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Abstract
We present a judicious design approach for optimizing semiconductor nanocavities, starting
from single photonic atoms to build photonic molecules functioning as high-performance
nanocavities. This design approach is based on exact analytical solutions to the Maxwell
equations for collective Mie resonances. Conceptually, we distinguish different concepts of
cavity modes including Mie mode, collective Mie mode, photonic-crystal (PC) band-edge
mode, and Feshbach-type bound states in the continuum (BIC) mode. Using the design
approach, we present a unique structure of nanocavity supporting the Feshbach-type BIC mode,
capable of enhancing the emission rate of a dipolar emitter by orders of magnitude. This
high-performance nanocavity suppresses radiative loss channels strongly via destructive
interference and consequently channels the emission light efficiently into an in-plane
bi-directional beam with a divergence angle of 10◦. Engineering the geometrical parameters of
the nanocavity for near-infrared frequency applications requires a fabrication tolerance of
±5 nm. This high accuracy is challenging for the mass production of devices. The fabrication
accuracy can be relaxed greatly for mid-infrared frequency devices. As a showcase, we analyze
and optimize the well-known PC L3 defect nanocavity for mid-infrared frequency applications
in the framework of Feshbach resonance. We show that the optimal structure of this defect
nanocavity requires a fabrication tolerance of ±50 nm. Our nanocavity design approach may be
useful for near- and mid-infrared frequency applications.

Keywords: nano-cavities, nanoantennas, collective resonance, Feshbach resonance,
purcell factor, near-and mid-infrared frequency applications,
bound states in the continuum (BIC)

(Some figures may appear in colour only in the online journal)

∗
Author to whom any correspondence should be addressed.

Original content from this workmay be used under the terms
of the Creative Commons Attribution 4.0 licence. Any fur-

ther distribution of this work must maintain attribution to the author(s) and the
title of the work, journal citation and DOI.

2040-8986/22/094006+12$33.00 Printed in the UK 1 © 2022 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/2040-8986/ac868d
https://orcid.org/0000-0002-6815-487X
mailto:hoangtx@ihpc.a-star.edu.sg
http://crossmark.crossref.org/dialog/?doi=10.1088/2040-8986/ac868d&domain=pdf&date_stamp=2022-8-17
https://creativecommons.org/licenses/by/4.0/


J. Opt. 24 (2022) 094006 T X Hoang et al

1. Introduction

High-performance nanocavities are useful for a wide range
of technological applications [1, 2] and fundamental science
[3, 4]. Modern fabrication nanotechnology allows us to mini-
aturize photonic cavities to nanoscale in all three dimensions.
Hence these photonic cavities can be engineered to have any
given resonant mode and are also referred to as photonic
atoms[5]. Even the lowest-order Mie modes of magnetic and
electric dipoles have been demonstrated with semiconductor
nanostructures functioning as photonic atoms [6]. Optically
coupling these photonic atoms has resulted in a few interest-
ing device structures such as Huygens metasurfaces [7] and
strongly resonant nanochains [2]. Generally, these optically
coupled atoms are known as photonic molecules [5]. A vast
number of photonic molecules has been realized from the
large degrees of freedom for design, offered by the number
of atoms and their relative positions of geometrical arrange-
ments [8, 9]. The photonic concepts associated with these
photonic molecules usually originate from their counterparts
in atomic, molecular, and condensed matter physics. Among
those photonic concepts, bound states in the continuum (BICs)
have recently received much attention due to their potential
applications in quantum optics and functional optics [9, 10].
There are few definitions of BICs [11] of which BICs due
to overlapping resonances can be analyzed in the framework
of Feshbach’s unified theory of nuclear reactions [12, 13].
Historically, Feshbach’s resonance theory originates in nuc-
lear physics [12] and is subsequently linked to atomic phys-
ics by Fano [14] who reformulates and extends his earlier
work on the asymmetric resonance line shape due to the inter-
ference of a discrete autoionized state (a resonance) and a
continuum [15]. Hence, sometimes Feshbach resonances are
also known as Fano-Feshbach resonances that are the essential
tool for important scientific breakthroughs [16]. In fact, Fano
conceives his original theory for interpreting the asymmet-
ric line shape, known as Fano profile nowadays, that is spec-
trally broad [15]. On contrary, Feshbach resonance is well-
known to be spectrally narrow [17]. Here, we are interested
in the interference of more than one resonance that results
in an interfering resonance having an extremely narrow spec-
trum, and hence we attribute the physics to Feshbach’s theory
of overlapping resonances. At the heart of designing photonic
molecules supporting these Feshbach-type BICs are geomet-
rical parameters for tuning the frequencies of the constituent
resonant modes continuously to achieve the optimal spectral
overlap. Our previous work shows that spatial gaps between
coupled photonic atoms play the role of the continuous para-
meters for optimizing the nanochain-based cavity [2]. How-
ever, Feshbach-type BICs have not been achieved with the
single nanochain. Here we show that coupling three of such
nanochains results in a unique photonic molecule function-
ing as a high-performance Feshbach-type BIC nanocavity. Our
first-principle design and analysis of photonic molecules are
based on rigorous analytical modelling which reveals the rich
physics of collective Mie resonances [2, 8].

Theoretically, we can analyze single Mie resonances
supported by single spheres [18, 19] in the framework of

a multipole expansion of electromagnetic field [20, 21]. In
multipole analysis, multipole expansion coefficients (MECs)
are of importance in, for example, determining the resonant
strengths of cavity modes [22] and analyzing tightly focused
laser beams [23, 24]. For optically coupled spheres, analyt-
ical modelling can be formulated for calculating the relev-
ant MECs [2, 8, 25]. This work emphasizes the usefulness
and convenience of using MECs in designing Mie resonances
and their response in unison. We discuss single Mie reson-
ances supported by sphere and pillar in sub-section 2.1. Sub-
sequently, we present collective Mie resonances supported by
linear nanochains of the spheres and pillars in sub-section 2.2.
Sub-section 2.3 presents Feshbach resonances resulting from
the unique structure of three optically coupled nanochains.
In section 3, we further use Feshbach theory of overlapping
resonances for analyzing and optimizing the well-known L3
photonic-crystal (PC) defect cavity. We conclude the import-
ance of our judicious design approach to high-performance
nanocavities for near- and mid-infrared (mid-IR) photonic
applications in section 4.

2. Lorenz–Mie theory and collective Mie
resonances

Exact analytical solutions to the Maxwell equations are rare
and Lorenz–Mie theory provides such solutions to the elec-
tromagnetic scattering of a plane wave by a homogeneous
isotropic dielectric sphere. The simplicity of the scattering
problem and its exact analytical solutions to the Maxwell
equations make the Lorenz–Mie theory appears in almost
all classical textbooks introducing optics and electromag-
netism. We present the vast literature on the theory and
its generalized version for shaped laser beams in our pre-
vious work [18]. We also document and implement exact
solutions to the Maxwell equations for the electromag-
netic scattering by clusters of spheres before [2, 8]. Here
we summarize the main formulae for the convenience of
discussion.

2.1. Single photonic atoms

Figures 1(a) and (b) show the simplest configurations for
the interaction between an electric dipolar (ED) emitter and
single photonic atoms represented by the sphere and pillar. In
figure 1(a), the emitter is exterior to the photonic atom andmay
represent quantum emitters, such as semiconductor quantum
dots or rare-earth ions. In figure 1(b), the emitter is inside the
photonic atom and may represent defects in solids. Strictly
speaking, quantum electrodynamics need to be invoked for
calculating the interaction energy between the emitter and
its environment [26, 27]. Nevertheless, in the weak coupling
regime, the full quantum calculation agrees well with the clas-
sical analysis of the interaction energy [28, 29]. This work
presents classical calculations and the ED emitter will be rep-
resented by a predetermined classical ED source. In addition,
we assume materials of photonic structures to be dispersion-
less and lossless dielectric.
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Figure 1. Interaction between an electric dipolar (ED) emitter and
single photonic atoms. (a) Schematic of the ED emitter exterior to
the sphere. O and O1 are the origins of the coordinate systems
associated with the emitter and the sphere, respectively. (b) The
emitter inside the pillar. (c) and (d) Spectral response of the external
and internal magnetic dipole (MD), electric dipole (ED) and
magnetic quadrupole (MQ) Mie coefficients. The contrast of the
refractive indices between the sphere and its environment is
3.65/1.45. The sphere’s radius is R = 110 nm. (e) Spectral plot of
the Purcell factor when the longitudinal (z-oriented) ED emitter
situates 10 nm away from the sphere’s surface, i.e. d = 10 nm. We
decompose the total Purcell factor into the contributions due to the
coupling to the electric dipole (ED), quadrupole (EQ) and octupole
(EO) field emission. The FDTD simulation agrees excellently with
the multipole theory. (f) We replace the sphere in (e) with a pillar
having the same radius, i.e. D = 220 nm; and we simulate the
Purcell factor with two different heights of the pillar: H = 220 nm
and H = 150 nm.

2.1.1. Multipole field theory for the interaction between a
sphere and a multipolar emitter. For the single sphere in
figure 1(a), we can express the incident electric field in terms
of regular electric Nm

l and magnetic Mm
l eigenfunction multi-

pole fields as follows [2, 8]:

Einc (r1) =
Lmax∑
l=1

l∑
m=−l

[plmN
m
l (kr1)+ qlmM

m
l (kr1)] (1)

where r1 is the field’s position in the O1-coordinate system; k
is the wave-number of the field’s associated wave; plm and qlm

are the electric and magneticMECs, respectively. Equation (1)
can represent the electric field radiated by an arbitrary well-
behaved, localized, monochromatic multipolar emitter [20].
For an ED emitter, the dipole field in its own O-coordinate
system is translationally equivalent to many different eigen-
function multipole fields approaching the spherical photonic
atom. In other words, the MECs representing the same radi-
ating field are different in different coordinate systems. The
truncated number Lmax depends on the distance between the
two coordinate origins O and O1. In the Lorenz–Mie theory,
the scattering Esct and internal Eint fields are

Esct (r1) =
L∑
l=1

l∑
m=−l

[alplmNlm (kr1)+ blqlmMlm (kr1)] (2)

Eint (r1) =
L∑
l=1

l∑
m=−l

[clplmN
m
l (k1r1)+ dlqlmM

m
l (k1r1)] , (3)

where Nlm and Mlm are the outgoing electric and magnetic
eigenfunction multipole fields [21], respectively; k1 is the
wave-number of the wave corresponding to the internal field;
al (cl) and bl (dl) are the external (internal) electric and mag-
netic Mie scattering coefficients [2, 8, 18, 22], respectively.
The highest multipole order L in equations (2) and (3) is the
upper limit of L= kR+ 4.05 3

√
kR+ 2 where R is the radius of

the sphere. In the literature, the regular and outgoing eigen-
function multipole fields are also known as partial multipole
fields that are exact solutions to the Maxwell equations in the
framework of the Lorenz–Mie theory. The appearance of the
MECs plm and qlm in all of the three equations (1)–(3) means
that the dipolar emitter can excite all of the eigenfunction mul-
tipole fields of the sphere, depending on the dipole’s orienta-
tion and its relative position to the sphere.

Spontaneous emission of an emitter is one of the most cel-
ebrated phenomena in quantum electrodynamics. The interest
in the phenomenon is partly due to the fact that the rate of
emission is not the emitter’s intrinsic property but depends
on its environment [30]. The key quantity for quantifying this
environment dependence is the power radiating into the far-
field region. In our case, the material is lossless, and con-
sequently, the radiating power P equals the rate of energy dis-
sipation from the dipolar emitter according to the following
formula [29]

P=
ω

2
Im{µ∗ ·E(rµ)} (4)

where µ∗ and ω are the conjugate electric dipole moment
and angular frequency associated with the dipolar transition;
E(rµ) is the local electric field acting on the dipole. For
the predetermined classical dipole source, we can set µ∗ = 1
without loss of generality; additionally, instead of considering
the absolute value of the spontaneous emission rate associated
with a specific emitter, we will study the environment depend-
ence in terms of the Purcell factor as defined by [2, 29, 30]

FP =
P
P0

(5)
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where P0 is the power radiated by the dipole in the corres-
ponding homogeneous material. Equations (4) and (5) form
the near-field approach to estimating the Purcell factor.

Alternative to the near-field approach, we can estimate the
Purcell factor in terms of the total far field comprising the field
directly radiated by the emitter, which in the O1-coordinate
system is denoted as the incident field Einc, and the scattered
field Esct:

Etot (r1) = Einc (r1)+Esct (r1)

=

Ltot∑
l=1

l∑
m=−l

[αlmNlm (kr1)+βlmMlm (kr1)] . (6)

An important note for equation (6) is that we need to expand
the field Einc in terms of the outgoing eigenfunction multipole
fields instead of the regular counterparts as in equation (1).
This difference comes from applying the translational addition
theorem for expressing the electromagnetic field in the differ-
ent spatial regions [2, 8, 22, 24]. Another important note is
about the truncated number Ltot that depends on the size of the
whole system including the emitter and the photonic structure.
Generally, we needmore multipole eigenfunctions with higher
orders to describe the total field radiating from larger systems.
After evaluating the MECs αlm and βlm, we can compute the
power radiating into the far-field region as follows [20]:

P=
c
8π

Ltot∑
l=1

l∑
m=−l

l(l+ 1)
[
|αlm|2 + |βlm|2

]
. (7)

Equations (5) and (7) form the far-field approach to the
estimation of the Purcell factor.

Now, we are ready to analyse different photonic concepts
by using the above analytical formulae for a near-IR frequency
ED emitter. Particularly, we are interested in the emission
wavelength of 830 nm that is commercially relevant to the
technology of optical interconnect [2]. For this wavelength
we use the refractive indices of 3.65 (gallium arsenide) and
1.45 (glass) for the materials of the photonic atoms and their
environment, respectively. Figures 1(c) and (d) show the spec-
tral plots of the magnitudes of the three lowest-order Mie
coefficients for the sphere with a radius of 110 nm. This
specific radius ensures the peak resonance of the magnetic
dipole occurring at the near-IR wavelength. Notably, unlike
the whispering-gallery high-order Mie modes having the same
Lorentzian spectral profiles [8], the spectral shapes of the
external and internal low-order Mie coefficients in figures 1(c)
and (d) are different. These spectral differences have profound
implications for the near- and far-field analyses of the emitter-
sphere interaction. For instance, figure 1(e) shows the spectral
plot of the Purcell factor associated with the longitudinal ED
emitter pointing through the centre of the sphere. For this inter-
action configuration, the emitter couples with only the electric
multipole fields [2, 8] and in the spectral range from 0.5 µm
to 1.1 µm, only the electric dipole eigenmode is on resonance
with its peak wavelength of 0.578 µm as shown in figure 1(d).
However, this peak wavelength is near the trough between the
two peaks of the Purcell factor. In other words, the radiating

power is near minimum when the internal near field is max-
imum. This counterintuitive observation is due to the inter-
ference between the directly radiating field from the emitter
and the indirect radiation from the sphere via the Mie scatter-
ing. The external Mie coefficients account only for the indir-
ect radiation and hence we cannot infer the spectral plot of
the Purcell factor solely from the Mie coefficients. To under-
stand the spectral plot further, we decompose the Purcell factor
into components due to the different partial multipole fields
as expressed in equation (7). At the longer wavelength, the
energy approaches the far-field region mainly in the form of
a dipole wave but at the shorter wavelength, the contributions
of the other partial multipole fields become significant. Gener-
ally, the weights of these contributions depend on the relative
position between the emitter and the sphere, which governs
the interference of the partial multipole fields. This interfer-
ence enables us to engineer the far-field radiation pattern as
shown in the later section about collective resonances.

Another interesting topic relating to the interpretation of the
Mie coefficients is the physics of nonradiating anapole modes
[31]. Figures 1(c) and (d) show that near the wavelength of
0.5 µm the external ED coefficient approaches zero, mean-
while the corresponding internal ED coefficient is larger than
3, indicating that the sphere can store energy under the form
of the dipole displacement current. In the generalized Lorenz–
Mie theory, we show in our previous work [23] that under a
complete 4π focusing, the radially polarized beam canmimic a
converging dipole field perfectly. Using this dipole-mimicked
beam with the appropriate wavelength near 0.5 µm to excite
the sphere would result in no scattering field and simultan-
eously there is a field enhancement inside the sphere [32].
Experimental demonstration with a partial illumination beam
has verified both of these far- and near-field phenomena. Due
to the imperfect illumination, the experimental demonstration
results in a minimum in the spectrum of the scattering light
intensity and the corresponding enhancement in the near-field
distribution [31]. One may associate, mistakenly, with this
dipole current as one example of nonradiating classical cur-
rent distributions [33]. This attribution is indeed inappropriate
when we consider the dynamics of the field. The Lorenz–Mie
theory (Mie coefficients) is known to be valid for studying
the stationary scattering effects only since the Mie coefficients
include the retardation effects implicitly; and one has to invoke
Debye series for analysing the dynamics of the scattering field
[18, 24]. With the Debye series, one can show easily that
after we turn off the excitation beam, the internal field of the
sphere gradually reduces to zero, i.e. the energy stored in the
dipole displacement current will leak into the far-field region.
On contrary, the near-field distributions of nonradiating clas-
sical current distributions will not vanish while their external
field must vanish in accordance [33] with equation (7). In
fact, without a localized source and within the framework
of classical Maxwell equations, for dielectric systems with
real refractive indices and finite volumes, there is no bound
modes [34], i.e. there are no anapole modes resulting from
displacement-current distributions.

Figure 1(e) also presents the accuracy and advantage of our
multipole theory. Our estimation of the Purcell factor agrees
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excellently with that based on the near-field approach estim-
ated by an finite-difference time-domain (FDTD) commercial
software [35]. To achieve the excellent agreement, we need
to perform the FDTD numerical simulation with a fine mesh
size of 2.5 nm for the sphere placed at the centre of a simula-
tion box having a volume of 1.4 × 1.4 × 1.4 µm3. This fine
mesh size makes the numerical simulation inefficient in time
in comparison with our analytical formulae.

2.1.2. Mie resonances with pillar photonic atoms. Photonic
atoms with spherical shapes are challenging for fabrication. In
this regard, pillars with cylindrical shapes have been widely
used for lasing applications and flat optics. Figure 1(f) shows
that using a pillar we can obtain the spectrum of the Purcell
factor similar to that of the sphere presented in figure 1(e). For
the first spectral plot, we use the pillar with the height and dia-
meter equal to the diameter of the sphere, i.e. H = 220 nm
and D = 220 nm. In comparison with the sphere, the pillar
offers one more degree of freedom for cavity design; the ver-
tical y- and horizontal z-dipole modes supported by the pillar
are generally different (see figure 1(b) for schematic). With
this degeneracy lifting, there is another trough appearing on
the red spectrum in figure 1(f) and relative to the sphere’s
spectrum, the pillar’s spectrum shifts to the longer-wavelength
side. Reducing the height from 220 nm to H = 150 nm moves
the resonance of the y-dipole mode to the shorter-wavelength
side and hence we obtain the spectral shape similar to that of
the sphere.

Before we proceed to discuss collective resonances suppor-
ted by photonic atoms arranged judiciously to form photonic
molecules functioning as high-performance nanocavities, we
present useful relations between the electric (magnetic) fields
at the centre of the photonic atoms and their ED (MD) expan-
sion coefficients. When the emitter is exterior to the photonic
atoms, regardless of their shape we may expand the internal
field as follows:

Eint (r1) =
L∑
l=1

l∑
m=−l

[ζlmN
m
l (k1r1)+ ηlmM

m
l (k1r1)] . (8)

At the centre of the photonic atom, only the ED and MD
fields exist, i.e. all the eigenfunction multipole fields with
l> 1 do not contribute to the electromagnetic field at r1 = 0.
The expressions of the regular dipole fields are simple that
can be found in our previous publication [23]. We then con-
vert the field components from the spherical coordinates to
the Cartesian coordinates so that we can express the spher-
ical dipolar coefficients in terms of the Cartesian components
of the electromagnetic field. Consequently, equation (8) and
their magnetic counterpart reduce to [2]

ζ1;0 =

√
3
8π

λEz, ζ1;±1 =
1
2

√
3
8π

λ(Ex∓ iEy) , (9)

η1;0 =

√
3
8π

λHz, η1;±1 =
1
2

√
3
8π

λ(Hx∓ iHy) , (10)

where λ is the wavelength in the corresponding material; Ex,
Ey, and Ez (Hx, Hy and Hz) are the Cartesian components
of the electric (magnetic) field. The linear relations presen-
ted in equations (9) and (10) are useful for multipole analysis
involving non-spherical photonic atoms.

2.2. Collective Mie resonances

Photonic atoms can store energy in the form of polariza-
tion of their material. The Maxwell equations govern evol-
ution of the energy. We can write the equations of motion
for light propagation in Schrödinger form and show that the
light potential is always smaller than the light energy [34].
Consequently, there is no bound state for light in dielectric
systems. Intriguingly, photonic BICs have recently gained sig-
nificant attention, mainly due to the potential of their asso-
ciated cavities in trapping light with infinite quality factor
(Q factor) [11].

Theoretically, Q factors of collective Mie resonances could
be infinite, given an infinite number of constituent photonic
atoms [2]. In other words, we can design a cavity support-
ing infinitely narrow resonances with the condition that we
can extend the cavity to infinity. Satisfying this condition of
infinity is also a requirement for the original BIC to exist [36].
Historically, the BIC concept originates from the diffractive
interference of a matter wave corresponding to a positive-
energy eigenstate of an infinite potential structure. Never-
theless, positive-energy eigenstates of electromagnetic waves,
also known as band-edge eigenstates of infinite periodicmater-
ial structures, are known to exist even decades earlier than
the original BIC [37]. Today, these band-edge eigenstates are
useful in designing distributed feedback laser cavities. In fact,
the collective Mie resonances with the infinite Q factors also
correspond to the band-edge modes of the corresponding PC;
these band-edge modes correspond to the Van Hove singular-
ities of the local density of photonic states [2]. These singu-
larities and their associated infinite Q factors make the optim-
ization process theoretically unnecessary. However, structures
extending to infinity are impractical.

For practically finite structures, no BIC or photonic Van
Hove singularity could exist [11]. Despite this fact, the BIC
concept is still useful, for example, in lasing applications
[38, 39]. To distinguish these so-called BICs in the finite
structures—and hence BICs with finite Q factors—with nor-
mal cavity modes, the dramatic increases of the Q factors
near the optimal tuning parameters have been used to identify
BIC-inspired cavities [40]. For the collective Mie resonances
supported by a finite nanochain of 100 pillars, we show in
[2] that the optimization of the inter-particle gaps results in
the orders-of-magnitude enhancements of the Q and Purcell
factors. Equally important, we show that all the nanochains
with more than 50 pillars function effectively as PCs since the
resonant wavelengths of the collective Mie resonances con-
verge to the PC band-edge modes [2]. This sub-section will
focus on a unique cavity structure of three coupled nano-
chains with each nanochain comprising 21 pillars. We will
show that the unique arrangement of the photonic atoms results
in a single-mode Feshbach-type BIC nanocavity. Coupling
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Figure 2. Collective Mie resonances with spheres. (a) Schematic of
a transverse ED emitter interacting with the linear chain of N
identical spheres. (b) The ratio of the electric dipole moments from
the multipole field expansions of the internal fields of the first and
last spheres of the two nanochains: N = 10 and N = 20.
(c) Divergence of the Q factors of the collective electric (ED) and
magnetic (MD) dipole resonances with the increasing number N.
(d) and (e) Electric field distributions of the two collective
resonances marked in (b).

this nanocavity with an ED emitter results in a bidirectional
nano-beamwith the two main lobes diverging within two solid
angles of less than 10◦.

2.2.1. Optically coupled spheres. We presented rigorous
mathematical modelling of collective Mie resonances suppor-
ted by chains of spheres, such as one in figure 2(a), in our
previous works [2, 8]. Here we use the model for analyzing
a nanochain of identical spheres having the same parameters
with the sphere in figure 1. In addition, we will consider col-
lective dipole modes excited by a transverse ED emitter since
these modes correspond to the smallest physical footprint of
nanocavities [2]. To reach the last sphere, the light emission
from the emitter propagates through the whole nanochain and
consequently, the internal field of the last sphere contains
the signature of all of the collective Mie resonances that are
trapped inside the nanochain. To detect all of the collectiveMie
resonances and their corresponding PC bands [2], we estim-
ate the dipole ratio Rx between the dipole coefficients from

multipole field expansions of the internal fields of the first and
last spheres of the nanochain. Figure 2(b) shows the results
for two nanochains comprising 10 and 20 spheres, respect-
ively. We can observe the collective Mie resonances embed-
ded in the two spectral PC bands. We label these two bands as
ED and MD bands since the ED (MD) field accounts mainly
for the spheres’ electric (magnetic) internal field for the band
at the wavelength of 0.83 µm (0.9 µm). The 20-sphere nano-
chain supports three collective ED resonances marked by L1,
L2 and L3. The narrowest resonance is the L1 mode in which
the electric field localizes mainly at the centre of the nano-
chain as shown in figure 2(d). Here, it is noteworthy that
we use the multipole expansion with the order up to L= 7
(based on the formula L= kR+ 4.05 3

√
kR+ 2) for describing

the internal fields of the spheres in figure 2(d). Figure 2(e)
shows the electric field distribution of the L2 mode that has
a minimum at the centre. The L2 mode is similar to a com-
bination of two L1 modes supported by the 10-sphere nano-
chains. The spectral coincidence between the 10-sphere L1
and the 20-sphere L2 modes in figure 2(b) corroborates the
field observation. Figure 2(c) shows the effect of the num-
ber of spheres on the Q factor of the collective ED (L1 mode)
and MD resonances. As expected, the Q factors of the band-
edge modes diverge rapidly with the increasing number of
spheres. But these factors are always finite for practically finite
structures.

Spherical shape is convenient for mathematical modelling
and mode analysis but it would be more challenging for fab-
rication than the cylindrical shape. Therefore, the rest of this
section will focus on nanochains of pillars.

2.2.2. Optically coupled pillars. Figure 3(a) shows a schem-
atic of a nanochain comprising 20 pillars. Topologically, pillar
and sphere are the same, and sub-section 2.1 showed already
that the pillar with the diameter D = 220 nm and height
H = 150 nm and the sphere with the same diameter, when
interacting with the ED emitter, result in a similar spectrum.
Here, we use this pillar with a slightly smaller radius of 212 nm
as photonic atoms to build the 20 pillar nanochain. The smaller
radius ensures the resonant wavelength of the L1 mode to be
around 0.83 µm. Figure 3(b) shows the Purcell factor associ-
ated with the transverse ED emitter placed at the centre of the
10th sphere when the inter-particle gap is G = 5 nm. Only the
two modes L1 and L3 appear in figure 3(b). As we discussed
in the subsection of 2.2.1, the field distribution of a collect-
ive L2 mode has a minimum at the centre of the nanochain;
hence the transverse ED emitter in figure 3(a) does not couple
with the L2 mode. Figures 3(c) and (d) present the imagin-
ary component of the electric field Ex and the radiation pattern
associated with the L1 mode, respectively. We can perceive the
enhancement of the Purcell factor by comparing the imagin-
ary components corresponding to different nanocavity struc-
tures since according to equation (4) the radiating power is
proportional to the imaginary component of the electric field
for the case of constant dipole moment. Figure 3(e) displays
the radiation pattern in the transverse plane that reveals a 40◦

diverging solid angle of the bidirectional nano-beam produced
by the emitter-nanochain interaction.
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Figure 3. Collective resonances of the transverse EDs supported by
the 20 identical pillars with H = 150 nm and D = 212 nm. The gap
distance is G = 5 nm. (a) Schematic of the nanochain. (b) Spectral
plot of the Purcell factor associated with the transverse ED emitter
placed at the centre of the 10th pillar. (c) The imaginary component
of the near-field Ex distribution corresponding to the collective
resonant mode L1 and (d) its corresponding far-field radiation
pattern. (e) The radiation pattern plotted in the transverse plane
shows the main lobe diverging into a solid angle of 40◦ (from −20◦

to 20◦) at its full-width at half-maximum intensity.

The Purcell factor associatedwith the L3 mode is lower than
that of the L1 mode, suggesting the dominance of the L1 near-
field strength in accordance with equation (4). The field dom-
inance of the L1 mode over the L2 mode may be appreciated
from figures 2(d) and (e). More details about these modes can
be found in our previous work [2]. The appearance of the two
L1 and L3 modes in figure 3(b) inspires us to find a tuning para-
meter for designing a Feshbach-type BIC nanocavity based on
the nanochain. We present the two simplest tuning approaches
to tune the two modes in figure 4.

2.2.3. Two spectral tuning approaches. Figure 4(a) presents
the schematic with the definitions of the two tuning para-
meters: the gap G = P − D with the nanochain’s period
P and the number of pillars N. A negative value of G cor-
responds to a spatial overlap between the adjacent pillars.
For plots in figures 4(b) and (c), we use the diameter of the
pillars to be D = 212 nm and for this particular case, the
effects of tuning the gap G and the period are the same.
Generally, the inter-particle gap G plays the decisive role in
the nanocavity performance since it determines the overlap
between the fields trapped by the adjacent pillars. Meanwhile,
the diameter D has a dominant role in determining the resonant

Figure 4. Nanocavity optimization with gap tuning and dependence
on pillars’ height of the divergence rate of the Purcell factor with an
increasing number of photonic atoms N. (a) Schematic of the
interaction between the N-pillar nanochain and the transverse ED
emitter placed at the central pillar Oc. (b) Dependence of the Q and
Purcell factors on the inter-particle gap G for the 20-pillar
nanochain with H = 150 nm. The negative value of G (=P − D)
represents the spatial overlap between two adjacent pillars, i.e. the
period P is less than the diameter D. (c) The Purcell factor diverges
at different rates, depending on the height H. The result for the
sphere nanochain is presented for comparison. The suboptimal gap
of G = 10 nm is used for all four plots.

wavelength. Therefore, our judicious design approach starts
with a photonic atom and then continues with optimization of
the geometrical arrangement of the identical photonic atoms.
Figure 4(b) presents the optimization approach based on tun-
ing the inter-particle gap of the 20-pillar nanochain. The gap
dependence of Q and Purcell factors reveals the optimal gap
of G = 0 nm. Both the Q and Purcell factors do not change
dramatically with the varying gap G. The gap range corres-
ponding to the full width at half maximum (FWHM) of the
factors is 50 nm. In addition, even with the optimal gap the
two modes are still spectrally separated by 20 nm as one may
appreciate from figure 3(b) for the near-optimal gap G= 5 nm.

Alternatively, we can tune the two modes to be closer
spectrally by increasing the number of particles. This tun-
ing approach is conceivable from the fact that the resonant
wavelengths the L1 and L3 modes associate with the collect-
ive resonances of the N and N/3 particles, respectively; hence
when N approaches infinity, both of the resonant wavelengths
will converge to the resonant wavelength of the correspond-
ing band-edge mode [2]. Despite we can achieve an arbitrar-
ily close spectral gap between the two modes with a suffi-
ciently large N, the two modes never overlap. Instead, we get
densely distributed resonances embedded in the PC band. For
this single nanochain, we increase only the pillar number in
the longitudinal direction. Increasing the pillar number in the
transverse direction by coupling a few single nanochains will
be considered in the following sub-section.

Figure 4(c) presents the divergence of the Purcell factor of
the four nanochains with the increasing number of particles N.
The sphere nanochain comprises the identical spheres having
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the same parameters as one in figure 2. The pillar nanochain
withH = 200 nm has the highest divergence rate but using this
height would make other modes appear in the spectral range
of interest as one may see from the analysis of figure 1(f).
Reducing the height to be H = 150 nm lower the divergence
rate, incurred by a higher radiative loss resulting from the
smaller transverse aperture of the nanochain. Nevertheless,
this pillar nanochain still has a divergence rate higher than
that of the sphere nanochain. Further reducing the height H
to 80 nm, we reduce the potential of storing energy in the
form of material polarization. Consequently, the radiative loss
increases and the divergence rate is the smallest. As a final
remark for figures 2(c) and 4(c), we use the suboptimal gap
G = 10 nm for those divergence plots to emphasize that the
band-edge mode (N→∞) results in the infinite Q and Purcell
factors even with the sub-optimal gap. In other words, the gap
optimization in figure 4(b) is equivalent to the optimization of
the band-edge mode of the corresponding PC. This optimiza-
tion approach is crucial for practically finite structures, espe-
cially for collective Mie resonances supported by a few tens of
pillars as we will consider next.

2.3. Feshbach resonance from coupled pillar nanochains

As discussed in sub-section 2.2.2, we can tune the two L1 and
L3 modes to be spectrally closer by increasing the pillar num-
ber supporting the two collective resonances. Judiciously, we
may couple a few nanochains laterally to increase the number
of photonic atoms contributing to the collective resonances.
Equally important, the inter-chain gap gives us one more tun-
ing parameter.

Figure 5 presents the simulation results for three coupled
nanochains that support the same collective ED mode presen-
ted in figure 3. The coupling of the three coupled nanochains
reduces the spectral gap from 20 nm in figure 3(b) to 4 nm in
figure 5(a). Figures 5(b) and (c) show the near-field distribu-
tions of the two L1 and L3 modes of the three coupled nano-
chains. The near-field strength and hence the Purcell factor
associated with the three coupled nanochains is higher than
that of the single nanochain in figure 3. These enhancements
are due to the reduction of radiative loss to the lateral sides.
Figures 5(d) and (e) show the radiation pattern of the L1 mode.
The bidirectional nano-beam has the two main lobes diver-
ging with an estimated solid angle of 10◦, fourfold narrower
than that presented in figure 3. Furthermore, the side lobes in
figure 5(e) are also weaker than those in figure 3(e). The reduc-
tion of radiative loss manifests itself in the narrower beam and
weaker side lobes. Despite this reduction, the side lobes are
still prominent. In other words, the radiative loss is still signi-
ficant, suggesting that further reduction is possible with optim-
ization. Judiciously, the inter-chain gap in figure 6 plays a sim-
ilar role as the inter-particle gap G and indeed we will show
that tuning the inter-chain gap will result in the spectral over-
lap of the two L1 and L3 modes.

Figure 6 presents the optimization results for the Q and
Purcell factors in two cases with two inter-particle gaps of
G = 5 nm and G = 20 nm. Figure 6(a) presents a schematic
of the coupled nanochains. Tuning the inter-chain gap leads

Figure 5. Collective resonances with the three optically coupled
nanochains, each nanochain comprises 21 identical pillars with
H = 150 nm, D = 230 nm and G = 5 nm. The inter-chain gap is
50 nm. (a) Spectral plot of the Purcell factor associated with the
transverse ED emitter placed at the centre of the photonic molecule.
The spectral plot reveals the two resonant modes L1 and L3 of which
their respective imaginary components of the near-field Ex

distributions are shown in (b) and (c). (d) The radiation pattern
corresponding to the L1 mode shows one bidirectional in-plane
beam with many prominent side lobes. (e) The transverse
distribution of the radiation pattern.

to the dramatic increases of the Q and Purcell factors of the
coupled nanochains for the case of G= 5 nm. These dramatic
increases are the signature of a single-mode Feshbach-type
BIC nanocavity, also known as supercavity [40]. This Fesh-
bach resonance depends on the two constituent resonances.
To understand the effect of these constituent resonances on
the overlapping resonance, we compare the results for the two
cases of G = 5 nm and G = 20 nm. We choose G = 5 nm and
G = 20 nm since they are, respectively, within the optimal
range of G and far from the optimal gap (see figure 4(b)). The
case of G = 20 nm corresponds to the constituent resonances
having low Q and Purcell factors, i.e. both of the L1 and L3
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Figure 6. Optimization of the Feshbach-type BIC resonance by
tuning the inter-chain gap. (a) Schematic of the interaction between
the transverse ED emitter and the three nanochains C1, C2 and C3.
(b) Cavity performance for the two cases of gap: G = 5 nm and
G = 20 nm. The optimal inter-chain gap depends on the periodicity
of the single nanochains that are 6 nm and 43 nm for the cases of
G = 5 nm and G = 20 nm, respectively.

modes are highly radiative. For the case of G = 5 nm, the
dependence on the geometrical parameter is dramatic near the
optimal inter-chain gap. The range of the inter-chain gap cor-
responding to the FWHM of the factors is 10 nm, fivefold
smaller than that of the single nanochain in figure 4(a). For the
case of G= 20 nm, the Feshbach resonance is weak due to the
high radiative loss that manifests itself in the low Q and Pur-
cell factors. The corresponding gap range at FWHM is 25 nm.
The shapes of the Q and Purcell factors are similar for both of
the cases. This similarity is a characteristic feature of dielectric
nanocavities that incur no absorption loss.

Another noteworthy observation from figure 6(b) is about
the optimal inter-chain gaps for the two cases that are both
larger than the corresponding inter-particle gaps G. The coup-
ling strength between any two fields trapped by the adjacent
photonic atoms are stronger with the smaller gap G. For our
particular case, the optimal inter-chain gaps larger the corres-
ponding inter-particle gaps reflects the fact that the nanocav-
ity has the preferred longitudinal coupling direction. Interest-
ingly, coupling two or more than three nanochains will not
result in an overlapping resonance. In other words, the arrange-
ment of the three-coupled nanochains is unique. Judiciously,
similar to the single nanochain, for the two coupled nano-
chains, the number of photonic atoms participating in the col-
lective resonances is not sufficiently large for the two res-
onances to overlap, even at the optimal inter-chain gap. For
more than three coupled nanochains, the structures transform
into the regime of two-dimensional cavities with sizes lar-
ger than the resonant wavelength. For these two-dimensional
structures, the radiative loss to the sides increases. Moreover,
other resonant modes will appear as a result of increasing the
lateral size and fundamentally we have other cavities with dif-
ferentmodes to optimize. Our judicious optimization approach
is applicable to two- and three-dimensional structures sup-
porting collective resonances but here we consider the one-
dimensional structure for simplicity and clarity of concept dis-
cussion. Next we present the nanocavity performance at the
optimal inter-chain gap of 6 nm in figure 7.

Reducing the inter-chain gap from 50 nm in figure 5(a)
to 6 nm leads to the overlap of the two resonant modes that

Figure 7. High-performance nanocavity with the optimal
inter-chain gap of 6 nm. We achieve the single-mode Feshbach-type
BIC nanocavity due to the overlap of the two resonant modes L1 and
L3 that manifests itself in the single peak of the spectral plot in (a).
(b) The near-field distribution of the Feshbach-type BIC mode and
its corresponding radiation pattern (c). (d) The transverse plot of the
radiation pattern shows the in-plane beam diverging into a solid
angle of 10◦ at its full-width at half-maximum intensity.

manifests itself in the single mode in figure 7(a). The optimal
Purcell factor increases more than one order of magnitude
from 30 in figure 5(a) to 800 in figure 7(a). Associating with
this enhancement is the enhancement of the near-field strength
as shown in figures 5(b) and 7(b). These enhancements res-
ult from the efficient light trapping by the nanocavity by sup-
pressing the radiative loss represented by the side lobes in
figure 7(c). A comparison between the transverse plots of the
radiation patterns in figures 5(e) and 7(d) corroborates the sup-
pression of the radiative loss. The side lobes in figure 7(d)
are negligibly small. Here, it is noteworthy to discuss the far
field associated with this Feshbach-type BIC mode. The far-
field radiation pattern indicates that the multipole fields are not
vanishing. For these radiating multipole fields, their far-field
intensities oscillate with amplitudes decreasing as r−2. More
details about the far-field property of these multipole fields can
be found in our previous works [21, 23, 24]. Interestingly, this
far-field property is also the characteristic feature of general
BICs [41].

This single-mode Feshbach-type BIC nanocavity would be
useful for applications of nanolaser [2], on-chip quantum light
source [42], and on-chip biosensor [43]. Nevertheless, the
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stringent requirement of the fabrication accuracy correspond-
ing to the 10 nm FWHM of the gap range would prohibit mass
production of the nanocavity for near-IR applications. The fab-
rication tolerance, which we define as half of the FWHM,
may be relaxed greatly for mid-IR wavelength devices since
the size sensitivity scales with the wavelength. We will con-
sider a single-mode Feshbach-type BIC nanocavity for mid-IR
applications in the following section 3.

3. Optimization of L3 PC nanocavity

Silicon photonic integrated circuits operating in mid-IR fre-
quency represent a currently burgeoning field of research with
applications, such as free-space communications and lab-on-
chip sensors [44, 45]. The remaining critical component for
this technology to reach its full potential is mid-IR light source
[44, 46]. Narrow-linewidth, chip-scale, single-mode sources
with emission wavelengths greater than 4 µm would be ideal
for many mid-IR applications but still not yet developed [46].
Recently, a two-dimensional gain material for the mid-IR
wavelenght range from 4 µm to 6 µm is demonstrated [47].
Owing to the small volume of this two-dimensional material
structure, the development of mid-IR laser sources based on
such gain materials may require single-mode Feshbach-type
BIC nanocavities, such as those presented in section 2.Wemay
choose to scale up the sizes of the photonic pillar atoms for
the coupled nanochains to have a resonant wavelength in the
mid-IR range and thus pay the way for the application of the
single-mode Feshbach-type BIC nanocavity in, for example,
mid-IR biosensing [48]. Instead, to emphasize the importance
of our judicious design approach based on Feshbach resonance
we choose to analyze the well-known L3 PC defect nanocav-
ity [49]. Conceptually important, wewill show that the optimal
L3mode indeed corresponds to a Feshbach resonance.We fur-
ther show the fabrication tolerance for high-performance mid-
IR nanocavities to be in the order of 50 nm, which is suitable
for mass production using modern fabrication technology.

Figure 8(a) presents a schematic of the L3 PC defect
nanocavity. The grey circles with the identical radius R rep-
resent air holes. The three air holes marked by the dash white
circles at the centre of the structure have been removed, hence
the name of L3. For material, we consider the technologic-
ally popular choice of silicon photonic platform. In the mid-
IR range, silicon has a refractive index of ∼3.42. Addition-
ally, we use a silicon wafer with a sub-wavelength thickness
of 1 µm that supports only one mode in the y direction. With
these material and geometrical parameters, we performed a
judicious design of the period of the L3 PC nanocavity that
results in 1.3 µm. The next step of the optimization process
is to study the R dependence of the Purcell factor associated
with a z-oriented ED emitter placed at the centre of the L3
nanocavity.

Figure 8(b) shows the spectral plots of the Purcell factor
with the varying radius in a step size of 100/3 nm. We observe
the highest Purcell factor with R in the range from 300 nm
to 333 nm. More importantly, we observe the two distinct
modes:M1 andM2. Figure 8(b) also indicates that the R range

Figure 8. Optimization of the L3 PC defect nanocavity for
applications in mid-IR silicon photonics. The silicon wafer has a
thickness of 1 µm and the PC period is designed to be 1.3 µm.
(a) Schematic of the L3 PC cavity. (b) Varying the radius R of the air
holes results in the cavity having two modes of M1 and M2 at
R = 300 nm. (c) Varying the Shift distance for the case of
R = 333 nm in (b) results in the dramatic enhancement of the
Purcell factor when the hole shift equals to 831 nm. (d) The three
plots in (c) are re-plotted in logarithmic scale to illustrate the
crossing of the two modes M1 and M2 at the Shift of 831 nm.

corresponding to the FWHM of the Purcell factor is∼100 nm
(∆R ∼ 367 − 267 = 100 nm). The two M1 and M2 modes
are spectrally close and judiciously inspire us to optimize the
nanocavity in the framework of Feshbach resonance by look-
ing for geometrical parameters for tuning the two modes. The
radius R is one possible tuning parameter. Indeed, we achieve
the overlap with the radius R = 400 nm. Nevertheless, unlike
the Feshbach’s overlapping resonance of the L1 and L3 modes
with G = 5 nm in sub-section 2.3, the overlapping reson-
ance from these M1 and M2 modes does not correspond to a
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dramatic increase of the Purcell factor. The reason is that by
increasing the radius of the air holes, we reduce the silicon
volume for storing energy in the form of material polariza-
tion. In turn, this reduction will destroy the optimal balance
between the electric and magnetic energies stored in the cav-
ity structure. In this step of R optimization, we achieve the
optimal balance around R = 333 nm. Destroying the optimal
balance will increase the radiative losses for both the M1 and
M2 modes [50]. Consequently, the overlapping mode of the
M1 and M2 modes also has a high radiative loss, i.e. the over-
lapping resonance is spectrally broad as observed from the plot
for R = 400 nm.

The above analysis would motivate one to find an alternat-
ive geometrical parameter for tuning the interfering resonance
between the twoM1 andM2 modes. In the next step of optim-
ization, we fix the radius at R = 333 nm and shift the two air
holes at the two ends by a distance as shown schematically
in figure 8(a). In fact, the discovery of the high-performance
L3 PC defect cavity originated from the analysis of minim-
izing the radiative loss by shifting the air holes [45]. Here,
we show that similar to the interfering resonance between the
two L1 and L3 modes presented in section 2.3, the physical
mechanism responsible for the reduction of the radiative loss
is the destructive interference of the scattering field in the dir-
ections of side lobes. Figure 8(c) shows the plots of the Purcell
factor with the varying Shift distance. At the optimal Shift of
831 nm, we observe a single-mode Feshbach-type BIC reson-
ance that manifests itself in the dramatic increase of the Pur-
cell factor. This dramatic increase is equivalent to a near-field
enhancement according to equation (4), which is physically
due to the efficient trap of emission light by means of destruct-
ive interference of the scattering field. One may estimate the
FWHM range of the Shift from figure 8(c) to be ∼100 nm
(903 − 794 = 109 nm). To see the clear evidence of the
overlap between the two modes at the shift of 831 nm, we
replot the Purcell factor for the three shift distances of 650 nm,
831 nm, and 975 nm in the logarithmic scale in figure 8(d).
The spectral distance between the two M1 and M2 modes for
the 650 nm Shift is 20 nm, reducing from 50 nm for the two
modes without shift as presented in figure 8(b). Increasing the
Shift distance to 831 nm makes theM2 mode to disappear and
the M1 mode resonates strongly. Increasing the Shift distance
further to 975 nm, we observe the relative crossing of the M2

mode from the left to the right side of theM1 mode. This spec-
tral crossing is clear evidence of Feshbach resonance.

This section has emphasized again that one must fulfill the
two requirements for a successful design of the Feshbach-type
(quasi-)BIC nanocavity. First, we must have the spectral over-
lap of the interfering cavity modes by tuning geometrical para-
meters. Second, the tuning must ensure that the cavity struc-
ture always supports at least one constituent mode having a
high Q factor.

4. Conclusion

This work presents the analytical modelling of collective
Mie resonances based on the exact solutions to the Maxwell

equations. Based on this theory, we develop the judicious
design approach of single-mode Feshbach-type BIC nanocav-
ities. We provide the two design showcases of the high-
performance nanocavities. First, we optimize the unique struc-
ture of the three coupled nanochains for near-IR frequency
applications. With the optimal geometrical parameters, the
high-performance nanocavity suppresses strongly the side
lobes of the bidirectional beam. These side lobes represent
the radiative loss channels of the nanocavity mode. In the
second showcase, we analyze and optimize the well-known L3
PC defect nanocavity for mid-IR applications based on Fesh-
bach’s unified theory of resonance. We show the suppression
of the radiative loss associated with the original design of the
L3 PC nanocavity that is due to the overlap of the two resonant
modes.

Conceptually, we discuss and distinguish Mie resonant
modes (whispering-gallery modes of a spherical cavity), col-
lective Mie resonant modes, PC cavity modes, and Feshbach-
type BIC modes (supercavity modes). Since the Maxwell
equations can be reformulated into the Schrödinger form that
indicates the light energy is always higher than its potential in
all-dielectric systems, all electromagnetic modes in an infin-
ite all-dielectric system with infinite Q factors are technic-
ally BICs. In this definition, many band-edge PC modes, such
as those resulting from collective Mie resonances, are BICs.
For practically finite structures, all BIC modes manifest them-
selves in resonant modes with finite Q factors. For these reson-
ant modes, optimization of geometry is crucial, as we demon-
strate with the collective Mie resonances in this work. The
rich physics of collective Mie resonances offered by the free-
dom of arranging photonic atoms to form photonic molecules
may open up possibilities for controlling light–matter interac-
tion efficiently enough for both near- and mid-IR frequency
applications.
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