEC, characterized by |εm| = ∞) and Au [22]5. The choice
of metal and wavelength is motivated for proof-of-principle purposes on the existence of NWs,
but we will show later on that our results are applicable to other metals and frequency ranges.
Our treatment fully takes into account the vectorial nature of the EM fields and, therefore, goes
beyond the scalar approximations considered in other works [17, 20].

It is apparent from figure 1 that the effect of a finite εm is to strongly modify the
radiation pattern close to the metal surface. Although we will provide expressions for the field
everywhere, our main focus will be to characterize the fields within the diffraction shadow,
which loosely speaking is the region where radiation from a slit in a real metal is strongly
reduced with respect to the PEC case.

5 All dielectric constants used are taken from the fit of experimental results in Drude–Lorentz terms, see [22] and
references therein.
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Figure 1. Snapshot of the magnetic field radiated by a subwavelength slit in
an optically thick metal film, back-illuminated by p-polarized light. In the top
panel, the metal is treated as a PEC, while the metal in the lower panel is Au.
The wavelength is λ = 540 nm.

The Green’s dyadic method is more suitable for an analytical study of this problem. Within
this method, the field radiated at the point R = (X, Z) by a slit of width A is (see appendix A
for the justification of this expression and its validation with numerical calculations)

H(x, z) ≈

√
εm − 1

∫ a/2

−a/2
G(x − x ′, z) Ex(x ′, z = −δ) dx ′, (1)

where the Green’s function G(x, z) is the magnetic field generated by a dipolar source with
the electric field pointing along the x-direction, placed at the metal interface, and δ is the skin
depth for the metal. In this expression and throughout the paper, all distances denoted by lower
case letters are expressed in dimensionless units as x = gX , z = gZ and a = g A. Alternatively,
given that the fundamental waveguide mode inside the slit is constant in the x-direction, G(x, z)
can be seen as the magnetic field radiated by an infinitesimally thin slit. The angular spectrum
representation of this function is

G(x, z) =

∫
∞

−∞

D(q) eiqx+iqz z dq, (2)

where q is the x-component of the wavevector (in units of g), D(q) = qzm/[2π (εmqz + qzm)],
qz =

√
1 − q2 and qzm =

√
εm − q2.6

The solution to this integral is not known in the closed form. Fortunately, there are
mathematical methods (see [23]) for extracting its long-distance asymptotic expression,
Gasymp(x, z). The rigorous calculation for Gasymp(x, z) is provided in appendix B and,
additionally, a simplified derivation will be given later on. But before going into the

6 The sign in the square root must be taken so that Im(qz)> 0, in order to satisfy the radiation condition.
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Figure 2. The magnetic field at the metal surface radiated by a horizontal
dipole as a function of distance. The dependences are presented for Au at two
wavelengths: 540 nm (continuous curves) and 567 nm (discontinuous curves).
The figure shows the exact result (red) and the SPP (black) and NW (blue)
contributions.

mathematical details, let us now concentrate on the fields at the metal surface and give the
result obtained:

Gasymp(x, 0) = GSPP(x, 0) + GNW(x, 0). (3)

In this expression, GSPP(x, 0) is the SPP contribution

GSPP(x, 0) = 2π i Cp eiqpx , (4)

where qp =
√

εm/(1 + εm) is the SPP momentum, and Cp = q3
p/[2π(εm − 1)] is the residue of

D(q) at qp.
The second term is

GNW(x, 0) =
eix+iπ/4

√
2π

εm
√

εm − 1
x−3/2. (5)

As will be shown later, this term is the two-dimensional (2D) optical analogue in metal surfaces
of the NW [7] found in the study of the radio-wave radiation of point dipoles on lossy dielectric
interfaces. Dimensionality accounts for the difference between the decay laws: x−3/2 (2D
dipoles) and the x−2 (3D dipoles).

The validity of equation (3) and the competition between SPPs and NWs is illustrated
in figure 2, which shows the magnetic field at the surface radiated by an infinitesimally thin
subwavelength slit, for Au at two different wavelengths. In each case this figure shows the
exact result (computed numerically from equation (1)) and the SPP and NW contributions.
For the cases considered in this figure, the asymptotic result given by equation (3) is virtually
indistinguishable from the exact result even for X ≈ 3 µm and it is not represented. The field
is mainly SPP-like at the shorter distances, while NW dominates at sufficiently long distances
from the source. Note that the relative phase of the NW and the SPP contributions at the distance
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Figure 3. Spectral dependence of the crossover between SPP and NW at the
metal surface, for different metals. The continuous lines represent xN W , defined
as the distance at which the amplitude of the NW is larger than the SPP one.
The discontinuous lines represent xa(0.1) the minimum distance at which Gasymp

gives a relative error of 10% with respect to the exact result. The inset shows the
spectral dependence SPP absorption length for the considered metals.

where their modulus are equal changes with wavelength. Hence, their destructive interference
may lead to the cancellation of the field (as in Au, at λ = 540 nm at X ≈ 12 µm) or, if the
cancellation is not complete, to the appearance of small oscillations in the total field amplitude
(as in the presented case of Au at λ = 567 nm). It is worth noting that similar oscillations were
found in scanning near field optical microscope experiments in Au [20], but their origin was
unknown.

Beyond the particular examples presented in figure 2, the expression given by equation
(3) is a good approximation for the field at the surface, at sufficiently long distances from the
source. In order to quantify this statement, we define xa(β) as the minimum distance such that
|(G(xa, 0) − Gasymp(xa, 0))/G(xa, 0)| < β. The discontinuous lines in figure 3 show the spectral
dependence of the optical and telecom regimes of xa(0.1) for different metals, in units of the
corresponding SPP absorption length. Given that the NW decays algebraically and the SPP
exponentially with distance, at sufficiently large distances the NW is the main contribution to
the field at the surface, for all metals and all wavelengths. The crossover from NW to SPP is
represented in figure 3, which shows the spectral dependence of the distance at which the NW
contribution is larger than the SPP one, xNW, for different metals. This distance strongly depends
on the dielectric permittivity of the metal, being smaller for very lossy metals, as Cu and Au in
the region of inter-band transition (close to λ = 500 nm for both metals).

Undoubtedly, the existence of NWs in metal surfaces has passed unnoticed up to now due
to their small amplitude. In order to characterize how much the field has decayed when the NW
takes over, we consider the ratio |G(XNW, 0)/G(X = λ/4, 0)| (the distance X = λ/4 has been
arbitrarily chosen to give a representative reference in the near-field). In the optical regime,
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when the NW takes over the field has decayed by a factor ranging from 10−2 for lossy metals
(like Ni) to 10−3–10−4 for Ag. Therefore, the NW is not a good channel for sending information
along the surface. Nevertheless, and given that estimations of the field at the surface far away
from the source based on the decay of SPPs may be orders of magnitude wrong, NWs may have
to be taken into account for precise analysis or design of experiments.

In order to show the origin of NWs, and their relation to other waves discussed in the
literature as creeping waves (CWs) and SPPs, let us concentrate on the physical interpretation of
the field radiated by the slit. Additionally, this will lead to a poor man’s (yet correct) derivation
of some of the main results. It is clear from equation (2) that a slit excites the whole range
of diffraction modes (both radiative and evanescent) with an amplitude given by D(q), which
can loosely speaking be understood as the density of EM modes with a given wavevector q at
the slit position7. The standard treatment of G(x, z) in the far-field relies on the observation
that, although all modes are always present, their contributions cancel out due to destructive
interference whenever the phase 8 = qr changes rapidly. Thus, only the region in q-space where
the phase presents an extremum contributes to the far field. For a given point (x, z) (or (r, θ)
in polar coordinates with θ defined as the angle from the normal to the surface), the extremum
occurs at the condition (q/qz)min = x/z, i.e. qmin = sinθ . Expanding the integrand around this
extremum leads to the ‘ray-optics’ (RO) contribution

GRO(r, θ) =

√
2π

r
eir−iπ/4 cos θ D(sin θ)

=
eir−iπ/4

√
2πr

cos θ
√

εm − sin2 θ

εm cos θ +
√

εm − sin2 θ
. (6)

This analytical result reproduces what was observed in figure 1: the magnetic field radiated
by an infinitesimally thin slit in a PEC is isotropic, but the pattern in a real metal is strongly
modified close to the surface, for angles such that cos θ . 1/

√
|εm|.

However, right at the surface the derivative of the phase 8 = qx never cancels and the
saddle point approximation outlined above cannot be directly applied. As the integral of the
product of a smooth and rapidly oscillating function is very small, only the parts of the angular
spectrum where D(q) changes rapidly in the scale of 2π/x will give a net contribution to the
integral. For very small x, all the ‘density of states’ contribute. As x increases, the smooth long-
q region of D(q) is progressively canceled out in the integral, which is eventually dominated
by the strong (and rapid) contribution from the pole in D(q). The contribution of this pole gives
the SPP field. Note that, in a lossy metal, the density of states associated with the plasmon pole
has a finite width, which causes the exponential decrease of the SPP amplitude with distance
(characterized by the SPP propagation length lSPP = Im(qp)

−1).
The previous argument explains why the field at the surface is not the SPP for all distances

and is expected to have a complex dependence with x . Recently, Lalanne and Hugonin [11] have
assigned the term ‘CW’ to the difference between the exact field and the approximation given by
the SPP pole. Their numerical studies, restricted to distances to the source of a few wavelengths,
have shown that the CW is a damped surface wave which, along the surface, oscillates with the
free-space wavevector and decays faster than the SPP. A point to note is that despite the eix

dependence, the CW arises from the whole angular spectrum, not only from regions close to
q = 1.

7 Actually the density of EM modes with wavevector q at the surface is related to I m(D(q)).
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Figure 4. The modulus of D(q), defined in equation (2). The blue and red curves
are for the Au surface (at λ = 800 and 540 nm, respectively), whereas the green
curve is for the PEC (ξ = 0). The inset shows the same for the function 1(q)

defined in the text.

However, the SPP pole is not the sharpest feature of D(q): the derivative of D(q) diverges
at the branch point qz = 0. This is illustrated in figure 4, which shows that |D(q)| has a kink
at q = 1. The contribution to the integral from this kink is expected to be small but, as the
kink cannot be characterized by a typical width in q-space, it is not as strongly suppressed as
the SPP contribution when integrated with an oscillatory function. In order to show that the
kink originates the NW, it is convenient to integrate by parts G(x, 0). Then, from equation
(2) we obtain G(x, 0) = (i/x)

∫
∞

−∞
1(q) eiqx dq , with 1(q) = q G ′(q). This representation has

the advantage that the kink in D(q) transforms into a square root singularity (see inset in
figure 4). The contribution close to qz = 0 can be retrieved by keeping the singularity but setting
qz = 0 everywhere else, this is, by defining 1NW(q) = (εm/

[
2π

√
εm − 1

]
) (1/qz). The inset to

figure 4 shows the comparison between 1(q) and 1NW(q), for a representative case. Of course,
1NW(q) is only a good approximation to 1(q) close to q = 1, so its use for integration over
the whole angular spectrum could seem unjustified. However for very large x this is valid, as
only the region close to q = 1 contributes. With this, GNW(x, 0) = (i/x)

∫
∞

−∞
1NW(q) eiqx dq =

i(εm/
[
2
√

εm − 1
]
)H (1)

0 (x)/x . Recalling that this expression is only valid for large x , we
substitute H (1)

0 (x) for its asymptotic value and obtain the result in equation (5). The motivation
for our terminology on this type of wave is that the asymptotic term found by Norton, for
the case of radio waves emitted by a dipole in a dielectric [7], also decays algebraically and
originates from the angular spectrum close to q = 1. The SPP contribution can also be extracted
from the previous representation by expanding 1q close to q = qp. As the NW and the SPP
arise from different parts of the angular spectrum, their fields can be directly added up, leading
to equation (3).

The relevance of NWs with respect to SPPs increases when we move away from the
surface. Since for z = 0 the NW originates from q-values close to the light line, its decay with
distance to the surface is expected to be slower than the exponential decay of SPPs. In order to
obtain the dependence of the NW on both x and z, we have carried out the asymptotic analysis
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Figure 5. The magnetic field amplitude close to the metal surface for Au at
λ = 540 nm. The main figure shows the dependence with Z for fixed X = 10 µm.
The exact result G(X, Z) (red curve) and the asymptotic one, Gasymp(X, Z)

(red dashed), are presented together with the contribution from the SPP (black
curve), RO (green curve) and NW (blue line). The inset shows the regions in the
X–Z -plane, where the different terms dominate.

of Green’s function given by equation (1), using the general method described in [23]. The
derivation and full asymptotic form can be found in appendix B. The result up to terms of the
order r−1/2 was already presented in [16], where it was shown that the long-distance asymptotic
expressions are excellent approximations even for distances as small as x = 1 (i.e. X = λ/(2π)).
However, the asymptotic expression given by [16] misses some contributions of the order r−3/2,
so it cannot be used for the problem discussed in this paper. We find that the expression for
G(x, z) in the far-field (r � 1) is (see appendix B):

Gasymp(x, z) = GSPP(x, z) + GRO(x, z) + GNW(x, z), (7)

where GSPP(x, z) = GSPP(x, 0) eiqpz z, with qpz = −1/
√

(1 + εm), GRO(x, z) is given by
equation (6), and GNW(x, z), defined as the term that goes as r−3/2, is given by

GNW(x, z) =
eir+iπ/4

√
2π

{
d2

dφ2

[
−π D(sin φ) cos(φ)

cos((φ − θ)/2)

]}
φ=θ

r−3/2. (8)

The difference between the exact and asymptotic expressions 1G(x, z) = G(x, z) −

Gasymp(x, z) decays as r−5/2.
Figure 5 presents the comparison between the z-dependence of the exact G(x, z) and

Gasymp(x, z) at X = 10 µm. These results show that the asymptotic expression is very accurate.
Also that, as expected, the NW contribution decays with distance to the surface much more
slowly than the SPP one. In both chosen examples, the SPP dominates right at the surface,
but the NW takes over at a finite distance from it. However, at sufficiently large z the RO
contribution always prevails. The inset to figure 5 shows, for Au at λ = 540 nm, which of the
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three ‘asymptotic’ terms (SPP, RO and NW) dominates in the X–Z -plane. This inset shows that
the NW is the largest contribution over a ‘stripe’ close to the surface. As the region where the
NW is dominant satisfies z � x , the full expression for the NW given by equation (8) can be
approximated by (for |εm| � 1)

|GNW(x, z)| ' |GNW(x, 0)|
1

|1 +
√

εmz/x |3
. (9)

Note that the algebraic decay of the NW with z reflects that this wave arises from the
interference of its constituent components, and not from a pole in the angular spectrum D(q).
The comparison of the expression given by equation (9) with that of the RO contribution
allows for an estimation of the distance to the surface at which the crossover between NW and
RO occurs, zNW. We obtain zNW = |

√
εm|/|1 +

√
εmz/x |

3 which, if zNW/x � 1/|
√

εm|, implies
zNW ≈ |

√
εm| or ZNW ≈ λ|

√
εm|/(2π).

To summarize, we have shown that, in the asymptotic limit of long distances to the source,
the SPPs are not the main channel for EM fields at the metal surface. Instead, after a few SPP
absorption lengths, NWs take over. This occurs for any metal and any frequency range. NWs
decay much more slowly than SPPs both along the surface (as x−3/2 for 2D dipoles) and along
the perpendicular direction.
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Note added in proof. During the review process of this manuscript, the x−3/2 asymptotic
behavior of the fields at the metal surface was reported by Dai and Soukoulis [26] and Lalanne
et al [27].

Appendix A. Field in the vacuum half-space using Green’s dyadic

Consider a p-polarized EM wave (with wavelength λ and wavevector g = 2π/λ) incident onto
a metal film with a subwavelength slit. The metal film is optically thick and extends from
Z = −W (where the EM field impinges) to Z = 0 (the exit side). The dielectric constant of
the metal is εm. The slit has width A and we set the origin of the x-axis at the center of the slit.

According to the Lippmann–Shwinger integral equation [24], the electric field at any point
at exit side of the film (z > 0) is given by the following integral relation:

E(R) = E0(R) + g2

∫
V

dR′ 1ε(R′) Ĝ E(R, R′) E(R′), (A.1)

where E0(R) is the solution without the slit, 1ε(R) = 1 − εm in the volume occupied by the slit,
V , and zero everywhere else.

In the case of an optically thick film, the field E0(R) can be neglected at the exit side and
the dyadic Ĝ E(R, R′) can be approximated by the one corresponding to a single metal–vacuum
interface. In order to obtain the magnetic field from equation (A.1), we use the Maxwell equation
H = (−i/g)∇R × E and arrive at

H(r) =

∫
V

dr′ 1ε(r′) Ĝ H (r, r′) E(r′), (A.2)
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where we have passed to dimensionless distances r = gR. The dyadic Ĝ H connects the magnetic
field outside of the slit with the electric field inside the slit. For the considered 2D geometry,
where only p-polarized waves are involved, the magnetic field H points along the y-direction.
Assuming that the electric field inside the slit mainly points along the x-direction, only the yz
element of the dyadic Ĝ H needs to be computed. We denote this element by Ĝ H

yx(x, z; x ′, z′).
Following [25], we find that

Ĝ H
yx(x, z; x ′, z′) =

i

2π

∫
dq

qzm

εmqz + qzm
eiq(x−x ′)+iqz z−iqzm z′

(A.3)

where q is the dimensionless x-component of the wavevector, q = kx/g, qz =
√

1 − q2 and
qz =

√
εm − q2.

The integrand contains the exponential factor e−iq zm z′

, which decays at the distance of a skin
depth δ = 1/Im(qzm), which is of the order of a few tens of nm in the optical regime. Therefore,
the integration limits in z′ can be extended to [ − ∞, 0]. Moreover, the variation of Green’s
dyadic is much faster than that of the electric field inside the slit, hence the electric field inside
the slit can be approximated by its value at the distance z = −δ (this is obtained as the average
distance to the surface, weighted by the exponential decay of the field). An additional advantage
of using the field at a short distance inside the slit is that the numerical problems related to the
treatment of corners are eliminated.

The integration over z′ can be performed in the following way:∫
slit

e−iqzm z′

dz′
'

∫ 0

−∞

e−iqzm z′

dz′
=

i

qzm
. (A.4)

We then obtain

Hy(r) = (εm − 1)

∫ a/2

−a/2
dx ′Gslit(x − x ′, z)Ex ′(x ′, z = −δ), (A.5)

with

Gslit(x, z) =
1

2π

∫
dq

1

εmqz + qzm
eiqx+iqz z. (A.6)

Since we are interested in the field close to the surface and away from the source (which,
as we will show, arises from the region in the angular spectrum close to q = 1) and for optical
frequencies (where εm is large), this result can be related to the field radiated by a dipolar source
G(x, y) at the metal surface:

Hy(x, z) '

√
εm − 1

∫ a/2

−a/2
dx ′G(x − x ′, z)Ex ′(x ′, z = −δ), (A.7)

where

G(x, z) =
1

2π

∫
dq

qzm

εmqz + qzm
eiqx+iqz z. (A.8)

The relation between equation (A.5) and equation (A.7) can be easily seen by noting that
qzm ≈

√
εm − 1 in the region of interest.

While equation (A.7) involves an additional approximation, we have preferred to work
with Green’s dyadic for a dipole source (rather than with Gslit) due to its wider applicability to
other problems, involving metal surfaces with, for instance, inlaid metals, dielectric or metal
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Figure A1. Comparison between the FEM and the analytic computation for
the magnetic field on the gold–vacuum interface emerging from a slit. The slit
widths considered are 50 and 600 nm, and the wavelength is 567 nm. The dashed
lines are for the FEM calculations, while the continuous lines correspond to the
approximate result using equation (A.7).

protrusions, or lines of fluorescent molecules. In any case, the differences for the slit case are
minimal and the methods described in this paper could be straightforwardly applied to Gslit.

In order to validate the expression (A.7), we first performed full-vectorial computations
using the finite element method (FEM) of the magnetic field emerging from slits with
thicknesses 50 and 600 nm. The wavelength was chosen to be 576 nm and the metal of the
film is gold. Then we computed the integral given by equation (A.7) extracting the electric field
inside the slit at z = −δ from the FEM calculations. The function G(x, z) was substituted by its
asymptotic value, see appendix B. The comparison is shown in figure A1.

These results clearly show that equation (A.7) is very accurate for subwavelength slits
(A � λ) and even provide a good approximation for A ∼ λ.

Appendix B. Asymptotic behavior of the field: a steepest descent method

Consider Green’s function for a dipole placed at the metal surface given by equation (A.8). In
this section, we sketch the asymptotic analysis performed, which has been done following the
general method described in [23] for treating Sommerfeld integrals.

In this method, the integrand is first prolonged into the complex q-plane. Subsequently,
the following changes of variable are performed q = sin φ and s =

√
2ei(π/4) sin((φ − θ)/2).

In polar coordinates (x = rsin θ and y = rcos θ ), the integral takes the following form:

G = eir

∫
C

ds8(s)e−rs2
, (B.1)
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with

8(s) =
1

2π

√
2e−iπ/4

cos[φ(s)−θ

2 ]

cos[φ(s)]
√

εm − sin2[φ(s)]

εm cos[φ(s)] +
√

εm − sin2[φ(s)]
, (B.2)

where the contour C in the s-plane corresponds to the real axis in the initial plane q.
Then the integrand is separated into singular and non-singular parts

8(s) =
Cp

s − sp
+ 80(s), (B.3)

with

80(s) =
8(s)(s − sp) − Cp

s − sp
, (B.4)

where Cp is the residue given by Cp =
ε
√

ε

2π(ε2−1)
√

1+ε
, and the position of the pole in the complex

plane s is sp =
√

2eiπ/4 sin
(
(φp − θ)/2

)
, where φp = arccos

(
−1/

√
ε + 1

)
. Then, after deforming

the integral path to the steepest descent one (real axis in the plane s), the singular part yields
the complementary error function iπCper(i−s2

p )erfc(−isp
√

r) with the argument being the square
root of the ‘numerical distance’ introduced by Sommerfeld. The non-singular part of the integral
can be expanded in the Taylor series close to the saddle point s = 0 providing the infinite sum
of the integrals of the Gaussian type. The final result reads

G = iπCpeirqperfc(−isp

√
r) + eir

∑
n∈even

0( n+1
2 )

n!r (n+1)/2

dn80

dsn
|s=0. (B.5)

Ung and Sheng [16] reported a similar expression for G, but containing only the error-
function term and the n = 0 term in the sum. That expression is correct up to order r−1/2 but at
the surface, the term going as x−1/2 vanishes. In order to obtain the correct r−3/2 behavior (and
therefore, to represent properly the NW) both the error function and the n = 2 term in the sum
must be retained.

The function 80 is composed of two parts: 8 and Cp/(sp − s). Note that the part of the
sum in (B.5) coming from the term Cp/(sp − s) coincides, up to a sign, with the asymptotic
expansion of the complementary error function for large arguments without the first term (the
first term coincides with the residue contribution into the integral). This expansion reads

erfc(−isp

√
r) = 22(θ − θp) + i

ers2
p

π

∑
n∈even

0(n+1
2 )

(s2
pr)(n+1)/2

, (B.6)

where 2 is the Heaviside step function and θp is the angle defining the diffraction shadow,
θp = Re(φp) − arccos(1/cosh[Im(φp)]). This is the critical angle such that for θ > θp we have
Im(sp) < 0 and the initial transformation of the integration path into the steepest-decent one
leads to the crossing of the pole, so that the residue must be taken into account (see figures B1
and B2). An example of the critical angle limiting the diffraction shadow is represented in
figure 1 by dashed lines.

Retaining the residue contribution, GSPP, and the first two terms GRO (proportional to r−1/2)
and GNW (proportional to r−3/2) in the sum coming from 8 we obtain an expression that is
correct in the far-field, up to terms 1G = O(r−5/2). The result can be rewritten as

G = GSPP + GRO + GNW + 1G. (B.7)
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the residue must be taken into account.

The plasmonic term is

GSPP = 2π iCpeirqp, (B.8)

the ‘RO’ term is

GRO =
eir−iπ/4

√
2πr

cos θ
√

εm − sin2 θ

εm cos θ +
√

εm − sin2 θ
, (B.9)
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the NW is given by

GNW =
1

2

eir−i(3π/4)

r
√

2πr

d2

dφ2

[
1

cos(φ−θ

2 )

cos φ
√

ε − sin2 φ

ε cos φ +
√

ε − sin2 φ

]
φ=θ

, (B.10)

and the rest is

1G = iπCper(i−s2
p )[erfc(−isp

√
r) − 2]

+ eir
∑

n∈even

0(1+n
2 )

n!r (1+n)/2

(
σn

dn8(s)

dsn
−

dn

dsn

Cp

s − sp

)
s=0

,

σn =

{
1, n > 4,

0, n < 4.
(B.11)
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