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Abstract: The full information about the interaction

between a quantum emitter and an arbitrary electromag-

netic environment is encoded in the so-called spectral

density. We present an approach for describing such

interaction in any coupling regime, providing a Lindblad-

likemaster equation for the emitter dynamicswhen coupled

to a general nanophotonic structure. Our framework is

based on the splitting of the spectral density into two terms.

On the one hand, a spectral density responsible for the

non-Markovian and strong-coupling-based dynamics of the

quantum emitter. On the other hand, a residual spectral

density including the remaining weak-coupling terms.

The former is treated nonperturbatively with a collection

of lossy interacting discrete modes whose parameters

are determined by a fit to the original spectral density in

a frequency region encompassing the quantum emitter

transition frequencies. The latter is treated perturbatively

under a Markovian approximation. We illustrate the power

and validity of our approach throughnumerical simulations

in three different setups, thus offering a variety of scenarios

for a full test, including the ultra-strong coupling regime.
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1 Introduction

In recent years, the development of nanophotonic devices

where light is confined at length scales far below the optical

wavelength is leading tonewvenues for integrated circuitry,

optical quantum computing, solar and medical technolo-

gies [1]. The nanophotonic structures capable of obtaining

such extreme light confinement are plasmonic (metallic)

and hybrid metallodielectric nanocavities. In particular, the

location of a quantum emitter in close proximity to such

nanostructures results in promising enhanced light-matter

interactions, ranging from the enhancement of the sponta-

neous emission rate [2], [3] (known as Purcell effect [4]) to

the possibility of reaching strong [5]–[8] and, even, ultra-

strong light-matter coupling [9].

The complex geometry and the lossy character inher-

ent in these metallic-based nanodevices define an arbitrary

electromagnetic (EM) environment that is open, dispersive

and absorbing. In this scenario, the EM mode spectrum is

typically characterized by arbitrarily broad and overlap-

ping resonances embedded in the continuum. The quanti-

zation of this medium-assisted EM field constitutes a gen-

uine challenge as losses must be treated explicitly, such

that traditional techniques of quantization fail [10]. These

difficulties are formally solved by macroscopic quantum

electrodynamics (QED) [11], [12]. This framework provides

a quantization scheme for the EM field in arbitrary struc-

tures, including dispersive and lossy materials. The out-

come is an EM field described through a four-dimensional

continuum of quantum harmonic oscillators in real space

and frequency. Despite the power and generality of this

formalism, recently used for exploring the emerging phe-

nomena in nanophotonics [13]–[17], a description based

on an extremely large collection of modes like that rep-

resents a clear drawback. On the one hand, it restricts

the direct applicability of this approach to cases where

the EM modes can be treated perturbatively or eliminated

by Laplace transform or similar techniques, and on the

other hand, it precludes the desirable application of stan-

dard quantum optics (cavity QED) protocols based on a

single or a few isolated modes interacting with a quantum

emitter and capable of accounting for strong light-matter
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interactions. Several important steps towards making a

connection with such practical quantum optics approaches

have been taken in the last decades [18]–[20], and quantized

few-mode descriptions for specific plasmonic geometries

such as surfaces [21], spheres [22]–[25] or sphere dimers

[26], [27] have been obtained. However, until recently no

general frameworks for achieving few-mode field quanti-

zation in arbitrary structures were available, particularly

in the case of hybrid structures where it is necessary to

describe modes with quite different characteristics and

mutual coupling.

This was solved in the last few years with two com-

plementary approaches, both building on the framework of

macroscopic QED. One relies on using quasinormal modes

[28], [29], which are open cavity modes with complex eigen-

frequencies. They are constructed by combining differ-

ent macroscopic QED modes, constituting a nonorthogonal

basis that is then orthonormalized and treated with some

approximations to arrive at a standard quantum optics

Hamiltonian containing a few lossy discrete modes inter-

acting with each other [30], [31]. The other approach [32]

is inspired by tools from the field of open quantum sys-

tems [33], [34]. It replaces the original EM environment by

a model system involving only a small number of lossy

interacting discrete modes. The model permits the calcu-

lation of a compact closed expression for its spectral den-

sity, such that a fitting procedure to the original spectral

density provides a few-mode field quantization of the EM

field. In comparison with the previous quasinormal-mode

expansion, this approach requires fewer modes for conver-

gence. Furthermore, it has recently been extended to the

treatment of bothmultiple emitters [35] and the ultra-strong

coupling regime [36]. Its main downside is that, depend-

ing on the complexity of the EM environment, the number

of discrete modes required for an accurate fit can still be

larger than ideally wished to ensure low computational

cost.

In the present work, we tackle this issue. We explore an

approach capable of reducing the number of modes needed

in [32] and based on exploiting the underlying physics of the

interaction. We divide the spectral density into two contri-

butions in order to separate effectively the part of the EM

environment strongly coupled to the emitter from that one

which is weakly coupled to it. The strongly coupled environ-

ment, which induces non-Markovian dynamics, is treated

nonperturbatively using the technique developed in [32] of

finding an auxiliary few-modemodel for such environment.

The residual environment is instead treated perturbatively

under the assumption of Markovianity, reflecting its effect

in an energy shift on the emitter energy levels dubbed

Casimir-Polder (CP) energy shift [37]. Note that this mixed

treatment avoids the use of discrete modes for the part of

the environment that is treated perturbatively.

We demonstrate that our model allows the description

of the emitter dynamics through a Lindblad-like master

equation, even for the ultra-strong coupling regime inwhich

it is well-known that standard Lindblad dissipation terms

give rise to unphysical effects. We then test our model valid-

ity through numerical calculations of the population of a

two-level emitter in the problem of spontaneous emission,

in three different setups. The first two exhibit light-matter

interactions in the strong coupling regime: one is a canoni-

cal test example consisting of a Lorentzian-like spectral den-

sity, and the other one is a realistic hybrid metallodielectric

nanostructure. The third setup goes beyond exhibiting a real

ultra-strong coupling case.

2 Model

Our starting point is the general Hamiltonian describing a

quantum emitter linearly coupled to a collection of bosonic

modes representing the medium-assisted EM field:

H = He +
∑
𝛼

𝜔𝛼a
†
𝛼
a𝛼 + De

∑
𝛼

(
g𝛼a𝛼 + h.c.

)
, (1)

where we here and in the following set ℏ = 1. The emit-

ter is described by its Hamiltonian He and dipole operator

D⃗e = Dedn⃗, where all transitions are assumed to be ori-

ented along the same direction n⃗, and d is a characteristic

dipole moment such that De is unitless. The EM modes are

described by their annihilation operators a𝛼 , frequencies

𝜔𝛼 , and coupling to the emitter g𝛼 (which depends on n⃗ and

d). The full information about the light-matter coupling is

then encoded in the so-called spectral density:

J(𝜔) =
∑
𝛼

|g𝛼|2𝛿(𝜔−𝜔𝛼). (2)

Although our approach is valid for multi-level emitters,

from now on we will consider a two-level system (TLS) with

ground state |g⟩, excited state |e⟩ and transition energy 𝜔e.

Under this approximation, the emitter operators become

He = 𝜔e𝜎
+𝜎− andDe = 𝜎+ + 𝜎−, with ladder operators

𝜎+ = |e⟩⟨g| and 𝜎− = |g⟩⟨e|.
We note that the index 𝛼 in Eq. (1) and Eq. (2) is a

compact notation to represent a set of both discrete and

continuous variables (for which the sum becomes an inte-

gral). In particular, within macroscopic QED, 𝛼 represents

a combined index for four continuous (three spatial and

one frequency) and two discrete (Cartesian direction and

electric or magnetic excitation) degrees of freedom [12]. The
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Hamiltonian in Eq. (1) then describes the physical systemwe

are interested in: a quantum emitter interacting with the

EM field supported by a nanophotonic structure, described

within the Power-Zienau-Woolley picture [38] and the long-

wavelength (or dipole) approximation. The spectral density

Eq. (2) can then be written in terms of the classical dyadic

EM Green’s tensor G( r⃗, r⃗′, 𝜔) [37], [39]:

J(𝜔) = d2𝜔2

𝜋𝜀0c
2
n⃗ ⋅ ImG( r⃗e, r⃗e, 𝜔) ⋅ n⃗, (3)

where r⃗e is the emitter position. The Green’s tensor of

Maxwell’s equations [12] fulfills[
∇× 1

𝜇( r⃗, 𝜔)
∇×−𝜔2

c2
𝜀( r⃗, 𝜔)

]
G( r⃗, r⃗′, 𝜔) = 𝜹( r⃗ − r⃗′), (4)

where 𝜹
(
r⃗ − r⃗′

)
is the Dirac-delta tensor and 𝜀( r⃗, 𝜔) and

𝜇( r⃗, 𝜔) are, respectively, the electric permittivity and mag-

netic permeability accounting for our electromagnetic con-

figuration. Note that in free-space (𝜀 = 𝜇 = 1), the solu-

tion of Eq. (4) is analytical:

G0( r⃗, r⃗
′, 𝜔) =

[
I+ 1

k2
∇⊗∇

]
eikR

4𝜋R
, (5)

where I is the identity tensor, R = | r⃗ − r⃗′| and k = 𝜔∕c.
In the presence of a nanostructure, the solution of Eq. (4)

is generally no longer analytical but can be written as

G = G0 + Gs, where Gs accounts for the fields scattered

by the nanostructure. Similarly, the spectral density can be

split as J(𝜔) = J0(𝜔) + Js(𝜔) provided by Eq. (3):

J0(𝜔) =
d2𝜔3

6𝜋2𝜀0c
3
, (6a)

Js(𝜔) =
d2𝜔2

𝜋𝜀0c
2
n⃗ ⋅ ImGs( r⃗e, r⃗e, 𝜔) ⋅ n⃗, (6b)

where in Eq. (6a) we have used that the free-space Green’s

tensor fulfills n⃗ ⋅ ImG0( r⃗e, r⃗e, 𝜔) ⋅ n⃗ = 𝜔

6𝜋c
.

The above reflects amore general property: the spectral

density can be rearranged arbitrarily and written as the

sum of different contributions that can be treated indepen-

dently, with only their sum being physically meaningful.

This can also be understood from Eq. (2), where the sum

over modes 𝛼 can be obviously split into several sums over

arbitrary groups of indices 𝛼. We exploit this freedom to

write the spectral density as the sum of two contributions,

J(𝜔) = Jfit(𝜔) + Δ J(𝜔). The first, Jfit(𝜔), describes modes

close to resonance with the emitter that can lead to non-

Markovian effects such as strong coupling, while the sec-

ond, Δ J(𝜔), describes small and/or off-resonant contribu-

tions that can be treated perturbatively. Within this pic-

ture, the emitter is coupled to two independent EM baths

B1 and B2 described by Jfit(𝜔) and Δ J(𝜔), respectively (see

Figure 1A and B).

The light-matter interaction described by Δ J(𝜔) can

be then directly treated through a perturbative approach

and within the Markov approximation. This approximation

should be valid as long as Δ J(𝜔) is small and flat enough

over the bandwidth of frequencies that the emitter is reso-

nant with. On the contrary, the light-matter interaction with

B1, described by Jfit(𝜔) and characterized by nonperturba-

tive features, is addressed following the strategy presented

in [32]: we replace B1 by an equivalent environment con-

sisting of N interacting discrete modes coupled to a fully

Markovian bath Baux. In the resulting model configuration

(see Figure 1C), the bipartite system S (emitter + discrete

modes) is considered as the open quantum system, with

Hamiltonian:

HS = He +
N∑
i, j

𝜔i ja
†
i
a j +

N∑
i

gi
(
𝜎+ + 𝜎−)(ai + a†

i

)
, (7)

where𝜔ij encodes themode energies and couplings,𝜅 i their

decay rates, and gi their coupling to the emitter (including

the transition dipole moment d). The value of these parame-

ters is obtained by a nonlinear fit of Jfit to the desired region

of J. This fitting can be performed relatively straightfor-

wardly as Jfit is given by a compact expression:

Jfit(𝜔) =
1

𝜋
g⃗ ⋅ Im

[
1

H̃−𝜔

]
⋅ g⃗T, (8)

with g⃗ = (g1, g2,… , gN ) and H̃i j = 𝜔i j − i

2
𝜅i𝛿i j. After choos-

ing an initial guess of the parameter values, they are opti-

mized with standard methods of nonlinear fitting to find

values that minimize the difference between the physi-

cal and the fitted spectral density. Note that the results

are not unambiguous, as different sets of parameters can

give very similar (or even identical) spectral densities [40].

Furthermore, the number of modes required to achieve a

good fit depends on the complexity of the spectral den-

sity and is a manually chosen “hyperparameter”. While

its minimum value is determined by the number of res-

onances within the fitted window, it can be increased to

improve the quality of the fit as required. Note that the

number of modes is in this sense not a physically mean-

ingful quantity (only the spectral density is), but a compu-

tational parameter that can be chosen to achieve a desired

accuracy.

The coupling of Swith the two baths is then treated per-

turbatively following the standard Markovian procedure in

open quantum systems textbooks [33], [34] (which is exact

for Baux [41] and approximate for B2). This leads to a Lind-

blad master equation for the dynamics of the system S:
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Figure 1: Graphical representation of our composite system. A) Original configuration: Emitter interacting with a EM bath B through the spectral

density J(𝜔). B) Original configuration with the EM bath B split into two independent contributions, B1 and B2, to which the emitter coupling is encoded

in the spectral densities Jfit(𝜔) andΔ J(𝜔), respectively. C) Model configuration: B1 is substituted by N interacting modes coupled to a spectrally flat

auxiliary EM bath Baux. The discrete modes are also coupled to the emitter, conforming a new open quantum system S.

d

dt
𝜌S(t) = −i

[
HS + HCP, 𝜌S(t)

]
+ 𝛾mod𝜎−

[
𝜌S(t)

]

+
N∑
i

𝜅i ai

[
𝜌S(t)

]
, (9)

where o

[
𝜌S(t)

]
= o𝜌S(t)o

† − 1

2

{
o†o, 𝜌S(t)

}
is a standard

Lindblad dissipator, HCP = −Δmod𝜎
+𝜎− encodes the CP

energy shiftΔmod, and 𝛾mod is a decay rate. Both parameters,

Δmod and 𝛾mod, arise from the perturbative treatment ofΔ J

within an additional rotating wave approximation for the

light-matter coupling, and are given by

Δmod = 

∞

∫

−∞

d𝜔
Δ Js(𝜔)

𝜔−𝜔e

, (10a)

𝛾mod = 2𝜋Δ J(𝜔e), (10b)

where Δ Js(𝜔) = Js(𝜔) − Jfit(𝜔) and  indicates a princi-

pal value integral. Here, Js instead of the full spectral density

appears as the energy shift, since the free-space contribu-

tion J0 leads to a diverging shift when inserted directly in

Eq. (10a), but gives the small free-space Lamb shift when

treated correctly [37], [42]. It is thus assumed that its influ-

ence is already included in the emitter transition frequency

𝜔e. Note also that the integral over frequencies in Eq. (10a)

extends over the full real axis. While J(𝜔) is nonzero only

for positive frequencies (at zero temperature, as considered

throughout this manuscript), Jfit(𝜔) is defined and non-zero

for all frequencies.

The approachdescribed abovehas twopotential advan-

tages compared to the one in [32] that it extends: first, it

can be used to reduce the number of auxiliary coupled

oscillators that have to be included in S by only fitting a

reduced part of the spectrum, and second, it can be used to

mitigate any inaccuracies in thefit by including the resulting

correctionΔ J(𝜔) = J(𝜔) − Jfit(𝜔) in themaster equation,

albeit only within the Markovian approximation. Below,

we investigate the accuracy of the resulting model in dif-

ferent scenarios. It can be anticipated that the model will

work well if those parts of the spectral density that induce

non-Markovian dynamics on the emitter are well-described

by the auxiliary model described by Jfit(𝜔), which usually

requires that the fit is accurate at least within a spectral

window close to the emitter transition frequency. We note

that if the whole light-matter interaction is in the weak-

coupling regime, it can be treated fully perturbatively, and

the model is not needed. This case is equivalent to setting

Jfit(𝜔) = 0.

For the case of interest where the overall coupling is

non-Markovian, a criterion to estimate the validity of the

splitting can be formulated by utilizing that the enforced

good agreement between J(𝜔) and Jfit(𝜔) in the spectral

region close to the emitter frequency implies that Δ J(𝜔) is

small within that region (and presumably larger outside),

so that it naturally splits into the two regions 𝜔 < 𝜔e

and 𝜔 > 𝜔e. The validity of the perturbative treatment

of Δ J(𝜔) can then be checked by treating each of the two

regions separately and veryifying that the resulting inter-

action is indeed perturbative. This can be done by, for

example, checking that the “reaction mode” [40], [43], [44]

that subsumes the bath-emitter interaction in each region

is perturbatively coupled to the emitter. This leads to the
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condition 𝛽± = g2±
(𝜔±−𝜔e)

2 ≪ 1. Here, the effective coupling

is given by g2± = ∫
A±
Δ J(𝜔)d𝜔 and the effective frequency

by𝜔± = ∫
A±
𝜔Δ J(𝜔)d𝜔∕∫

A±
Δ J(𝜔)d𝜔, where A+ (A−) is the

region of frequencies where 𝜔 > 𝜔e (𝜔 < 𝜔e). In the

examples shown below, the condition 𝛽± ≪ 1 is always

fulfilled.

The above definition of Δ J(𝜔) as the difference

between the physical and the fitted spectral density unveils

a subtle point: while both J(𝜔) and Jfit(𝜔) correspond to the

spectral density of physical systems and are thus strictly

non-negative functions, Δ J(𝜔) does not necessarily fulfill

this constraint. This does not present a particular problem

for the CP-shift Δmod, which in any case can be a positive

or negative energy shift, but can appear problematic for

the decay rate 𝛾mod, since the Lindblad master equation is

not a completely positive map if 𝛾mod < 0, and the result-

ing terms do not describe decay, but “anti-decay”, i.e., an

exponential growth of population.1 Note that in principle,

the derivation of the Lindblad master equation requires

that the spectral density be positive, and allowing for neg-

ative rates is thus not strictly justified. In this sense, anti-

decay terms are a generalization of existing results to a

regime outside their original range of validity. In the con-

text of open quantum systems, similar generalizations are

commonly done with negative-frequency harmonic oscil-

lators, which are not eigenstates of a physical potential,

but can be useful tools to generalize approaches to new

regimes [45].

We will show below that the appearance of negative

rates is not an issue in practice when the description is

sufficiently accurate. This is consistent with similar results

found for the Bloch-Redfield approach [46], i.e., a perturba-

tive treatment of a bathwithin theBorn-Markov approxima-

tion, which can induce negative decay rates if no additional

secular approximation is performed [34]. For most cases we

study, the problem does not appear, since the spectral den-

sity is fitted accurately close to the emitter frequency and

thus 𝛾mod = 2𝜋Δ J(𝜔e) ≈ 0.However, in subsection 3.3we

treat a system in the ultra-strong coupling regime where

counterrotating terms in the light-matter interaction cannot

be neglected. For this system, we show that a negative-

rate “anti-Lindblad” term can efficiently cancel unphysical

artificial pumping effects that otherwise appear [36]. This

term arises naturally from the perturbative treatment of

Δ J when, unlike Eq. (9), the rotating-wave approximation

1 Note that is not the same as a “pumping” Lindblad term, which

corresponds to a normal Lindblad term with positive rate and an

associated operator that lifts the system to a state with higher energy

(e.g., Γpump𝜎+ [𝜌]).

in the light-matter coupling is not performed, such that the

resulting generalized Lindblad-like master equation is

d

dt
𝜌S(t)= −i

[
HS + HCP +

∼
HCP, 𝜌S(t)

]
+ 𝛾mod𝜎−

[
𝜌S(t)

]
+
∼
𝛾mod𝜎+

[
𝜌S(t)

]
+

N∑
i

𝜅iai

[
𝜌S(t)

]
,

(11)

which contains both an extra CP term H̃CP = −Δ̃mod𝜎
+𝜎−,

where

Δ̃mod = −
∞

∫

−∞

d𝜔
Δ Js(𝜔)

𝜔+𝜔e

, (12)

and the additional Lindblad term with rate 𝛾̃mod =
2𝜋Δ J(−𝜔e). This rate is always negative since J(𝜔) = 0

for negative frequencies 𝜔 < 0, while Jfit(𝜔) ≥ 0 for any

𝜔, such that the term becomes an “anti-Lindblad” one as

described above. Observe as well that Eq. (12) is identical

to Eq. (10a) performing the substitution 𝜔e → −𝜔e (the

overall minus sign is a matter of convention to write both

CP energy terms preserving the same form).

3 Results

We test the accuracy and regime of validity of our model by

performing numerical simulations of the excited-state pop-

ulation of a TLS,
⟨
𝜎+𝜎−⟩(t), for the paradigmatic problem

of spontaneous emission. Notice that our model allows the

computation of expectation values of any observable O,⟨O⟩(t) = Tr{O𝜌S(t)}, since it provides the density matrix

operator 𝜌S(t). Furthermore, it is not restricted to the single-

excitation subspace [35], [36].

We consider three different model EM environments:

the first corresponds to a simple model where the spectral

density is described by a sum of Lorentzian resonances, the

second one is a realistic hybrid metallodielectric nanostruc-

ture, and the third one is a single-mode setup correspond-

ing to a two-level emitter under ultrastrong coupling to a

single physical mode. In all three systems, the light-matter

coupling is strong enough to obtain non-Markovian effects,

as the weak (Markovian) coupling regime can already

be described accurately by fully perturbative approaches

(equivalent to setting Jfit(𝜔) = 0 in our model). The first

two systems are treated within the rotating-wave approx-

imation and described by Eq. (9), while the third one is

within the ultra-strong coupling regime where this approx-

imation is not valid and the effective master equation

is given by Eq. (11). In all cases, we compare the results

obtainedwith our approachwith an exact solution obtained

by direct discretization of the original Hamiltonian in Eq. (1)
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(which is numerically feasible for propagation over short

times and when no decoherence apart from that induced

by the bath is present, such that the dynamics is purely

coherent).

3.1 Lorentzian model spectral density

We start with a test case consisting of an example EM envi-

ronment characterized by a spectral density that is the sum

of Lorentzian resonances, J1(𝜔) =
∑

i

g2
i

𝜋

𝜅i∕2
(𝜔−𝜔i)

2+(𝜅i∕2)2
, which

corresponds to the non-interacting limit of Eq. (8) (𝜔ij = 0

for i ≠ j). The non-interacting character of the modes and

the flexibility for tuning their strength gi, width 𝜅 i, and

frequencies 𝜔i offer an ideal scenario for gaining intuition

on the model. In particular, since the form is exactly that of

Jfit(𝜔), the splitting into Jfit(𝜔) andΔ J(𝜔) can be performed

by just including some of the sum terms in Jfit without the

need to perform any fitting. We use a 5-mode spectral den-

sity, considering two different situations: in the first case,

Ja
1
(𝜔), the five peaks are spectrally well-separated, with a

regular spacing of𝜔i+1 − 𝜔i = 0.6 eV, while in the second

case, Jb
1
(𝜔), the separation between the peaks is reduced

by half. In each configuration we study the scenario where

the five modes fulfill the condition gi∕𝜅 i > 1, guarantee-

ing the strong coupling regime (as will below reflected in

a reversible dynamics). Note that this regime leads to the

formation of hybrid light-matter states called polaritons

(eigenstates of HS) whose frequencies determine the actual

dynamics, and which are, in general, different from the

frequencies in the uncoupled Hamiltonian.

First, we focus on the results for the configuration with

well-separated resonances, presented in Figure 2A and B,

with the emitter resonant with the secondmode.We use the

simplest choice for Jfit: a 1-mode model, treating nonpertur-

batively only the closest resonance to the emitter transition

frequency. The rest of the spectral density is treated pertur-

batively through Δ J. The splitting of the spectral density

is displayed in Figure 2A indicating also the emitter tran-

sition frequency (dashed red line), the range over which

the fitted spectral density is accurate (dashed gray lines),

and the energies of the formed polaritons (solid gray lines).

The results of time propagation (see Figure 2B) show clearly

that the dynamics is producedmuchmore accurately by our

model (blue lines) than by the use of only Jfit while ignoring

A)

B)

C) E)

D) F)

Figure 2: Numerical simulations on the test Lorentzian-like spectral density. Left column (A and B): Case with well-separated resonances. A) Spectral

density splitting with a 1-mode model for Jfit. The residual spectral density is not shown. The emitter transition frequency is indicated with a dashed red

line and the fit range is comprised between the two dashed gray lines. The solid gray lines indicate the energy positions of the eigenstates of HS .

B) Emitter excited-state population calculated from three different approaches: direct discretization (black), only considering Jfit (orange) and our full

model (blue). The inset shows the relative error with respect to the exact result, where a solid gray horizontal line is traced at 5%. Central column
(C and D): The same as left column but for a squeezed spectral density. Right column (E and F): The same as central column but with a 3-mode model

for Jfit. Parameters: (A and B)𝜔e = 1.4155,Δmod = 0.0021, 𝛾mod ≈ 0 [eV]; (C and D)𝜔e = 1.5135,Δmod = 0.0043, 𝛾mod ≈ 0 [eV];

(E and F)𝜔e = 1.5135,Δmod = 0.0041, 𝛾mod ≈ 0 [eV].
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the perturbative correction due to Δ J(𝜔) (orange lines).

This is corroborated by the inset, which shows that the

relative error, 𝜖r(t) = |⟨𝜎+𝜎−⟩− ⟨𝜎+𝜎−⟩exact|∕⟨𝜎+𝜎−⟩exact,
stays below about 5% for the entire dynamics, while it

reaches 50% when only Jfit is used.

The results of reducing the spacing between resonances

(spectral density Jb
1
(𝜔)) are presented in Figure 2C and D.

Using a single-mode model as in the previous configuration

now presentsmuch larger deviations from the exact results.

The reason for this is that the energies of the two polaritons

formed by strong coupling between the emitter and the

resonant mode are now much closer to the two nearest-

non-fitted resonances, such that these two resonances also

influence the emitter dynamics in a nonperturbative way

that cannot be reflected in the CP energy shift, leading to

multimode strong coupling effects. Including the two closest

additional resonances in Jfit leads to a 3-mode model, with

results displayed in Figure 2E and F. As could be expected,

our approach now again works very well, highlighting the

necessity of including a sufficiently wide frequency range

in the fitted spectral density.

This first test example thus provides significant insight

on themixed perturbative-nonperturbative approach. First,

we can deduce that the main requisite for its success is

the inclusion in Jfit of all the spectral density contributions

that lead to non-Markovian and strong-coupling effects and

that cannot be captured accurately through a perturba-

tive procedure. Second, even if this identification and fit is

performed accurately, the role of the perturbative energy

shift is fundamental to achieve an accurate description

when the spectral density is non-negligible outside the fitted

region. This demonstrates that the original goal can indeed

be achieved: the number of discrete modes that must be

included in Jfit to obtain accurate results can be significantly

reduced compared to the case where Jfit is used for describ-

ing the whole spectral density.

3.2 Realistic nanostructure

These notions are confirmed with the study of the same

realistic hybrid metallodielectric nanostructure treated in

[32]. It consists of a dielectric GaP microsphere of radius

600 nm embedding two 120 nm long silver nanorods sep-

arated by a 3 nm gap and substantially displaced from

the center of the sphere (see the upper right inset in

Figure 3A). The emitter is located in the center of the

gap, with parameters chosen to represent InAs/InGaAs

quantum dots [47], with transition energy 𝜔e = 1.1445 eV

and transition dipole moment d = 0.55 e nm. The hybrid

nature of this structure results in a more complex spectral

density J2(𝜔). It is characterized by Fano-like profiles that

A)

B)

C)

Figure 3: Numerical simulations on the hybrid metallodielectric

nanostructure. A) Spectral density of the system. The upper right inset

displays a sketch of the metallodielectric nanostructure. The bottom inset

zooms in the 2-mode spectral density splitting in the region close to the

emitter transition frequency. B and C) The same as the second row in

Figure 2 but displaying the relative error in a separated figure (C). The

dotted red line indicates the relative error obtained in [32] reproducing

the whole spectral density with a 20-mode fit. Parameters:𝜔e = 1.1445,

Δmod = 0.0093, 𝛾mod ≈ 0 [eV].

indicate interference effects between the different modes

supported by the microsphere and the nanorods (see

Figure 3A).
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This complex spectral density is represented in [32] in

a fully nonperturbative approach through a fit using 20

interacting modes. To illustrate the power of our approach,

we use a 2-mode model for Jfit, including only the two inter-

acting modes close to resonance with the emitter (see the

bottom inset in Figure 3A). As shown in Figure 3B and C,

this is enough to obtain a reliable description of the emitter

dynamics, with a relative error typically on the few-percent

level. We note that the large maximum observed in the

relative error close to t = 200 fs is a consequence of the

small value of the population at that point.

The choice of this minimal model for Jfit is inspired

by the fact that, although the light-matter interaction in

this setup is strong (see the clear reversible behavior close

to t = 200 fs), most of the modes do not in fact enter the

strong couplingwith the emitter, but instead only contribute

an additional effective energy shift. This example is thus

a clear demonstration of the power of our model when

the frequencies that are on resonance with the emitter are

correctly identified and the perturbative procedure can be

safely performed, resulting in a large reduction of the num-

ber of discrete modes required.

3.3 Extension to the ultra-strong coupling
regime

We finally illustrate the power of our model in the ultra-

strong coupling regime. We study the same setup analyzed

in [36]. It consists of a physically allowed extension of

the quantum Rabi model, and is described by a spectral

density corresponding to a single harmonic oscillator with

frequency 𝜔c coupled to an Ohmic “background” bath. The

resulting spectral density can be written as:

J3(𝜔) = 𝜃(𝜔)
2g2

𝜅

𝜅𝜔c𝜔(
𝜔2 −𝜔2

c

)2 + 𝜅2𝜔2
, (13)

where we use the same parameters as in [36]:

𝜔c = 𝜔e = 0.58 meV, g = 0.25 meV and 𝜅 = 0.1 meV,

which are typical for Landau polaritons formed in

semiconductor quantum wells in the ultra-strong coupling

regime [48]–[50]. Here, g represents the coupling between

the emitter and the mode, and 𝜅 the losses of the mode.

We note that this spectral density, as any physical spectral

density, is non-zero only for positive frequencies.

The results obtained using a 1-mode Jfit are presented

in Figure 4A and B. Note that Jfit extends to negative

frequencies, see Figure 4A. This cannot be avoided for

a single-mode fit. While the flexibility of the coupled-

oscillatormodel can be exploited to suppress these negative-

frequency contributions [36], this requires the use of several

A)

B)

Figure 4: Numerical simulations on the single-mode setup supporting

ultra-strong coupling effects. A) Spectral density splitting with a 1-mode

model for Jfit. B) Emitter population: the blue line is computed through

Eq. (9), while the green line results from the generalized Eq. (11).

The absolute relative error associated with the two models is displayed

in the inset. Parameters:𝜔e = 0.58,Δmod = 0.0026, Δ̃mod = 0.0026,

𝛾mod ≈ 0, 𝛾̃mod = −0.0046 [meV].

additional auxiliary oscillators. When only a single mode

is used for the fit and no perturbative corrections are per-

formed, the presence of the negative-frequency components

leads to artificial pumping effects, resulting in an unphysi-

cally large emitter population at later times. This is reflected

in the results of Figure 4B, where the blue line shows the

results obtained with Eq. (9), with a severely overestimated

population, in particular in the steady state (reached at

around 90 ps). However, when the perturbative corrections

are included as described in the theory section, Eq. (11),

the presence of the “anti-Lindblad” term with associated

negative rate 𝛾̃mod cancels the unphysical pumping effects,

and the results (green line) are much closer to the exact

ones (black line) at essentially the same numerical cost

as the single-mode model. As the inset shows, the relative
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error within this method stays low for the whole dynamics,

and the steady-state population is reproduced reasonably

well.

4 Conclusions

We have presented an approach for describing light-matter

interactions in arbitrarily complex nanophotonic

systems in any coupling regime by using a mixed

perturbative-nonperturbative description extending

our previously developed few-mode quantization [32]. The

approach is based on a splitting of the spectral density,

J(𝜔), in order to effectively separate the part responsible

for the non-Markovian and strong-coupling-based emitter

dynamics, Jfit(𝜔), from that which can be treated as a

perturbation, Δ J(𝜔). The former is represented by a

minimal collection of lossy interacting discrete modes

coupled to fully Markovian background baths, while

the latter is treated perturbatively with standard open

quantum systems theory, leading to an energy shift on the

emitter energy levels and additional Lindblad dissipator

terms (which can contain negative dissipation rates). All

this information is encoded in a compact simple Lindblad

master equation.

We have tested our methods by calculating the pop-

ulation dynamics of an initially excited TLS in three dif-

ferent EM environments of varying complexity, investigat-

ing the strong and ultra-strong coupling regimes. We find

that our model works accurately as long as Jfit is accurate

over a sufficiently large frequency range to capture all non-

Markovian effects. This condition can be fulfilled by iden-

tifying the spectral density region directly coupled to the

relevant transitions frequencies of the system. The remain-

ing spectral density can then be safely treated perturba-

tively. As a result, the final model achieves an accurate

description with a significantly reduced numerical cost

compared to the full model fitting the spectral density over

its whole bandwidth.
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