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Emergence of Anderson localization
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The propagation of surface plasmon polaritons in dielectric loaded waveguides with randomly placed scatterers is
studied using both numerical simulations and a simplified transfer matrix framework. Despite the importance of
losses in this system, we find fingerprints of the localized behavior of one-dimensional disordered systems. Further-
more, losses amplify the impact of the necklace states on the transport properties for systems not much larger than
the localization length. The system presented here also offers the possibility to use localization effects for engineer-

ing purposes by means of deliberately introduced disorder.
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The interference of multiply scattered waves gives rise to
several interesting effects in the wave propagation
through disordered media such as Anderson localization
[1] (breakdown of diffusive transport due to disorder)
and the existence of nonlocalized necklace states in
the localized regime [2]. These interference effects are
observable for any kind of wave, like quantum mechan-
ical wave functions, electromagnetic (EM) waves [3-8],
or, as a particular EM wave, surface plasmon polaritons
(SPPs) [9,10]. In one-dimensional (1D) systems, wave
propagation through disordered media is well under-
stood, and the transfer matrix (TM) approach offers a
powerful and elaborated formalism to treat the transport
problem [11].

In this Letter we study the propagation of SPPs in di-
electric loaded waveguides (DLWs) [12)13] equipped
with randomly placed scatterers. Because of the large
SPP propagation length in these waveguides [14,15], they
are promising candidates for studying effects that rely on
multiply scattered waves. Indeed, we have found both
the emergence of Anderson localization and the forma-
tion of necklace states.

The structure under study is sketched in Fig. 1(a).
A dielectric waveguide with a cross section of 600 nm x
500 nm is placed on a gold surface. Then, disorder is in-
troduced by a collection of scatterers, and these are rea-
lized by changing the refractive index of the dielectric in
50 nm wide slices. The mean distance between the scat-
terers is fixed to 1 ym, while the disorder is introduced by
means of random displacements of the individual scat-
terers. The displacements are normally distributed with
astandard deviation of 100 nm. Figure 1(c) shows a plane
cut along the direction of propagation of the DLW with
the realization of the scatterers highlighted by solid lines.
Dashed lines show the positions of the scatterers if the
system was periodic. In contrast to systems with truly
random disorder, these systems allow the design of sam-
ples with special realizations of disorder and hence the
engineering of samples with predefined properties.

First, we will show that the transport properties of our
three-dimensional (3D) system can be characterized by a
1D model within the TM framework. Only this simplified
approach enables us to deal with the large number of
realizations of the disorder, which is required for reliable
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results and would be impossible to handle within a 3D
model. Within the TM approach, systems with several
scatterers are considered as consisting of several slices,
each containing one scatterer. Hence, the reflection (7)
and transmission (¢) coefficients of one slice are needed.
Once these coefficients are known, the calculation of the
TM of the whole system is straightforward [11].

We have performed 3D finite-element method (FEM)
calculations (with COMSOL Multiphysics) of systems
without and with only one scatterer in order to determine
the coefficients required by the TM approach. The
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Fig. 1. (Color online) (a) Sketch of the system analyzed.

A dielectric waveguide with refractive index of 1.5 (blue) is lo-
cated on top of a gold surface. In the regions of the scatterers,
the refractive index is changed to 2.5 (red). (b) Comparison
between the transmission spectrum calculated with the TM
approach and the results of the 3D FEM simulation for a system
containing 15 scatterers. The inset shows the mode profile of a
waveguide without any scatterers. (c) Field distribution (domi-
nant magnetic component) at maximum transmission (ley; =
1.55ym) (FEM simulation). Note that the scatterers are not
located periodically (the dashed lines illustrate the locations
of the periodic arrangement).
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complex wave vectors of the system without scatterers
allow us to calculate the phases of the coefficients and
the absorption losses. On the other hand, the transmis-
sion and reflections probabilities and the scatterings
losses are determined with the help of simulations of
systems containing one scatterer. Our final results for
the particular type of scatterer we are considering are

t = 0.963 exp(-A; + i¢,), €))

ry =02exp(-4,, +1i¢p,,), 2)

where the phases (¢) and absorption losses (A) depend
on the wave vector and hence on the excitation wave-
length .. Therefore, the reflection coefficients depend
on A and, in addition, on the position of the scatterer
inside the slice and on the propagation direction; + or —.

Having established the TM procedure, we have
compared it with FEM simulations of a system of 15 scat-
terers for different excitation wavelengths. As shown in
Fig. 1(b), the TM approach reproduces semiquantita-
tively the behavior of the transmission spectrum, even
though there are of course some differences between the
3D calculations and the simplified 1D-one-mode model.
However, this 1D TM formalism is accurate enough for
discussing the SPP propagation in disordered DLWs.

The relevant length scale for describing localized sys-
tems is the localization length. This localization length
characterizes the exponential decay of the transmitted
energy, which is typical in the Anderson localization
regime. In 1D systems any degree of disorder leads to lo-
calization. However, since losses are nonnegligible in the
system studied here, the exponential decay of the inten-
sity along the waveguide has several physical origins, and
the decay has to be studied in more detail.

Within the TM approach the localization length [ is
defined as [11]

©)

lioe = lim
loc Timroo
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with L being the sample length, and the mean of the loga-
rithm of the resistance is defined as In(R) = -21In(|T)).
The absolute value of the transmission coefficient of the
total system |T'| is the square root of the ratio of the trans-
mitted intensity to the incident one. Figure 2(a) shows
L/In(R) (averaged over 10° realizations) as a function
of the sample size L, and for four cases: without losses,
with only absorption losses, with only scattering losses,
and with both losses. The limiting value in the lossless
case determines the length scale of the disorder-induced
localization l,q = 35.6 um, while the losses lead to a re-
duced total decay length of [; = 12.4 ym. This total decay
length is well approximated by

lg = [(lAnd)_1 + (labs)_1 + (lscat)_l]_lv (4)

where 1., and l;.,; are the decay lengths due to absorp-
tion and scattering losses, respectively. These loss-
induced decay lengths can be extracted from the FEM
simulations of just one slice, and for the system and
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Fig. 2. (Color online) (a) L/In(R) as a function of the sample

size L; distribution of In(R) for samples containing (b) 100 and
(c) 300 scatterers. For comparison, normal distributions with
the same mean values and standard deviations are also shown.
All results are calculated for Ay = 1.5 um.

wavelength used they are [, = 302um and [, =
52.7 ym. Using these values and the Anderson localiza-
tion length of l,,q = 35.6 ym in Eq. (4), we end up with
lg = 12.5 ym, which is in excellent agreement with the
TM approach result including all losses (I; = 12.4 ym).

For 1D, lossless, disordered systems much larger than
the localization length, the logarithm of the resistance is
normally distributed [11]. Hence, we have also investi-
gated this distribution in our system. The results pres-
ented in Figs. 2(b) and 2(c) show that, for the sample
sizes used, In(R) is not perfectly normally distributed,
but with an increasing sample size, the distribution
equals more and more a normal distribution. The losses
cause a lower limit for In(R) and hence a deviation from
the normal distribution, which becomes less important
for larger systems. However, the fact that the distribution
for an increasing sample size equals more and more a
normal distribution indicates that the behavior of the
disordered DLW lies within the Anderson localization
regime. The results presented and discussed above
illustrate that, even though losses are important in a
plasmonic waveguide, clear fingerprints of the localized
behavior of a 1D disordered system are present. Further-
more, the knowledge of the loss mechanism allows one
to extract the Anderson localization length even from the
results including losses.

Although 1D disordered systems are always in the lo-
calized regime, their transport properties are dominated
by the existence of some extended states, the so-called
necklace states, which show significantly enhanced
transmittances compared to the localized states [6,11].
These states have a multiple resonance character and
arise if two or more resonances appear at the same fre-
quency. In Fig. 3(a) the transmission spectrum (calcu-
lated without losses) of a sample of 50 scatterers with
a necklace state around A = 1.484 ym is shown. Com-
pared with the single resonances, the necklace state is
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Fig. 3. (Color online) Transmission spectrum and wavelength-

dependent intensity distribution of a disordered sample of 50
scatterers showing a necklace state around Ao = 1.48um
(a), (c) without losses and (b), (d) with losses.

wider, and also the increase of the phase of the transmis-
sion coefficient by 2z indicates that this resonance
consists of two resonances. The qualitative differences
between the resonances also emerge in the intensity
distribution along the waveguide [see Fig. 3(c)]. A well-
defined maximum appears for the single resonances,
whereas the intensity along the DLW is more homoge-
neous in the necklace state.

In the previous paragraph, we discussed the necklace
states without losses. Figures 3(b) and 3(d) show the
transmission spectrum and the wavelength-dependent in-
tensity distribution for the same sample as used before
but now including losses. Because of the losses, all reso-
nances are broadened, and the intensity along the wave-
guide is dominated by a loss-induced decay. Hence, the
necklace-state criteria used before are no longer appro-
priate. However, the transmitted energy in the necklace
state is much higher than the one in the single resonance.
This is the typical behavior we found in many samples of
the size used. While without losses, there are single and
multiple resonances with a transmittance close to 1; by
considering losses, the transmission coefficients of neck-
lace states are significantly larger than those of single
localized resonances. This can be explained by consider-
ing the intensity distributions at the different reso-
nances without losses [see Fig. 3(c)]. The regions of
largely enhanced intensity assigned to a long-lived single-
resonance mode lead to high losses and hence to a re-
duced transmission. So even though the losses decrease
the influence of multiply scattered waves, they increase
the relative importance of necklace states with respect to
single ones.

In conclusion, the transmission of SPPs in DLWs in
which randomly placed scatterers are introduced shows
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hallmarks of localization in 1D systems, even though
losses are nonnegligible. Because of the more homoge-
neous intensity distribution along the waveguide in the
necklace states, the losses enforce the impact of these
states on the transmission compared to the single reso-
nances. The emergence of Anderson localization in plas-
monic waveguides with controllable disorder allows us
to use localization effects to engineer specific samples
with predefined properties. Thus, these systems can be
used, for example, to enhance the light-matter interac-
tion by using the regions of extremely enhanced fields,
as has been demonstrated, for example, for disordered
photonic crystals [8].
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