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We investigate the interplay between quenching and strong coupling in systems that include a collection
of quantum emitters interacting with a metal nanoparticle. By using detailed numerical simulations and
analytical modeling, we demonstrate that quantum emitters can exhibit strong coupling with the particle
dipole resonance at distances at which the quenching to nonradiative channels is expected to dominate the
dynamics. These results can be accounted for in terms of the pseudomode character of the higher multipole
modes of the nanoparticle and the corresponding reduction of the induced loss rate. These findings expand
the current understanding of light-matter interaction in plasmonic systems and could contribute to the
development of novel quantum plasmonic platforms.
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Metal particles are able to support electromagnetic (EM)
resonances, usually called localized surface plasmons
(LSPs). For particles of spherical shape, these EM modes
are characterized by their angular momentum, l. When the
dimension of the particle is much smaller than the plasmon
wavelength (of the order of hundreds of nm), its optical
response is dominated by the dipolar mode, l ¼ 1. However,
when a quantum emitter (QE) is placed in close proximity
to the particle, the nonradiative EM modes (l > 1) are the
main channel for decay and the QE fluorescence is strongly
quenched [1–4]. Quenching is a hurdle on the road towards
efficient optical antennas [5], spasers [6–8], or subwave-
length optical circuits [9].
Similarly, the large effective decay rates induced by

quenching are expected to suppress strong coupling, which
is reached when the energy exchange rate between the QE
andEMmodes becomes faster than the decay rates. In recent
years, there has been renewed interest in the emergence
of strong coupling between QEs and surface plasmons
supported by different metallic structures. Although most
studies have focused on planar metal surfaces [10–14],
some theoretical works have been devoted to analyzing the
interaction between a single QE and a metal nanoparticle
[15–19] or a dimer [20]. For an ensemble of QEs, collective
strong coupling to LSPs has been observed experimentally
[21–23], and LSP-mediated superradiance has been pre-
dicted theoretically [24].
In this Letter, we present an in-depth study of the interplay

between quenching and strong coupling of a single QE
or a collection of QEs interacting with a metal nanoparticle.
This fundamental analysis is based on a macroscopic QED
numerical framework that can treat an arbitrary number of
QEs coupled to plasmonic systems. As shown below, for a
single QE placed near a metal nanoparticle, strong coupling
only appears at very short distances and the associated
reversible exchange of energy occurs between the QE and a

pseudomode consisting of the nonradiative multipole res-
onances.However, for an ensemble ofQEs, collective strong
coupling of theQEswith the dipolemode of the nanoparticle
emerges for a broad range of distances, even close to the
surface where quenching is expected. Importantly, the
results of our numerical formalism are mapped into a
three-level Hamiltonian that allows us to find analytical
formulas for the relevant physical magnitudes.
The model system under study (Fig. 1) is a metal nano-

particle of radius a, whose dielectric response is character-
ized by a Drude formula, ϵmðωÞ ¼ ϵ∞ − ω2

p=½ωðωþ iγpÞ�.
The nanoparticle is embedded in a nondispersive, lossless
dielectric medium with ϵd, which also hosts the QEs.
For simplicity, we use a homogeneous shell of N radially
oriented QEs placed at a distance h from the surface of the
spherical particle. Thegeneralization of our numerical results
to other configurations of the QEs is straightforward. The
QEs are modeled as pointlike two-level systems with
transition frequency ω0, internal nonradiative decay rate

FIG. 1 (color online). Schematics of the system under study: a
metal nanoparticle is surrounded by a collection of quantum
emitters that are homogeneously distributed in a spherical shell
and whose dipole orientations are radial.
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γQE, and transition dipole moment ~μ. The system is excited
by an x-polarized plane wave impinging along the z
direction, and the output signal is collected by a detector
placed in the far field region.
We first briefly revisit the case of a single QE

(located at ~r) interacting with a metal nanoparticle. As
reported in Ref. [25], the dynamics of this system is
determined by the so-called spectral density, JðωÞ ¼
ω2=ðπℏϵ0c2Þ~μ · ℑmGð~r;ωÞ · ~μ. Analytical insight can be
obtained in the quasistatic limit (a; h ≪ λ), where the radial
term of the Green’s function can be written as

Grrðr;ωÞ ¼ Grr
0 þ c2

4πω2ϵda3
X∞
l¼1

ðlþ 1Þ2
ð1þ ζÞ2lþ4

ϵm − ϵd
ϵm þ lþ1

l ϵd
;

ð1Þ
where r ¼ hþ a and ζ ¼ h=a. The homogeneous contri-
bution to the total Green’s function,Grr

0 ¼ ω
ffiffiffiffiffi
ϵd

p
=ð6πcÞ, is

negligible for the spatial regions of interest. At large
distances (h > 0.7a), the contribution to J coming from
the metal nanoparticle, JNPðωÞ [associated with the sum in
the right-hand side of Eq. (1)], is dominated by the dipole
mode which appears at ω1 ¼ 3.01 eV (l ¼ 1, ϵm ¼ −2ϵd),
see Fig. 2(a). For shorter distances, however, the high-order
multipole modes converging towards ω∞ ¼ 3.45 eV

(l → ∞, ϵm ¼ −ϵd) prevail. For metal spheres of subwa-
velength size, the dipole mode is by far the most radiative
EM mode although its nonradiative Ohmic losses are signi-
ficant. In contrast, the higher multipole modes (l > 1) can
be safely considered as purely nonradiative.
Fluorescence quenching only applies in the weak cou-

pling regime. In this limit, the EM modes are treated as a
quasicontinuum, i.e., a Markovian loss channel, and the
QE decay rate is given by Γ ¼ 2πJðω0Þ. The quenching
region is entered when the QE quantum yield (η), defined as
the ratio between the radiative decay rate and total Γ, is
close to zero. The multipolar expansion of Grr also allows
us to distinguish between the QE decay rate into the dipole
mode (γ1) and the contribution of all higher (nonradiative)
multipoles (γM). In Fig. 2(b), we render these two magni-
tudes (γ1 and γM) evaluated at ω0 ¼ 2.5 eV as a function of
ζ. For these calculations and for those shown in the rest of
the Letter, we have used a ¼ 7 nm and ϵd ¼ 2.13, which
correspond to the experiment reported in Ref. [7], and the
full Green’s function as given in Ref. [26]. The nanoparticle
is assumed to be made of silver, with Drude parameters
ϵ∞ ¼ 4.6, ωp ¼ 9 eV, and γp ¼ 0.1 eV taken from tables
[27]. The two decay rates (γ1 and γM) are normalized to the
radiative QE decay rate in vacuum, γ0 ¼ μ2ω3

0=ð3πϵ0ℏc3Þ.
Also in Fig. 2(b) we plot the evolution of η and η1 (quantum
yield calculated by considering only the dipole mode in
the nanoparticle) as a function of ζ. It is clear that the
huge decrease of η observed at very short distances is due
to the prevalence of the higher multipole modes in this
limit (γM ≫ γ1).
As stated above, the concept of quenching breaks down

when strong coupling between the QE and the EM modes
of the nanoparticle emerges. In this regime, the higher
multipole modes can then no longer be treated as a
quasicontinuum, and a description as a pseudomode with
loss rate γp becomes more appropriate. In order to analyze
the strong coupling case, we use a macroscopic QED
formalism [17,28,29] that is suited to describe lossy media.
It relies on the diagonalization of a Hamiltonian that
includes the ensemble of QEs, the EM modes of the metal
nanoparticle including their inherent losses, and the light-
matter coupling by means of a dipolar interaction,

H ¼
Z

d3r
Z

∞

0

dωℏωf̂†ðr;ωÞf̂ðr;ωÞ þ
XN
n¼1

ℏΩn

2
σ̂zn

−
XN
n¼1

½σ̂þn þ σ̂−n �~μn · ðF̂ðþÞðrÞ þ F̂ð−ÞðrÞÞ; ð2Þ

where Ωn ¼ ω0 − iγQE=2 and the resulting polaritonic
operators f̂ðr;ωÞ represent the elementary excitations of
the light-matter system, including LSPs. The QEs are
described in terms of the fermionic operators σ̂n. We stress
that no rotating wave approximation is made in the
coupling term, making this formalism suited to study

(a)

(b)

FIG. 2 (color online). (a) JNP in units of μ2=ð4π2ϵdϵ0ℏa3Þ
as a function of ζ and ω. The dashed black line is a guide for the
eye that follows the maximum of JNP. (b) Normalized decay
rates, γ1 and γM, and quantum yields, η and η1, as a function of ζ
for ω0 ¼ 2.5 eV.
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ultrastrong coupling regimes as well. The E-field operators
are given by

F̂ðþÞðrÞ ¼ i

ffiffiffiffiffiffiffi
ℏ
πϵ0

s Z
∞

0

dω
ω2

c2

×
Z

d3r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵImðr0;ωÞ

q
Gðr; r0;ωÞf̂ðr0;ωÞ; ð3Þ

where ϵIm is the imaginary part of ϵm and Gðr; r0;ωÞ is the
frequency-dependent EM Green’s function that connects
points r and r0 in space. Direct dipole-dipole interactions are
naturally included in the total Green’s function. By bosoniz-
ing the fermionic operators in the Heisenberg equations of
motion and by tracing them out, we get a Lippman-
Schwinger equation for F̂, where the QEs appear as point
scatterers and quantum source operators. In the end, the E-
field operators are obtained bymeans of amultiple-scattering
problem, which is solved by generalizing a procedure
previously introduced for nondispersive, losslessmedia [30].
To quantify strong coupling in our system, we rely on a

physical magnitude that has experimental relevance, the
light spectrum measured at the detector position, SðR;ωÞ.
In typical experimental setups, QEs are incoherently
pumped at high energies. To mimic this setup, we calculate
the light spectra for an initial excitation of each QE
separately and sum them incoherently, weighted by the
incident field intensities at the emitter positions. We keep
the illumination power constant when varying the number
of QEs. The expression for the light spectrum with the
initially excited n0th QE is given by

Sn0ðR;ωÞ ¼
X
n

���� ω2

ϵ0c2
GðNÞðR;rn;ωÞ · ~μn

����2

×

�
δn;n0

jω−Ωnj2
þ 1− δn;n0
jωþΩnj2

þ δn;n0
jωþΩnj2

�
; ð4Þ

where GðNÞðR; rn;ωÞ is the N-scattering dressed Green’s
function describing the full propagation from the nth QE to
the detector. This result is analytical and valid in both weak
and strong coupling regimes. More details of our numerical
framework can be found in the Supplemental Material [31].
In Fig. 3 we consider a layer of N QEs placed at

h¼1nm. For these calculations we have taken μ ¼ 0.19 e ·
nm and γQE ¼ 15 meV, which are typical values for
organic molecules [12]. The gap in the light spectrum
close to ω∞ for N ¼ 1 clearly shows that a single QE can
indeed reach strong coupling with the nonradiative LSP
modes of the metal nanoparticle. This strong coupling
regime for a single QE has previously been predicted for
the case of a metal nanoparticle [15,17] and also for a
planar metal surface [14]. However, as the number of QEs
increases, far field signatures of strong coupling disappear
at ω0 ≈ ω∞ while cooperative strong coupling with the
radiative dipole mode builds up and a gap opens at
ω0 ¼ ω1, which increases with N. This behavior is one

of the main results of this Letter: collective strong coupling
with the dipole mode can emerge even at very short
distances to the surface, where the interaction between
the QEs and the metal nanoparticle is expected to be
dictated by the nonradiative modes. As wewill show below,
the higher multipole modes again do not behave as a
featureless continuum, but as a far-detuned pseudomode
with decay rate γp that does not efficiently channel
excitation out of the emitter. It is also worth noticing that
the total detector signal (light spectrum integrated over
frequency) increases by a factor of 420 when comparing the
single-QE case at ω0 ≈ ω∞ with the case of 200 QEs with
transition frequency ω0 ¼ ω1.
We next investigate the apparent closing of the gap for

ω0 ≈ ω∞ as N is increased. In Fig. 4(a) we show the
evolution of the light spectrum as a function of N. It is clear
that one single peak overcomes the signature of the
individual strong coupling in the far-field spectrum. To
gain more insight into this effect, we show in Fig. 4(b) the
near-field polarization spectra, PnðωÞ ¼ hσ̂þn ð−ωÞσ̂−n ðωÞi,
for the same cases analyzed in Fig. 4(a). The polarization
spectrum indeed displays the two peaks corresponding to
the strong coupling between a single QE and the non-
radiative modes. Notice that the frequency splitting
between these hybrid modes does not increase with N.
Additionally, a second feature emerges [marked by arrows
in Fig. 4(b)], which is the signature of the strongly coupled
state formed between the ensemble of QEs and the highly
detuned (δ ¼ 0.4 eV) dipole mode of the nanoparticle.
This is the only feature observed in the far field, implying
that propagation to the detector acts as a filter. The field
distribution on the surface of the metal nanoparticle, plotted
for ω0 ≈ ω∞ in Fig. 4(c), is illustrative of the interplay
between local and collective effects. The spots underneath
each QE correspond to pseudomodes formed from
localized superpositions of multipole modes interacting
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FIG. 3 (color online). Contour plots of the light spectra
measured at the detector position, which is placed 1 μm away
from the center of the nanoparticle along the y axis. This
magnitude is rendered for different values of the number of
QEs homogeneously distributed in a shell at h ¼ 1 nm.
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separately with each emitter. They do not disappear with
N—instead, the dipole mode encompassing the whole
nanoparticle clearly emerges in the background when N
is increased. These characteristics of the field distribution
illustrate why coupling to the radiative dipole mode is
cooperative, while interaction with the pseudomode is
noncollective and spatially localized.
Finally, we develop an analytical model that provides

further physical insight into the numerical results. Based on
the multipolar expansion of the Green’s function as given in
Eq. (1), JNPðωÞ can be written as a sum of Lorentzians,
similar to the case of a planar metal surface [14]:

JNPðωÞ ≈
X∞
l¼1

g2l
π

γp=2

ðω − ωlÞ2 þ ðγp=2Þ2
; ð5Þ

where ωl ¼ ωp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ∞ þ ð1þ 1=lÞϵd

p
is the frequency of

the LSP resonance with angular momentum l. From this
expansion, the coupling gl between the QE and LSP with
angular momentum l can be identified as

g2l ¼
μ2ωp

4πϵ0ℏa3

�
ωl

ωp

�
3 ðlþ 1Þ2
ð1þ ζÞ2lþ4

�
1þ 1

2l

�
: ð6Þ

A very good approximation to our numerical results can
then be obtained by a three-level Hamiltonian involving the
following modes: (i) a collective excitation of the ensemble
of QEs, (ii) the radiative dipole mode of the nanoparticle,
and (iii) a pseudomode formed by all the nonradiative
modes of the metal nanoparticle. The associated three-level
Hamiltonian is given by

H3 ¼
0
@ω0 − iγQE=2 g1

ffiffiffiffiffiffiffiffiffi
N=3

p
gM

g1
ffiffiffiffiffiffiffiffiffi
N=3

p
ω1 − iγp=2 0

gM 0 ωM − iγp=2

1
A; ð7Þ

where gM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP∞

l¼2 g
2
l

q
and ωM ¼ P∞

l¼2 ωlg2l =
P∞

l¼2 g
2
l .

Note that the coupling between the collection of QEs
and the dipole mode is collectively enhanced by a factor offfiffiffiffiffiffiffiffiffi
N=3

p
(with the factor 3 coming from the threefold

degeneracy of the dipole mode). In contrast, there is no
collective enhancement of the coupling to the multipoles as
each QE interacts with a separate localized pseudomode
[see Fig. 4(c)].
From this Hamiltonian, it is also possible to find

analytical expressions for the Rabi splitting, ΩR, between
the hybrid modes. In particular, for the case in which
ω0 ¼ ω1, we obtain to a good approximation

ΩR ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21

N
3
−
1

4

�
γQE − γp

2
þ iδeff

�
2

s
; ð8Þ

δeff ¼
2g2MδM

δ2M þ ðγQE−γp
2

Þ2 ; ð9Þ
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FIG. 4 (color online). (a) Light spectra at the detector position
for ω0 ≈ ω∞ and h ¼ 1 nm. (b) Corresponding polarization
spectra for the same cases analyzed in panel (a). (c) Contour
plots of the near-field spectrum evaluated at the surface of the
metal nanoparticle for N ¼ 10 and N ¼ 100. The color scales are
identical in both panels [blue (red) corresponds to minimum
(maximum) of the E field].
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FIG. 5 (color online). Contour plot: light spectra for ω0 ¼ ω1

and N ¼ 100 as calculated from our numerical formalism.
Dashed white lines represent the evolution of the three eigen-
values of Eq. 7 as a function of ζ.
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with δM ¼ ωM − ω1. This last formula highlights the role
of nonradiative modes in the emergence of the collective
strong coupling. In the weak coupling regime, nonradiative
modes act as an additional decay channel for the QEs
whereas in the strong coupling limit, they simply appear as
an effective detuning. Figure 5 illustrates the accuracy of
the three-level Hamiltonian by showing the light spectrum
as a function of ζ and ω for the case of N ¼ 100 obtained
with our full numerical framework (contour plot) and the
eigenvalues analytically calculated from Eq. 7, displayed
as dashed white lines.
In conclusion, we have shown how the weak coupling

picture of quenching is transformed when the strong
coupling regime emerges.While in theweak-coupling limit,
the nonradiative EM modes of the nanoparticle act as an
effective bath for QE decay, they become a pseudomode that
is able to reversibly exchange energy with the QE when
entering the strong-coupling regime. This energy transfer
occurs between each emitter and a localized pseudomode
and is thus noncooperative. However, when the number
of QEs increases, collective strong coupling of many QEs
with the radiative dipole mode of the nanoparticle builds up,
even at very short distances. Simple analytical formulas
quantifying individual and collective strong coupling have
been derived, and a complete numerical framework reaching
far beyond the model system analyzed in this work has
been presented. This makes our approach useful for both
insightful and quantitative investigations of strong coupling
between quantum emitters and localized surface plasmons.

This work has been funded by the European Research
Council (ERC-2011-AdG Proposal No. 290981).
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