
PHYSICAL REVIEW B 86, 075437 (2012)

Subwavelength chiral surface plasmons that carry tuneable orbital angular momentum
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We show that a helically grooved metal wire supports chiral surface plasmon polaritons (SPPs) that carry
nonzero orbital angular momentum (OAM). This OAM can be tuned to have integer or fractional values by
adjusting the mode wave vector. The dispersion relation and angular characteristics of the chiral modes are
determined numerically and explained with the help of an effective mode index. Chiral SPPs offer the possibility
to control both the chirality and the OAM of electromagnetic fields at the subwavelength scale.
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I. INTRODUCTION

During the last few years there have been several fundamen-
tal studies on electromagnetic (EM) metamaterials that present
structural chirality (for a recent review see Ref. 1), leading to
the emergence of interesting phenomena like asymmetric light
propagation2 and negative refraction.3–5 Within a plasmonic
perspective, it has been also shown that a carefully chosen
superposition of three surface plasmon polaritons (SPPs) prop-
agating on a metallic nanowire can be used to devise a chiral
SPP.6 In principle, due to their localized nature, SPPs could
add subwavelength confinement to the chiral characteristics.

On the other hand, the fact that circular polarized light
carries angular momentum was known since the early works
of Maxwell and already demonstrated experimentally in
1936.7 However, interest in the angular momentum of light
was reawakened in 1992 when it was demonstrated8 that
Laguerre-Gaussian beams can transport orbital angular mo-
mentum (OAM).9–12 The OAM of EM fields has been also
studied using plasmonic vortex structures,13,14 and it has been
extensively used in research areas as diverse as biophysics,
micromechanics, and microfluidics.15 At a quantum level,
single photons with OAM have the potential for realizing high-
dimensional quantum spaces with applications in information
technologies.16 Normally, OAM is associated with EM modes
that are spatially extended. For many fundamental studies and
practical applications, it would be desirable to work with lo-
calized light that could carry OAM at the subwavelength scale.

Here, we present a plasmonic structure that supports EM
modes that are subwavelength confined and show the two
aforementioned properties (chirality and OAM): a metal wire
corrugated with a helical groove. Importantly, the length scale
of the corrugation is much smaller than the wavelength so the
system behaves as a metamaterial, where diffraction effects
can be discarded. We present a detailed analysis of the chiral
character and angular momentum properties of these surface
EM modes and we also demonstrate two possible ways to
excite them.

II. FUNDAMENTAL PROPERTIES OF CHIRAL
SURFACE PLASMONS

In the inset of Fig. 1 we render a sketch of the helically
grooved wire with a definition of the geometrical parameters:

the radius of the cylinder R, the period of the array !, and the
width w and the depth h of the groove. To present a general
study of the chiral SPPs supported by this structure, we assume
first that the metal behaves as a perfect electrical conductor
(PEC) and show later in this section that the fundamental
properties remain unchanged if a realistic metal in the optical
regime is considered.

By using a PEC wire, the emergence of chiral SPPs in
different frequency regimes could be analyzed by just scaling
appropriately the geometrical parameters. In our calculations
we will use the pitch ! as the unit length. Note that, as we
work within the PEC approximation, the surface EM modes
supported by this structure have a geometrical origin and can
be considered as a special type of spoof SPPs.17,18 A previous
experimental study of the surface EM modes supported by
helically grooved metal wires in the terahertz regime was
performed19 but no attention was paid to the chiral character
and the OAM of these modes.

In Fig. 1 the dispersion relations of the different surface
EM modes supported by the helically grooved wire are
displayed. These bands have been computed using a finite-
element discretization of Maxwell equations.20 Notice that,
in contrast to the chiral SPPs discussed in Ref. 6, the modal
wavelength of the modes shown in Fig. 1 is always smaller
than the free-space wavelength (kz > 2π/λ), which results
in subwavelength confinement. Using the notation introduced
for chiral metamaterials,3 we can characterize the surface EM
modes by two labels: (i) an index l, related to the azimuthal
dependence, which is determined by the number of azimuthal
nodes (2l) that the EM fields present for small values of kz;
(ii) a sign (+ or −) depending on the rotation direction at which
the mode accumulates phase, + for a clockwise rotation and −
for the counterclockwise one (as usual, the rotation direction
is determined in the propagation direction). The chirality of
the SPP modes is illustrated by the fact that for positive and
negative values of kz, the following two relations hold:

ω
(l)
± (kz) "= ω

(l)
± (−kz) (1)

ω
(l)
± (kz) = ω

(l)
∓ (−kz). (2)

Equations (1) and (2) state that by changing the propagation
direction of the EM mode, its rotation direction has to be
also changed to keep the mode frequency fixed. This behavior
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FIG. 1. (Color online) Inset: Sketch of a helically grooved wire
with a definition of the different geometrical parameters R, !, w, and
h and of the three axes. Main panel: Dispersion relation of the surface
EM modes supported by this structure with R = 1.5!, w = 0.5!,
and h = 3/8!.

is distinctive of helically grooved metal wires, and it is not
present in either noncorrugated metal wires, slanted grooves,21

or corrugated wires with a periodic array of rings.22 This is a
direct consequence of the structural chirality of the grooved
wire.

The results displayed in Fig. 1 also show that, in addition
to the chiral degeneracy characterized by Eq. (2), a new type
of degeneracy emerges at the band edges, kz = ±π/!:

ω
(l)
± (±π/!) = ω

(l+1)
∓ (±π/!). (3)

It is convenient to simplify the notation and combine the
two labels into a mode index m = ±l, in which the sign is
related to the rotation direction and l is the azimuthal index.
The evolution of the EM fields associated with the first three
chiral SPPs (m = 0,m = ±1) as their wave vector is increased
from 0 to π/! is analyzed in Fig. 2(a). To better illustrate the
modal shape, in Fig. 2 we render the modulus of the real part
of the E-field averaged along the z direction over one unit
cell. Notice that the wavefront is helical within each unit cell
as it follows the shape of the groove. For small values of the
wave vector (kz = 0.3π/!, upper row), the E-field patterns
of the chiral SPP modes with m = −1 and m = +1 are very
similar. However, for kz close to the band edge (kz = 0.98π/!,
lower row), the modes with m = 0 and m = −1 show the
same azimuthal dependence, as expected from Eq. (3). The
E fields of the modes m = −2,−3,−4 evaluated at a wave
vector close to the band edge (kz = 0.98π/!) are displayed
in Fig. 2(b). Again, the E-field pattern of the mode m = −2
closely resembles that of the m = 1 mode, but with an opposite
rotation direction.

The degeneracy at the band edges introduced by the helical
groove can be explained by the structure of the EM fields
in a helical geometry. In such geometry, it is expected that
all the field components follow the helical symmetry of the
underlying physical system and hence they can be expanded
as [with the cylindrical coordinates (r,φ,z)]23

Fm(r,φ,z) = Am(r,z)ei(m+kz
!
2π

)φ, (4)

with Am obeying Bloch’s theorem in the z direction. Therefore,
the φ dependence of the fields is governed by an effective
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FIG. 2. (Color online) Modulus of the real part of the E field
averaged over one unit cell for (a) modes m = 0, m = ±1 and
(b) modes m = −2, −3, −4. Colors scale the field intensity from
minimum (black) to maximum (yellow). The upper (lower) row
of panel (a) corresponds to E fields evaluated at kz = 0.30π/!

(kz = 0.98π/!). The E fields in panel (b) are computed also at
kz = 0.98π/!. The white arrows show the rotation direction of the
chiral SPPs. As in Fig. 1, the values of the geometrical parameters
are R = 1.5!, w = 0.5!, and h = 3/8!, and the shown orientation
of the axes and the scale bar are valid for all crosscuts. (c) Evolution
of Jzω/E with kz for the first three modes calculated for a fixed R,
R = 1.5!, and three different sets of (w,h) values. Dotted green lines
render the behavior of the effective mode index m̃.

mode index m̃(kz), accounting for the phase accumulated while
moving along one period of the helix

m̃(kz) = m + kz

!

2π
. (5)

This simple relation explains the degeneracy in Eq. (3)
and accounts for the evolution of the E-field profiles with the
wave vector. For small values of kz, m̃ ≈ m, and the number
of nodes is always even. Close to the band edge, kz = π/!,
m̃ ≈ m + 1/2, implying that the number of azimuthal nodes
is odd for all values of m, as observed in Figs. 2(a) and 2(b).
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A helical wavefront, as that associated with a chiral SPP,
is related to the OAM of the EM field.24–29 The fact that the
effective mode index m̃ may exhibit noninteger values also
suggests that the chiral SPPs supported by the corrugated
wire could carry fractional angular momentum. To test this
hypothesis, we quantify the OAM associated with the different
chiral SPPs by evaluating the z component of the angular
momentum density24 integrated over a plane perpendicular to
the wire axis

Jz = 1
2
ε0

∫
rdr

∫
dφ [r × Re(E × B̄)]z. (6)

Following the case of Laguerre-Gaussian beams,8 we
normalize Jz to E/ω, with E being the energy density
integrated over the same plane. In Fig. 2(c), we render the
evolution of Jzω/E with kz of the first three chiral SPP
modes (m = 0,±1) and for three different sets of geometrical
parameters. For small values of kz this magnitude is governed
by m, resulting in integer values for the normalized OAM.
However, when kz approaches the band edges, Jz closely
follows the effective mode index m̃, implying that the chiral
SPPs can exhibit fractional OAM near the band edges. Note
that although the evolution with kz depends on the particular
values of the geometrical parameters, the normalized OAMs
at kz ≈ ±π/! are close to ±1/2,±3/2.

The chirality of the modes, as expressed by Eqs. (1) and (2)
and shown by the dispersion relation in Fig. 1, also results
in an asymmetric transport behavior of the grooved wire.
This is exemplified in Fig. 3, where the propagation of the
mode with m = −1 along a wire with a varying groove depth
is shown [see Fig. 3(b) for the groove profile used]. The
frequency (ω = 0.32 2πc

!
) is chosen such that the selected mode

is supported by a grooved wire with a depth of the groove
similar to the depth at the ends of the system. While for a
wire with the deepest groove [central part of the system; see
Fig. 3(b)] the mode with m = −1 only exists for kz < 0. The
asymmetric transport behavior is clearly visible both in the
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FIG. 3. (Color online) Asymmetric transport behavior along a
wire with a varying groove depth. (a) z component of the Poynting
vector along the wire integrated over planes perpendicular to the wire
axis and normalized to the Poynting vector at the input end. (Note
that the propagated distance is measured in the positive z direction for
kz > 0 and in the negative z direction for kz < 0). (b) Groove profile
used. Real part of Hφ along the wire for (c) kz > 0 and (d) kz < 0.
The color scale ranges from blue (minimum) to red (maximum) and
the maximum field intensity in (c) is roughly twice as big as the one
in (d).

normalized Poynting vector along the wire [Fig. 3(a)] and in
the field plots [Fig. 3(c)]. Therefore, by a proper design of
the geometrical parameters and by an appropriately chosen
operating wavelength, the asymmetric transport behavior of
the grooved wire can be explored for a selected mode.
Nevertheless, the asymmetric transport behavior should be
not confused with one-way optical elements such as optical
isolators30–32 and it should be kept in mind that the presented
system is reciprocal. So the transport behavior for the mode
with m = 1 would be the opposite (propagation for kz > 0 and
suppression for kz < 0).

So far we have described the dielectric properties of
the wire within the PEC approximation. However, the dis-
persive behavior of a realistic metal and the related losses
become relevant in the optical regime. To demonstrate that
the fundamental properties of the chiral SPPs are present in
this regime, we study the modes of a gold wire with a pitch
of ! = 160 nm. The dielectric properties of Au are modeled
from the fitting to Johnson and Christy experimental data.34

The dispersion relations of the corresponding modes are shown
in Fig. 4, and the same qualitative behavior as the one for a PEC
wire (see Fig. 1) is found. Unlike to the PEC case, absorption
losses are now significant and hence the propagation length
L becomes of interest. It is obtained from the imaginary part
of the eigenfrequencies (L = 2πvg

Im(ω) with the group velocity
vg = dω

dkz
) and shown in the inset of Fig. 4. The propagation

length for the different chiral SPPs are reasonably large, and
hence the fundamental properties of the chiral SPPs could be
explored even in the optical regime using conventional noble
metals.

III. WAYS OF EXCITATION

In the following, we present two ways of exciting a selected
chiral SPP characterized by a given OAM and supported again
by a PEC wire. A particular SPP mode can be excited by
starting with a mode of a noncorrugated wire and by gradually
introducing the groove along the wire. To demonstrate this
strategy, we use a wire which is noncorrugated in the input
end, and where the depth of the groove is increased from
h = 0 to hmax = 0.375! [the depth profile used is shown in
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FIG. 4. (Color online) Dispersion relation of the chiral plasmons
supported by a gold wire with ! = 160 nm, R = 240 nm, w = 80 nm,
and h = 60 nm. The inset shows the propagation lengths calculated
via the imaginary part of the eigenfrequency (notice the logarithmic
scale).
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FIG. 5. (Color online) Control of the EM field pattern and OAM
of a chiral SPP by changing adiabatically the depth of the groove.
(a) Real part of Hφ evaluated at the y = 0 plane and xy crosscuts
showing the modulus of the real part of the E field (integrated over
one period of the helical groove) at different z positions along the
wire. For each crosscut the color scale used is adapted to the respective
field intensities and the maximum intensity (normalized to 1 for large
values of z) is indicated in each case. Panels (b) and (c) render the
groove’s depth profile used in our calculations and the z component
of the normalized OAM along the wire, respectively.

Fig. 5(b)]. At the input end, the fundamental mode (m = 0) of
a noncorrugated wire33 is excited, and the frequency is chosen
so that the modal wave vector is kz = 0.44π/! for hmax. The
plot of the real part of Hφ (the dominant magnetic component
of the fundamental mode) in Fig. 5(a) shows that, as the depth
of the groove increases, the chiral SPP becomes bounded more
strongly to the wire (in agreement with an increasing value of
kz). Moreover, also the angular profile of the field changes from
azimuthal independence to the one expected for a wave vector
close to the band edge (m̃ = 0.5), see Fig. 2(a). The increasing

groove depth also affects the normalized OAM [see Fig. 5(c)]
and the value of Jz at the end of the wire almost coincides with
that corresponding to the eigenmode calculation. The decrease
of Jz at the very end of the wire is related to reflexions of the
SPP at the boundary of the simulation volume. We stress that
this calculation is presented here just for proof-of-principle
purposes and no attempt to fully optimize the structure has
been made. Notice that, despite the absence of optimization,
around 70% of the energy of the fundamental mode of the
noncorrugated wire is transferred to the OAM-carrier chiral
SPP in a length scale that is only three times the SPP modal
wavelength.

The way of exciting a desired mode discussed above
requires a gradual change of the groove depth, which would
require an accurate manufacture of the structure. An alternative
way of exciting chiral SPPs in helically grooved wires is to
place an emitter of subwavelength size (a quantum dot, for
example) in the vicinity of the metal wire, in a way very
much similar to what has been done to study the quantum
nature of SPPs in noncorrugated metal wires.35 An important
asset of this strategy is that it leads to the excitation of
two SPPs propagating in opposite directions. Due to their
chiral character, these SPP modes have different OAM (Jz of
the same absolute value but different sign). We demonstrate the
feasibility of this approach by analyzing the excitation of the
modes with m = 2 and m = −2 for the set of geometrical pa-
rameters used in Fig. 1. To this end, we simulate the emitter as a
point dipole (oriented perpendicularly to the wire axis), placed
at y = R + 0.125! away from the wire axis. In Fig. 6(a) the
normalized OAM along the wire is shown. After an initial
region dominated by the dipole excitation, the normalized
Jz is in good agreement with the result of the eigenmode
calculation [indicated by the horizontal lines in Fig. 6(a)].
Moreover the EM field patterns [see Fig. 6(b)] at the wire’s
ends show that the desired modes have been efficiently excited.
Notice the opposite rotation directions of the two chiral SPPs
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FIG. 6. (Color online) Excitation of two chiral SPPs by a point dipole. The set of geometrical parameters is the same as in Fig. 1: R = 1.5!,
w = 0.5!, and h = 3/8!. The dipole is located at x = 0, y = R + 0.125!, and z = 0 and the frequency is chosen such that for kz > 0 and for
kz < 0 only one mode exists (m = 2 for kz > 0 and m = −2 for kz < 0, respectively). (a) Evolution of the normalized Jz with z (the horizontal
dotted lines indicate the eigenmode results). (b) Real part of the dominant component of the magnetic field (Hφ) evaluated at the (x,z) plane
y = 0 (upper panel) and (x,y) crosscuts of the E field computed at different z’s along the wire. For each crosscut the color scale used is adapted
to the respective field intensities and the maximum intensity (normalized to the one close to the dipole) is indicated The white arrows show the
rotation direction of the two chiral SPPs. Observe the different orientation of the axes for z > 0 and z < 0.
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[as denoted by the white arrows in Fig. 6(b)], which also results
in the different signs of Jz along the two propagation directions.

IV. CONCLUSIONS

In conclusion, we have demonstrated that a helically
grooved metal wire supports the propagation of chiral SPPs.
These modes carry OAM that is integer at the center of
the first Brillouin zone and fractional at its edges. A model
based on an effective mode index offers a simple way of
understanding their dispersion relations and associated OAM.
Furthermore, the structural chirality causes an asymmetric
transport behavior for the different modes. Importantly, we
have shown that the fundamental properties of the chiral SPPs
remain unchanged for realistic metals in the optical regime.
Two different approaches for exciting the chiral SPPs have
been also discussed, exemplifying the broad range of field

patterns achievable in the system studied. We believe that
helically grooved metal wires and their chiral SPPs could help
to study the response of molecules or nanoparticles to chiral
EM fields and to analyze light-matter interactions that involve
the orbital angular momentum exchange at a subwavelength
scale.

ACKNOWLEDGMENTS

This work has been sponsored by the Spanish Ministry
of Science and Innovation under Contract No. MAT2008-
06609-02 and project Nanolight.es. F.R. acknowledges support
from the Deutsche Akademie der Naturforscher Leopoldina
under Grant No. LPDS 2009-52. This work has been partially
supported by the European Research Council, Grant No.
290981 (PLASMONANOQUANTA).

*felix.ruting@uam.es
†fj.garcia@uam.es
1C. M. Soukoulis and M. Wegener, Nature Photon. 5, 523 (2011).
2V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva,
Y. Chen, and N. I. Zheludev, Phys. Rev. Lett. 97, 167401 (2006).

3J. B. Pendry, Science 306, 1353 (2004).
4E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M.
Soukoulis, and N. I. Zheludev, Phys. Rev. B 79, 035407 (2009).

5S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, Phys.
Rev. Lett. 102, 023901 (2009).
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