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Abstract: One-dimensional light harvesting structures with a realistic
geometry nano-patterned on an opaque metallic film are optimized to render
high transmission efficiencies at optical and infrared frequencies. Simple
design rules are developed for the particular case of a slit-groove array with
a given number of grooves that are symmetrically distributed with respect to
a central slit. These rules take advantage of the hybridization of Fabry-Perot
modes in the slit and surface modes of the corrugated metal surface. Same
design rules apply for optical and infrared frequencies. The parameter space
of the groove array is also examined with a conjugate gradient optimization
algorithm that used as a seed the geometries optimized following physical
intuition. Both uniform and nonuniform groove arrays are considered.
The largest transmission enhancement, with respect to a uniform array,
is obtained for a chirped groove profile. Such relative enhancement is a
function of the wavelength. It decreases from 39 % in the optical part of the
spectrum to 15 % at the long wavelength infrared.
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24. F. López-Tejeira, S. G. Rodrigo, L. Martı́n-Moreno, F. J. Garcı́a-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn,
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1. Introduction

Exciting new developments in optoelectronics and chemical sensing are based on a single sub-
wavelength aperture milled in an opaque metal film, which surface is sculpted at the scale of
the wavelength [1,2]. In systems like the slit-groove array (SGA) sketched in Fig. 1, the surface
corrugation acts like an antenna to couple the incident light into surface modes that squeeze
the EM energy into the aperture, leading to high transmission efficiencies at a narrow spectral
range. Surface plasmon polaritons (SPPs), modified by the metal corrugation, are responsible
for light harvesting in the optical regime; while in the THz regime, where metals behave as
perfect electric conductors (PEC) and SPP modes no longer exist, surface modes are induced
by the geometry [3].

Tuning the optical response of single apertures surrounded by periodic grooves are of partic-
ular interest in the context of spectral and polarizing imaging [4–7]. Transmission resonances
at a given wavelength can be controlled by adjusting the size and geometry of the SGA. Its opti-
cal response has been optimized by varying groove depth [4], periodicity [5], aperture size [8],
metal thickness [9], and number of grooves [10]. Such studies are not limited to uniform and pe-
riodic groove arrays, where all grooves are identical and equidistant, but also consider nonuni-
form and not periodic structures [11–15].

The correlation between geometrical parameters for an efficient light harvesting process
(LHP) has been discussed in several of the previous references. Authors of Ref. [5] have pointed
out the role played by groove cavity modes, waveguide (Fabry-Perot) modes in the slit, and the
in phase groove re-emission (controlled by the period of the groove array). They employed
the PEC approximation, which has only indicative values at optical frequencies. Janssen et al.
refined the numerical exploration of the array geometry explaining how to squeeze additional
light into a slit in a real metal by increasing the number of grooves but reducing the size of each
groove at the same time [10].
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Fig. 1. Schematic representation of the slit-groove array on a free-standing gold film of
thickness hs. The slit of width ws is surrounded by 2Ng grooves (of width wg, depth hg, and
period P). The distance from the slit to the first groove, dsg, is in principle different from P.

The aforementioned studies are limited to some relevant geometrical parameters and often
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to a fixed wavelength. Moreover, whereas such studies are mainly focused on optical, THz
and microwave frequencies, less attention has been paid to the infrared (IR) regime, for which
one can envisage potential applications in spectroscopic chemical sensing [16,17], bio-sensing
[18–20], and light harvesting technologies, see Ref. [21] for a recent review. In the present
paper, we go one step further and study a broader area of the parameter space and a larger
spectral range that extends from optical to IR frequencies.

Our first goal is to identify simple design rules for optimal light transmittance by the SGA
shown in Fig. 1. Such rules are developed from the physical mechanisms responsible for
squeezing light into the central aperture. Our second goal is to further optimize the light harvest-
ing process with help of a conjugate gradient (CG) maximization algorithm [22] that scrutinizes
the parameter space of the groove array. Seeds for the CG algorithm are taken from simulations
based on physical intuition. We shall consider uniform and periodic groove arrays as well as
nonuniform and not periodic ones, which further enhance the light transmission through the slit.
Notice that Ref. [13] has already explored numerically nonuniform SGAs but only in the mi-
crowave regime. Moreover, a remarkable difference with previous works is that we optimized
the LHP for a fixed size of the system. Thus, we perform a full optimization for a given num-
ber of grooves and a given wavelength. Fixed size optimizations are more fruitful for practical
applications, like optical detectors, which usually have a given pixel size and its fabrication is
limited by several geometrical constrains.

Calculations are done in the framework of the coupled-mode method (CMM) [2] with surface
impedance boundary conditions [23]. Such approximate boundary conditions are applied not
only at the horizontal air/metal interfaces but also at the vertical walls of slit and grooves. This
model nicely reproduces experimental results [7, 24, 25].

Despite the intensive optimization presented here, a more efficient LHP can be achieved
with slight variations of the geometry of Fig. 1. Such kind of improvements have been largely
considered in the literature, e.g. the inclusion of Bragg reflectors [26], the change of the shape
of either the aperture [27] or the grooves [6], or the combination of single apertures perforated
on a metal film with dielectric surface gratings [28]; see Ref. [2] for a comprehensive review.
The study of such modified geometries exceeds the scope of the present paper. However, we
hope that the present discussion could motivate further theoretical and experimental studies on
that direction.

The paper is organized as follows. The coupled-mode method is briefly described in the next
section. Section 3 studies a uniform SGA. Its optical response is optimized first by a procedure
based on physical intuition and next with the CG algorithm. Both wavelength and size of the
system are varied in the optimization process. Section 4 considers a nonuniform SGA of a
given size as a function of the wavelength. At the end of the paper our main conclusions are
summarized.

2. Theoretical framework: coupled-mode method

We study the system represented in Fig, 1. It consists in a slit of width ws perforated in a
free-standing gold layer of thickness hs. The front metal surface is corrugated with a set of
2Ng grooves (of width wg and depth hg) symmetrically distributed with respect to the central
slit. The groove period is P. The distance from the slit to the first groove, dsg, could be in
principle different from P. We assume hereafter that the SGA is illuminated by a plane wave
which electric field is in the plane of the surface and perpendicular to the slit direction. The
dielectric constant of gold is taken from Ref. [29] and [30] for optical and infrared frequencies,
respectively.

We compute the intensity of the light radiated to the farfield and normalize it to the intensity
of the light incident on the area of the slit. The resulting normalized-to-area transmittance,
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called η from now on, accounts for the efficiency of the light harvesting process: η is of the
order of 1 for a single slit, whereas it could become one or two orders of magnitude larger when
the groove array squeezes additional light to the central slit.

Maxwell’s equations are solved self-consistently using the coupled-mode method [2]. It
is based on a convenient representation of the EM fields. Above and below the metal film
shown in Fig. 1, the fields are expanded into an infinite set of plane waves with both p- and
s-polarizations. Inside slit and grooves the most natural basis is a set of planar waveguide
modes [31]. Convergence is fast achieved with a small number of such modes [32]. The parallel
components of the fields are matched at the metal/dielectric interface using surface impedance
boundary conditions (SIBCs) [23]. Although SIBCs neglect the tunneling of EM energy be-
tween the two metal surfaces, this effect is not relevant for a metal thickness larger than a few
skin depths. SIBCs are also used at the lateral walls of slit and grooves. After matching the fields
at the interface we arrive to a linear system of tight binding-like equations, than can be easily
solved. We direct the interested reader to Ref. [33] for the expressions of the full multimode
formalism as well as their derivation, and to Ref. [32] for its application to one-dimensional
systems.

3. Uniform slit-groove array

We consider first a uniform SGA, where all grooves are identical. Section 3.1 describes the
physical mechanisms underneath in the light harvesting process and how to combine such
mechanisms for having an enhanced transmittance. The optimal geometry obtained in this way
is used in sections 3.2 and 3.3 as a seed for the conjugate gradient maximization method. In
section 3.2 the SGA is optimized as a function of the wavelength for a fixed number of grooves,
while in section 3.3 λ is keep constant and Ng is allowed to vary.

3.1. Optimization following physical intuition

The normalized-to-area transmittance of a SGA can be enhanced when a Fabry-Perot mode is
excited inside the slit or when the geometry of the groove array supports groove cavity modes.
For a given wavelength, the Fabry-Perot mode can be tuned by metal thickness hs (see [2] and
references therein), while the groove cavity mode of a groove array is a function of the groove
depth and period [34]. However, the largest transmittance is obtained when the Fabry-Perot
mode of the slit is located at the same spectral position than the groove cavity mode, as pointed
out in Ref. [5]. We find that this recipe applies not only for optical frequencies but also for
the IR part of the spectrum. Figure 2(a) illustrates this behavior for λ = 1.35 μm and Ng = 10
grooves. The Fabry-Perot peak for a single slit is centered at λ = 1.35 μm for a film thickness
of hs = 360 nm. Despite the intensity of the Fabry-Perot mode changes monotonously with the
aperture size ws of a sub-wavelength slit [2,35], choosing the value of ws implies a compromise
between a high normalized transmittance η that decreases with ws and a high total transmittance
T that increases with ws. Similar trends are found for a SGA. We therefore keep constant the
value of ws. We use ws = 100 nm that gives η = 1.8 for a single slit at λ = 1.35 μm.

The groove cavity mode coincides with the Fabry-Perot mode for P = 0.93λspp and hg = 120
nm, leading to the largest η = 54 in the black line of Fig. 2(a). P is normalized by the SPP
wavelength (λspp = 1.33 μm) for the sake of convenience. P < λspp due to penetration of the
field in the grooves that enlarges the optical path of the SPPs. SPPs are emitted in phase when
λspp is equal to the sum of P and the extra optical path provided by the grooves. We assume for
the moment that wg = hg and dsg = P. These constrains are relaxed in what follows.

Fabry-Perot and groove cavity modes are in principle hybridized in a SGA, but roughly
speaking we could say that the interaction between slit and groove array can be controlled
by the distance from the slit to its nearest groove, dsg. Figure 2(b) renders η as a function

#173250 - $15.00 USD Received 25 Jul 2012; revised 2 Sep 2012; accepted 6 Sep 2012; published 25 Oct 2012
(C) 2012 OSA 5 November 2012 / Vol. 20,  No. 23 / OPTICS EXPRESS  25445



Fig. 2. (a) Normalized-to-area transmittance (η) for a SGA as a function of the groove
period P for groove depth increasing from hg=110 nm to 130 nm at λ = 1.35 μm. P is
normalized to λspp = 1.33 μm. (b) η as a function of the slit-first groove distance dsg

for several values of P/λspp taken from the black curve of (a) (hg = wg = 125 nm). (c)
η versus the aspect radio (r = wg/hg) for the optimal geometry of (b): P = 0.95λspp and
dsg = 0.93P.
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of dsg (normalized by P) for several values of P/λspp. The groove pitch increases from the
value P = 0.95λspp, at which η has a maximum in Fig. 2(a), to the value P = 1.03λspp, at
which η has a minimum. In Fig. 2(b), maxima and minima are related to the interference of
the EM fields of the slit and the surface waves coming from the groove array. The constructive
interference of such fields results in an increased field intensity at the slit entrance, which causes
a transmission enhancement [10]. In particular, Fig. 2(b) shows a double-peak when P < λspp:
one peak at dsg ≈ 0.4P and another at dsg ≈ 0.95P. The double-peak is shifted to smaller values
of dsg when P approaches λspp. Only a single broad peak lasts when P > λspp.

The highest emittance is obtained when dsg is close to P but always smaller than λspp; for our
choose of parameters η = 62 for dsg = 0.93P and P = 0.95λspp, see the black line of Fig. 2(b).
It is worth to stress that a slightly larger P implies a significant reduction of η . It is commonly
assumed that the ideal groove pitch for extraordinary optical transmission should fulfill SPP
constructive interference conditions (P= nλspp, where n is an integer), thought it does not occur
in practice [1]; see Ref. [36] for a discussion in the case of a minimal interactive system. For
example, Janssen et al. obtained an optimal transmittance for dsg = 0.54 P assuming P equal
to λspp at λ = 800 nm [10]. However, despite of the disagreement with authors of Ref. [10]
regarding the best choice for P, our calculations confirm their results that the transmittance is
negligible when dsg = P = λspp.

The aspect ratio r = wg/hg is another important design parameter. Figure 2(c) shows η as
a function of r for the optimal geometry of Fig. 2(b), i.e. hg = 125 nm, P = 0.95λspp, and
dsg = 0.93P. The oscillatory behavior of η is related to the fact that the scattering cross-section
of the grooves is a sinusoidal function of the groove width [32]. In particular, η has two peaks
centered at r ≈ 1.0 and r ≈ 6.0. The position of the second peak changes as a function of the
wavelength (not shown). Though η is slightly larger for r = 1.0 than for r = 6.0 in Fig. 2(c), we
shall see below that the relative contribution of the two peaks changes when several parameters
are optimized simultaneously.

We conclude the analysis of Fig. 2 stressing that groove pitch and depth are the most rele-
vant design parameters, leading to η = 54 in Fig. 2(a). Ideal values of r and dsg produces an
additional enhancement of 15 %. Up to now we have η = 62 for λ = 1.35 μm, hs = 360 nm,
ws = 100 nm. hg = wg = 125, P = 0.95 λspp, and dsg = 0.93P. This geometry is used below
as a seed in the CG optimization. Similar calculations have been done for other wavelengths at
optical and IR frequencies (not shown).

3.2. CG optimization as a function of the wavelength

We search now for the optimal groove profile scanning the parameter space with help of the
conjugate gradient maximization algorithm [22], that was implemented for that purpose within
our CMM formalism. Optimal geometries as a function of λ for a uniform groove array with
Ng = 10 grooves are reported in Table 1.

The metal thickness (hs) defining the position of the Fabry-Perot mode for a given wavelength
and the slit width (ws) that defines its intensity are keep constant along the simulation process.
For the sake of comparison on an equal footing, we scale ws at a given λ with respect to the
value ws = 100 nm chosen above for λ = 1.35 μm. Input values of hs and ws are included in
Table 1.

We observe in Table 1 that the normalized transmittance for the optimal system increases
from η = 35 at λ = 0.65 μm to η = 74 at λ = 10.6 μm, due to the reduction of the metal
absorption for increasing λ . The absorption is also given in Table 1. It decreases from 59 % at
λ = 0.65 μm to 22 % λ = 10.6 μm. This quantity is defined as 1-R-T, where R and T are the
total reflectance and total transmittance, respectively.

The most remarkable feature is that, despite the reduction of the absorption, η does not
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Table 1. Optimal geometries obtained by a CG optimization of a uniform SGA with Ng = 10
grooves for different values of the wavelength. Last column reports calculations for a PEC
at λ = 10.6 μm. Last row gives the values of η for a SGA scaled by λ with respect to the
SGA made of gold and optimized at λ = 10.6 μm.

Parameter Gold PEC
λ (μm) 0.65 0.85 1.35 4.0 6.0 8.0 10.6 10.6

λspp (μm) 0.62 0.83 1.33 3.997 5.997 7.998 10.599 -
hs (μm) 0.14 0.22 0.36 1.28 2.17 2.94 3.6 3.95
ws (μm) 0.05 0.07 0.1 0.296 0.44 0.59 0.78 0.79
hg (μm) 0.06 0.06 0.09 0.37 0.56 0.76 1.02 1.27
wg (μm) 0.38 0.4 0.45 0.94 1.47 2.06 2.68 1.65
P (μm) 0.60 0.79 1.27 3.81 5.7 7.61 10.1 10.1

dsg (μm) 0.53 0.72 1.17 3.49 5.27 7.028 9.3 9.35
hs/λ 0.22 0.26 0.27 0.32 0.36 0.37 0.37 0.37
hg/hs 0.41 0.28 0.25 0.29 0.26 0.26 0.26 0.32

r = wg/hg 6.6 6.6 4.9 2.5 2.6 2.7 2.6 1.3
P/λspp 0.96 0.96 0.95 0.95 0.95 0.95 0.95 0.95

dsg/P 0.88 0.91 0.92 0.92 0.92 0.92 0.92 0.93
absorption (%) 59 51 41 27 25 23 22 0

radiative loss (%) 26 28 32 43 46 48 49 60
η 35 47 68 77 75 75 74 102

η (SGA scaled by λ ) - - 10 55 68 72 74 -

increase with λ in the mid-IR but states almost constant around the value η = 75. That indicates
that radiative losses dominate over dissipative losses. We can estimate the radiative loss by
means of the total reflectance. Results are reported in Table 1. The radiative loss increases from
26% at λ = 0.65 μm to 49 % at λ = 10.6 μm. However, dissipative losses are not negligible
even in the IR regime. In order to quantify its effect we optimized a SGA in a PEC at the longest
wavelength considered in this paper, λ = 10.6 μm. Results are given in the last column of Table
1. We find that, even at the long wavelength part of the IR, η for a PEC is 42 % larger than for
gold. A relevant feature of a PEC is that the dimensions of the system can be scaled with λ ,
having the resulting structure the same transmittance than the original one. We have verified if
that simple rule could be applied to the IR. Our calculations show that it is a nice approximation
for the long wavelength part of the IR. In the last row of Table 1 we report the values of η for
the SGAs scaled by λ with respect to the SGA made of gold and optimized at λ = 10.6 μm,
i.e. we multiply the geometrical parameters of the before-last column of Table 1 by the scaling
factor δλ , which is equal to δλ = 8.0/10.6 = 0.75 for λ = 8.0 μm, δλ = 0.57 for λ = 6.0 μm,
and so forth. A good agreement between the optimal SGA and the scaled one is obtained for
λ > 6.0 μm.

We find however that the ideal P ≈ 0.95λspp and dsg ≈ 0.92P are independent of the wave-
length for λ > 0.65 μm. These values are very close to those obtained for a PEC. This behavior
is related to the properties of groove cavity modes [32]. The dispersion relation of surface
modes is close to the folded dispersion relation of the flat surface, which is also close to the
folded light line (notice that λspp ≈ λ in Table 1). At the center of the Brillouin zone, gaps are
open due to the finite size of the grooves. Gaps strongly depend on groove geometry and wave-
length, leading to an ideal aspect radio that decreases from 6.6 to 2.6 for increasing λ , as well
as an optimal groove depth that oscillates around a quarter of the metal thickness. Geometrical
changes are larger for a PEC due to the different scattering cross-sections of real and perfect
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electric conductors.

Table 2. FWHM of η as a function of each parameter reported in 1. In particular, the
FWHM for η versus λ is the bandwidth. Last column reports calculations for a PEC at
λ = 10.6 μm.

Parameter Gold PEC
λ (μm) 0.65 0.85 1.35 4.0 6.0 8.0 10.6 10.6

Δλ (μm) 0.04 0.05 0.06 0.17 0.30 0.42 0.56 0.48
Δhs (μm) 0.13 0.26 0.23 0.63 0.90 1.31 1.65 1.46
Δhg (μm) 0.08 0.05 0.06 0.18 0.31 0.43 0.57 0.36
Δwg (μm) 0.20 0.27 0.65 1.96 3.02 4.02 5.05 1.29
ΔP (μm) 0.04 0.05 0.075 0.23 0.36 0.50 0.67 0.56

Δdsg (μm) 0.16 0.18 0.20 0.61 1.21 1.65 2.25 1.83

The tolerance of the optimal system to small changes of its geometry is estimated by the full
width at half maximum (FWHM) of η as a function of the corresponding geometrical parame-
ter. The FWHM for the optimal geometry given in Table 1 is reported in Table 2. In particular,
the FWHM for η versus λ is the bandwidth. We find that the tolerance on the period is smaller
than for dsg. The FWHM is also larger for wg than for hg. The reason for this behavior is that
period and groove depth give rise to the largest enhancement of η when groove cavity modes
are excited. So, peaks are narrower when the system is more resonant, as one should expect.
Interestingly, η versus wg has a broad peak (not shown) instead of the two peaks depicted in
Fig. 2(c). Please, also notice that peaks for gold at λ = 10.6 μm are broader than for a PEC due
to the dissipative losses of a real metal.

3.3. CG optimization as a function of the system size

In this section we optimized a uniform SGA as a function of the number of grooves, Ng. A
CG maximization is performed for a given value of Ng and λ using as a seed the geometries
reported in Table 1. Figure 3 shows our results for Ng increasing from 2 to 42 and λ = 1.35
μm.

We observe in Fig. 3(a) that the normalized-to-area transmittance grows monotonically up
to η = 216 for Ng = 42. As pointed out in Ref. [10], in order to achieve such enhancement the
distance between grooves raises as a function of Ng and the groove depth decreases, see Figs.
3(b) and 3(c). In particular, we find that P approaches λspp for increasing Ng. In contrast, dsg

reaches its maximum value for only 14 grooves. It means that the central slit no longer interacts
with the outer grooves when Ng is larger than this value. On the other hand, hg decreases by
100 nm as a function of Ng until it reaches the value hg = 72 nm for Ng = 22. Then, hg remains
practically constant. We add to the conclusions of Ref. [10] that, in order to perform the optimal
LHP when more grooves are added to the SGA, grooves should be not only shallower but also
broader, see Fig. 3(d), where the aspect ratio raises until r = 11.6. Notice that only wg still
grows for Ng > 20 whereas P, dsg, and hg are practically constant. We also see in Fig 3(a)
that the FWHM decreases with Ng. Thus, the price for the enhancement of η is having a more
resonant SGA.

Features found in Fig. 3 can be explained as follows. Given that the light harvesting process is
mainly dominated by radiation losses, the SGA increases its total size to collect additional light,
thus increasing P and dsg. For the same reason, broader grooves enhance the scattering cross-
section between modes inside the grooves and the EM radiation [34]. On the other hand, as the
radiation pattern is driven by surface modes running along the metal/air interface, the grooves
tend to be shallower to reduce the shadows that apertures closer to the central slit produce on
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Fig. 3. CG optimization of a SGA for λ = 1.35 μm and Ng increasing from 2 to 42. (a)
Normalized-to-area transmittance, η , and FWHM. (b) Period, P, and slit-nearest groove
distance, dsg. (c) Groove depth, hg. (d) Aspect radio, r = wg/hg, and groove width, wg.

apertures on the edge of the SGA. Shallower grooves also implies a smaller scattering cross-
section, but this effect is compensated with broader grooves and a larger system size.

4. Nonuniform slit-groove arrays

We can also vary the geometry and pitch of all the grooves, in such a way that the optimized
groove array becomes aperiodic and the groove geometry change with the groove position. In
such a case, physical intuition can not longer be used and the optimization process is based
solely on the CG algorithm. The optimization routine is divided into the following steps:
i) Optimization of a uniform SGA: already discussed in the previous sections.
ii) One-parameter optimization: A given parameter is let to vary for each groove, so the groove
array is no more uniform. Independent simulations are run for the set of groove depths,

{
hg
}

,
groove widths,

{
wg

}
, and groove positions,

{
xg
}

.
iii) Two-parameter optimization: A pair of parameters is let to vary for each groove. Indepen-
dent simulations are run for the sets:

{
hg,xg

}
,
{

hg,wg
}

, and
{

wg,xg
}

.
iv) Full groove geometry,

{
hg,wg,xg

}
: All geometrical parameters in each groove are let to

vary.
Optimal geometries obtained in one step are used as a seed for next step. Several trials with

different seeds have been done for checking the consistency of the numerical results. We find
that the variation of each parameter is within the tolerances reported in Table 2. Spectra for
SGAs optimized at several λ s are represented in Fig. 4. Typical profiles are depicted in Fig. 5.

We find that the enhancement provided by a nonuniform SGA (optimizing the full groove
geometry) with respect to a uniform one is 39% at λ = 1.35 μm, 17 % at λ = 4.0 μm, and
15% at λ = 10.6 μm, see Fig. 4. The relative enhancement decreases with λ due to the weaker
strength of the surface modes for longer wavelengths.

#173250 - $15.00 USD Received 25 Jul 2012; revised 2 Sep 2012; accepted 6 Sep 2012; published 25 Oct 2012
(C) 2012 OSA 5 November 2012 / Vol. 20,  No. 23 / OPTICS EXPRESS  25450



Fig. 4. Spectra of the SGA optimized with the CG algorithm for the target wavelengths (a)
λ = 1.35 μm, (b) λ = 4.0 μm, and (c) λ = 10.6 μm. Full

{
hg,wg,xg

}
and one-parameter

optimizations (
{

hg
}

,
{

wg
}

, and
{

xg
}

) are compared with the optimization for a uniform
SGA.

The variation of the groove depth provides optimal geometries among one-parameter opti-
mizations, with an enhancement of 11 % for λ = 1.35 μm, 10 % for λ = 4.0 μm, and 8%
for λ = 10.6 μm. Figure 5(a) shows the groove profiles obtained at λ = 1.35 μm after the
optimization of a uniform SGA (red), the one-parameter optimization

{
hg
}

(black), and the
full-parameter optimization

{
hg,wg,xg

}
(blue). The optimal groove-depth profile for

{
hg
}

is
a chirped array with groove that deepens from 0.24hs to 0.58hs. A similar variation between
0.21hs to 0.64hs is observed for the full parameter optimization. We also find that grooves oc-
cupy a smaller fraction of the metal thickness for longer wavelengths, see Fig. 5(d). In all these
cases, distant grooves need to be deeper than those close to the central aperture in order to
increases their scattering cross section and squeeze additional light into the aperture.

The optimal width profile is also a chirped array with incremental groove width, see Fig. 5(b).
As for the depth profile, distant grooves are broader for they should increase their scattering
cross section in order to further enhance the transmittance through the central aperture. We also
observe a difference between

{
wg

}
and

{
hg,wg,xg

}
optimizations larger than for the groove

profile. The optimal geometry is consistent with previous calculations that found an efficiency
of 50% in plasmon generation using a grating with a gradient in the groove width [12].

We do not find large deviation from the uniform SGA when the groove-position profile is
optimized with the CG algorithm, see Fig. 5(c). The relative distance between grooves is prac-
tically the same than for a uniform SGA, except for the farthest groove of the array in the
full-parameter optimization. The optimization of the groove-position profile does not produce
an appreciable enhancement of the normalized transmittance with respect to the uniform SGA,
see Fig. 4.
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Fig. 5. Profiles obtained for λ = 1.35 μm in the CG optimizations of the uniform and
nonuniform SGAs. (a) Profiles of groove depths. (b) Profiles of groove widths. (c) Profile
of groove positions. (d) Groove profiles as a function of λ .

5. Conclusions

In search for high efficiencies in the light harvesting process of a one-dimensional slit-groove
array, we have considered the interplay between Fabry-Perot modes of a single slit and groove
cavity modes of the groove array. We have developed the following simple design rules for a
uniform SGA, that are valid for optical and IR frequencies.

• Fabry-Perot and groove cavity modes should be at the same spectral position. For sub-
wavelength apertures at a given λ , the position and intensity of the Fabry-Perot is con-
trolled by metal thickness and aperture size, respectively. The spectral position of the
groove cavity modes is mainly determined by groove depth and pitch.

• The normalized-to-area transmittance grows monotonically with the number of grooves,
given that grooves move apart and become broader and shallower as Ng increases. In
particular:

– The ideal periodicity (P) is slightly smaller than the SPP wavelength (λspp). P tends
to λspp (from below) when more grooves are added to the SGA.

– Slit-nearest groove distance should be about 0.92P (but only for the optimal P).

– The ideal groove depth is smaller than half of the metal thickness. This quantity
decreases with the number of grooves (Ng).

– The optimal aspect ratio decreases with λ but raises with Ng.

We also account the following trends for the optimal system:
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• The transmission efficiency of a uniform SGA in the infrared is practically independent
of λ .

• In contrast, the relative enhancement provided by a nonuniform SGA decreases with λ .
A chirped groove array enhances the transmittance between 15% and 39% for decreasing
λ .

• The bandwidth decreases with the size of the system.

Summing it up, we hope that our findings could motivate further theoretical and experimental
studies of light harvesting structures.
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