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Using topology optimization, we inverse-design nanophotonic cavities enabling the preparation of pure states of
pairs and triples of quantum emitters. Our devices involve moderate values of the dielectric constant, operate under
continuous laser driving, and yield fidelities to the target (Bell and W) states approaching unity for distant qubits
(several natural wavelengths apart). In the fidelity optimization procedure, our algorithm generates entanglement
by maximizing the dissipative coupling between the emitters, which allows the formation of multipartite pure
steady states in the driven-dissipative dynamics of the system. Our findings open the way toward the efficient and
fast preparation of multiqubit quantum states with engineered features, with potential applications for nonclassical
light generation, and quantum sensing and metrology.
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1. INTRODUCTION
The preparation and manipulation of highly entangled multi-
qubit states is at the core of all quantum technologies. This
makes the degree of control over qubit–qubit interactions a key
aspect in the assessment of material systems for their imple-
mentation. In this context, nanophotonic devices offer a wide
range of strategies to tailor photon propagation and the photonic
density of states at different length scales [1,2]. This makes
them stand out among other candidates for quantum hardware
in terms of scalability, integration, and speed of operation [3,4].
For this reason, in recent years, photonic architectures struc-
tured at the nanoscale to harness photon-assisted interactions
among quantum emitters (QEs, acting as qubits) have been pro-
posed as the platform for applications such as quantum light
sources [5–7] and detectors [8], quantum networks [9,10] and
circuits [11,12], memories [13], sensors [14], or simulators
[15,16].

Lately, inverse design techniques have revealed unexpected
and counter-intuitive optimization pathways for nanophotonic
systems [17,18]. These numerical tools have proven to be par-
ticularly successful in functionalities that require a complex
trade-off between conflicting mechanisms [19–21], and their
impact on the field has even opened the way toward the explo-
ration of the fundamental limits of photonic performance [22,23]
and discovery [24]. More recently, these numerical tools have
also been exploited in the realm of quantum nano-optics, where
a delicate balance between the engineering of light–matter

near-field coupling and the shaping of radiation and absorp-
tion is required. Thus, inverse-designed quantum nanophotonic
devices have shown a notable performance in the context of qubit
entanglement formation [25,26] and single-photon generation
[27,28].

Here, we employ topology optimization (TO) [29,30] to
inverse-design dielectric cavities that enable the preparation of
Bell states [31] of QE pairs. They are obtained by using the
fidelity of the density matrix of the system to these target states as
the optimization function, in conditions of continuous coherent
pumping and inter-emitter distances of a few natural wavelengths
(comparable to the cavity dimensions). By setting the laser
fields driving the emitters in phase (anti-phase), antisymmet-
ric (symmetric) Bell-like states are obtained. Our analysis of the
driven-dissipative dynamics of the QEs reveals that the small
differences between the state implemented in the TO cavities
and the target one translates into a slight reduction in its prepa-
ration time [32]. Finally, we prove the versatility of our design
strategy extending our investigation to QE triples and present-
ing a dielectric device that generates highly entangled tripartite
states with fidelities to the symmetric W state [33] comparable
with those obtained from the ad hoc optimization of the mas-
ter equation parameters. Our results prove that, through a (fully
classical) laser driving, inverse-designed nanophotonic devices
can be used to produce purely quantum states of QE ensem-
bles, showcasing them as a promising resource for quantum
technology.
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2. THEORETICAL MODEL
Our nanophotonic cavities are designed to host pairs and triples
of distant QEs, modeled as two-level systems (with perfect quan-
tum yield) under laser driving. The dynamics of the density
matrix for the system, ρ, is described by a master equation of
the form [34]

Lρ ≡ ı
[︂
ρ, H

]︂
+
∑︂

i,j

γij

(︃
σjρσ

†

i −
1
2
{︁
σ†

i σj, ρ
}︁)︃
=

dρ
dt

, (1)

under the assumption that the QEs are weakly coupled to their
electromagnetic (EM) environment, an approximation that will
be revisited below. In Eq. (1), σi (σ†

i ) is the annihilation (cre-
ation) operator for the QE labeled as i (ranging from 1 to 2–3),
fulfilling {σ†

i ,σj} = δij. The Hamiltonian above can be written
in the laser frame as

H =
∑︂

i

δiσ
†

i σi +
∑︂
i≠j

gijσ
†

i σj +
∑︂

i

Ωi(σi + σ
†

i ), (2)

where δi = ωi − ωL is the detuning of the frequency of the emit-
ters, ωi, with respect to the laser frequency, ωL. The second
term in Eq. (2) reflects the coherent interaction between the QEs
assisted by off-resonant EM modes with strength given by gij,
and the last one, their laser driving with amplitudes Ωi. Finally,
and back to Eq. (1), the dissipative interaction between the QEs
(i ≠ j), as well as their radiative decay (i = j) is also accounted
for by Lindblad operators weighted by the dissipative matrix
(with entries γij), which must be positive semi-definite to ensure
the physical character of the system dynamics [35].

Düng et al. [34] established the connection between the coher-
ent and dissipative coupling parameters in Eqs. (1), (2) and
the EM dyadic Green’s function [36] of the dielectric environ-
ment of the QEs, obtaining gij = ω

2p∗R{G(ri, rj,ω)}p/ℏε0c2

and γij = 2ω2p∗I{G(ri, rj,ω)}p/ℏε0c2, where p is the transition
dipole moment of the QEs and ri,j their position. This frame-
work links the quantum dynamics of ensembles of identical
emitters and the spatial distribution of the dielectric permittiv-
ity in their vicinity, ϵ(r), which has allowed the investigation
of QE entanglement generation in different nanophotonic struc-
tures [26,37,38]. In these works, the dyadic Green’s function is
evaluated at the QE frequency. We employ it here to describe
emitters with slightly different natural frequencies and detuned
from the driving laser. We anticipate that the validity of this
approach for the nanophotonic cavities that we obtain from
the TO algorithm will be demonstrated below. In what fol-
lows, we will employ the laser frequency, ωL ≃ 2.067 eV (λ =
600 nm) for the evaluation of the gij and γij parameters in our
calculations.

The density matrix obtained from the solution of Eq. (1)
allows for the calculation of expectation values of any physi-
cal observable of the system. In our case, we will focus on its
fidelity [39], Fφ = ⟨ϕ|ρ|ϕ⟩, to a desired pure state, |ϕ⟩. This
quantity ranges from 0 to 1, and we will use it as a measure of
the similarity of the quantum state of the QE pair/triple in our
nanophotonic system to the target one. Exploiting the depen-
dence of the master equation parameters on the permittivity of
the medium hosting the QE through the dyadic Green’s func-
tion, we have developed an inverse design algorithm based on
TO that provides the optimum (lossless, real-valued) dielectric
map, ϵ(r), for a given target state |ϕ⟩ by maximizing Fφ . A
detailed description of the numerical method can be found else-
where [26], we only sketch it here. Inspired by recent reports

Fig. 1. TO-designed nanophotonic cavity, of radius R and height
h, hosting a QE pair. The emitters are aligned and oriented along
the z-direction, and driven coherently by laser fields of amplitude
Ωi (wavy green lines). The light gray mesh renders the spatial
discretization in the solution of Maxwell’s equations, and the per-
mittivity map is coded from white (vacuum) to black (ϵ = ϵmax).
The bottom-right illustrates the spectral position and Lorentzian-
type line shapes of the QEs, with their linewidths and detunings
with respect to the laser frequency ωL.

[40–42], it consists of a nested iterative procedure in which
ϵ(r) is shaped with the precision of the spatial discretization
used to solve Maxwell’s equations. Starting from free space,
in each iteration, the effect of a small, local increment of the
permittivity, δϵ , on the target function is assessed for each mesh
element. By keeping only those that contribute to enlarge Fφ ,
dielectric cavities with optimum performance (for a set of given
constraints) are attained. The high speed and efficiency of the
algorithm resides in the use of first-order Born scattering series
and the exploitation of Lorentz reciprocity in the evaluation of
the effect of the local dielectric variations on the dyadic Green’s
functions [36].

Figure 1 illustrates an inverse-designed cavity hosting a QE
pair. The TO algorithm is interfaced with the finite-element EM
solver implemented in Comsol MultiphysicsTM, whose spatial
discretization is sketched by the dark gray thin mesh. The QEs
are separated a distance d12 along the z-direction, with their
dipole moments parallel to it. This emitter configuration allows
us to exploit the azimuthal symmetry of the system to solve
Maxwell’s equations within the rz-plane only. As a result, we
obtain cylindrical cavities with rotational symmetry, radius R,
and height h. The dielectric function varies from 1 (white) to its
maximum, ϵmax (black), which varies from one design to another.
We set a threshold, ϵmax ≤ 9, corresponding to semiconductor
materials such as GaP [43] in the visible range, to remain in the
typical parameter regime of nanophotonics. In the bottom right
corner, the line shape of the two emitters is represented, with
natural frequencies ωi and linewidths γi = γii. Both are detuned
from the laser frequency ωL.
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3. RESULTS
First, we design dielectric cavities to prepare distant QE pairs
into maximally entangled pure states in the steady-state regime,
Lρ = 0 in Eq. (1). We set the dimensions of the structures to
R = 6.25λ and h = 16.67λ (λ = 600 nm), and the dipole moment
of the emitters to |p| = 1 e·nm, which yields a free-space decay
rate γ0 = ω

3 |p|2/3πℏϵ0c3 = 2.3 µeV. We choose the even and
odd Bell states,

|+±⟩ =
1
√

2

[︁
|ge⟩ ± |eg⟩

]︁
, (3)

as our target, with g (e) indicating the ground (excited) state
of each QE, and generate two different sets of devices, result-
ing from the maximization of the corresponding fidelities, F+±.
In accordance with recent literature [44], we make the detun-
ings of the QE frequencies symmetric with respect to the
laser frequency, and significantly smaller than their linewidth,
|δi |/γ0 = 0.2 (i = 1, 2). The laser pumping strengths are set to
|Ωi |/γ0 = 0.7, and their parity is given by the symmetry of the
target state, having Ω1 = ∓Ω2 for |+±⟩. The diffraction limit of
classical optics imposes a lower bound for the inter-emitter dis-
tance, d12 ≳ λ/2, to make a reliable control over the two laser
fields possible.

Figure 2 analyzes the performance of the inverse-designed
cavities obtained for inter-emitter distances between λ and 4λ,

Fig. 2. (a) Fidelity to even and odd Bell states, F+±, versus inter-
emitter distance for TO cavities with R = 6.25λ and h = 16.67λ.
Purity, F+±, and ground state population, n+±G , of the attained
states. The detuning and pumping parameters are |δi |/γ0 = 0.2
and |Ωi/|γ0 = 0.7. (b) Dissipative, γ12, and coherent, g12, coupling
strengths normalized to the QEs decay rate, γ = √

γ1γ2, as a func-
tion of d12 for same devices as panel (a). (c) Purcell factor, γ/γ0,
versus emitter–emitter distance for all the cases above. The blue
arrow indicates the configuration considered in Figs. 3 and 4.

and targeting even (in orange dots) and odd (in blue dots) Bell
states. In Fig. 2(a), the fidelities (used as optimization func-
tions) are shown in connected triangles. We obtain F+±>0.95 for
all emitter–emitter distances and both symmetries. The small
deviation from unity is caused by the finite size of the devices,
which we restrict to the micron scale to remain in the domain
of nanophotonics technology. This is manifested in the slight
decreasing trend of the fidelity as a function of d12 for both sets
of data, and the fact that, in some cases, the TO algorithm was ter-
minated because the maximum permittivity condition, ϵmax = 9,
was reached in some position within the device. Importantly, all
our cavities include a cylindrical ϵ = 1 void around each of the
QEs (of height 5 nm and radius 2.5 nm) that the TO algorithm
does not explore, which makes their performance robust against
emitter misplacement within a few-nanometer range.

To clarify the nature of the quantum states sustained by the TO
cavities, their purity is plotted in connected circles in Fig. 2(a).
This is calculated as P+± = Tr{ρ2

+±}, where ρ+± is the system
density matrix (the subscripts indicate the target Bell state). We
can observe that it is above 0.98 in all cases, indicating the
pure character of the states formed in the devices [45]. Note
as well that the purities present a decreasing slope very simi-
lar to F+±. The deviation of ρ+± from the Bell states in Eq. (3)
becomes clearer by computing the ground state populations,
n+±G = ⟨gg|ρ+± |gg⟩. They are rendered in rhombuses in Fig. 2(a),
obtaining n+±G ∼ 0.04 and a positive slope with increasing dis-
tance. Again, this indicates that the radiation losses experienced
by the TO cavities due to their micron-sized dimensions are
behind the failure to obtain |+±⟩ with higher accuracy.

Once we have verified the capability of the cavities to produce
highly entangled steady states for QEs several laser wavelengths
apart, we explore the physical mechanism behind their opera-
tion. For this purpose, we plot in Fig. 2(b) the coherent and
dissipative coupling strengths versus d12. Both are normalized
to the collective decay rate of the system, defined as γ = √

γ1γ2

[46]. We can observe that the dissipative coupling is maximized
[47], reaching absolute values equal to this collective decay,
|γ+±12 |/γ

+± = 1, and its sign is positive (negative) for odd (even)
target Bell states. Note that we are using the ++ and +− super-
scripts to indicate that the parameters correspond to cavities
implementing even and odd Bell states, respectively. However,
g+±12 acquires vanishing values, with opposite sign to γ+±12 . These
values tend to reproduce the master equation parameters previ-
ously reported in theoretical proposals for emitter entanglement
through cavity or waveguide dissipation [44,48–54]. In all these
proposals, however, the free-space emission was only consid-
ered phenomenologically as an extra parameter, but no realistic
calculation was performed. In the proposal with plasmonic
waveguides [38], such a factor was taken into account showing
how their ability to suppress far-field emission offers a feasible
realization for this dissipative entanglement mechanism. How-
ever, this came at the expense of high absorption losses, which
effectively restricts the QE–QE distances to the sub-wavelength
regime. To our knowledge, our TO dielectric cavities are the
first platforms that implement efficiently this phenomenon for
distant emitters thanks to the ability to optimize both the gen-
eration of long-range interactions and the suppression of the
far-field emission at the same time.

Our TO algorithm is able to produce dielectric cavities that
operate efficiently within a wide range of inter-emitter distances.
To keep the ratio γ+±12 /γ

+± at its maximum value for all d12, they
must modulate the QE radiation into free-space in different ways.
This is shown in Fig. 2(c), which plots the Purcell factor, γ+±/γ0,
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Fig. 3. (a) Fidelity, normalized coupling strengths, and Purcell
factor versus iteration step for the TO cavity targeting the odd Bell
state for d12 = 3.4λ. (b) Permittivity map obtained as a result of the
TO procedure in panel (a). The dielectric constant is represented in
gray scale between 1 (white) and 5 (black). The red and blue arrows
indicate the position and orientation of the QEs.

for all the cavities in the panels above. At small distances, the
dissipative coupling is strong and the emission rate of the QEs is
Purcell-enhanced (by a factor 1.5) to achieve a maximal fidelity.
In contrast, for large d12, the QE interactions are weak, requiring
a strong reduction in their decay rate and yielding γ+±/γ0 ≃ 0.1.
As anticipated, the devices showcase a 15-fold difference in the
Purcell factor, which is key for the formation of dissipatively
entangled quantum states with similar F+± for QEs separated by
very different distances.

Having assessed the performance of the TO cavities for Bell
state preparation, we focus next on different aspects of the
inverse-design procedure. To do so, we select a particular device,
indicated by the blue vertical arrow in Fig. 2(c) (d12 = 3.4λ, odd
symmetry), and use it as a test bed for the inspection of the oper-
ation of our optimization algorithm. Figure 3(a) plots the fidelity
to the target state (blue line), the coupling strengths (red and yel-
low lines), and the collective Purcell factor (green) versus the
iteration step k. Each step corresponds to a complete scan within
the rz-section of the cavity, evaluating the Green’s function and
consolidating or discarding a δϵ = 0.003 increment in each mesh
point. Three different regimes can be distinguished in the evolu-
tion of these quantities along the iterative procedure toward the
condition F+− = 1. First, a sharp drop in the Purcell factor takes
place, while both couplings grow slowly in absolute value and
different sign. Between the steps 100 and 300, γ/γ0 varies very
little, while γ12/γ increases quickly, approaching its maximum,
and g12 reaches its minimum value. For k>300, both the Purcell
factor and coherent coupling tend smoothly to 0, while the dis-
sipative coupling, already very close to the condition γ12/γ = 1,
converges toward it. In all this process, the fidelity grows almost
linearly from 0.2 at k = 0 to F+− = 0.96 at k = 800, when the cav-
ity implements master equation parameters very similar to those

Fig. 4. (a) Population dynamics of the QE pair within the TO
cavity in Fig. 3(b) under even coherent driving and initially in their
ground state, nG(0) = 1. The transients obtained from Eqs. (1) and
(5) are rendered in color solid and black dotted lines, respectively.
Vertical gray lines indicate the preparation times of the TO steady
state, τ, and the phenomenological pure dark state, τDS. Panels (b)
and (c) show the spectral density at the emitters position (yellow,
purple) and the cross-spectral density (light blue). Dotted lines
render their single-mode fitting at the laser frequency (vertical line).

previously reported for the formation of dissipatively entangled,
dark states: γ12 = γ, g12 = 0.

The dielectric map, ϵ(r), of the nanophotonic cavity obtained
at the end of the optimization procedure described above is
shown in Fig. 3(b). The permittivity is fully characterized within
the rz-plane, but to facilitate its visibility, it is displayed within
xz- and yz-planes. The QEs are sketched as blue and red arrows
along the z-axis. The gray scale codes the dielectric constant
linearly from 1 (white) to ϵmax = 5 (black). Two different regions
can be distinguished in ϵ(r). Few wavelengths apart from the
QEs and near the edges of the cavity, elliptical-shaped, high-
contrast periodic reflectors are apparent over a smooth ϵ ≃ 3
background. These we can link to the reduction of the collective
Purcell factor that minimizes the radiation decay experienced by
the emitters. In their near-field and centered around them, two
sets of lower-contrast, spherical-shaped shells can be observed.
These are embedded into an ϵ ≃ 1 background. These contribute
to the tailoring of the emitter–emitter interactions, maximizing
(vanishing) its dissipative (coherent) coupling. Small, deeply
subwavelength, and isolated rings of high permittivity are dis-
tributed along the radial direction in between these two regions.
Our TO algorithm conforms these two structural elements (far-
field reflectors, and near-field shells and rings) to optimize the
balance between the two mechanisms, photon-assisted interac-
tions and photon leakage, that govern the quantum state of the
QE dimer. Note that the maximum permittivity in the device
acquires only a moderate value, well below the threshold set for
the TO algorithm.

Figure 4(a) explores the preparation time (from the onset of
the laser driving) required for the emergence of the steady state
in the cavity in Fig. 3(b). It plots the population dynamics in
the first excitation manifold and in the Bell state basis, n+±(t) =
⟨+±|ρ(t)|+±⟩. The system is initially in its ground state, nG(0) =
1. We can clearly observe that once the QE pair is pumped, the
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population is transferred first into the even Bell state, and n++(t)
(orange) develops a plateau (preceded by significant oscillations)
that showcases a meta-stable regime [32] that extends up to t ≃
40γ−1

0 . In this time window, n+−(t) is negligible. At longer times,
the population of the odd Bell states grows quickly, reaching
n+− ≃ 0.96 at t ≳ 103γ−1

0 , which sets the preparation time for
the cavity steady state. To obtain another estimation of this
time, we compute the inverse of the Liouvillian gap of Eq. (1)
[55,56]. The value obtained, τ = 350γ−1

0 , is indicated by the
vertical gray dotted line in Fig. 4(a). We can benchmark this
estimation against the inverse of the Liouvillian gap for the
phenomenological master equation that yields pure dark Bell
states in Ref. [32], τDS = 700γ−1

0 (see vertical gray solid line).
Thus, we can conclude that the small deviation from the target
state in the TO cavities allows for a shorter preparation time than
the exact Bell state generated under an ad hoc theoretical model.

To gain insight into the population dynamics in Fig. 4(a), we
investigate next the role of the cavity fields as intermediaries of
the QE–QE interactions behind them. To do so, we must refine
our model of the system to account for the photonic degrees
of freedom in its quantum density matrix, ϱ. Thus, we perform
EM calculations for the spectral densities, Jij(ω) = γij(ω)/2π
[57] for each emitter and between them, shown in Figs. 4(b)
and 4(c), respectively. In these panels, the solid lines render the
EM simulations for our TO device, and dotted lines their single
Lorentzian fittings [58]

Jij(ω) =
GiGj

π

Γa/2
(ω − ωa)

2 + (Γa/2)2
(4)

in the vicinity of the laser frequency (indicated by vertical gray
lines). The fitting parameters, G1 ≃ G2 = 7.75γ0 = 17.1 µeV and
Γa = 2459γ0 = 5.4 meV, yield very good agreement with the full
spectra within a 0.03-eV window around ωL (much larger than
the QE detunings).

Equation (4) allows for the direct parameterization of a master
equation of the form [57]

L′ϱ ≡ ı
[︂
ρ, H′

]︂
+ Γa

(︃
aϱa† −

1
2
{︁
a†a, ϱ

}︁)︃
+
∑︂

i

γ0

(︃
σiϱσ

†

i −
1
2
{︁
σ†

i σi, ϱ
}︁)︃
=

dϱ
dt

,
(5)

with H′ = (ωa − ωL)a†a +
∑︁

i δiσ
†

i σi + Giσ
†

i a +Ωiσ
†

i + h.c. It
describes the coupling of both emitters to their EM environ-
ment, with strengths Gi, approximated by a single cavity mode
with frequency ωa and linewidth Γa [59]. Black dotted lines in
Fig. 4(a) plot the QE populations obtained with this refined
model. The excellent agreement with the transients in solid
lines prove the accuracy of the original description in the weak-
coupling, quasi-degenerate regime (|δi | = 0.2γ0 ≃ 2γ) in which
the inverse-designed cavity operates [60]. Moreover, the solu-
tion to Eq. (5) enables us to compute the population transient
for the cavity mode, na(t) = tr{a†aϱ(t)}. This is rendered by the
green dotted line in Fig. 4(a), and shows that the plateau in n++(t)
coincides with the time window in which the cavity population is
non-negligible. Thus, the cavity mode sustains this meta-stable
regime in the quantum dynamics, beyond which, its population
decays and the two QEs, already in the target Bell state, become
effectively decoupled from their EM environment.

Up to here, we have designed nanophotonic cavities to host
quantum states of QE pairs, but our TO algorithm can be applied

to any emitter ensemble. As discussed above, the limiting factor
is the calculation of the EM dyadic Green’s function, which
is greatly simplified if the QEs are aligned. Thus, to prove the
versatility of our method, we consider now QE triples, located
along the z-axis and with dipole moments parallel to it. There
exist multiple ways to generate entanglement in tripartite sys-
tems, which have been the object of much research in recent years
[61,62]. We focus on a well-known class of three-qubit states,
the so-called W states [63,64]. These are a class of pure states
that present high robustness against noise and losses, which
means that they retain the maximum possible amount of bipar-
tite entanglement when any one of the three QEs is lost (traced
out) [33]. In particular, we take the symmetric W state

|+++⟩ =
1
√

3

[︁
|gge⟩ + |geg⟩ + |egg⟩

]︁
, (6)

as the target for our TO algorithm. We keep the same cav-
ity dimensions (R = 6.25λ and h = 16.67λ) as before which,
to accommodate a third QE, requires a reduction of the inter-
emitter distances to d12 = d23 = d = 1.17λ (where the extremal
QEs are labeled as 1 and 3, and the central one as 2).

To proceed with the cavity design maximizing F+++, the
fidelity to the state in Eq. (6), we must first set the exter-
nal parameters (driving amplitudes and emitter detunings) of
the Liouvillian. In the case of QE pairs, these were set in
accordance with recent literature [44]. We do not have such
analytical insight in QE triples, and need to use a different
approach. Operating at the master equation level, we perform
a particle-swarm-optimization (PSO) [65] of its parameters,
taking F+++ as the objective function. Imposing invariance
under the exchange of QEs 1 and 3, ten quantities remain to
be optimized: six internal ones, describing the emitter–emitter
interactions and decay rates, and four external ones. To limit
the range of parameter values, we used the EM dyadic Green’s
function for a bulk medium with ϵmax = 9 (threshold permit-
tivity in the TO algorithm) to estimate the spatial variation
they can experience within the inter-emitter distance, d. In this
way, we found that the conditions sign{g12,23} = −sign{g13} and
sign{γ12,23} = −sign{γ13} had to be fulfilled. Our PSO computa-
tion in the constrained 10-dimensional parameter space involved
2 × 103 particles, up to 5 × 103 iteration steps, and 1000 runs
under different initializations. The quantum steady state obtained
this way presents a fidelity F+++ = 0.91 and a purity P = 0.99,
indicating that it corresponds to a pure state of the QE triple
slightly different from Eq. (6). This PSO procedure does not only
allow us to benchmark the performance of our TO algorithm, it
also provides us with the four external parameters that it requires:
the QE-laser detunings, δ1,3/γ0 = 0.55 and δ2/γ0 = −0.3, and
laser amplitudes, Ω1,3/γ0 = 0.33 and Ω2/γ0 = −0.73.

Figure 5(a) shows the map ϵ(r) maximizing F+++. In con-
trast to the PSO described above, no QE symmetries are
imposed in the TO algorithm and, hence, in the TO cav-
ity itself. Its structure resembles very much that in Fig. 3(b),
presenting periodic reflectors with high permittivity contrast
and a larger, ϵ ∼ 2, background near its boundaries than at
the central region, where ϵ ∼ 1. Remarkably, ϵmax = 3.6, lower
than that in Fig. 3(b). This originates from the shorter inter-
emitter distance, as the cavities for Bell state preparation at
d12 ≃ d = 1.17λ (not shown) present a permittivity range very
similar to that in Fig. 5(a). The main panel of Fig. 5(b) shows
the tomography of the steady-state density matrix hosted by
the dielectric cavity in panel (a). It is restricted to the ground
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Fig. 5. (a) Permittivity map for the inverse-designed cavity max-
imizing the fidelity to the W state in Eq. (6) for an inter-emitter
distance d = 1.17λ, and the same dimensions as the device in
Fig. 3(b). The dielectric constant is coded in white-to-black lin-
ear scale. The position and orientation of the emitters along the
z-direction is indicated by red and blue arrows. (b) Quantum tomog-
raphy of the steady-state density matrix (real part) for a QE triple in
the cavity in panel (a). Only the entries within the ground and single-
excitation manifolds are shown. The colors represent the absolute
value of the real part of the density matrix in logarithmic scale.
Inset shows the difference between the TO density matrix and a
phenomenological one, resulting from the direct PSO of the master
equation parameters maximizing F+++ (same color scale as in the
main panel).

and the single excitation manifolds, where the basis is formed
by |+ + +⟩ and the states |α⟩ = 1

√
3 [|gge⟩ − a|geg⟩ − b|egg⟩]

and |β⟩ = 1
√

3 [|gge⟩ − b|geg⟩ − a|egg⟩], with a = (1 +
√

3)/2 and
b = (1 −

√
3)/2. The vertical axis displays the real part of pop-

ulation and coherence, and the color scale codes its absolute
value in logarithmic scale. By simple inspection, we can extract
F+++ = ⟨+ + +|ρ|+ + +⟩ = 0.87, whose discrepancy (∼ 0.04)
with that for the PSO Liouvillian is very similar to the devi-
ation of F+± from unity in Fig. 2(a). Thus, we can conclude
that the performance of the cavities is similar in both cases. To
further verify the similarity between the quantum state in the
TO device and its PSO counterpart, in the inset of Fig. 5(a), we
present the tomography of the difference between the two den-
sity matrices. The deviations are most apparent in the W-state
population and its coherence with the ground state, and these
remain in the same range, below 0.05.

Finally, we analyze in more detail the nature of the QE-triple
state implemented by the nanophotonic cavity. It presents a
large purity, P = 0.94, and the single excitation section of the
tomography in Fig. 5(b) indicates that the state amplitudes in the
bare basis are not equal, in contrast to |+ + +⟩. The calculation
of the populations in this basis yield ⟨gge|ρ|gge⟩ = 0.210,

⟨geg|ρ|geg⟩ = 0.527, and ⟨egg|ρ|egg⟩ = 0.204, revealing that
the weight of QE 2 is larger than the two extremal ones. Notice
the small discrepancy between the populations of the latter, a
direct consequence of the slightly asymmetric character of ϵ(r).
As discussed above, the degree of entanglement of W states
exhibit a strong robustness against the disposal of one of the
qubits. Indeed, the bipartite states that result from the trac-
ing out of one of the QEs, ρ(k) = Trk{ρ} (where k = 1, 2, 3),
in Eq. (6), present a significant Wootters concurrence [66],
C(ρ(k)) = 2/3 = 0.667 for all k. Here, C = 1 for a maximally
entangled two-qubit state, such as the Bell states in Eq. (3).
The concurrence calculation for the partial traces of the den-
sity matrix in Fig. 5(b) yields C(ρ(1)) = 0.624, C(ρ(2)) = 0.344,
C(ρ(3)) = 0.632. Thus, the degree of bipartite entanglement
obtained by tracing out the extremal QEs is similar to that in
the perfectly symmetric W state. However, it is slightly lower
if the intermediate QE is lost. This evidences the higher sensi-
tivity to decoherence effects in the intermediate emitter of the
quantum state in the inverse-designed TO cavity.

4. CONCLUSION
To conclude, we have generated pure quantum steady states of
QE pairs and triples under coherent driving conditions through
the inverse-design of their dielectric environment. By means
of a topology-optimization algorithm that acts at the level of
the electromagnetic dyadic Green’s function, we have obtained
nanophotonic cavities that engineer simultaneously the coher-
ent and dissipative interactions between the emitters and their
radiative decay. First, we have performed a thorough study of
the capability of our devices to prepare even and odd Bell states,
showing that they exploit a dissipation-driven mechanism to
entangle pairs of quantum emitters separated several natural
wavelengths apart. Analyzing the population dynamics in the
system, we have shown that the small discrepancy between the
pure states hosted by the cavities and exact Bell states trans-
lates into shorter preparation times. Finally, we have tested the
versatility of our approach by applying it to a triple of quan-
tum emitters, successfully realizing a highly entangled tripartite
state akin to a symmetric W state. We believe that our results
prove that inverse design is a powerful tool for the conception,
implementation and refinement of quantum hardware based on
nanophotonic platforms, with applications in areas such as for
quantum sensing or metrology [67,68], and with potential advan-
tages in terms of scalability and speed of operation with respect
to other enabling technologies.
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21. Z. Lin, A. Pick, M. Lončar, et al., “Enhanced spontaneous emission
at third-order Dirac exceptional points in inverse-designed photonic
crystals,” Phys. Rev. Lett. 117, 107402 (2016).

22. Z. Kuang and O. D. Miller, “Computational bounds to light–matter
interactions via local conservation laws,” Phys. Rev. Lett. 125,
263607 (2020).

23. P. Chao, B. Strekha, R. Kuate Defo, et al., “Physical limits in electro-
magnetism,” Nat. Rev. Phys. 4, 543–559 (2022).

24. P. R. Wiecha, A. Arbouet, C. Girard, et al., “Deep learning in
nano-photonics: inverse design and beyond,” Photonics Res. 9,
B182–B200 (2021).

25. G.-X. Liu, J.-F. Liu, W.-J. Zhou, et al., “Inverse design in quantum
nanophotonics: combining local-density-of-states and deep learn-
ing,” Nanophotonics 12, 1943–1955 (2023).

26. A. Miguel-Torcal, J. Abad-Arredondo, F. J. García-Vidal, et al.,
“Inverse-designed dielectric cloaks for entanglement generation,”
Nanophotonics 11, 4387–4395 (2022).

27. E. G. Melo, W. Eshbaugh, E. B. Flagg, et al., “Multiobjective inverse
design of solid-state quantum emitter single-photon sources,” ACS
Photonics 10, 959–967 (2023).

28. J. Yang, M. A. Guidry, D. M. Lukin, et al., “Inverse-designed silicon
carbide quantum and nonlinear photonics,” Light: Sci. Appl. 12, 201
(2023).

29. M. P. Bendsoe and O. Sigmund, Topology Optimization: Theory,
Methods, and Applications (Springer Science & Business Media,
2003).

30. J. Jensen and O. Sigmund, “Topology optimization for nano-
photonics,” Laser Photonics Rev. 5, 308–321 (2011).

31. D. Sych and G. Leuchs, “A complete basis of generalized Bell states,”
New J. Phys. 11, 013006 (2009).

32. A. Vivas-Viaña, A. González-Tudela, and C. S. Muñoz, “Unconven-
tional mechanism of virtual-state population through dissipation,”
Phys. Rev. A 106, 012217 (2022).

33. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in
two inequivalent ways,” Phys. Rev. A 62, 062314 (2000).

34. H. T. Dung, L. Knöll, and D.-G. Welsch, “Resonant dipole-dipole inter-
action in the presence of dispersing and absorbing surroundings,”
Phys. Rev. A 66, 063810 (2002).

35. H.-P. Breuer and F. Petruccione, The Theory of Open Quantum
Systems (Oxford University Press, 2007).

36. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cam-
bridge University Press, 2012).

37. D. Dzsotjan, A. S. Sorensen, and M. Fleischhauer, “Quantum emit-
ters coupled to surface plasmons of a nanowire: a Green’s function
approach,” Phys. Rev. B 82, 075427 (2010).

38. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, et al., “Entangle-
ment of two qubits mediated by one-dimensional plasmonic waveg-
uides,” Phys. Rev. Lett. 106, 020501 (2011).

39. R. Jozsa, “Fidelity for mixed quantum states,” J. Mod. Opt. 41,
2315–2323 (1994).

40. S. Mignuzzi, S. Vezzoli, S. A. R. Horsley, et al., “Nanoscale design
of the local density of optical states,” Nano Lett. 19, 1613–1617
(2019).

41. R. Bennett and S. Y. Buhmann, “Inverse design of light–matter
interactions in macroscopic QED,” New J. Phys. 22, 093014 (2020).

42. R. Bennett, “Inverse design of environment-induced coherence,”
Phys. Rev. A 103, 013706 (2021).

43. J. Cambiasso, G. Grinblat, Y. Li, et al., “Bridging the gap between
dielectric nanophotonics and the visible regime with effectively loss-
less gallium phosphide antennas,” Nano Lett. 17, 1219–1225 (2017).

44. H. Pichler, T. Ramos, A. J. Daley, et al., “Quantum optics of chiral spin
networks,” Phys. Rev. A 91, 042116 (2015).

45. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information: 10th Anniversary Edition (Cambridge University Press,
2010).
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