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We investigate qubit-qubit entanglement mediated by plasmons supported by one-dimensional wave-

guides. We explore both the situation of spontaneous formation of entanglement from an unentangled state

and the emergence of driven steady-state entanglement under continuous pumping. In both cases, we show

that large values for the concurrence are attainable for qubit-qubit distances larger than the operating

wavelength by using plasmonic waveguides that are currently available.
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As a direct consequence of the quantum superposition
principle, a system composed of subsystems has states that
cannot be factorized in products of states of its compo-
nents. This nonseparability, labeled as entanglement, is at
the heart of quantum cryptography, quantum teleportation,
or other two-qubit quantum operations [1,2]. Exploited at
first in systems like optics, atoms, or ions, entanglement is
becoming more and more attainable in condensed matter
physics. In particular, short distance entanglement is now
available for spin or charge degrees of freedom in quantum
dots, nanotubes, or molecules [3–6]. However, for trans-
mission of information at long distances, large separations
between the components are needed. For this purpose, the
correlation between the two qubits must be mediated by
virtual bosons. Photons, either in the range of microwaves
for coupling superconducting qubits [7] or in the visible
range for quantum dots [8–10], molecules, or nitrogen
vacancy centers in diamond [11], are the usual candidates
to play this role.

Here we investigate a feasible proposal for long-distance
entanglement of two qubits by using plasmons instead of
photons. We consider the plasmon-polariton modes sup-
ported by one-dimensional (1D) plasmonic waveguides
(PWs); see the top panel in Fig. 1. PWs have been studied
during the past years as promising candidates to build up a
new kind of photonic circuitry [12]. The propagating plas-
mons associated with these structures are characterized by
both a subwavelength light confinement and long enough
propagation lengths [13]. Coupling between quantum
emitters and PWs has been also addressed [14,15]. These
works show that the � factor, which measures the fraction
of the emitted radiation that is captured by the propagating
mode, can be close to 1 in realistic PWs. This is due to the
subwavelength nature of the plasmon field in a 1D-PW.
Very recently, these large � factors have been exploited to
modulate the energy transfer and superradiance phe-
nomena appearing when two quantum emitters are placed
at 1D-PWs like channel or wedge structures [16]. In this
Letter, we show that PWs can also be used to obtain a large

degree of entanglement in two qubits separated by dis-
tances larger than the operating wavelength.
The dynamics of the density matrix � for two qubits is

described, after tracing out over the degrees of freedom of
the plasmons, by a master equation [17,18]
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where �y
i and �i are the raising and lowering operators for

each qubit, respectively. The ingredients of Eq. (1) are
determined by the classical Green’s function describing
the electromagnetic interaction between two dipole mo-
ments, �1 and �2, placed at locations r1 and r2:
Gð!; r1; r2Þ. For two qubits with the same characteristic
frequency !0, the Hamiltonian can be written as

H ¼ @!0

X
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The coherent part of Eq. (1) reflects the effective inter-
action between the qubits that is provided by the exchange
of virtual bosons [18]:
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FIG. 1 (color online). (a) Two qubits interacting with a plas-
monic waveguide, in this case a channel waveguide. (b) Scheme
of levels, couplings, and decays in the particular case where
!1 ¼ !2 ¼ !0 and �11 ¼ �22 ¼ �.
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whereas the rates of the noncoherent terms are given by
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with i; j ¼ 1; 2 and �12 ¼ �21. Equations (3) and (4) in-
volve a point-dipole emitter approach, which is accurate
enough for qubits such as atoms, small molecules, or nitro-
gen vacancy centers in diamond. For big molecules or
quantum dots with sizes of a few tens of nanometers, a
more realistic description of the quantum emitter is usually
required [19].

When the plasmon supported by the PW is the dominant
decay channel (i.e., large � factor), a very good approxi-
mation for the total Green’s function can be obtained by
only considering its plasmon contribution: Gð!; r1; r2Þ �
Gplð!; r1; r2Þ [16]. In this way, analytical expressions for

both g12 and �12 can be easily derived:

g12 ¼ �

2
�e�d=ð2LÞ sinðkpldÞ;

�12 ¼ ��e�d=ð2LÞ cosðkpldÞ;
(5)

where kpl and L are the wave number and propagation

length of the plasmon, respectively. These two magnitudes,
kpl and L, depend on the operating frequency !0. In

deriving Eq. (5) we have assumed that the two qubits are
equal and are placed at two equivalent positions along the
waveguide, such that �11 ¼ �22 ¼ �, and separated by a
distance d. We define the modal wavelength of the plas-
mon, �pl, as �pl ¼ 2�=kpl. The crucial point of Eq. (5) is

the �=2 phase shift between the coherent and incoherent
parts of the coupling, which allows switching off one of the
two contributions while maximizing the other by just
choosing the interqubit distance. This opens the possibility
of modulating the degree of entanglement.

To test the feasibility of our proposal, we have carried
out extensive numerical calculations on a particular PW, a
V groove milled on a silver film. In Fig. 2(a), we render the
dispersion relation (energy versus wave number) of the
propagating plasmon supported by a V groove. This type
of plasmon is usually called the channel plasmon polariton
(CPP). The geometrical parameters are taken from realistic
structures: The angle of the groove is 20� and its height is
140 nm, but similar results would be obtained for other sets
of parameters. The evolution of the propagation length L of
the CPP with the operating wavelength � is shown in the
inset in Fig. 2(a). As expected, L increases as � is enlarged.
The dependence of the� factor with both � and the vertical
distance of the qubit(s) to the apex of the V groove [see
Fig. 1(a)] is displayed in Fig. 2(b). Importantly, � factors
larger than 0.9 are attainable for a broad range of �’s and
within a large spatial region. Let us remark that the best �
factors attained with dielectric waveguides are typically

much lower than those obtained with PWs (for instance, �
values not higher than 0.5 are reported in Ref. [16] for a
GaAs fiber of 50 nm radius).
Once we have introduced the ingredients of Eq. (1), now

we discuss how this equation is solved. The most adequate
basis to represent the dynamics of Eq. (1) is the one

depicted in Fig. 1(b): fj0i ¼ jg1; g2i; j�i ¼ ð1= ffiffiffi
2

p Þ
ðje1; g2i � jg1; e2iÞ; j3i ¼ je1; e2ig, where gi or ei labels
the ground or excited state of the i qubit, respectively.
Depending on both the sign and absolute value of �12,
one of the states j�i can be practically decoupled from the
dynamics of the rest of states. Once the density matrix �ðtÞ
is obtained by numerically solving Eq. (1), the entangle-
ment of the two qubits is quantified by means of the
concurrence C, defined as proposed by Wootters [20].
The two main ingredients controlling the dynamics of the
two qubits (g12 and �12) affect C in very different ways.
The coherent coupling g12 produces oscillations, whereas
the cross-decay term �12 produces a nonoscillatory con-
tribution toC. These two effects are discussed below in two
different situations. First, we analyze the case in which the
system is initially prepared in a given unentangled state
from which it decays spontaneously. In the second situ-
ation, the two qubits are continuously pumped by an
external laser to reach a stationary state.

FIG. 2 (color online). (a) Dispersion relation (red curve) of a
CPP mode supported by a V groove of angle 20� and height
140 nm. For comparison we show the dispersion of a surface
plasmon mode of an infinite 2D silver surface (black dotted line).
The inset displays the wavelength dependence of the propagation
length L. (b) � factor versus wavelength � and vertical distance
h associated with the CPP mode.
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In order to analyze the spontaneous formation of entan-
glement, one can initially prepare the system in the je1; g2i
state. In this case, the concurrence takes the form

CðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½�þþðtÞ � ���ðtÞ�2 þ 4 Im½�þ�ðtÞ�2

q
; (6)

where ��� are density matrix elements in the basis j�i.
The dynamics of C is shown in Fig. 3 for three different
situations. With a solid black curve we render CðtÞ for the
case of a channel PW where �12 and g12 are given by

Eq. (5), with �� � �e�d=ð2LÞ ¼ 0:9 and kpld ¼ 2�. The

concurrence is characterized by a fast initial increase fol-
lowed by a very slow decay. For this case, the coherent
oscillations produced by g12 are completely quenched
(g12 ¼ 0) and the cross-decay term (�12) dominates. This
dynamics can be easily understood from the time evolution
of the populations of the two entangled states j�i (see the
inset in Fig. 3). These states are equally populated initially,
but the decay of the state jþi is very fast (�þ �12) while
the decay of j�i is very slow (�� �12). The asymmetry
between the two cascades is responsible for the long life-
time of C, while the imbalance among the populations of
states j�i determines C due to the first term in Eq. (6).
With a dotted blue line we represent the ideal case that
corresponds to �� ¼ 1 (� ¼ 1 and L ¼ 1) and kpld ¼ 2�.

In this case, the concurrence tends asymptotically to a
steady-state value of 0.5.

It is worth comparing our PW-based entanglement with
other schemes for achieving large entanglement that have
been proposed before. In particular, embedding two qubits
in a photonic cavity (CQED) [8] offers many possibilities
for controlling the photon emission. As entanglement in

CQED relies only on the coherent term, !0 must be tuned
to the frequency of the cavity mode. In the case of perfect
tuning [17], the evolution of C with time is determined by
�12 ¼ g2=�, g being the qubit-cavity coupling. The time-
dependent C becomes equal to that of an ideal PW (dotted
blue curve in Fig. 3). However, in realistic implementa-
tions of CQED, one must work with a detuning � that is
comparable to g. By using a Schrieffer-Wolf transforma-
tion one can obtain a master equation like Eq. (1) with
g12 ¼ g2=� and �12 � 0. In Fig. 3, we render a simulation
to illustrate CQED-based entanglement (see the red dashed
curve) in which we have used g12=� ¼ 5 and �12 ¼ 0 as
realistic values taken from experiments [9,10]. Although in
this case C can be significantly larger than the one obtained
with realistic PWs, this occurs only in a very short time
scale and presents very fast oscillations. Another advan-
tage of the use of PWs is that they enable the emergence of
long-distance qubit-qubit correlations, as we show below.
A continuous pumping is required in order to have a

stationary state with a high degree of entanglement.
For sufficiently separated qubits, the stationary state can
be modulated by acting independently and resonantly
(!laser ¼ !0) on each qubit with a laser beam of Rabi

frequency �i. A new term
P

i@�ið�y
i þ �iÞ must be in-

cluded in the Hamiltonian given by Eq. (2). When the
system is initially prepared at state j0i, one can apply the
continuous laser only on qubit 1. Inset (b) in Fig. 4 shows,
for an almost ideal PW and very short distances, the tran-
sient dynamics of the concurrence when d ¼ �pl=2 so that

�12 is present while g12 is quenched. At the beginning, clear
oscillations are observed with the concurrence becoming
larger than 0.5 for some time intervals: �t ’ 10=�.
More interesting is the discussion of the stationary con-

currence C1 for different laser intensities and separations

FIG. 3 (color online). Concurrence as a function of time when
just one of the two qubits is initially excited. The continuous
black line corresponds to two qubits entangled by means of a
channel PW with �� ¼ 0:9, kpld ¼ 2�. The dashed red line is for

two qubits in a cavity with a detuning such that it produces
g12=� ¼ 5 and �12 ¼ 0. The dotted blue line is for the ideal case
of both PW and CQED (see the text). The inset shows the time
evolution of C and the populations of states jþi and j�i for the
nonideal PW case.

FIG. 4 (color online). Panel (a) shows the steady-state con-
currence as a function of the separation between two equal qubits
for � ¼ 0:94, L ¼ 2 �m, and three different laser configura-
tions: �1 ¼ 0:15� and �2 ¼ 0 (solid black curve), �1 ¼ �2 ¼
0:1� (dotted blue line), and �1 ¼ ��2 ¼ 0:1� (dashed red
line). Insets (b) and (c) correspond to the first type of pumping
�1 ¼ 0:15� and �2 ¼ 0. Panel (b) shows the concurrence time
evolution for a system with �� ¼ 0:99, while the � dependence
of the steady-state concurrence evaluated at d ¼ �pl is rendered

in panel (c).
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between qubits. Here we consider realistic values for� and
L taken from Fig. 2(b): � ¼ 0:94 and L ¼ 2 �m, which
correspond to a wavelength of around 640 nm and vertical
distance h ¼ 180 nm. Notice that for this h the emitter-
metal distance is about 47 nm, which is comparable to the
optimum distances found in other PW geometries like
metallic wires or wedges [16]. As shown in Fig. 4 (dotted
blue line), when the system is prepared in the symmetric
state jþi by a large spot laser which excites equally the two
qubits (�1 ¼ �2), C1 gets its maximum value for d close
to an odd multiple of �pl=2, a situation in which �12 is

closer to �� and the singlet state jþi is almost decoupled
from the cascade decay involving the other three states [see
Fig. 1(b)]. One can also prepare the state j�i by pumping
the two qubits with the same frequency and same intensity
but phase shifted by �, which is equivalent to using �2 ¼
��1. As expected, the result is just shifted with respect to
the previous case: C1 gets its maximum value for d being
an even multiple of �pl=2 (the dashed red curve in Fig. 4).

The �pl periodicity of these two previous cases changes to

�pl=2 when one of the two qubits is privileged with respect

to the other by focusing the laser beam only on it (�1 �
�2). Here we present the case �1 ¼ 0:15� while �2 ¼ 0
(see the solid black curve in Fig. 4). Notice that, in the three
cases displayed in Fig. 4(a), large values for the concur-
rence at distances larger than the operating wavelength are
attainable when using realistic values for both � and L.

The robustness of our proposal with respect to changes
in the � factor is analyzed in Fig. 4(c). As expected, the
steady-state concurrence obtained at d ¼ �pl is reduced

when � is smaller than 1. However, this change is not very
abrupt, as the concurrence is decreased by a factor of 2
when � is reduced from 1 to 0.8. Note that the scheme
presented here for PWs could be also operative in other
types of waveguides that display large � factors such as,
for example, photonic crystal waveguides [21,22].

In conclusion, plasmon polaritons in realistic one-
dimensional waveguides are excellent candidates to act
as mediators for achieving large values of entanglement
between two distant qubits. We have shown that the large�
factors associated with these waveguides and the fact that
the coherent and incoherent parts of the two-qubit coupling
driven by plasmons are phase shifted allow us to modulate
populations and correlations between quantum states. We
believe that our findings could also be useful for imple-
menting the concept of dissipative engineering of states
[23–25].
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F. Hofbauer, G. Böhm, P. Lodahl, M.-C. Amann,
M. Kaniber, and J. J. Finley, Phys. Rev. B 82, 075305
(2010).

[11] M.V.G. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F.
Jelezko, A. S. Zibrov, P. R. Hemmer, and M.D. Lukin,
Science 316, 1312 (2007).

[12] T.W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Phys.
Today 61, No. 5, 44 (2008).

[13] E. Moreno, S. Rodrigo, S. Bozhevolnyi, L. Martin-
Moreno, and F. J. Garcia-Vidal, Phys. Rev. Lett. 100,
023901 (2008).

[14] D. E. Chang, A. S. Sørensen, P. R. Hemmer, and M.D.
Lukin, Phys. Rev. Lett. 97, 053002 (2006).

[15] A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S.
Zibrov, P. R. Hemmer, H. Park, and M.D. Lukin, Nature
(London) 450, 402 (2007).

[16] D. Martin-Cano, L. Martin-Moreno, F. J. Garcia-Vidal,
and E. Moreno, Nano Lett. 10, 3129 (2010).

[17] Z. Ficek and R. Tanas, Phys. Rep. 372, 369 (2002).
[18] D. Dzsotjan, A. S. Sørensen, and M. Fleischhauer, Phys.

Rev. B 82, 075427 (2010).
[19] M. Andersen, S. Stobbe, A. S. Sorensen, and P. Lodahl,

arXiv:1011.5669 [Nature Phys. (to be published)].
[20] W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[21] G. Lecamp, P. Lalanne, and J. P. Hugonin, Phys. Rev. Lett.

99, 023902 (2007).
[22] T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup,

T. Sünner, M. Kamp, A. Forchel, and P. Lodahl, Phys. Rev.
Lett. 101, 113903 (2008).

[23] F. Verstraete, M.M. Wolf, and J. I. Cirac, Nature Phys. 5,
633 (2009).

[24] H. Krauter, C. A. Muschik, K. Jensen, W. Wasilewski,
J.M. Petersen, J. I. Cirac, and E. S. Polzik,
arXiv:1006.4344.

[25] A. F. Alharbi and Z. Ficek, Phys. Rev. A 82, 054103
(2010).

PRL 106, 020501 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

14 JANUARY 2011

020501-4

http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.73.357
http://dx.doi.org/10.1103/RevModPhys.79.1217
http://dx.doi.org/10.1073/pnas.1003052107
http://dx.doi.org/10.1073/pnas.1003052107
http://dx.doi.org/10.1038/nnano.2010.173
http://dx.doi.org/10.1038/nature06184
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevLett.83.4204
http://dx.doi.org/10.1103/PhysRevB.81.193301
http://dx.doi.org/10.1103/PhysRevB.82.075305
http://dx.doi.org/10.1103/PhysRevB.82.075305
http://dx.doi.org/10.1126/science.1139831
http://dx.doi.org/10.1063/1.2930735
http://dx.doi.org/10.1063/1.2930735
http://dx.doi.org/10.1103/PhysRevLett.100.023901
http://dx.doi.org/10.1103/PhysRevLett.100.023901
http://dx.doi.org/10.1103/PhysRevLett.97.053002
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1038/nature06230
http://dx.doi.org/10.1021/nl101876f
http://dx.doi.org/10.1016/S0370-1573(02)00368-X
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://dx.doi.org/10.1103/PhysRevB.82.075427
http://arXiv.org/abs/1011.5669
http://dx.doi.org/10.1103/PhysRevLett.80.2245
http://dx.doi.org/10.1103/PhysRevLett.99.023902
http://dx.doi.org/10.1103/PhysRevLett.99.023902
http://dx.doi.org/10.1103/PhysRevLett.101.113903
http://dx.doi.org/10.1103/PhysRevLett.101.113903
http://dx.doi.org/10.1038/nphys1342
http://dx.doi.org/10.1038/nphys1342
http://arXiv.org/abs/1006.4344
http://dx.doi.org/10.1103/PhysRevA.82.054103
http://dx.doi.org/10.1103/PhysRevA.82.054103

