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In this study, we construct Fabry-Perot cavities in which nanostructured, thin resonant metasurfaces act
as mirrors. We develop a temporal coupled-mode theory and provide an accurate description of the
resonances supported by these cavities, deriving analytically their transmission characteristics. The
presence of metasurface mirrors introduces a substantial group delay, causing the field concentration to
shift from the bulk of the cavity towards the regions close to the two metasurfaces. This shift is
accompanied by a significant increase in the quality factor of the resonances that is associated with the
emergence of singular points in frequency space. These singular points exist even when the cavity
separations are smaller than the cavity length of the fundamental mode in standard cavities, enabling meta-
mirror Fabry-Perot cavities to outperform traditional cavities by achieving much higher quality factors
despite displaying shorter cavity lengths.
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Traditional Fabry-Perot (FP) cavities [1–7] consist of
two parallel reflective surfaces, typically metallic or
dielectric, which do not support resonances. When the
distance between these mirrors matches the resonance
condition, the reflected light beams interfere coherently,
creating standing wave patterns within the cavity. On the
other hand, metasurfaces—quasi-two-dimensional nano-
scale metamaterials, have revolutionized flat-optics tech-
nology [8,9]. They have enabled the creation of ultrathin
planar optical devices [10–14]. Dielectric metasurfaces, in
particular, are attractive for semiconductor photonics as
they eliminate intrinsic losses associated with plasmonic
metasurfaces in the optical regime, thereby enhancing
efficiency [15–17]. These metasurfaces can be fabricated
using conventional photonic technologies and integrated
into photonic circuits [18,19]. Embedding a thin metasur-
face in a standard FP cavity with metallic mirrors can
reduce cavity thickness for color filtering [20]. Reflective
metasurfaces have been also integrated with hollow core
fibers to form FP cavities. In such systems, metasurfaces
serve merely as mirrors of high reflectivity [21] and,
consequently, the underlying physics follows that of
traditional FP cavities.
In this Letter, we demonstrate that replacing traditional

reflective mirrors in FP cavities with thin dielectric meta-
surfaces exhibiting dielectric resonances [22–24] introdu-
ces new functionalities. Unlike nonresonant mirrors, each
metasurface in these meta-mirror FP cavities supports a

resonance characterized by a finesse coefficient F and a
quality factor Qs. Using a temporal coupled-mode formal-
ism, we analytically derive the transmission characteristics
of the meta-mirror FP system, presenting a unified theory
applicable to both resonating and nonresonating mirrors, as
well as short and long cavities. In meta-mirror FP cavities,
the electromagnetic field predominantly concentrates at the
thin metasurface regions rather than the bulk of the cavity,
relevant for practical applications. This shift in field
distribution is accompanied by a significant increase in
the quality factor of the resonances that is associated with
the emergence of singular points in frequency space. We
discover that resonant meta-mirrors provide an additional
mechanism to the overall quality factor, scaling as Qs

ffiffiffiffi
F

p
,

independent of the cavity length. We identify three cavity
length regimes based on resonance nature and quality
factor, marked by two fundamental characteristic lengths.
The first regime exhibits Fano resonances, while the second
and third show induced transparencies with Lorentzian
lineshapes. In the second regime, peak sharpness is
determined by the quality factor of a single metasurface.
In the third regime, the quality factor varies linearly with
cavity length, similar to traditional cavities.
Resonant dielectric metasurfaces are usually built up by

a periodic array of dielectric scatterers with a period a. We
start by examining a single layer of a resonant metasurface
exhibiting a transmission dip at an angular frequency ωs.
As an example, we consider a silicon metasurface with
a ¼ 1 μm and a typical membrane thickness of h ¼ 0.22a
embedded in silica, and whose unit cells are circular
nanodisks of radii r. Isolated transmission dips can be*Contact author: gandhi@ihpc.a-star.edu.sg
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observed in the spectrum for r ranging from 0.15a
to 0.2a, which exhibit Lorentzian line shapes and are
attributed to isolated dielectric resonances [24]. Similar to
other resonant systems in photonics, this isolated resonance
can be characterized using a temporal coupled mode
formalism [25–29]. This formalism establishes relation-
ships between the electric field amplitude within the
metasurface A and the amplitudes of the electric fields
associated with the incoming [s1; s2] and outgoing [q1; q2]
waves [see Fig. 1(a)]. The rate of amplitude growth within
the metasurface is described by the equation ðdA=dtÞ ¼
ðjωs − ΓÞAþ css1 þ css2, where Γ represents the decay
rate, and cs is the coupling coefficient accounting for the
coupling of incoming waves s1 and s2 from both sides of
the metasurface. The outgoing amplitudes are given by
q1 ¼ ejγs2 þ caA and q2 ¼ ejγs1 þ caA, where γ is a phase
factor. This phase factor accounts for the phase that an
incoming wave would acquire when passing through the
metasurface if the resonance would not be present as, in this
case, the metasurface would display a unitary transmissiv-
ity, jq2j2 ¼ js1j2. As shown below, this phase factor is
critical in determining the transmission characteristics of the
bilayer system.Utilizing time reversal symmetry, and assum-
ing no intrinsic losses, it can be demonstrated that csca ¼
−ejγΓ and jcaj2 ¼ Γ (see Supplemental Material [30]
for details). The electric field transmission and reflection
coefficients can be then derived by applying Fourier trans-
forms to the aforementioned equations. For a single metasur-
face, these coefficients can be expressed as tsðωÞ¼
ðq2=s1Þjs2¼0¼ ½jδejγ=ðjδþΓÞ� and rsðωÞ¼ ðq1=s1Þjs2¼0 ¼
−½Γejγ=ðjδþΓÞ�, respectively. Here, δ ¼ ω − ωs, where
ω ¼ 2πc=λ is the angular frequency with c and λ being
the speed of light and the freespacewavelength, respectively.
The decay rateΓ (due to the coupling to the external radiation
modes) can be accurately estimated from the numerically
evaluated transmission spectrum of the metasurface and it is
given by Γ ¼ ðωs=2QsÞ. In Fig. 1(b), we plot the trans-
mission spectrum of the silicon metasurface with r ¼ 0.15a
as a function of normalized frequency, ωa=2πc ¼ a=λ. As
we can see from this figure, there are two transmission dips at
normalized frequencies 0.677 and 0.687. The theoretical fit
for the first resonance is shown in dark yellow,whereas the fit
for the second resonance is shown in the inset. This figure
demonstrates the good agreement between the analytical
expressions derived from the temporal coupled mode for-
malism and three-dimensional (3D) finite-difference time-
domain (FDTD) calculations [31]. Notice that, as we are
interested on the spectral region between normalized
frequencies 0.665 and 0.685 (see below), from now on we
will use the fitting parameters associated with the first
resonance located at 0.677.
For a bilayer made of resonant metasurfaces separated by

a distance L, we can develop temporal coupled mode
equations by working with the electric field amplitudes in
the two metasurfaces, A1 and A2. In isolation, these

amplitudes evolve independently, as described earlier by
the equations of a single metasurface. However, when the
metasurfaces are brought together to form a FP cavity [as in
Fig. 1(c)], the electric field amplitudes couple and interfere
with each other. The temporal evolution of A1 in the first
metasurface can be written as ðdA1=dtÞ ¼ ðjωs − ΓÞA1 þ
css1 þ css002 þ jμA2. Here, μ is the coupling coefficient that
accounts for the mode coupling between the resonant
modes of the two metasurfaces. The incoming electric
field on the right side of the first metasurface, denoted
as s002 , can be expressed as s002 ¼ e−jkLs02. Here, kL, with
k ¼ ðnω=cÞ and n being the refractive index of the medium
in which the system is inmersed, accounts for the phase
accumulated by the transmitted wave from the second
metasurface upon reaching the first metasurface, being s02
the transmitted amplitude in the second metasurface [see
Fig. 1(c) for details]. Based on the previous analysis of
single metasurfaces, we deduce that s02 ¼ ejγs2 þ caA2.
Similarly, we can derive expressions for s01 and s001 . By
eliminating all the internal amplitiudes (s01, s

0
2, s

00
1, and s002),

we obtain the following equations describing the dynamics
of the electric field amplitude in the bilayer metasurface
system:

dA1

dt
¼ ðjωs − ΓÞA1 þ css1

þ cs
�
e−jkLðejγs2 þ caA2Þ

�þ jμA2: ð1Þ

dA2

dt
¼ ðjωs − ΓÞA2 þ css2

þ cs
�
e−jkLðejγs1 þ caA1Þ

�þ jμA1: ð2Þ

FIG. 1. (a) Schematics of a metasurface with incoming and
outgoing electric field amplitudes. (b) Transmission spectrum of
the metasurface with a square lattice of circular silicon nanodisks
(r ¼ 150 nm, h ¼ 220 nm, a ¼ 1 μm), and is assumed to be
immersed in silica. In this figure the green solid line and yellow
dotted line represent a 3D FDTD calculation and the theoretical
fit (for the broader resonance), respectively. The inset shows
similar theoretical fit for the sharper resonance. (c) Schematics of
a meta-mirror Fabry-Perot cavity.
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Equations (1) and (2) can be solved in the Fourier
domain as

�
A1

A2

�
¼ cs

�
jδþΓ ejðγ−kLÞΓ− jμ

ejðγ−kLÞΓ− jμ jδþΓ

�−1

×

�
1 ejðγ−kLÞ

ejðγ−kLÞ 1

��
s1
s2

�
: ð3Þ

The outgoing electric field from the left of the bilayer
metasurface is q1 ¼ ejγs002 þ caA1 ¼ ejð2γ−kLÞs2 þ
ejðγ−kLÞcaA2 þ caA1. Similarly, the outgoing electric field
from the right of the bilayer metasurface is given by
q2 ¼ ejγs001 þ caA2 ¼ ejð2γ−kLÞs1 þ ejðγ−kLÞcaA1 þ caA2. If
we assume that the incident wave amplitude is s1, then
the power transmission coefficient, T ¼ Tðω; LÞ, can be
derived using T ¼ jq2=s1j2js2¼0. The resulting expression
can be evaluated by substituting the expressions of A1 and
A2, and defining a normalized coupling coefficient
v≡ ½μðLÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ2 þ Γ2

p
�. After some algebraic and trigono-

metric manipulations (see Supplemental Material [30]), it
can be shown that

Tðω;LÞ¼ fjtsj2−vGg2
fjtsj2−vGg2þ4jrsj2fsinðkL−θsÞ−vg2 : ð4Þ

Here G≡ v − 2jrsj sinðγ − kLÞ, θsðωÞ ¼ argðtsÞ−
argðδÞ þ π=2, and the power reflection coefficient is
given by R ¼ 1 − T. Note that θs is a smooth and
continuous function of ω and that, setting v ¼ 0 in
Eq. (4), this formula replicates results obtained by the
scattering matrix method [32,33], which ignores evanescent
interaction between the mirrors and assumes plane-wave-
like propagation. Moreover, for v ¼ θs ¼ 0, Eq. (4) recov-
ers the transmission equation of a Fabry-Perot etalon with
solid nonresonant mirrors.
In our study we consider FP cavities in which silicon

metasurfaces [as described in Figs. 1(a) and 1(b)] act as
mirrors. Figures 2(a) and 2(b) exhibit the transmission
spectrum as a function of L of the metamirror FP cavities,
near ωs ¼ 0.677ð2πc=aÞ [i.e., the first transmission dip
in Fig. 1(b)]. With a ¼ 1.0 μm, this resonance frequency
translates to a resonant wavelength of 1.477 μm. In Fig. 2(a)
we render a 3D FDTD calculation, and in Fig. 2(b) we
evaluate the transmission spectra by means of Eq. (4). The
coupling coefficient μ [Fig. 2(c)] and the phase, γ ≅ 0.6π, are
both obtained by a numerical fitting method [34]. As seen in
Fig. 2(c), the coefficient μ presents an exponential depend-
ence with the cavity length, implying that the coupling
between the two resonant modes is evanescent due to near-
field coupling. On the other hand, both Figs. 2(a) and 2(b)
present a very good agreement. Notice that the typical
transmission spectra with dielectric thin film mirrors exhibit
stripslike, periodic patterns of shallow ripples, and the depth

of the ripple increases with the dielectric constant of the
mirror (see Fig. S3 of Supplemental Material [30] in which
we have plotted the transmission spectra of FP cavities with
silicon and dielectric film of averaged permittivity as
mirrors). However, the transmission spectra of meta-mirror
FP cavities significantly deviates from a striplike pattern. For
very long L, where v ¼ 0, there is a conservation of trans-
lational symmetry along the direction of L variation. In this
scenario, a periodic pattern is observed in the transmission
spectrum. However, Figs. 2(a) and 2(b) show that meta-
mirror FP cavities exhibit periodic transmission lobes instead
of strips. Moreover, the variation in transmission near the
lobe region is very sharp, unlike the shallow ripplelike
variations seen in the equivalent standard FP cavities. On
the other hand, for shorter L in which v > 0, there is a clear
disruption of translational symmetry. Consequently, in
Figs. 2(a) and 2(b), we observe a nonperiodic transmission
pattern for short meta-mirror FP cavities. In Fig. 2(b), we
have also plotted the hypothetical lines (see Supplemental
Material [30]) ωs − μðLÞ and ωs þ μðLÞ [yellow and green
lines in Fig. 2(b)],which clearly indicate the splitting of lobes
for shorter cavities.
Physical insight on the numerical and semianalytical

results rendered in Figs. 2(a) and 2(b) is gained by
analyzing Eq. (4), looking for different mechanisms that

FIG. 2. Transmission spectra of Fabry-Perot cavities with
dielectric resonant metasurface as mirrors. Spectra in (a) and
(b) represent 3D FDTD and analytical [Eq. (4)] calculations,
respectively. (c) Coupling coefficient [μðLÞ] that accounts for
the mode coupling. In (b), yellow and green lines represent
ωs � μðLÞ, and the circles represent singular points. (d) White
lines: Resonance lines obeying sinðkL − θsÞ ¼ v. Dotted green
line: L ¼ Lc; Solid red line: locus of μ2ðLÞ ¼ δ2 þ Γ2. Dots with
numbers: singular points and their order m [yellow: even m;
green: odd m].
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lead to transmission maxima. As in the case of standard FP
cavities, the main resonant mechanism is associated with
the constructive interference between reflected light at each
mirror that leads to unity transmittance values, here with the
additional ingredient of the coupling between the two
metasurfaces, accounted for μ. In the case of meta-mirror
FP cavities transmission resonances occurs when

sinðkL − θsÞ ¼ v: ð5Þ

When there is no mode coupling between the two meta-
surfaces the above resonance condition simplifies to
2nL ¼ ðλ=πÞfmπ þ θsðωÞg, with m being an integer. In
addition, if θs ¼ 0, we obtain the standard resonance
condition of the usual Fabry-Perot cavity, 2nL ¼ mλ.
Notice that in the case of meta-mirror FP cavities, the
additional phase contribution θsðωÞ from the metasurface
leads to a significant enhancement in the quality factor,
despite having shorter cavity lengths, as we show below.
Figure 2(d) renders the resonance lines [Eq. (5)] on the
ðω; LÞ parameter space for the meta-mirror FP cavities
analyzed in Figs. 2(a) and 2(b). In general, for a trans-
mission resonance to occur we require sinðkL − θsÞ ¼
v < 1. Hence, μ2ðLÞ < δ2 þ Γ2. With δ ¼ 0, we can define
a characteristic length, Lc such that μðLcÞ¼Γ¼
ðωs=2QsÞ. For the metasurface in Fig. 1(a), Lc¼1.73 μm.
InFig. 2(d)we also show the boundaryμ2ðLÞ ¼ δ2 þ Γ2 and
the line L ¼ Lc.
An interesting situation appears when sinðkL − θsÞ ¼ v

and jtsj2 ¼ vG, as both numerator and denominator in
Eq. (4) vanish simultaneously. This situation corresponds
to singular points in which transmission is also maximal,
occurring within the resonance lines [white lines in
Fig. 2(d)] at frequencies ωm, and lengths Lm, such that
Lm ¼ ðc=nωmÞðγ þmπÞ (see Supplemental Material [30]).
The corresponding singular frequencies ωm ¼ ωs − μðLmÞ
and ωm ¼ ωs þ μðLmÞ occur for even and odd integer
values of m, respectively. In the neighborhood of these
singular points, we expect ultrahigh quality factors as there
is no decay mechanism apart from the intrinsic decay. In
Figs. 2(b) and 2(d), we display the singular points of the
meta-mirror FP cavities. As we can see from Fig. 2(b),
transmission near the singular points changes rapidly. Note
also that in standard FP cavities, the fundamental mode has
m ¼ 1 and the cavity length is L ¼ ðλ=2nÞ. In meta-mirror
FP cavities, a singular point exists even for m ¼ 0,
with the corresponding cavity separation being Lm¼0 ¼
ðλ=2nÞðγ=πÞ < ðλ=2nÞ.
By looking at Fig. 2(d), distinct regimes as a function of

L can be distinguished, depending on L being longer or
shorter than Lc. For long cavities such that L ≫ Lc [i.e.,
v ¼ 0], the equation of the resonance line is
L ¼ ðc=nωÞ½mπ þ θsðωÞ�. With ω being a slowly varying
function compared to θsðωÞ, the shape of L versus the ω
curve follows very closely the shape of θsðωÞ [see

resonance lines for m > 5 in Fig. 2(d)]. The resonance
frequencies (ωr) for any given L and order m can be
calculated nonlinearly from the resonance line. In the
vicinity of ω ¼ ωs, we can linearize θsðωÞ as θsðωÞ ¼
θsðωsÞ þ ðω − ωsÞτgðωsÞ, where τgðωsÞ ¼ ½dθsðωÞ=
dω�jω¼ωs

¼ −ð2Qs=ωsÞ is the group delay. Hence, near
the mth singular point, we can use the following linear
relationship,

2nL ¼
�
mþ γ

π

�
λþ 2Qs

π
ðλ − λsÞ: ð6Þ

Right at λ ¼ λs, we have the singular point. For the
transmission characteristics near resonance in the case
v ¼ 0, we can apply a small angle approximation (see
Supplemental Material [30]) to show

Tðω;LÞ¼ jtsðωrÞj4
jtsðωrÞj4þ4jrsðωrÞj2

h
nL
c − τgðωrÞ

i
2½ω−ωr�2

:

ð7Þ

Equation (7) has a Lorentzian line shape, with the quality
factor for resonant peaks given by

Q ¼
ffiffiffiffi
F

p �
πnL
λr

þQs

�
¼ QL þQM: ð8Þ

Here, F ¼ 4jrsðωrÞj2=jtsðωrÞj4 is the coefficient of
finesse. F, being a huge number that traditionally measures
the sharpness of the interference fringes. In Eq. (8), the first
term QL ¼ ðπnL=λrÞ

ffiffiffiffi
F

p
represents the length-dependent

quality factor of the meta-mirror FP cavity, which is also
the total quality factor in standard FP cavities. However, the
second term, QM ¼ Qs

ffiffiffiffi
F

p
, is unique for meta mirrors and

it is length independent. This is an important result as it
shows that in meta-mirror FP cavities, there are two
mechanisms, QL and QM, that feed the quality factor.
From the derivations, we can see that QL results from the
length-dependent phase term, and QM originates from the
phase contribution of the metasurface. Thanks to this
additional term QM, cavity lengths to achieve the same
Q can be much shorter in metal-mirror FP cavities than in
traditional ones. In Sec. II and Fig, S1 of the Supplemental
Material [30], we provide a detailed discussion of the
quality factors for meta-mirror FP cavities and compare
them with those of traditional cavities. From Eq. (8), we
can also define a second characteristic length,
LQ ≡ λsðQs=πnÞ > Lc, which marks the shift in quality
factor domination from QM to QL. For the particular
metasurface utilized in our study, LQ ≅ 51 μm. For very
long cavities such that L ≫ LQ;QL dominates with
Q ≈QL. Conversely, for shorter cavities, such that
Lc < L < LQ, we have QM ≫ QL, and hence QM
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dominates withQ ≈QM. Therefore, even in the limit v ¼ 0

in which the coupling between the metasurfaces is negli-
gible, a bilayer system creates an induced transparency
configuration [35,36], different to that observed in tradi-
tional FP cavities. Significantly, when Lc < L < LQ, the
quality factor of the transmission peak is proportional to
Qs

ffiffiffiffi
F

p
. Note also that, as ωr → ωs, ts → 0, and hence the

coefficient of finesse F increases sharply. Quality factor of
single metasurface Qs can be engineered to achieve very
high values. In the literature, there are many reports with
single metasurface of quality factors ranging between
102–105. Thus, with an additional multiplication factorffiffiffiffi
F

p
, meta-mirror FP cavities can support resonant trans-

mission peaks presenting ultrahigh quality factors. In
Fig. S2 of the Supplemental Material [30], we further
illustrate how these quality factors can be tuned by altering
the geometrical parameters of the metasurface.
In the other regime of short cavities (L < Lc), the earlier-

described resonance [associated with θs in Eq. (5)] for
longer cavities is intertwined by the effect of the mode
coupling between the metasurfaces. Thus, meta-mirror FP
cavities in this regime exhibit different resonance and
transmission characteristics. First, the singularity points
deviate from ωm ¼ ωs to ωm ¼ ωs � μðLmÞ. Thus, the
resonance line breaks and become discontinuous at
ω ¼ ωs, giving rise to a significantly different shape when
compared to that for L > Lc [see Fig. 2(d)]. A resonance-
free region in the ðω; LÞ parameter space is created in the
neighborhood of ω ¼ ωs when μ2 > δ2 þ Γ2, as Eq. (5)
cannot be fulfilled. Let ω ¼ ωr to be the solution sinðkL −
θsÞ ¼ v [Eq. (5)] so we have TðωrÞ ¼ 1. If ω ¼ ωr0 ≠ ωr is
the solution jtsj2 ¼ vGðv; LÞ [i.e., vanishing numerator of
Eq. (4)], then we have Tðωr0 Þ ¼ 0 (i.e., a dip). If
ωr − ωr0 > 0, then in the transmission spectrum a trans-
mission peak will be followed by a transmission dip.
Transmission toggles the other way around if
ωr − ωr0 < 0. When, ωr and ωr0 come close to each other,
this directional transmission switching occurs in a narrow
frequency region, resulting in a Fano resonance. As the
discrepancy between two frequencies shrinks, the sharp-
ness of the Fano resonance increases, and finally when
ωr ¼ ωr0 ¼ ωm, we have a singularity.
Figure 3 renders the electric and magnetic field

densities in both short ðL ¼ 1.2 μm < LcÞ and long
ðL ¼ 4.3 μm > LcÞ cavities. For the shorter cavity case
[L ¼ 1.2 μm], the field pattern clearly shows a stronger
interaction. Nevertheless, in both cases, the electromagnetic
fields concentrate primarily on the metasurfaces region
rather than at the middle of the cavity. The significant group
delay exhibited by the metasurface leads to a notable shift
in the concentration of the electromagnetic field from the
centre of the FP cavity towards the metasurface region. As
shown earlier, this shift contributes to a remarkable
enhancement in the quality factor of the FP resonances.

In summary, we have presented the optical properties of
FP cavities with dielectric resonant metasurfaces as mir-
rors. By using a temporal couple mode formalism, we
derive the transmission characteristics supported by these
systems. There are three cavity length regimes based on the
nature and quality of the resonance. These regions are
marked by two characteristic cavity lengths (Lc and LQ).
The first regime (Lc > L) exhibits Fano resonances. The
second and third regimes display induced transparencies
with Lorentzian line shapes. The second regime’s
(Lc < L < LQ) resonance sharpness is primarily governed
by the quality factor of the single metasurface, allowing for
sharp resonances even with shorter cavities. In contrast, the
third regime (L > LQ) is predominantly controlled by the
cavity length itself. Furthermore, in FP meta-mirror
cavities, resonances happen even for cavity separations
that are smaller than the cavity length of the fundamental
mode in traditional FP cavities.
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Fabry-Pérot etalons in solar astronomy. A review, Astro-
phys. Space Sci. 368, 55 (2023).

[8] Jie Hu, Bandyopadhyay Sankhyabrata, Liu Yu-hui, and
Shao Li-yang, A review on metasurface: From principle to
smart metadevices, Front. Phys. 8, 586087 (2021).

[9] Hou-Tong Chen, Antoinette J. Taylor, and Nanfang Yu, A
review of metasurfaces: Physics, and applications, Rep.
Prog. Phys. 79, 076401 (2016).

[10] Shuming Wang, Pin Chieh Wu, Vin-Cent Su, Yi-Chieh Lai,
Mu-Ku Chen, Hsin Yu Kuo, Bo Han Chen et al., A
broadband achromatic metalens in the visible, Nat. Nano-
technol. 13, 227 (2018).

[11] Mohammadreza Khorasaninejad and Federico Capasso,
Broadband multifunctional efficient meta-gratings based
on dielectric waveguide phase shifters, Nano Lett. 15,
6709 (2015).

[12] Guoxing Zheng, Holger Mühlenbernd, Mitchell Kenney,
Guixin Li, Thomas Zentgraf, and Shuang Zhang, Metasur-
face holograms reaching 80% efficiency, Nat. Nanotechnol.
10, 308 (2015).

[13] Zi Wang, Yahui Xiao, Kun Liao, Tiantian Li, Hao Song,
Haoshuo Chen, S. M. Zia Uddin et al., Metasurface on
integrated photonic platform: From mode converters to
machine learning, Nanophotonics 11, 3531 (2022).

[14] Rao Fu, Kuixian Chen, Zile Li, Shaohua Yu, and Guoxing
Zheng, Metasurface-based nanoprinting: Principle, design,
and advances, Opto-Electron. Sci. 1, 220011 (2022).

[15] Patrice Genevet, Federico Capasso, Francesco Aieta,
Mohammadreza Khorasaninejad, and Robert Devlin, Re-
cent advances in planar optics: From plasmonic to dielectric
metasurfaces, Optica 4, 139 (2017).

[16] Seyedeh Mahsa Kamali, Ehsan Arbabi, Amir Arbabi, and
Andrei Faraon, A review of dielectric optical metasurfaces
for wavefront control, Nanophotonics 7, 1041 (2018).

[17] Wenhong Yang, Shumin Xiao, Qinghai Song, Yilin Liu,
Yunkai Wu, Shuai Wang, Jie Yu, Jiecai Han, and Din-Ping
Tsai, All-dielectric metasurface for high-performance struc-
tural color, Nat. Commun. 11, 1864 (2020).

[18] Z. Wang et al., Metasurface on integrated photonic plat-
form: From mode converters to machine learning, Nano-
photonics 11, 3531 (2022).

[19] H. Huang, A. C. Overvig, Y. Xu, S. C. Malek, C.-C. Tsai, A.
Alù, and N. Yu, Leaky-wave metasurfaces for integrated
photonics, Nat. Nanotechnol. 18, 580 (2023).

[20] A. M. Shaltout, J. Kim, A. Boltasseva, V. M. Shalaev, and
A. V. Kildishev, Ultrathin and multicolour optical cavities
with embeddedmetasurfaces, Nat. Commun. 9, 2673 (2018).

[21] J. Flannery, R. A. Maruf, T. Yoon, and M. Bajcsy, Fabry-
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