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We demonstrate spontaneous symmetry breaking in the diffraction of a laser-driven grating with memory
in its nonlinear response. We observe, experimentally and theoretically, asymmetric diffraction even when
the grating and illumination are symmetric. Our analysis reveals how diffracted waves can spontaneously
acquire momentum parallel to the lattice vector in quantities unconstrained by the grating period. Our
findings point to numerous opportunities for imaging, sensing, and information processing with nonlinear
periodic systems, which can leverage a much richer diffractive response than their linear counterparts.
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According to Bloch’s theorem (BT), wave amplitudes in a
periodic potential must have the same periodicity as the
potential itself [1]. This basic property of waves stems from
the relation between symmetries and conserved quantities
unveiled by Noether [2]. Essentially, BT relies on the
discrete translation symmetry of the system and the corre-
sponding conservation of the wave vector component
parallel to the lattice vector, kjj. It may seem obvious that
steady-state wave amplitudes must have the same symmetry
as their confining potential. However, nature provides many
counterexamples of this. Studies of spontaneous symmetry
breaking (SSB) have shaped physics for decades [3]. For
instance, the laser, Bose-Einstein condensation, superflu-
idity, superconductivity, the Josephson effect, and the Higgs
boson, all emerge when a rotational U(1) symmetry is
broken [4–6]. In addition, in atomic [7] and optical [8–15]
systems, a mirror symmetry can spontaneously break and
localized states with quantum entanglement can emerge
[16,17]. In periodic systems, symmetry broken states have
been theoretically analyzed [18], but not yet observed.
In this Letter, we demonstrate SSB in diffraction. We

measure light scattering from a nonlinear grating with
memory and, at sufficiently high intensities, we observe a
cascade of dynamical effects in diffraction. These include
spontaneous symmetry-breaking and symmetry-restoration
transitions, as well as limit cycles and signatures of chaotic
dynamics. Through numerical and analytical calculations at
the level of Maxwell’s equations, we explain our observa-
tions and elucidate how asymmetric diffraction can emerge
from a symmetric system. Our approach extends the use of

linear stability analysis methods to extended photonic
structures, and reveals how their refractive index fluc-
tuation spectrum governs their behavior.
Figure 1(a) illustrates the system under study: a one-

dimensional metallic grating coated with cinnamon oil.
Placed on a glass substrate, it comprises aluminum [19]
wires with 90 nm width, 70 nm height, and 366 nm lattice
constant. A continuous wave laser impinges perpendicular
to the periodicity plane. As detailed in Supplemental
Material [20], its 532 nm wavelength is close to a grating
resonance. Part of the laser light is absorbed by the oil,
and then dissipated as heat. The resultant temperature rise
causes the oil to expand, and its density and refractive
index to decrease. This process, a thermo-optical non-
linearity, corresponds to an intensity-dependent refractive
index. The refractive index change is time delayed by the
oil’s thermal relaxation, resulting in a nonlinear response
with memory [22,23].
Figure 1(b) shows the sample’s transmittance when

modulating the laser power. The transmittance depends
on the power and the direction of the power scan. This
irreversibility, or hysteresis, is sometimes taken as an
indication of bistability [24]: two stable states at a single
driving condition. However, hysteresis can emerge without
bistability [25,26]. A stronger evidence of bistability is the
abrupt transmittance jump at 2.39 s, signaling a transition
between states. The transmission versus input power plot
[20], evidences a wide bistability region and an undershoot
after the jump at 2.39 s. The half width at half maximum of
the undershoot, 60 μs, is indicative of the thermal relaxation
time, τ [22,23]. We also recorded images of the grating’s
reflection as a function of power. Figures 1(c)–1(e) show
three images taken 50–70 ms after the jump. The bright disk
and rings around the center of all images are due to the direct
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laser reflection. The dots enclosed by dashed white circles
are due to þ1 and −1 diffraction orders [20].
Theþ1 and−1diffracted intensities are similar inFig. 1(c),

but different in Figs. 1(d) and 1(e) which were taken 10 ms
before and 10 ms after Fig. 1(c), respectively. Such
differences in diffracted intensities emerged spontaneously
in various scans. To investigate this effect with greater
temporal resolution, we constructed a setup for isolating
the two diffracted intensities (inside the dashed circles) from
thebackground reflection and sending them to photodetectors
[20]. The results are shown in Fig. 2, for the samemodulation
of the input power shown in Fig. 1(b). Purple and orange
curves correspond to the −1 and þ1 diffracted intensities,
I− and Iþ, respectively.
Figure 2(a) displays rich dynamics of the diffracted

intensities immediately after the jump, indicated by the

vertical dashed black line. Figures 2(b)–2(d) show enlarge-
ments of three representative time windows, each 15 ms
long. The rise in optical power during these 15 ms is much
smaller than the standard deviation of the laser noise.
Therefore, we can regard the average input power as
constant. Figures 2(b) and 2(d) show out-of-phase and
in-phase oscillations, respectively, of Iþ and I−. Such self-
sustained oscillations, known as limit cycles [27], are here
observed for the first time in diffraction. In between these
two limit cycles, we observe a window of chaotic, uncorre-
lated dynamics as Fig. 2(c) shows.
The phase of a limit cycle is chosen spontaneously,

similar to the spontaneous choice of the phase of a scalar
field at a rotational U(1) symmetry breaking transition [6].
For this reason, limit cycles have drawn interest as
manifestations of “time crystals”—self-organized periodic

(a)

(b)

(c)

(d)

(e)

FIG. 2. (a) Diffracted intensities by the −1 (purple) and þ1
(orange) orders, respectively, indicated by the dashed circles in
Figs. 1(c)–1(e). The purple curve is displaced vertically for
clarity. (b),(c),(d) are close-ups into intervals in (a) displaying
out-of-phase oscillations, chaos, and in-phase oscillations, re-
spectively. (e) Cumulative distribution functions for the intensity
contrast between the −1 and þ1 diffracted orders. Bars and red
dots correspond to camera- and photodetector-acquired data,
respectively.

(a)

(b)

(c)
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FIG. 1. (a) Oil-coated unblazed metallic grating, laser driven at
normal incidence (not to scale). (b) Transmittance (solid curve)
and input power (dashed curve) versus time, demonstrating optical
bistability. (c)–(e) Reflection images recorded at t − tj ms after the
jump in transmittance observed at tj ¼ 2.4 s in (b). Changes inþ1

and −1 diffracted intensities (bright spots enclosed by dashed
circles) evidence mirror SSB. Scale bar: 3 μm.
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states in time emerging through SSB [28–32]. Interestingly,
the in-phase oscillations in Fig. 2(d) respect the mirror
symmetry of the system, but the out-of-phase oscillations in
Fig. 2(b) do not. This possibility, namely for mirror
symmetry to be broken or not in a time crystalline phase,
was recently analyzed in a model of coupled cavities [33].
Here, we evidence this phenomenon through power-
induced mirror symmetry breaking and restoration.
Next, we assess whether symmetry breaking occurs

spontaneously by fluctuations or deterministically by an
unaccounted bias. Figures 1(c)–1(e) show indications of
spontaneity: the −1 and þ1 diffracted intensities im-
balance spontaneously, with negligible change in power.
Figure 2(d) shows indications of lack of bias: the two
spontaneously synchronized trajectories have equal inten-
sity. To go beyond qualitative indications, we analyzed the
statistics of the contrast between diffraction intensities
ðI− − IþÞ=ðI− þ IþÞ. Figure 2(e) shows the resultant
cumulative distribution function (CDF) of the intensity
contrast, measured with the photodetector and camera. We
included data after the jump [dashed line in Fig. 2(a)], and
up to the end of the dynamical regime (around 4 s). The
CDFs contain data from multiple power scans and thus
different noise realizations. Notice in Fig. 2(e) that both
CDFs cross 0.5 near zero contrast, meaning intensity
imbalances favoring the −1 and þ1 orders are equally
probable. The shape of both CDFs implies that symmetry is
preserved on average, and unbroken most of the time. This
can be observed more clearly in the corresponding prob-
ability distributions (see Supplemental Material [20]),
which are symmetric and peaked at zero contrast. In
Supplemental Material we further include a detailed dis-
cussion about the (∼100 μs) timescale of SSB and the
fluctuations triggering it [20].
Our experiments evidence mirror, but not discrete trans-

lation, SSB. The finite illumination area explicitly breaks
translation symmetry. Actually, discrete translation SSB is
impossible in experiments because the required single
plane-wave illumination does not, strictly speaking, exist.
Nonetheless, in Supplemental Material we demonstrate that
the response of our grating is dominated by an approximate
discrete translation symmetry [20]. Furthermore, to rigor-
ously demonstrate discrete translation SSB in the idealized
single plane-wave illumination case, we present next two
complementary theoretical approaches based on Maxwell’s
equations. In both approaches, the oil layer is characterized
by an intensity-dependent refractive index with memory:

nðr; tÞ ¼ n0 − γ

Z
t

−∞
dsKðt − sÞjEðr; sÞj2: ð1Þ

n0 is the linear refractive index, γ is the nonlinearity
strength, Eðr; tÞ is the electric field, and KðtÞ ¼ e−t=τ=τ
is the same memory kernel used for oil-filled cavities
[22,23]. τ is the thermal relaxation time of the oil, which is

also the memory time of the system. We took all parameter
values from experiments, and validated our model by repro-
ducing the linear spectrum (see Supplemental Material [20]).
Our first approach involves full-wave simulations of

nonlinear electromagnetic scattering under plane wave
illumination. We solved for the electric fields in frequency
domain as Eðr;ω; tÞ (t ∼ τ ≫ 2π=ω). We avoided time-
domain simulations by decoupling thermal and optical
effects, which is justified for τ ≫ Γ−1 with Γ the optical
dissipation rate; τ=Γ−1 ∼ 109 in our experiments. We use
mirror conditions on the lateral boundaries of the simu-
lation domain. These are equivalent to Bloch periodic
conditions for normal incidence and linear response but,
unlike them, do not require a priori knowledge about
parallel momentum components in the system [20].
Figures 3(a1)–3(a5) show the reflected power dynamics

for a simulation domain containing 1, 2, 4, 8, and 16 grating
periods, acting as a supercell. In all cases, the incident
power increased as the dashed curve in Fig. 3(a1) shows.

(a1)

(a2)

(a3)

(a4)

(a5)

(b1)

(b2)

(b3)

(b4)

(b5)

FIG. 3. (a) Calculated reflected power versus time. Panel
numbers 1–5 correspond to supercell sizes of: 1, 2, 4, 8, and
16 grating periods, respectively. Dotted line in (a1) indicates the
input power protocol. (b) Fourier transform, in natural log scale,
of refractive index maps evaluated at the time indicated by the
gray line in (a).

PHYSICAL REVIEW LETTERS 133, 133803 (2024)

133803-3



For short times (t < 40τ), the reflection undergoes fast
oscillations associated with the excitation of guided modes
in the oil [20]. Afterwards, various dynamical regimes
emerge depending on the supercell size. These include
self-sustained oscillations with different periods as in
Figs. 3(a2)–3(a4), and chaotic dynamics as in Fig. 3(a5).
In Supplemental Material we show real-space refractive
index maps at the time indicated by the vertical gray lines in
Figs. 3(a1)–3(a5), evidencing local translation symmetry
breaking. Using the same theoretical framework, we also
qualitatively reproduce the experimentally observed optical
hysteresis and elucidate its connection with SSB [20].
Figures 3(b1)–3(b5) show Fourier transforms of the

refractive index maps, F ½n0 − nðr; tÞ�. k0 is the homo-
geneous medium wave vector. Most reciprocal space
contributions fall on the thin circles of radius k0 centered
at kx ¼ 0;�π=a and ky ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − k2x

p
, corresponding to

wave vectors present in the linear solution. The thicker
and fainter circle of radius 2k0 encloses all wave vectors in
nðr; tÞ (∝ jEj2) that are accessible by propagating plane
waves. The peaks in Fig. 3(b1) all lie at kjj ¼ kx ¼ m2π=a,
with m ¼ 0;�1;�2, satisfying BT. In contrast, for larger
supercells, wave vector contributions departing from BT
emerge. In Supplemental Material we show that these wave
vector components are responsible for the reflection oscil-
lations in Figs. 3(a2)–3(a5), and thereby connect SSB in
diffraction with the emergence of limit cycles in our system
[20]. Figure 3(b5) shows a nearly homogeneous reciprocal-
space peak density along the thin white circles, as expected
for chaos. Our results show that mirror boundary conditions
enable local translation SSB and self-sustained oscillations
to emerge. However, the global inversion SSB responsible
for the sudden change in the þ1 and −1 diffracted
intensities cannot occur under those boundary conditions.
To explain the emergence of asymmetric diffraction from

a symmetric and symmetrically driven grating, we con-
ceived a second approach using a Born scattering series to
first order [34] and seeking a self-consistent solution to
Maxwell’s equations fed with Eq. (1). We treat the non-
linearity perturbatively, which is justified because the
maximum modulation in the real-space refractive index
maps associated with Fig. 3 is 0.025 ≪ 1.59 ¼ n0 [20].
After a linearization technique described in Supplemental
Material [20], we find that fluctuations to the refractive
index map in reciprocal space, δnðk; tÞ ¼ F ½nðr; tÞ − n0�,
satisfy

τδṅðk; tÞþδnðk; tÞ¼ 2γE2
0

n0χ

X
αβ

MαβðkÞδnðkþkα−kβ; tÞ:

ð2Þ

χ is the refractive index loss tangent (set according to
experimental measurements), E0 is the incident plane wave
amplitude, α, β label the diffraction orders present in the

linear solution, and δṅðk; tÞ ¼ ðd=dtÞδnðk; tÞ. The ratio
γE2

0=χ quantifies the balance between driving and dissipa-
tion, which determines the nonlinear threshold. The matrix
MαβðkÞ (analytical expression in Supplemental Material
[20]) describes the coupling between refractive index
components of different wave vectors. It corresponds to
the Jacobian determining the linear stability of a fixed
point.MαβðkÞ diverges for k at a distance k0 from the wave
vectors of the linear solution. This condition indicates
which reciprocal-space components beyond BT can emerge
in nðr; tÞ, and coincides with the thin white circles in
Figs. 3(c1)–3(c5).
Equation (2) is nonlocal in reciprocal space, resulting in

a complex interplay between different refractive index
fluctuations. For instance, high-wave vector components
excited by the evanescent fields at the metal grating
can serve as a seed for fluctuations of arbitrary wave
vectors. If the system crosses the nonlinear threshold,
refractive index fluctuations that do not conserve momen-
tum can be amplified and govern nðr; tÞ. The properties of
these fluctuations are determined by the eigenvalue
problem

P
αβ MαβðkÞδñλðkþ kα − kβ; tÞ ¼ λδñλðk; tÞ

corresponding to Eq. (2), and their dynamics satis-
fy δñλðk; tÞ ¼ δñλðk; 0Þ exp

�½−1þ ð2γE2
0=n0χÞλ�ðt=τÞ

�
.

Defining a critical intensity E2
c ¼ n0χ=2γRefλg, a fluc-

tuation is amplified or attenuated if E0 > Ec or E0 < Ec,
respectively [35]. Therefore, refractive index fluctuations
with the largest positive Refλg dominate the dynamics.
Oscillatory dynamics are thus governed by Imfλg, and, in
agreement with our experiments, their period depends on τ
and incident power.
Figure 4 shows the eigenvalue spectrum of our system

using different k-space discretizations corresponding to
different supercell sizes, as in Fig. 3. Notice that eigen-
values belonging to larger supercell sizes coalesce along
continuous curves, proving the convergence of the calcu-
lations against the k-space discretization. Figure 4(a) also
shows that the maximum Refλg saturates for supercells
larger than 16 grating periods, indicating that our results are
representative of the continuum limit. The four governing
eigenvalues in each case, with largest Refλg, are high-
lighted by white circles. Their real part increases, and
therefore Ec diminishes, with supercell size, in agreement
with the results in Fig. 3. The dominant eigenvalues are
doubly degenerate in all cases (except for the single-period
supercell), thereby allowing the system to reach any of the
two associated eigenfunctions upon SSB.
Figure 4(b) illustrates the two eigenfunctions, δñλðk; tÞ,

(red and green dots) associated with the dominant degen-
erate eigenvalue for a 64 period supercell. We show the
largest wave vector components only (amplitude encoded
by the dot size) because the eigenfunctions are extremely
pointed around a discrete set of wave vectors. kx values
allowed by momentum conservation are indicated by
vertical dotted lines. Remarkably, the calculated dominant
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wave vector contributions deviate from those lines,
showcasing the breakdown of momentum conservation.
Figure 4(c) renders one of the two degenerate eigenfunc-
tions in real space, marked as green in Fig. 4(b), clearly
breaking discrete translation symmetry. Above the non-
linear threshold, fluctuations can lead the system into this
or the other degenerate eigenfunction (its mirror image) via
SSB. We observe this phenomenon for all supercell sizes
exceeding one grating period, also in this model, indicating
that our results hold in the continuum limit in k space.
To summarize, we have shown SSB in the diffraction of

light from a nonlinear grating. Experimentally, we observed
mirror SSB concomitantly with hysteresis, limit cycles, and
chaotic dynamics in diffraction. Our results demonstrate
that nonlinearity alone does not guarantee symmetry
breaking. Actually, it can even restore mirror symmetry
and trigger periodic solutions that comply with BT which
assumes linearity. Our observations were reproduced by
electromagnetic simulations and a linear stability analysis.
These furthermore demonstrated how steady states with
nonzero in-plane momentum can spontaneously emerge in
perfectly periodic systems under normal plane-wave illu-
mination, thereby breaking the discrete translation sym-
metry of the system. Our results open many opportunities
for manipulating light without the constraints imposed by
the symmetries of the system it interacts with. Taking
advantage of recent advances in photonic materials and
design maximizing light-matter interaction times [37], we
foresee the implementation of stronger, faster, and tunable
SSB phenomena in space and/or time in different areas. On
one hand, SSB offers an unprecedented dynamical control
over scattered light momenta and wave fronts which is
promising for spatial light modulators and superresolution
imaging [38]. On the other hand, SSB in spatially extended
systems like ours can be exploited for biosensing applica-
tions which may require integration with microfluidics and
without the need of nanophotonic field confinement [39].
Finally, by replacing our simple grating with more complex
nanophotonic structures and illumination schemes, all-
optical artificial neural networks for beyond von Neumann
computing [40] may be realized.
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