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Abstract Nonlinear propagation of light in a graphene mono-
layer is studied theoretically. It is shown how the large intrin-
sic nonlinearity of graphene at optical frequencies enables the
formation of quasi one-dimensional self-guided beams (spatial
solitons) featuring subwavelength widths at moderate electric-
field peak intensities. A novel class of nonlinear self-confined
modes resulting from the hybridization of surface plasmon po-
laritons with graphene optical solitons is also demonstrated.

air halfspace

linear d\elec‘mc\
nonlinear graphene
>,
monolayer

linear die\ectr\c\

air halfspace

Graphene supports the propagation of subwavelength optical

solitons
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The experimental discovery and isolation of graphene
monolayers from bulk graphite [1] has attracted great inter-
est during the last years. The study of graphene properties
has become a hot topic of research within the physics and
nanoscience communities [2] as it promises, among oth-
ers, a variety of optical and opto-electronical applications
[3,4]. Very large values of the nonlinear optical susceptibil-
ities corresponding to multiple harmonic generation were
theoretically predicted [5, 6] and have been experimentally
verified very recently in the case of third-order nonlinear
effects [7]. Still, it is an open question whether this high
nonlinear coefficient, which occurs in a two-dimensional
(2D) system, could induce strong nonlinear effects in elec-
tromagnetic (EM) modes that extend on the three spatial
dimensions.

One of the nonlinear effects with greater potential for
controlling light propagation at the micro- and nano-scales
is the formation of temporal and spatial EM solitons [8—12].
In this Letter we demonstrate that 2D graphene monolay-
ers support spatial non-diffracted beams (i.e., solitons) of
subwavelength width in the optical regime. We illustrate
this capability by analyzing two arrangements leading to
solitons with different polarizations: a graphene monolayer
embedded into a conventional dielectric waveguide and a
graphene sheet placed on top of a metal-dielectric struc-
ture. We analyze in detail the formation of spatial solitons
and the relation between soliton width and input intensity,
showing that the subwavelength scale can be reached by

using feasible values for the beam peak intensity. We also
develop a quasi-analytical model that is able to capture the
basic ingredients of the numerical results.

The first structure in our analysis consists of a single
graphene monolayer placed inside a planar linear dielectric
waveguide, see Fig. 1 (a). This dielectric waveguide pro-
vides vertical confinement in the x-direction for the propa-
gating EM mode. Graphene must be physically considered
as a 2D material with nonlinear conductivity. But mathe-
matically we can also approximate graphene by a very thin
layer of a finite thickness introducing an effective dielectric
constant. Then we can treat graphene using the Maxwell
equations for bulk media. We have checked that both 2D
and 3D approaches give virtually the same numerical re-
sults. Thus, we take directly the nonlinear susceptibility
from the experiment, and approximate graphene by a thin
dgr = 0.3 nm-thick layer. The nonlinear polarization den-
sity in graphene is Pni(r, 1) = €penc(r, t)E(r, 1), where
E (r, 1) is the in-plane component of the electric field (in
y, z-plane) and eny (T, t) = Xg’)[EH(r, )]? is the nonlinear
contribution to the equivalent permittivity of the graphene
layer. From the polarization density the nonlinear current
is obtained as jn.(r, t) = dPNL(T, t)/0¢. Throughout this
paper, we consider the operating wavelength, 1y = 850
nm, for which a Kerr-type third-order effective nonlin-
ear susceptibility xJ ~ 1.5 x 1077 esu, (x§ ~ 2.095 x
10~ m?/V? in SI units) has been measured [7]. The non-
linear eigenmode problem is formulated in terms of the 3D
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Figure 1 (online color at: www.lpr-journal.org) Geometry and
TE soliton formation. Panel (a) depicts the lateral view of the
considered geometry: a dielectric waveguide with a graphene
monolayer located in the center. The intensity of a propagat-
ing beam evaluated at the graphene sheet is rendered in panel
(b) for the low intensity regime, and in panel (c) for the soliton
(high intensity) case.

vector Maxwell equations and solved self-consistently in
the continuous wave regime using the finite element method
[13].

For the case depicted in Fig. 1(b), the initial solution
for the iterative method has a form of a TE-polarized beam
propagating in the z-direction with a gaussian shape along
the y-direction and a waveguide profile in the x-direction.
On each step of the iterative process, the EM fields are cal-
culated by solving the propagation problem with the eigen-
mode solution introduced as a source. In these calculations,
we neglect third-order nonlinear effects in the high-index
dielectric material surrounding the graphene layer. This as-
sumption is justified by the fact that the magnitude of the
third-order nonlinear optical susceptibility in conventional
high-index dielectric media is several orders of magnitude
smaller than the one characterizing graphene.

Figure 1 illustrates the formation of a non-diffracted
beam at an operating wavelength Ay = 850 nm and for a
dielectric waveguide of thickness 300 nm, characterized
by a linear dielectric permittivity, €4 = 2.25. When the
beam intensity (defined as the modulus of the Poynting
vector) at maximum is low (I < 10° W/cm?), the system
operates in the linear regime and the beam diffracts while
traveling in this structure, see Fig. 1(b). However, our nu-
merical calculations show that, for high enough intensity
(I > 10° W/cm?), the nonlinearity of graphene can com-
pensate diffraction leading to the formation of EM soli-
tons. This is illustrated in Fig. 1(c), computed for [ =
10'° W/cm?, showing a non-diffracted beam with a lateral
size of the order of A¢. The soliton field is laterally confined
due to the self-induced change of the effective refractive
index, similarly to what happens to a beam traveling within
a bulk nonlinear waveguide [10]. In contrast to a conven-
tional nonlinear waveguide, in which the nonlinear index

change occurs in the whole volume, here in our system the
3D beam is laterally self-guided thanks to the nonlinearity
that is only present in the 2D graphene sheet. We stress
that these spatial solitons, sustained by a single graphene
sheet, are very different to those supported by a metama-
terial composed of graphene-dielectric superlattices in the
terahertz regime, which propagate perpendicularly to the
graphene layers [14]. We also emphasize that the class of
bright self-guided solitonic modes observed in Fig. 1(c)
could not be supported by a thin metal film. In general, for
the frequency range considered in this work, metal films of
nanometric thickness feature complex values of the non-
linear third-order susceptibility, x®, such that Rex® < 0
and Imy @ is positive and large [15], i.e., they display self-
defocusing nonlinearities with large nonlinear absorption
losses.

Optical solitons in graphene should be observable with
current samples and moderate beam intensities. Although
the considered peak intensity in Fig. 1(c) is much higher
than the reported damage threshold of graphene for continu-
ous wave excitation, Icwg ~ 10° W/em? [16], it is still well
below the damage threshold of graphene for 200 fs pulses,
Ipm, ~ 10'2 W/cm? [17]. Our continuous wave description
of the soliton propagation under pulsed excitation is fully
justified as the optical cycle associated with 1y = 850 nm is
two orders of magnitude shorter than a 200 fs pulsed beam.

Additional insight on the physical process can be gained
from the study of the beam profile. Figure 2(a) renders
the normalized transversal electric field profile |E(x, y)| of
the calculated 3D eigenmode for / = 1.8 x 10" W/cm?
(high intensity regime). The field cross-section along the
y-direction [see Fig. 2(b)] can be accurately fitted by the
function sech(y/w(x)), where w(x) is a measure of the lat-
eral beam size, which slightly depends on x. This functional
form for graphene EM solitons will be discussed later on.
On the other hand, the confinement of the E-field along the
x-direction is governed by the total internal reflection at
the boundaries of the dielectric waveguide. The normalized
E-field cross-section along the x-direction changes as the y
coordinate is varied (see Fig. 2(c)). This change is more sig-
nificant than in planar nonlinear waveguides and represents
a distinct manifestation of the unusually large nonlinear
optical current supported by the 2D graphene sheet that, in
the present case, substantially exceeds the linear one.

We turn now to analyze the dependence of soliton width
(characterized by the full width at half maximum (FWHM),
a, of the soliton E-field) on the external intensity illuminat-
ing the system. In order to do this, we have computed the
nonlinear eigenmodes for several peak E-field amplitudes
in the graphene layer. The results, in terms of the corre-
sponding intensity distributions (which in each case have
been normalized to the maximum beam intensity), are sum-
marized in the inset of Fig. 3. As the maximum value of
the E-field in the graphene layer (| E |nax) 1S increased from
0.8 x 103 V/m (bottom panel) to 4.2 x 10® V/m (top panel),
a decreases from @ = 2 um (more than 2 times the wave-
length of the external illumination) to @ = 0.253 um (well
inside the subwavelength regime). The results displayed in
Fig. 3 represent a novel instance, in a strict 2D system,
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Figure 2 (online color at: www.Ipr-journal.org) Soliton profile
analysis. Panel (a) shows the transversal E-field distribution, |E]|,
of the soliton mode for the case in which the peak intensity is
I = 1.8 x 10'° W/cm?2. The horizontal cross-sections h; and h, of
the normalized E-field (panel b) display a conventional soliton pro-
file proportional to sech(y). For the vertical cross-sections (panel
c), the E-field at v, has the standard profile of a linear waveg-
uide mode. For the cross-section evaluated at v4 the shape of the
beam corresponds to that of a nonlinear system. The filled area
on the panel (c) shows the location of the dielectric waveguide.

on how the balance between nonlinearity and diffraction
can yield self-guided propagating beams with subwave-
length lateral confinement. In this context, it is important to
point out that when graphene losses are incorporated into
the calculations (these losses stem from the linear part of
the graphene conductivity), the propagation length L of the
soliton, defined as L = 1/2Im(BNL), BnL being the com-
plex propagation constant of the nonlinear mode, is barely
dependent on a. In the case considered in Fig. 3, we find
that the propagation length slightly decreases with a in a
monotonous manner, being L = 20 um for ¢ = 2 um and
L = 15 pm for a = 0.25 um. This virtual independence of
the propagation length on the field confinement is very dif-
ferent to what is observed in other subwavelength-confined
EM modes as, for example, surface plasmon polaritons.
To account for the physical origin of the above described
dependence of the soliton width on the peak electric field
amplitude, we have adapted to this problem the theoreti-
cal approaches used to describe soliton formation in con-
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Figure 3 (online color at: www.lpr-journal.org) Dependence of
the soliton width with the input intensity. Main panel presents
the peak electric field dependence with the soliton width. Cir-
cular dots represent the values obtained with the full nonlinear
calculation whereas the solid line renders the results from the
quasi-analytical treatment (see main text). When the profile A(x)
and the propagation constant g corresponding to the numerical
calculation is included (triangular dots), the agreement between
analytics and numerics is improved. The inset shows the normal-
ized intensity distributions for the five soliton widths considered
in the main panel. The peak intensity Inax is indicated for each
profile. The operating wavelength in all cases is Ao = 850 nm.

ventional 3D nonlinear optical materials [8—10]. For this
quasi-analytical treatment, we employ the 3D modeling of
the graphene layer, which, as mentioned before, gives vir-
tually the same results as a description based on a strictly
2D conductivity. Within this approach the propagation of
light inside the graphene layer is formulated in terms of the
non-homogeneous vector Helmholtz’s equation,

2 .
e [(";) - vz} AE D =jarn (D)

where A(r,?) is the magnetic potential vector (i.e.,
E(r, t) = —0A(r, t)/0¢, choosing the gauge V-A =0)
and ny is the linear refractive index of graphene. To solve
Eq. ((1)), we start by assuming that its solutions are of the
form

1.
A(r.0) = SIAQ) Fz.y) expli(Bz — oDl +ce] ()

where A(x) is, in principle, an arbitrary function that
governs the confinement of the EM field along the x-
direction (see definition of axes in Fig. 1). As deduced from
Eq. ((2)), A(x) also defines the polarization of the consid-
ered modal profile. The EM field profile in the graphene
plane is controlled by the complex function F(z, y),
whereas the corresponding propagation constant along the
z-direction is given by B.

Now, we insert Eq. ((2)) into Eq. ((1)), we apply the
slowly varying amplitude approximation, and we project
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the left and right-hand-side of the resulting equa-
tion over [A;(x)]"" (where []*/ stands for the trans-
pose conjugate). Then, we define the auxiliary func-
tion f(z,y) = F(z,y)exp(—i¢z) (where ¢ = (k2 — B* +
L/1)/2, ks =n2w?/2, Iy = [% dx|Aj(0)]* and I, =
ffooo dx[AH(x)]*T32A||(x)/3x2). Using these definitions,
after some algebra, one finds that Eq. ((1)) can be rewritten
in terms of the function f(z, y) as

af (z,y) n 9°f(z,y)
0z dy?

+8lfGE VP fzy) =0

)
ey dx 1A (),

The crucial point to realize is that Eq. ((3)) corresponds to
the standard form of the nonlinear Schrodinger equation,

whose solutions have a canonical first-order soliton form
[8,10],

2iB

where g = %w“xé?h/h&, with I3 =

1 /2
fO,2) = 5\/; sech(y/w) exp(iz/2fw?) )

where w is the conventional definition of the soliton width,
which in terms of the soliton FWHM is given by w =~
a/2.64. Physically, Eq. ((3)) and its corresponding solution
given in Eq. ((4)) can be interpreted as those governing
the propagation of light in a special class of index-guided
waveguide in which the refractive index contrast between
the core and the cladding is induced by the intensity of
the propagating beam itself. Importantly, Eq. ((4)) confirms
the existence of soliton solutions in graphene, as observed
in the numerical experiments reported in Figs. (1)—(3). No-
tice that the strength of the effective nonlinearity is char-
acterized by the parameter g, which is proportional to both
x&) (related to the intrinsic nonlinearity of graphene in a
free-standing configuration) and /3/I;, which provides a
measure of the fraction of EM energy that flows inside the
graphene sheet.

Inspired by the theoretical approaches used traditionally
in nonlinear optics [8—10], we assume that both the vector
function A(x) and the propagation constant 8 of the modal
profile correspond to those obtained numerically for the lin-
ear counterpart of the structure sketched in Fig. 1(a). The
results computed within this approximation are displayed
in Fig. 3 (see solid line), showing a qualitative agreement
between the analytical results and the full numerical calcu-
lations. We emphasize that no fitting parameters are used
in this comparison. The discrepancy between analytics and
full numerics becomes larger as the value of a decreases.
This fact can be ascribed to the difference between the pro-
file A(x) obtained for the linear case and that computed nu-
merically for the full nonlinear problem, which increases as
a decreases. This point is confirmed by the additional results
displayed in Fig. 3 (triangular points), which show how the
agreement between analytics and numerics improves when
we introduce in Eq. ((2)) both the self-consistent profile,
A(x) (obtained at y = 0), and the propagation constant 8
corresponding to our nonlinear simulations. The remaining
difference can be traced back to the separability in the x
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Figure 4 (online color at: www.Ipr-journal.org) TM soliton forma-
tion. The geometry consists of the graphene monolayer and gold
half-space, separated by a silicon dioxide layer of thickness of
100 nm. The operating wavelength is 1o = 850 nm. The density
plots in panel (a) and (b) render the transversal |E| | and in-plane
|E;| components of the electric field, respectively, associated with
the excitation of a TM SPP-soliton. Panel (c) renders the transver-
sal |E, | (solid lines) and in-plane |E;| (dashed curves) along the
vertical direction depicted in the upper panels. Panel (d) shows
the dependence on soliton FWHM, a, of the peak E-field ampli-
tude (dots) and the peak intensity / (triangles), evaluated at the
graphene monolayer. The solid lines are fittingstoa 1/aand 1/a?
functions for peak E-field and intensity, respectively. Inset to panel
(d) renders the calculated propagation length dependence on a.

and (y, z) coordinates implied by Eq. ((2)) that cannot fully
account for the complexity of the graphene EM solitons.
Finally, we show that TM-polarized optical solitons can
also propagate along a graphene monolayer. A graphene
structure that is able to support these TM optical soli-
tons is rendered on Fig. 4. Here the vertical confinement is
provided by a surface plasmon polariton (SPP) mode that is
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propagating on the interface between gold and a dielectric
film. The graphene monolayer, which is characterized by
a large nonlinear third-order susceptibility, must be sepa-
rated from the metal surface by a dielectric spacer. We have
chosen a 100 nm silicon dioxide layer, just for proof-of-
principles purposes. Our calculations show that this system
supports the propagation of a very peculiar class of TM
soliton, which results from the hybridization between the
SPP supported by the metal-dielectric interface and the
soliton propagating in the graphene sheet. The computed
distributions of the transversal |E | | and in-plane |E;| com-
ponents of the electric field of this hybrid SPP-soliton so-
lution is plotted in Fig. 4(a,b) and displays exactly the con-
ventional solitonic profile ~ sech(y) along the y-direction.
The in-plane |E;| component of the electric field of hybrid
SPP-soliton is responsible for nonlinear effect and provides
diffraction compensation. This component reaches its max-
imum value at the graphene layer, see Figs. 4(b) and 4(c).

The dependence of the soliton width with the peak E-
field amplitude rendered in Fig. 4(d) is very similar to that
found for TE optical solitons, predicting the existence of
subwavelength optical solitons also for this polarization.
Similarly to the case of the TE geometry, the propagation
length of the hybrid SPP-soliton is weakly dependent on
the soliton width, the points on the inset of Fig. 4(d). In
contrast to the TE case, in the case of hybrid SPP-soliton the
propagation length is almost independent on soliton width
when this is larger than the wavelength (reflecting that, in
this case, losses occur mainly in the metal). For smaller
soliton widths the propagation length decreases with a, and
our calculations show that the losses occur mainly in the
graphene layer.

To analyze the effect of losses on the beam shape we
calculated how the beam width changes as the soliton prop-
agates. In the lossless case, the soliton width remains con-
stant while propagating. When realistic losses in both metal
and graphene were considered, the soliton beam broadens
with distance. As a representative example, when the inci-
dent beam width is 0.7 um, the computed soliton broaden-
ing is 30% after traveling a distance of 4 um. In comparison,
in the linear regime the corresponding value is 150%. This
behavior is similar to that found for SPP-solitons appearing
at the interface between a metal and a semi-infinite Kerr
dielectric [18]. Notice that considering a dielectric with a
higher dielectric constant would allow increasing the con-
finement in the direction normal to the surface. However,
this would push the field towards the metal, with a corre-
sponding increase in losses and a decrease in the propaga-
tion length of the soliton.

In conclusion, we have demonstrated that graphene
monolayers can support both TE and TM spatial optical
solitons due to the extremely large magnitude of its non-
linear third-order susceptibility. Moreover, we have shown
that for feasible values of the input intensity these quasi-
one dimensional optical solitons can have a subwavelength
lateral width. We have also developed a quasi-analytical
model that has a semi-quantitative value and that is able

to predict the field intensities needed for soliton formation.
The existence of subwavelength optical solitons adds a new
capability to the already broad range of optical phenomena
associated with graphene structures.
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