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Collective nature of high-Q resonances in finite-size photonic metastructures
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We study high-quality factor (high Q) resonances in periodic and disordered arrays of Mie resonators from
the perspectives of both Bloch wave theory and multiple scattering theory. We reveal that, unlike a common
belief, the bound states in the continuum (BICs) derived by the Bloch-wave theory do not directly determine
the resonance with the highest Q value in large but finite arrays. Higher Q factors appear to be associated with
collective resonances formed by nominally guided modes below the light line associated with strong-coupling
effect of both electric and magnetic multipoles. Our findings offer valuable insights into accessing the modes
with higher Q resonances via bonding modes within finite metastructures. Our results underpin the pivotal
significance of magnetic and electric multipoles in the design of resonant metadevices and nonlocal flat-band
optics. Moreover, our demonstrations reveal that coupled arrays of high-Q microcavities do not inherently result
in a stronger light-matter interaction when compared to coupled low-Q nanoresonators. This result emphasizes
the critical importance of multiple light-scattering effects in cavity-based systems.
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I. INTRODUCTION

High-quality factor Q nanophotonic resonances are impor-
tant for various applications ranging from photonic crystal
cavities for quantum photonics [1–3] to metasurfaces for ul-
trathin optical beam shaping elements [4–6]. The former are
based on nominally infinite Q guided modes of photonic crys-
tal slabs, while the latter employ finite Q Mie resonances of
wavelength-scale particles. Remarkably, fine-tuning or special
symmetries have been predicted to convert low-Q resonances
into infinite-Q modes known as bound states in the continuum
(BICs) [7,8]. While there has been enormous interest in the
BIC concept, theoretical predictions regarding BICs as cav-
ities with infinite Q diverge from practical implementations,
with experimentally measured Q values limited to less than
one million [9].

Both the photonic crystal cavity and the BIC approaches
are inspired by analogies between matter and light waves.
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These concepts are rooted in the physics of scattering-free
propagation observed in Bloch waves within infinite peri-
odic photonic crystals [7,10]. Discrepancies between nominal
and measured Q values are typically attributed to enhanced
scattering losses arising from fabrication imperfections or
finite sample sizes [9,11,12], which are both neglected in
Bloch wave theory [7]. These discrepancies are exacerbated
as the devices are scaled down, leading to much lower Q
factors reported in nanophotonic systems compared to single
microcavities, which support whispering-gallery modes with
measurable Q in the billions [13]. Thus, while the BIC ap-
proach provides an elegant and intuitive way to understand
the Q factors of Bloch waves, it lacks quantitative predictive
power for real finite-size systems.

Here we study resonances supported by arrays of
Mie-resonant nanoparticles from the viewpoint of multiple
scattering theory (MST), schematically illustrated in
Fig. 1. We show that the viewpoint of the scattering wave
provides a simple way to understand the emergence of
(quasi-)BICs and other high-Q resonances in metastructures
and metasurfaces in terms of collective resonances whose
Q scales with the size of the system, diverging in the limit
of an infinite system. Intriguingly, our findings reveal that
the collective resonances of coupled high-Q microcavities
do not necessarily result in Q-factor divergence. This is
in contrast to the pronounced divergence observed when
coupling low-Q Mie resonators, highlighting the intricate
physics involved in strong multiple-scattering effects. Our
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FIG. 1. Schematic of the interaction of a magnetic dipole with various structures: a meta-atom, a diatomic meta-molecule, a linear chain
of spheres, and a two-dimensional (2D) array of spheres. Extending the chain and the 2D array to infinite periodic structures transitions them
into photonic crystals capable of supporting Bloch waves, including bound states in the continuum.

findings not only provide conceptual clarity on the nature
of high-Q resonances but also serve as a practical guide for
designing resonant metastructures, starting from a single unit
cell.

In the following, we will consider Mie-resonant silicon
nanoparticles with a fixed sphere radius of 210 nm and a
refractive index of 3.5. These parameters ensure that the high-
Q collective resonances fall within the crucial near-infrared
frequency range, essential for various technological applica-
tions [14,15], and are similar to recent experiments studying
quasi-BICs [16–18].

II. BLOCH WAVES VS SCATTERING WAVES

In the weak-coupling regime, the emission rate γ of a
light emitter interacting with its local three-dimensional (3D)
electromagnetic environment is described by the multipolar
interaction Hamiltonian:

Hint = −μ · E(rμ, t ) − m · B(rm, t ) − . . . . (1)

Here m and rm (μ and rμ) represent the magnetic (electric)
dipole moment and position of the emitter, respectively. Equa-
tion (1) is applicable to investigate both the dynamical and
stationary properties of the emission rate. Our focus lies on
the stationary modes of BICs, where we employ predefined
magnetic dipoles with constant moments across the entire
frequency range of interest.

For systems involving magnetic dipole transitions at equi-
librium, the emission rate is

γ = ω

2
Im{m∗ · B(rm)}. (2)

In this context, ω represents the angular frequency associated
with the dipolar transition. As our interest lies in the enhance-
ment of γ due to emitter-environment interactions, we utilize
the Purcell factor defined as:

FP = γ

γ0
. (3)

Here γ0 = c|m|2/(2hω), where c is the speed of light and h is
Planck’s constant, represents the emission rate of the emitter

in the corresponding homogeneous material, which is vacuum
in Fig. 1.

Equations (2) and (3) can effectively describe the inter-
action of a dipole with both Bloch waves and scattering
waves, which correspond to different field profiles B(rm).
The unique boundary conditions applied in solving Maxwell’s
equations for B(rm) result in significant distinctions between
the two.

A. Bloch waves: Diffracted waves as open channels

For Bloch waves the electromagnetic field satisfies

B(r + Rnu) = eikB·Rnu B(r), (4)

where Rnu is the vector connecting the nth and uth unit cells.
Numerical simulations are used to determine the magnetic
field B(r) within the unit cell, using an excitation source at
the temporal frequency f . For the linear chain in Fig. 1, Bloch
boundary conditions are applied in the z direction, while per-
fectly matched layers simulate outgoing waves in the x and y
directions. These outgoing waves propagate in vacuum with
a wave number k = 2π f /c. The dispersion relation kB( f ) is
computed from these simulations.

When the Bloch wave number kB is greater than the wave
number k, the Bloch wave is classified as a guided mode [19],
corresponding to a band located below the light line in the
band diagram. Conversely, when kB is less than k, the Bloch
wave couples with a finite number of diffracted or open
channels, which collectively form a continuum, characterized
by their continuous spectra. The interaction with these open
channels causes the bands above the light line to behave like
leaky resonances, giving rise to the concept of guided reso-
nances [20].

Later studies introduced the term “bound states” for guided
bands, implying that Bloch waves, propagating without scat-
tering, are truly bound with infinite Q factors. However, the
finite nature of 1D or 2D photonic crystals inevitably leads
to a complex interplay between Bloch waves and scatter-
ing waves [21]. These complexities are further amplified by
recent developments in guided resonances, leading to the
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concept of Bloch BICs, which differ fundamentally from
the original matter-based BICs [22–24]. Despite significant
advancements, critical questions surrounding the physics of
BICs remain actively debated [8,25].

Scattering effects, though inherently present, are often
overlooked when studying light interactions with 1D or 2D
photonic crystals. This work emphasizes that acknowledging
these scattering effects, while recognizing the distinctions
between light waves and matter waves, enables a unified
understanding of BIC physics. Particularly, we show that
achieving infinite Q factors does not necessarily require com-
plete decoupling of light from the far-field region.

B. Scattering waves: Partial multipole
and plane waves as open channels

The scattering field can be expanded using multipole and
plane-wave representations as [26,27]

E(r) =
Lmax∑
l=1

l∑
m=−l

[
αlmN(1)

lm (kr) + βlmM(1)
lm (kr)

]

= ik

2π

∫ 2π

0
dβ

∫
C±

dα sin αÊ (ŝ)eik·r, (5)

H(r) =
Lmax∑
l=1

l∑
m=−l

[
βlmN(1)

lm (kr) − αlmM(1)
lm (kr)

]

= ik

2π

∫ 2π

0
dβ

∫
C±

dα sin αĤ (ŝ)eik·r. (6)

Here N(1)
lm and M(1)

lm represent electric and magnetic multipole
fields behaving as outgoing waves at infinity, while αlm and
βlm denote multipole expansion coefficients (MECs) specific
to the interaction configuration. The spectral amplitude vec-
tors Ê (ŝ) and Ĥ (ŝ) are related to the MECs, where ŝ(α, β ) =
k/k is a unit vector with polar angle α containing real and
complex values along the integration contours C±. For conve-
nience, we will use H = B/μ0 to refer to the magnetic field.

Complex values of α correspond to evanescent waves
that decay exponentially in specific directions. Traditionally
termed closed channels, these evanescent waves stand in con-
trast to their propagating counterparts, corresponding to the
real values of α, known as open channels [16]. In the context
of plane-wave expansion, emitters in Fig. 1 interact with both
propagating and evanescent wave components. Despite far-
field analysis typically overlooking evanescent waves, these
emitters interact with both types, requiring energy dissipation
into the far-field region to maintain equilibrium.

The stored energy within evanescent waves does not rep-
resent a true BIC; on deactivating the excitation source, the
associated polarization energy gradually leaks into the far-
field region. Moreover, individual plane waves, extending
infinitely and implying infinite energy, are not physically
realizable. In contrast, partial multipole fields offer a more
comprehensible representation as physical waves.

Due to the positive energy of light waves, each multi-
pole mode corresponds to a radiative, lossy oscillator. When
resonant with a driving source, this oscillator behaves as a
resonator that can achieve a high, though always finite, Q
factor. These modes exist in 3D space and interact with mul-

tiple degrees of freedom, generating far-field patterns with
intensities that vary in different directions, exhibiting max-
ima and minima based on their mode numbers. Crucially,
all multipole modes remain open channels, continuously in-
teracting with their 3D environment—an effect tied to the
positive energy of light waves [28]. These characteristics are
key to understanding the physics behind phenomena such as
symmetry-protected and accidental BICs, as will be discussed
later.

The importance of the far-field existence can be seen
through the calculation of the system’s time-averaged radi-
ated power, derived from the multipole expansion detailed in
Eqs. (5) and (6):

P = c

8π

Lmax∑
l=1

l∑
m=−l

l (l + 1)[|αlm|2 + |βlm|2]. (7)

An alternative approach to Eq. (3) involves computing the Pur-
cell factor as FP = P/P0, where P0 denotes the radiating power
in the corresponding homogeneous environment. Equation (7)
ensures the coexistence of both near- and far-fields.

Further insight into the energy carried by individual plane
waves can be captured by Eq. (7). For example, considering
a plane wave traveling in the z direction with circular polar-
ization and an electric field E = (x̂ + iŷ)E0eikz, the associated
MECs are

αl;1 = iβl;1 = E0

k
il+1

√
π (2l + 1)

l (l + 1)
. (8)

When expanded as a multipolar series of both incoming and
outgoing waves [27], the power carried by such a plane
wave can be evaluated from the outgoing multipole fields.
In this context, combining Eqs. (7) and (8) yields P =
cE2

0
8k2

∑∞
l=1(2l + 1), which is infinite and therefore unphysical.

This highlights the limitations of plane-wave expansions in
describing finite systems. Multipole modes, functioning as
open channels, offer a more insightful framework for under-
standing light-matter interactions in metastructures.

III. COLLECTIVE ANTIBONDING AND BONDING
PHOTONIC MODES

The theory of multiple Mie scattering allows us to express
the field scattered by the uth sphere positioned at ru in terms
of a series of magnetic multipole fields M(1)

lm ,

Eu(ru) =
Lu∑

l=1

q(u)
l;0 M(1)

l;0 (k[r − ru]), (9)

where the required truncation order Lu depends on the vac-
uum wave number k and the spheres’ radius; here Lu = 10 is
sufficient to obtain good agreement with a direct numerical
solution of Maxwell’s equations (Lumerical FDTD). Due to
axial symmetry, the mz source excites only the magnetic mul-
tipole modes with m = 0. The internal field of the uth sphere
can be calculated in the MST in which we can relate its MECs
η

(u)
l;0 to the MECs q(u)

l;0 in Eq. (9) via η
(u)
l;0 = q(u)

l;0 d (u)
l /b(u)

l , where

b(u)
l and d (u)

l are the Mie coefficients.
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Applying the MST results in the following equation,
accounting for all short-range, long-range, and scattering cou-
plings:

q(n)
l ′;0 = b(n)

l ′

⎛
⎝A1;0

l ′;0(
−−→
OOn)mz +

∑
u �=n

Lu∑
l=1

Al;0
l ′;0(

−−−→
OuOn)q(u)

l;0

⎞
⎠,

(10)

where Al;0
l ′;0(

−−−→
OuOn) translates the magnetic multipole field M(1)

l;0
from the uth sphere into the incident field approaching the nth
sphere [29]. Equation (10) allows us to compute all the MECs
to study the near- and far-field distributions, as well as the
Purcell factor. The roles of Mie and translational coefficients
in localizing light will be discussed later when we investigate
the effects of introducing disorders into the sphere diameters
and positions.

A. Intrinsic magnetic quadrupole and octupole modes
in photonic meta-atoms

Because both photonic crystals and metastructures are
composed of unit cells, it is useful to begin our investigation
of high-Q resonances by discussing the intrinsic Mie modes
of a single sphere. Additionally, as Q factors are a funda-
mental electrodynamic property, it is instructive to describe
the formation of stationary Mie resonant modes within the
framework of electrodynamics.

Figure 2 shows the multipolar analysis of the interaction
between a magnetic dipolar emitter and a single sphere. In
Fig. 2(b), the resonant wavelengths of the intrinsic magnetic
quadrupole (MQ) and octupole (MO) modes are shown, with
Q factors of 50 and 200, respectively. Generally, higher-order
multipole modes exhibit higher Q factors, as observed here,
due to the dominance of whispering-gallery modes in the light
confinement mechanism of a single sphere. These modes rely
on partial internal reflection, which progressively approaches
total internal reflection for higher-order multipole modes.

Light circulates around the circumference of the sphere,
experiencing multiple internal scattering events [30]. Only
light with appropriate frequencies undergoes constructive in-
terference, forming Mie resonant modes. In particular, these
Mie modes are only established after a sufficient time of
continuous excitation, their Q factor representing the time
required to fully build up the resonance. In some cases, Q
factors in the billions have been experimentally observed for
sufficiently high-order modes.

However, while whispering gallery cavities achieve high
Q factors, their bulkiness limits light manipulation at the
nanoscale—a capability in which metastructures excel. The
spectral distribution of FP in Fig. 2(c) reveals peak wave-
lengths that align with the internal Mie coefficients, empha-
sizing that the Purcell enhancements are primarily driven by
intrinsic modes. To validate the accuracy of the FP calcula-
tions, we performed a numerical simulation using the FDTD
software, with the result also shown in Fig. 2(c).

Typically, BICs and photonic crystal modes are analyzed
on the basis of eigenmodes in individual unit cells. For
subwavelength unit cells, only a few low-order Mie modes
are necessary to describe these eigenmodes. We will next

FIG. 2. (a) Schematic of a single magnetic dipole oriented along
the z axis interacting with a single sphere. [(b) and (c)] Spectral pro-
files of the internal Mie coefficients and their corresponding Purcell
factors: d2 (MQ) and d3 (MO). The MST result based on Eq. (7)
closely matches the FDTD simulation using Eq. (3). [(d) and (e)]
Near- and far-field patterns correspond to excitation of the MQ and
MO peaks in (c). In the far-field region, the radiation patterns depend
solely on the solid angle, and the magnitudes of the electric far-field
distributions are normalized to the strongest radiation direction.

investigate the near- and far-field distributions of the MQ and
MO Mie modes, which will facilitate subsequent discussions
of BICs involving symmetry and interference arguments.

Figures 2(d) and 2(e) illustrate the near- and far-field dis-
tributions of the MQ and MO modes, respectively. Notably,
the far-field distribution of the MQ mode in Fig. 2(d) exhibits
a distinctive pattern, showing destructive interference in the
transverse xy plane. This interference aligns with the antisym-
metry of the MQ mode (particularly the Ex or Hz components
with respect to the y axis), which has been used to support
the presence of at-	 BICs [31]. Another perspective for the
existence of BICs is based on the symmetry of Ex relative
to the center of the unit cell [7]. However, arguments based
solely on individual electromagnetic components are insuffi-
cient. As we will discuss in greater detail later, understanding
the destructive interference in the transverse xy plane and
its connection to the near-field mode distributions requires
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FIG. 3. (a) Schematic of the interaction between a z-oriented magnetic dipole and a diatomic photonic metamolecule. (b) Spectral profile of
the total Purcell factor, showing splitting of the MQ mode into antibonding (MQ-A) and bonding (MQ-B) modes, corresponding to a magnetic
null and a hotspot (Hz) at the center of the gap, as shown in (c) and (d), respectively. The multipole decomposition reveals that both modes
exhibit contributions from the magnetic dipole (l = 1, MD), which radiates predominantly in the transverse xy plane. (c) Near- and far-field
distributions of the MQ-A mode. The absence of the 0th scattering channel in the xy plane is caused by destructive interference between the
magnetic dipole, the octupole, and a higher-order multipole (l = 5), which also leads to the antisymmetry of Ex with respect to the y axis.
(d) Similar to (c) but for the MQ-B mode, where the 0th scattering channel appears due to the magnetic dipole and higher-order multipole
(l = 5).

consideration of all three field components presented in
Fig. 2(d). This discussion will clarify the symmetry mismatch
mechanism responsible for Bloch BICs.

Another significant observation drawn from the far-field
distributions in Figs. 2(d) and 2(e) is the absence of radiation
in the z direction, which can be attributed to the vectorial
characteristics of the longitudinal mz dipole and its associ-
ated excited multipole modes. This vectorial nature has been
used to explain the existence of at-	 BICs [17,32], which
are often confused with symmetry-protected BICs arising
from diffraction theory [7]. We will show that at-	 BICs and
symmetry-protected BICs are distinct, and that the vectorial
nature of a single unit cell cannot solely account for the
existence of at-	 BICs.

B. Antibonding and bonding magnetic quadrupole
modes in diatomic metamolecules

The laws of electrodynamics dictate that modes of a di-
electric structure, such as a meta-atom or a unit cell, must
be radiatively lossy [28]. Consequently, coupling between
these modes does not increase the total number of reso-
nant modes (also referred to as closed channels) beyond
the number of open channels. This principle holds even as
the number of coupled resonators approaches infinity, imply-
ing the existence of an infinite number of open channels in
MST. This behavior contrasts sharply with diffraction band
theory, where interactions between plane waves and Bloch
waves in infinite subwavelength periodic structures involve
only a single diffraction channel [33] or a finite number of
open channels [8]. Recognizing this fundamental difference

between diffraction band theory and MST is essential for
designing resonant metasurfaces, as practical devices are fi-
nite and thus require consideration of the infinite number
of open channels. Moreover, understanding infinite periodic
structures necessitates studying their finite counterparts and
progressively increasing the system size. To address this, we
will next investigate finite coupled meta-atoms, also referred
to as metamolecules.

The simplest example of a coupled system is a diatomic
metamolecule, schematically illustrated in Fig. 3(a). Fig-
ure 3(b) depicts the splitting of the intrinsic MQ mode into
antibonding (MQ-A) and bonding (MQ-B) modes, driven by
the strong optical coupling between the two meta-atoms. The
peak wavelengths exhibit characteristic blue and red shifts for
the antibonding and bonding modes, respectively, analogous
to those observed in molecular physics. In this system, the
antibonding and bonding features correspond to a magnetic
Hz null and a hotspot at the gap between the two meta-atoms,
as shown in Figs. 3(c) and 3(d).

Additionally, we decompose the total Purcell factor into
contributions from partial multipoles, as represented by
Eq. (7). Figure 3(b) shows that six multipoles are required
to describe the intrinsic modes of the coupled resonators,
with only the l = 7 multipole term being negligible across
the spectral range. The collective MQ-A and MQ-B modes
exhibit distinct multipole compositions that govern both their
near- and far-field distributions through interference effects.

Point group theory is commonly used to explain symmetry-
protected BICs, focusing primarily on the mode profiles of
individual unit cells [32,34]. However, for later discussion, we
note from Figs. 3(c) and 3(d) that, with respect to the center
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of the sphere, both the MQ-A and MQ-B modes exhibit the
same symmetry in the Ex field distribution and antisymmetry
in the Hz field distribution.

Point group theory alone cannot adequately explain the
presence and absence of the 0th scattering channel in the
far-field patterns of the MQ-A and MQ-B modes, respectively.
Instead, we must consider the symmetry and antisymmetry of
the collective modes about the y and z axes. Both near-field Hz

distributions display symmetry with respect to the z axis; how-
ever, the Ex distribution of the MQ-A mode is antisymmetric,
while that of the MQ-B mode is symmetric with respect to the
y axis.

In the far-field region, light behaves as independent plane
waves. To elucidate the absence and presence of the 0th scat-
tering channel, we can consider a time-reversal process in
which we excite the MQ-A and MQ-B modes using a plane
wave incident along the x axis, with a magnetic field oriented
along the z axis. Consequently, the electric component must
align with the y axis according to the laws of electrodynam-
ics. The antisymmetry of the Ex component with respect to
the y axis in the MQ-A mode leads to a mismatch with the
plane wave’s electric component, preventing the plane wave
from exciting the MQ-A mode. In contrast, the MQ-B mode
matches the plane wave and is excited. This reversal argument
explains the absence and presence of the 0th scattering chan-
nels in Figs. 3(c) and 3(d), corresponding to the destructive
and constructive interference of odd-order magnetic multi-
poles (l = 1, 3, 5) shown in Fig. 3(b).

It is important to note that both the antisymmetry of the
Ex component in the MQ-A mode and the absence of the
0th scattering channel in Fig. 3(c) result from the destructive
interference of the multipole modes. In other words, attribut-
ing the absence of the 0th scattering channel in Fig. 3(c) to
symmetry mismatch could be misleading in electrodynamics,
as it may suggest that the MQ-A mode does not require the
odd-order multipoles to represent its near- and far-field distri-
butions [32].

IV. COLLECTIVE NATURE OF BOUND STATES
IN THE CONTINUUM

This section investigates the physics underlying high-Q
resonances in photonic crystals, framed through Bloch waves,
and in metastructures through scattering waves, with focus
on elucidating the mechanisms behind BICs. Photonic BICs
have gained significant interest since they were first studied in
infinite coupled gratings excited by plane waves [33], and es-
pecially after their observation in photonic crystal slabs [22].
Since then, the concept of BICs has attracted attention from
both the photonic crystal and metamaterial communities [35].

Most studies focus on plane-wave excitations, where the
disappearance of transmittance and reflectance at specific
incident angles is attributed to BICs. When this disappear-
ance occurs at normal incidence, the BICs are referred to as
symmetry-protected and are commonly associated with the
	 point [7,36]. When the disappearance occurs at oblique
incidences, these are labeled accidental BICs and are known
as off-	 BICs [22,31]. Symmetry mismatch and destructive
interference have typically been invoked to explain the origins
of symmetry-protected and accidental BICs, respectively.

Despite significant progress in both applications and fun-
damental studies of BICs, developing a unified physical
mechanism for these states remains an open problem [8,25]. In
this section, following Sec. III, we expand on the limitations
of using symmetry arguments and destructive interference as
explanatory frameworks. Our analysis reveals that collective
resonances arising from strong multiple scattering provide
a unified explanation for both high-Q and infinite-Q reso-
nances. Furthermore, we show that symmetry-protected and
accidental BICs are specific to plane-wave excitations and
are not inherently equivalent to at-	 and off-	 BICs. These
insights offer conceptual clarity to the various high-Q reso-
nances observed in systems ranging from photonic crystals
to metastructures, all of which are governed by multipolar
scattering waves.

Our findings have practical implications for high-Q res-
onators in applications such as optical spectral filtering,
sensing, and lasing. For spectral filtering or polarization con-
version, BIC concepts are particularly valuable in designing
metadevices based on coupled gratings or low-index-contrast
photonic crystals. Although these systems weakly confine
light in the in-plane directions and require larger physical
footprints, making them less suitable for enhancing Purcell
factors, they remain effective for targeted filtering and polar-
ization conversion applications. In contrast, for applications
requiring strong light-matter interactions, such as nanolaser
development [16,17], where off-resonant pumping is typically
employed, high-Q resonances corresponding to bound states
below the light line result in devices with higher power effi-
ciency [37].

A. At-� bound states in the continuum

Although both at-	 BICs and symmetry-protected BICs
can emerge in infinite periodic arrays, they represent funda-
mentally distinct phenomena. Symmetry-protected BICs arise
when plane waves are incident on such arrays, typically ex-
citing a set of Bloch modes, including the at-	 Bloch mode.
Even under normal incidence, the field in the periodic struc-
ture is a superposition of multiple Bloch waves. In contrast,
at-	 BICs correspond to single Bloch modes with a wave
number of kB = 0 and are generally excited by a dipole in the
near-field region.

To further elucidate these key differences, we first examine
at-	 BICs excited by a magnetic dipole (see Fig. 4), followed
by a discussion of off-	 BICs in Sec. IV B. Symmetry-
protected and accidental BICs are then analyzed in Sec. IV C.

1. Divergence and convergence of collective resonances

Figures 4(a) and 4(e) present two alternative perspectives
on at-	 BICs: one based on scattering waves and the other
on Bloch waves. The key difference lies in the number of
radiative channels: Scattering waves couple with an infinite
number of plane-wave channels, whereas photonic crystals
with subwavelength periods typically support only a single
diffraction channel, which serves as the continuum channel
for Bloch waves [33].

Figure 4(b) shows the emergence of two distinct bands
from the MQ and MO modes as we transition from two
spheres (Fig. 3) to 20, forming a 1D linear chain. These
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FIG. 4. Comparison of results from metastructure [(a)–(d)] and photonic crystal [(e)–(h)] analyses. (a) Schematic illustrating the interaction
between a magnetic dipole and a metastructure composed of N spheres in a 3D environment with infinite degrees of freedom, represented by
the wave vector k̂∞. (b) Spectral profiles showing the MQ and MO expansion coefficients for a chain of 20 spheres, revealing two photonic
bands with three prominent band-edge modes, corresponding to the MQ-A and MQ-B modes in Fig. 3 and the MO mode in Fig. 2. The MQ-A
band-edge mode, labeled L1, is stronger than the in-band collective modes, such as the L3 mode. The collective mode L2, which corresponds
to a null field in the center of the array, does not appear in (b). (c) Q-factor analysis of the MQ and MO band-edge modes, highlighting
their divergence and convergence as the number of spheres increases. (d) Divergence and convergence of the scattering multipole coefficients,
representing the internal field localized in the middle sphere of the chain, as the number of spheres increases. (e) Schematic depicting the
interaction between a magnetic dipole and a Bloch wave, with a single continuum diffraction channel denoted by the wave vector k̂B0. (f) Band
diagram showing two photonic crystal bands corresponding to the MQ and MO bands in (b). The MQ band crosses the light line, while the
MO band lies entirely above it. The insets show the antisymmetric and symmetric magnetic components Hz of the MQ and MO modes at the
	 point. (g) Q-factor analysis of the two Bloch modes above the light line, indicating a bound state in the continuum for the MQ-A mode at
the 	 point. The inset magnifies the divergence and convergence near kB = 0. (h) Purcell factor analysis showing divergence and convergence
patterns consistent with the Q-factor analysis in (g).

collective bands suggest the existence of photonic crystal
bands, a hypothesis confirmed by the Bloch band simula-
tions in Fig. 4(f). Remarkably, the band edges in Fig. 4(f)
closely match the predictions from the MST calculations in
Fig. 4(b). Furthermore, the MST reveals collective resonances
spread across the entire widths of the Bloch bands, both below
and above the light line, highlighting the limited impact of
the light line on resonator design using photonic metastruc-
tures. While collective resonances below the light line exhibit
significantly higher strengths compared to those above it,
their shared origin in resonant multiple scattering provides
a unified perspective on guided resonances and Bloch bound
modes.

Although the Q factors of the MQ-A and MQ-B modes
are similar for two spheres, as shown in Fig. 3(b), their
behaviors diverge significantly as the number of spheres in-
creases, as seen in Fig. 4(c). In particular, the Q factor of
the MQ bonding mode increases more rapidly than that of
the antibonding mode. This divergence generally follows the
power-law scaling described by Q(N ) ≈ Q0Nα , where N rep-
resents the number of spheres. We estimate α ≈ 3 for the
MQ-B modes, α ≈ 2 for the MQ-A mode, and α ≈ 0 for the
MO mode.

The MQ-B mode, located below the light line, is con-
ventionally described as a guided mode bound to the 1D
photonic crystal, without extending into the far-field region.
However, within the metacrystal MST framework, the MQ-B
mode interacts with the far-field through scattering effects.
While modes below the light line often exhibit much higher
Purcell and Q factors, recent attention has shifted towards
guided resonances above the light line, which promise infinite
Q factors for enhancing light-matter interactions.

For infinite structures, the Q and Purcell factors associated
with BICs can indeed reach infinity, as shown in Figs. 4(g)
and 4(h) for the MQ-A and MO bands. As the Bloch wave
number approaches the 	 point (kB = 0), the Q factor of
the guided MQ-A resonance diverges. Conventionally, this
divergence has been attributed to the antisymmetric field com-
ponent [31] [inset of Fig. 4(f)] or the symmetric Ex electric
field component [7] (Fig. 2), both characteristic of the MQ
mode. In contrast, the finite Q factor of the MO band arises
from the symmetric component of the MO mode [inset of
Fig. 4(f)] [31].

Challenges arise, however, when considering the symmetry
properties of both the electric and magnetic field components
of these modes. For an example, the field distribution of Ex
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for both the MQ-A and MO modes is symmetric with respect
to the center of the unit cell and the y and z axes, which
means that symmetry alone cannot explain the divergence
and convergence behavior shown in Fig. 4(g). Furthermore,
as depicted in Fig. 4(a), our dipole excitation source primar-
ily radiates in transverse directions, which contrasts with the
behavior of an at-	 BIC that does not radiate transversely. An-
other potential mechanism for the divergence of the Q factor
in Fig. 4(g) and the Purcell factor in Fig. 4(h) is the destructive
interference between the multipoles excited in the unit cell
and the dipole driving source [22,32]. This wave interference
mechanism is a fundamental property of wave physics and
mirrors the explanation for the diatomic metamolecule system
in Fig. 3.

However, to achieve complete destructive interference, the
system would require infinite time to accumulate infinite en-
ergy within the unit cell, fully suppressing the transverse
radiation of the source. Thus, while destructive interference is
valid for stationary states, it does not fully apply to dynamic
electrodynamic systems. In the FDTD results shown in Fig.
4(g), when we set the boundary conditions to isolate the 	

point the energy in the simulation domain does not decay to
zero for the MQ-A mode but does for the MO mode. This
behavior reflects the long-range effects present in coupled
resonator systems [38]. The finite Q factor of the MO Bloch
mode aligns with the converging Q factor obtained from MST,
as shown in Fig. 4(c). This consistency between the MST and
photonic crystal approaches is intriguing, especially consid-
ering their differing boundary conditions, but it is expected,
since both derive from Maxwell’s equations. Our view of
BICs within the MST framework offers a consistent explana-
tion for both finite and infinite systems, in both dynamic and
stationary states.

In the MST the MQ mode, with its stronger long-range
interactions, exhibits a strong (divergent) collective reso-
nance, while the MO mode remains finite due to its weaker
long-range interactions. Further insights into the impact of
long-range interactions on the resonant MECs are elucidated
in Fig. 4(d), illustrating the divergence and convergence of
the MECs representing the resonant field inside the middle
sphere. Due to the positive energy of light, adding more
spheres to the chain introduces not only channels that enhance
resonances but also radiative channels that weaken them.
For both MQ-A and MQ-B modes, the enhancement effect
outweighs the dissipative effect, resulting in the divergence
of the MQ coefficients. In contrast, for the MO mode, the
opposite occurs, leading to the convergence of the MO co-
efficient. These patterns of divergence and convergence in
the resonant strengths elucidate the corresponding diverging
and converging characteristics of the Purcell factors shown
in Fig. 4(h), where we examine the interaction between the
magnetic dipole and the Bloch MQ-A and MO modes.

Interestingly, high-Q Mie resonator (MO) arrays do not
inherently produce higher collective resonance Q factors
compared to arrays of low-Q Mie modes (MQs) with a suffi-
ciently high number of resonators, as exemplified in Fig. 4(c).
This peculiarity arises from the intricate interplay between
the behavior of individual resonators and their collective
response. Individual high-Q modes retain light for longer
periods but also introduce heightened radiative-loss chan-

nels, limiting their collective resonances from reaching the
strong multiple-scattering regime necessary for divergence. In
fact, higher-order Mie modes behave similarly to whispering
gallery modes, and coupling these high-Q modes generally
results in collective Q factors lower than their isolated coun-
terparts [29]. This finding can guide the design of coupled
cavity arrays for applications such as quantum simulators and
networks [39–41].

2. Near-field symmetry and far-field interference

Since symmetry mismatch and far-field destructive in-
terference are two of the most common mechanisms for
explaining BIC [8], it is instructive to investigate far-field
interference patterns alongside the near-field symmetry and
antisymmetry of the collective modes MQ-A and MQ-B, as
shown in Fig. 5. The far-field patterns reveal destructive in-
terference in multiple directions for both modes, which is
not necessarily limited to the transverse direction. Moreover,
it is crucial to recognize that the Bloch diffraction channel,

characterized by the wave vector
−→
k B0, is distinct from the

transverse radiation direction
−→
k 0, as shown in Fig. 4(a).

Within the MST framework, even the MQ-B mode, cor-
responding to the bound state below the light line, radiates
into the transverse direction, labeled the 0th scattering channel
in Fig. 5(d). The presence and absence of this 0th scattering
channel in Figs. 5(c) and 5(d), respectively, can be understood
through the near-field distributions in Figs. 5(a) and 5(b). This
reasoning follows a pattern similar to that in Sec. III for the di-
atomic metamolecule, where the symmetry and antisymmetry
of the Hz and Ex distributions in the collective modes explain
the behavior of the 0th scattering channel.

By extending this reasoning and increasing the number of
unit cells to infinity, we observe that the absence of the 0th
scattering channel persists for the MQ-A mode. In contrast,
for the MQ-B mode, we can toggle the 0th scattering channel
on or off by selecting an even or odd N , respectively, as the
Hx distribution will exhibit symmetry or antisymmetry ac-
cordingly. For example, the 0th scattering channel disappears
for N = 1 in Fig. 2(d) but reappears for N = 2 in Fig. 3(d)
and N = 20 in Fig. 5(d). Therefore, we must consider the
collective nature of resonant modes when examining their 0th
scattering channel or its equivalent plane-wave excitation in a
time-reversal process, as explained in Sec. III.

To further explore the far-field characteristics, we present
the far-field intensity as a function of both excitation
wavelength and polar angle in Fig. 5(e), focusing on the
antibonding MQ-A mode [denoted L1 in Fig. 4(b)]. A key dis-
tinction between the far-field plots in Figs. 5(c) and 5(e) is that
the former shows the intensity at a single wavelength across
the full polar angle range (0, π ) and half of the azimuthal
angle range (0, π ), while the latter spans a range of excita-
tion wavelengths and polar angles. Due to the system’s axial
symmetry, the far-field distributions are azimuthal invariant.
The first scattering order from Fig. 5(c) and its associated L1

wavelength are marked in Fig. 5(e) for clarity. Interestingly,
the intensity along the transverse direction (90◦) is not at a
minimum, with several minimal points appearing at different
angles and wavelengths. Some of these correspond to off-	
points in Fig. 4(f), corresponding to guided resonances with
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FIG. 5. Near-field symmetry and antisymmetry of bonding and antibonding modes and their corresponding multipolar interference in the
far-field. [(a) and (b)] Near-field distributions of Hz and Ex for the antibonding MQ-A mode [L1 in Fig. 4(b)] and the bonding MQ-B mode of
a 20-sphere chain, respectively. The symmetry and antisymmetry of the field components align with the diatomic metamolecule presented in
Fig. 3, leading to the absence of the 0th scattering channel in (c) for the MQ-A mode and its presence in (d) for the MQ-B mode. (e) Far-field
intensity of antibonding modes as a function of the radiation wavelength and angle relative to the z axis. The collective Mie resonances L1

and L3 in Fig. 4 are marked at their respective peak wavelengths. For better visualization, the first scattering channel from (c) is also indicated
in (e). The wavelength of the minimum intensity differs from the at-	 BIC in Fig. 4, which occurs at 976 nm, highlighting the limitations of
explaining BICs solely through destructive interference of multipoles or their symmetry properties.

finite Q factors. As such, the attribution of BIC formation
solely to far-field destructive interference of multipole modes
is not universally conclusive.

Another noteworthy feature in Fig. 5(e) is that, unlike the
modes labeled with odd numbers (L1 and L3), the mode la-
beled L2 produces the 0th scattering channel. This observation
is significant because it indicates that the L2 mode can be
excited by a plane wave incident from the transverse direction.
As we increase N , the mode L2 will converge to the mode
L1, exhibiting an infinite Q. This further emphasizes the im-
portance of considering the collective nature of the resonant
modes when explaining their radiation into the 0th scattering
channel. The role of plane-wave excitations in the formation
of BICs will be discussed in further detail in Sec. IV C.

3. Material absorption limits on Q factor saturation

The Q-factor divergences in Fig. 4 pertain to chains of loss-
less silicon spheres. Recent studies have increasingly focused
on the fundamental limits of Q factors due to material absorp-
tion losses [42]. Generally, the total Q factor is determined by
both radiative (Qr) and absorptive (Qabs) components. For a
material with permittivity ε′ + iε′′, the absorptive Q factor is
given by Qabs = ε′/ε′′.

In Fig. 6, we explore the Q-factor behavior of the MQ-A
and MQ-B modes for lossy silicon, with a refractive index
of 3.5 + i × 10−4, corresponding to Qabs = 1.75 × 104. Un-
like the rapid divergence of Q factors seen in the lossless
case, Fig. 6(a) shows that in the presence of absorption,
the Q factors converge to approximately Qabs, highlighting
the significant impact of material absorption. The fact that the
saturated Q factors exceed Qabs can be attributed to an effec-
tive scaling factor, which suggests that the saturated Q factor

depends on the fraction of electromagnetic energy stored
within the spheres [43].

Figure 6(b) reveals an intriguing result: the maximum Q
factor of Bloch modes exceeds Qabs by an order of magnitude
and differs from the MQ-B band-edge mode predicted by the
MST. Instead, this maximum corresponds to a Bloch mode
near the light line. This discrepancy arises from the stronger
confinement of the MQ-B band-edge mode to the spheres,
which increases the absorption losses. However, for finite
chains, the MQ-B band-edge mode consistently exhibits the
highest Q factor, underscoring the importance of accounting
for finite-size effects in light-matter interaction systems.

BICs are typically regarded as radiationless modes, where
Qr → ∞, implying that the total factor Q is governed
solely by material absorption, which is equivalent to Qabs,

FIG. 6. Effect of material absorption loss. (a) Both bonding and
antibonding MQ modes exhibit Q factors converging to values lim-
ited by absorption loss. (b) The convergence of Q factors for the
two band edge Bloch modes corroborates findings from multiple
scattering theory in (a).
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FIG. 7. Off-	 bound states in the continuum arising from collective MO resonances in square arrays of N × N spheres. [(a)–(c)] Near-field
Hz distributions for a 8 × 8 sphere array, corresponding to the MO1,2,3 modes marked in (d). Insets show the respective electric far-field
distributions. (d) Purcell factor for a z-oriented magnetic dipole placed at the location of the strongest field in (a). (e) Divergence of the Q
factor for the MO1 mode as the number of spheres in the square array (N) increases. (f) Band structure and divergence of the Q factor at off-	
points, indicating the presence of BICs. The upper inset zooms in on the strong fluctuations of the Q factor near the BICs, while the lower inset
shows the magnetic profile of the corresponding eigenmode.

according to the relation 1/Q = 1/Qr + 1/Qabs [42]. How-
ever, our MST framework provides an alternative explanation
for the observed convergence of the Q factor. In this frame-
work, radiation loss persists (finite Qr), but long-range
coupling effects weaken, preventing the divergence of partial
multipole fields as the number of unit cells increases. It should
be noted that the Q factors in Fig. 6(a) are derived from
multipole scattering coefficients, indicating that saturation of
the Q factor does not imply the absence of radiation loss.

B. Off-� bound states in the continuum

This subsection addresses the collective resonance ori-
gin of off-	 BICs. As shown in Sec. IV A, the at-	 BIC
corresponds to the divergence of resonant scattering multi-
pole fields. In contrast, the Q-factor convergence of the MO
mode in the 1D photonic crystal results from radiative losses
outweighing resonant enhancement, which is driven by long-
range coupling effects. A practical approach to mitigate this
radiative loss is to extend the structure into a 2D array or
metasurface, as illustrated in Fig. 7. By transforming the 1D
chain into the 2D metastructure, the light leaking into the y
direction is redirected towards the central region, thus improv-
ing light-trapping efficiency.

Resonant metasurfaces typically support multiple super-
modes [34,44,45], exemplified by MO1,2,3 in Figs. 7(a)–7(d).
The near-field Hz distributions of these supermodes clearly re-
veal their collective nature. The far-field distributions, shown
in the insets of Figs. 7(a)–7(c), display several null-field
directions, a characteristic feature of collective resonances.

Notably, the dominant MO1 supermode deviates from the
band-edge behavior observed in its 1D chain counterpart
(Fig. 4). This suggests that within the photonic crystal frame-
work, the maximum factor Q of the corresponding guided
resonance occurs at an off-	 point rather than at 	.

Furthermore, Fig. 7(e) illustrates the divergence of the Q
factor for the MO1 supermode as the number of spheres in the
square metastructure increases. This divergence indicates that
BICs could potentially be observed in the corresponding 2D
photonic crystals, with the Q-factor divergence of collective
resonances serving as a mechanism to detect BICs. Simula-
tions of the photonic crystal band and its associated Q factors,
shown in Fig. 7(f), support these hypotheses. The lower inset
of Fig. 7(f) shows the Hz distribution within a unit cell, which
remains nearly uniform across the entire band, while the up-
per inset reveals strong fluctuations of the Q factor near the
BIC points, a typical signature of destructive and constructive
interference between the Bloch and radiation modes.

Our findings provide important insights: While the theo-
retical Q factors of BICs tend toward infinity, experimental
results typically achieve values below one million [9]. As
shown in Fig. 7(e), even for a 100 × 100 resonator array, the Q
factor reaches only around 1 million. Notably, a BIC laser with
a factor Q in the thousands has been realized using a 16 × 16
MO array [16], consistent with our simulation in Fig. 7(e).
Comparing these results with the 1D arrays in Fig. 4(c), it
is evident that 2D MQ arrays can significantly enhance the
efficiency of MO-based surface-emitting lasers. In Sec. IV D,
we will show that these 2D MQ arrays can improve the Purcell
factor by orders of magnitude.
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The MO-based BIC has been linked to Friedrich-Wintgen
BICs, which arise from coupled resonances [16,35]. How-
ever, Friedrich-Wintgen BICs require a critical condition: The
number of closed channels must exceed that of the contin-
uum channels [7], which light waves do not obey. A more
appropriate term to describe BICs originating from coupled
resonators could be Feshbach-type BICs, based on Feshbach’s
unified theory of coupled resonances interacting with multiple
open channels [14]. Given the similarities between Feshbach’s
theory and our MST approach, it provides a better framework
for explaining off-	 BICs.

Past efforts to explore the impact of finite-size effects on
off-	 BICs relied on the tight-binding model for Bloch waves,
attributing scattering loss primarily to the edges of finite
structures [43,46]. However, our MST offers a contrasting
perspective, revealing that the scattering loss predominantly
originates from central regions [38]. These differing perspec-
tives stem from the analogous yet distinct behaviors between
matter and light waves. The concept of Bloch waves, rooted
in matter waves traversing crystal lattices without scattering,
hinges on two fundamental properties. First, matter waves and
their potential structures can be considered closed systems
if their total energy is negative, which limits the interaction
between the matter waves and their environment. Second,
when these matter waves interact with their local lattice po-
tentials, they do not encounter retardation effects due to their
probabilistic nature [47].

Conversely, light waves possess positive energies, and thus
the internal fields within the unit cells of metacrystals—or
metastructures in general—maintain coupling with the 3D
environment even when we extend their structure to infin-
ity. Moreover, in scenarios of resonant multiple scattering,
light waves experience retardation effects, a crucial con-
sideration. Unlike matter waves, the localization of light
in resonant metacrystals does not rely on structural disor-
ders, which are required for localizing matter waves through
the Anderson effect. Essentially, the central localization
of light within the resonant metasurface, as depicted in
Fig. 7(a), and its associated van Hove singularity at the
off-	 points stem from the distinctive retardation effects in-
herent to light waves. Our findings elucidate these distinct
attributes of photonic BICs, providing clarity on their physical
origin.

C. Symmetry-protected and accidental BICs

The majority of BICs have been discussed in the con-
text of the disappearance of reflectance and transmittance
for plane waves incident on photonic crystal slabs or meta-
surfaces with subwavelength unit cells. Typically, BICs are
classified into symmetry-protected (S-BIC) and accidental
(A-BIC) types [35], corresponding to plane waves with nor-
mal and oblique incidence, respectively. These S-BICs and
A-BICs are also commonly referred to as at-	 and off-
	 BICs [7,22,23,36]. However, in Fig. 8, we present an
alternative perspective. Although the disappearance of re-
flectance and transmittance is linked to resonant Mie modes
in infinite metastructures, S-BICs and A-BICs do not nec-
essarily align with the classifications of at-	 and off-	
BICs.

1. Disappearance of diffraction bands under oblique incidences
and plane-wave coupling to Bloch modes

Figure 8(a) shows a typical setup for detecting BICs, where
a plane wave with an incident angle θ interacts with a meta-
surface composed of subwavelength unit cells. According to
diffraction theory, only a single diffraction channel governs
the interaction between the plane wave and the metasurface,
the reflectance following the law of specular reflection [48].
In this work, we employ rigorous coupled-wave analysis
(RCWA) to compute transmittance and reflectance.

Figures 8(b) and 8(c) illustrate the transmittance for both
S-polarized (Ts) and P-polarized (Tp) plane waves across a
spectral range designed to detect the A-BIC, which shares
its MO origin with the off-	 BICs presented in Fig. 7. Six
diffraction bands are identified within these parameter ranges,
labeled B1−6 in Figs. 8(b) and 8(c). Notably, the A-BIC is
observed in band B2 at a wavelength of 865 nm and an incident
angle of approximately 10◦. This wavelength is 20 nm away
from the off-	 BIC, which appears at around 845 nm in
Fig. 7(f). The 20-nm difference emphasizes that while the
A-BIC and the off-	 BIC originate from a common MO
resonance, they represent distinct phenomena. This MO origin
is further supported by the E⊥ distribution within the unit cell,
as shown in the inset of Fig. 8(b).

Additionally, the bands B2 and B4 are doubly degenerate at
normal incidence (θ = 0◦) and couple with a normally inci-
dent plane wave, consistent with a previous observation [36].
This degeneracy is confirmed by the convergence of the two
bands as θ → 0◦ and the corresponding field distributions in
the insets of Figs. 8(b) and 8(c). Although it is commonly
believed that normal incidence interacts only with the at-
	 Bloch wave [7], Fig. 8(d) demonstrates that a normally
incident plane wave actually couples with multiple Bloch
waves representing the eigenmode. Our RCWA simulations
include 60 Bloch modes to capture the eigenmode field, even
at θ = 0◦.

To further illustrate the significance of including all these
60 Bloch modes, we conducted an FDTD simulation consider-
ing only the at-	 Bloch mode. The results in Fig. 8(d) reveal
a peak wavelength shift from 876 to 802 nm. This 802-nm
wavelength also differs from the at-	 Bloch mode presented
in Fig. 7. The discrepancy stems from the fundamental differ-
ence between plane wave and dipole excitations. A plane wave
simultaneously excites various partial multipoles, driving the
unit cell nonlocally through interactions with neighboring
cells. In contrast, a dipole source excites the unit cell locally,
with intercell interactions accounted for by applying Bloch
boundary conditions.

2. Vanishing diffraction bands under normal incidence

Next, we focus on the physics behind S-BICs. Although
four S-BICs are associated with the bands B1, B3, B5, and B6,
the underlying diffraction theory explaining the disappearance
of transmittance and reflectance is consistent across all. There-
fore, we will focus on the S-BIC related to the band B3. The
H⊥ and E‖ field distributions shown in the insets of Fig. 8(d)
reveal that this S-BIC arises from the antibonding mode of
electric quadrupoles (EQs). Hence the in-plane electric field
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FIG. 8. Analysis of symmetry-protected (S-BIC) and accidental (A-BIC) bound states in the continuum via diffraction bands, arising from
the interaction between an incident plane wave and a metasurface supporting Bloch waves. (a) Schematic of a conventional S-polarized (Ei

S)
or P-polarized (Ei

P) plane wave incident on a metasurface formed by a square lattice of the spheres, leading to reflected S-polarized (Er
S ) and

P-polarized (Er
P) waves. (b) Transmission bands for the S-polarized wave, showing three bands (B1, B2, B3) where BICs occur. Bands B1

and B3 vanish as θ → 0◦, indicating two S-BICs, while B2 disappears near θ = 10◦, marking an A-BIC. (c) Transmission bands (Tp) for the
P-polarized wave, displaying bands B4, B5, and B6. Band B4 is doubly degenerate with B2, as seen by their converging wavelengths at θ → 0◦

and the corresponding near-field distributions in the insets. Bands B5 and B6 disappear at θ = 0◦, indicating two S-BICs. (d) Transmission
spectra for the S-polarized wave at incident angles θ = 2◦ and θ = 0◦, highlighting the disappearance of the transmittance (Ts) associated with
bands B1 and B3 at θ = 0◦. FDTD simulations of the transmittance profile at the 	 point are included. Insets near the peaks show mode profiles,
with the |H⊥| profile for B3 at θ = 2◦ differing significantly from θ = 20◦ [inset in (e)], attributed to plane-wave excitation. The electric mode
profile (E‖) reveals null fields in the gap between unit cells, confirming the antibonding nature of B3. [(e) and (f)] Reflection bands (Rs and RP)
corresponding to the transmission bands in (b) and (c), illustrating the relationship Ts,p + Rs,p = 1.

is localized inside the sphere, with null fields at the center gap
between neighboring unit cells.

It is noteworthy that the near-field distribution of band
B3 changes significantly with the incident angle θ , see for
example the difference between the H⊥ distribution at θ =
2◦ in Fig. 8(d) compared to that at θ = 20◦ in Fig. 8(e).
This variation arises from the plane-wave excitation, which
drives multiple multipole modes simultaneously and nonlo-
cally across the entire metasurface. As θ approaches 0◦, the
EQ mode dominates the interaction, and the near-field dis-
tribution shows the characteristic EQ pattern at θ = 2◦. This
contrasts with the local dipole excitation, such as in Fig. 4,
where the near-field distributions remain relatively unchanged
throughout the bands. A significant shift for the MQ band
occurs near the light line, where the band transitions from an
antibonding to a bonding mode.

Additionally, certain regions in Figs. 8(b), 8(c), 8(e),
and 8(f) correspond to total reflection and transmission
(Rs,p, Ts,p = 1). In these regions, multiple Mie modes, excited
by the incident plane wave, contribute to the response. The
phases of these intrinsic Mie modes cover a broad spectral
range. Since no single Mie mode dominates, the diffrac-
tion bands remain spectrally broad, reflecting the weakly

oscillating and phase-dispersed nature of the collective Mie
mode interactions.

The disappearance of band B3 at θ = 0◦ raises a fundamen-
tal question: Does the S-BIC represent a resonance with an
infinite Q factor and strong electromagnetic enhancement, or
does it indicate that no resonance is excited at all? This issue
is nontrivial because, in practice, metastructures are finite,
and the S-BIC typically becomes a quasi-BIC that couples to
the far-field region. If the S-BIC corresponds to a resonance
with an infinite Q factor, then its quasi-BIC counterpart would
couple efficiently with a normally incident plane wave. Con-
versely, if the S-BIC signifies that no resonance is excited,
then the quasi-BIC may not couple efficiently with the plane
wave. To resolve this ambiguity, we illustrate the coupling
between a finite array of 8 × 8 spheres and both a plane-wave
and a dipole source in Fig. 9.

3. Excitation dynamics of antibonding modes

Figures 9(a) and 9(b) present the results for normally
incident plane-wave and x-oriented dipole excitations, re-
spectively. The plane wave has its electric and magnetic
field components aligned along the y and z axes. For the

013316-12



COLLECTIVE NATURE OF HIGH-Q RESONANCES IN … PHYSICAL REVIEW RESEARCH 7, 013316 (2025)

FIG. 9. Far- and near-field excitations of antibonding collective
resonances associated with the S-BIC from band B3. (a) Spectral
profile of the magnetic field, normalized to the incident plane wave at
θ = 0◦, recorded at the gap center between two spheres in an 8 × 8
array [point A in (c)]. Even magnetic modes (EQ2) are observed,
while odd modes like EQ1 are not excited. The transmittance (right
axis) shows weak coupling to the plane wave, with only a 1%
change at the resonant peak. The inset shows the far-field distribution
of transmitted light at the EQ2 peak, normalized to the strongest
direction at θ = 0◦. (b) Spectral profile of the Purcell factor for an x-
oriented magnetic dipole at the point A in (c), with the corresponding
Q factor (right axis). Both odd and even modes are excited by the
dipole. The inset shows a vortexlike far-field distribution for EQ1.
[(c) and (d)] Near-field distributions of Hx and Ey at the EQ2 peak,
showing symmetry with respect to the z and y axes, respectively, with
Hx originating from the electric quadrupole resonance associated
with the S-BIC.

transmittance Ts evaluation shown in Fig. 9(a), a total-field
scattered-field source is employed. This configuration ensures
that only the array area is illuminated, allowing for accurate
calculation of transmittance for the finite lattice. This plane
wave excites only the even mode, specifically the EQ2 mode,
as shown in Fig. 9(a), with corresponding near-field distri-
butions of Hx and Ey displayed in Figs. 9(c) and 9(d). The
stronger EQ1 mode is not excited because its Ey distribu-
tion is antisymmetric with respect to the y axis, leading to a
mismatch with the electric field of the incident plane wave.
This is similar to the behavior observed in Fig. 5(e), where
the even collective mode L2, analogous to the EQ2 mode,
radiates orthogonally to the array axis, and can be excited by
a plane wave through a time-reversal process. In contrast, the
B3 S-BIC in Fig. 8 corresponds to a band edge mode [EQ1,
analogous to the collective mode L1 in Fig. 5(e)] with an Ey

distribution that is antisymmetric with respect to the y axis,
preventing coupling with the plane wave. This suggests that
the S-BIC does not represent a resonance with an infinite Q
factor, instead no resonance is excited.

Although symmetry allows coupling between the even
mode EQ2 and the plane wave, this coupling is relatively

weak, as shown by the spectral transmittance plot in Fig. 9(a),
where the transmittance changes by only 1% at the resonant
peak. The inset of Fig. 9(a) reveals that the 0th diffraction
order does not vanish but instead dominates the far-field dis-
tribution of the transmitted light. If we extend the square
lattice to infinity, then the collective EQ2 mode will ap-
proach the behavior of the EQ1 mode. This is because the
EQ2 mode can be viewed as two weakly coupled resonators
separated by the y axis, and in the infinite limit (N → ∞),
these two modes, comprising N × (N/2) spheres, will con-
verge into the EQ1 mode, where N × N spheres resonate
in unison. In other words, the vanishing of the 0th diffrac-
tion order is not a requirement for explaining collective
resonances in Mie-tronics, even for modes with infinite-Q
factors. Additionally, the presence of higher diffraction orders
is noteworthy, as it may offer advantages for nonlocal flat
optics.

The collective resonances in all-dielectric metastructures
driven by plane waves are analogous to surface lattice res-
onances observed in arrays of plasmonic particles [49,50].
This similarity arises because both plasmonic and dielectric
particles function as lossy oscillators capable of trapping light
and enabling coupling effects. While collective resonances in
plasmonic and dielectric metastructures may differ in quanti-
tative analyses, their qualitative behaviors remain similar [51].
The modes EQ1 and EQ2 are typically referred to as dark and
bright modes, respectively. In this context, a dark mode, such
as EQ1, indicates that it does not couple with a specific plane
wave [52]. However, this does not imply complete decoupling
from the far field if the mode is excited by a quantum emitter
in the near-field region.

The far-field decoupling phenomenon relates to the defi-
nition of BICs based on a specific plane wave, as proposed
in Ref. [7]. The confusion arising from this definition is that
all plasmonic dark modes, including the EQ1 mode, could
technically be classified as BICs, even though they possess
finite Q factors, as exemplified by the EQ1 mode in Fig. 9(b).
This introduces a contradiction: A resonance with a finite Q is
categorized as having an infinite Q. Clarifying this ambiguity
in the definition of BICs is nontrivial, as it directly impacts
strategies for optimizing Purcell enhancements for emitters
interacting with the collective resonances of finite-size meta-
surfaces.

Unlike plane-wave excitation in diffraction theory, a dipole
can excite both odd and even modes, as demonstrated in
Fig. 9(b). In this scenario, all collective modes are clas-
sified as bright modes. The brightness of these modes is
quantifiable through the spectral profile of the associated
Purcell factor in Fig. 9(b), which also presents the Q fac-
tors of the bright collective modes. The strongest resonance,
EQ1, produces a vortex-like far-field pattern, a key feature
associated with BICs [23]. Notably, this far-field pattern
differs significantly from the transmitted pattern shown in
Fig. 9(a). In other words, the topological property of the
EQ1 mode refers to the intrinsic mode excited by the dipole.
In addition, while plane-wave excitation can detect collec-
tive resonances, it does not provide evidence of infinite Q
resonances.

In the framework of diffraction theory, our system
shares the same underlying physics as periodic high-contrast

013316-13



THANH XUAN HOANG et al. PHYSICAL REVIEW RESEARCH 7, 013316 (2025)

gratings [53]. Photonic BICs were first introduced in optics
through optically coupled gratings and have since found a
wide range of applications, including those in polaritonics
and optical trapping [54,55]. Although coupled gratings have
been proposed as stand-alone high-Q resonators to enhance
light-matter interactions, such as in compact laser devel-
opment [53], their practical implementation often involves
integration with additional reflectors [56], where coupled grat-
ings function as efficient reflectors, much like metasurface
reflectors [57].

One limitation of coupled gratings in trapping light from
emitters, such as quantum dots, is their waveguide-like be-
havior along the grating axes, which directs light emission
away from the source. As a result, the Purcell factors of
coupled gratings are lower compared to those produced by the
collective resonances of Mie modes. However, under plane-
wave excitation, coupled gratings can still resonantly trap light
through their supermodes [53]. This resonant effect, along
with its associated BICs, is peculiar to the interaction be-
tween plane-wave excitation and coupled gratings. It occurs
when the incident plane wave is aligned orthogonally to the
grating axes, thereby preventing light propagation along the
grating direction. This observation not only helps to distin-
guish between near- and far-field excitation schemes but also
informs our design strategy for enhancing Purcell factors in
Mie-tronics. In the next subsection, we will show thar bonding
modes are better for boosting Q and Purcell factors than their
antibonding counterparts.

D. Superiority of bonding modes in Mietronics

In this subsection, we discuss the implications of our find-
ings for light localization in Mie-tronics, emphasizing that
bonding collective resonances are typically orders of mag-
nitude stronger than their antibonding counterparts. We also
demonstrate the robustness of collective resonances against
moderate levels of disorder.

1. Effects of weak disorder on collective resonances

We have established that for 1D metastructures, bonding
modes corresponding to bound states in photonic crystals out-
perform their antibonding counterparts, which correspond to
guided resonances, in providing both Q and Purcell enhance-
ments. However, the most commonly studied metastructures
are 2D arrays. Therefore, it is important to investigate
bonding modes in metasurfaces under dipole and plane-
wave excitations and to contrast them with the antibonding
modes discussed above. These investigations will uncover
their key advantages for relevant applications. Figure 10
illustrates that bonding collective resonances provide im-
provements of two orders of magnitude in both Purcell
and Q factors compared to antibonding resonant modes, as
demonstrated through the MO and EQ modes presented in
Figs. 7 and 9.

The Purcell and Q factors resulting from the interaction
of a z-oriented magnetic dipole, positioned at the gap center
between two middle spheres within the 8 × 8 sphere array,
are shown in Fig. 10(a). To further study the influence of
fabrication-induced diameter variations, we generate five sam-
ples in which the diameters of the spheres are given by

D = D0 + σDUD, where D0 = 420 nm, σD is the degree of
disorder, and UD is a pseudorandom number uniformly dis-
tributed over [−0.5, 0.5].

The effect of disorder in resonant metasurfaces and
photonic crystals has attracted considerable recent inter-
est [58,59]. For highly precise fabrication techniques, such
as electron beam lithography, periodicity uncertainties can
be minimized to within 1 nm, while standard deviations in
unit cell locations and sizes are reduced to approximately
5 nm [9]. Under relatively small disorder conditions (σD = 10
nm), Fig. 10(a) shows that the collective resonance remains
robust, although the maximum Purcell and Q factors decrease
up to twofold. However, these factors remain an order of mag-
nitude higher than the antibonding resonant modes in Figs. 7
and 9.

Figure 10(b) displays the Hz field distribution, which is
antisymmetric with respect to the z axis, for the strongest
MQ resonance in the array of identical spheres, labeled
MQ0 in Fig. 10(a). This Hz antisymmetry explains why
this odd mode cannot resonate with (or be excited by) a
plane wave at normal incidence, as shown in Fig. 10(c).
From an electrodynamic perspective, the antisymmetry of
the MQ0 mode arises from interference between the ex-
cited multipoles and their driving source, as discussed for
the MQ-A mode in Fig. 3. However, a small disorder al-
ters the excited multipoles, breaking the antisymmetry of
the Hz field and allowing coupling between the plane wave
and the disordered MQ0 modes, producing resonant peaks
such as P1 in Fig. 10(c). Due to their high-Q resonances,
these disordered modes can enhance the trapped magnetic
field by up to 250-fold, an order of magnitude greater than
the enhancement observed for the antibonding EQ2 mode in
Fig. 9(a).

The inset of Fig. 10(b) shows the far-field distribution
of the MQ0 mode, which does not exhibit radiation along
the vertical x axis. In contrast, the MQ-B bonding mode in
Fig. 5(d) (the 1D counterpart of MQ0) demonstrates strong
radiation in the x direction. This highlights the importance of
considering the collective nature of the entire system when
interpreting near- and far-field distributions. A closer exam-
ination of the antisymmetry in the MQ0 mode, shown in
Fig. 10(b), reveals that this antisymmetry can be converted
into symmetry simply by adding one more row of spheres to
form a 9 × 8 array. This adjustment enables the plane wave to
excite a strong collective resonance. In fact, this modification
excites the strong resonance labeled P0 in Fig. 10(d), which
also shows the transmittance resulting from the interaction
between the bonding resonance and its driving plane wave.
Although the coupling remains weak, as indicated by only a
1% change in transmittance across the resonant peak, the near-
field enhancement exceeds 250-fold. Figures 10(e) and 10(f)
illustrate the symmetry of the components Hz and Ex of the
P0 mode, which are well matched with the normally incident
plane wave.

The insets of Figs. 10(e) and 10(f) show the far-field distri-
butions of the transmitted and reflected light, respectively. A
strong nonlocal effect is evident in the numerous diffraction
orders appearing in both patterns, particularly in transmission.
This behavior is promising for applications in the emerging
field of nonlocal flat optics.
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FIG. 10. Dipole and plane-wave excitations of bonding collective resonances and the effects of diameter disorder on coupling. (a) Spectral
profiles of the Purcell factor for an in-plane magnetic dipole interacting with the 2D magnetic quadrupole bonding (MQ-B) mode in 8 × 8
sphere arrays. Two cases are presented: (1) an array of identical spheres (σD = 0 nm) and (2) five arrays with small pseudorandom diameter
disorder (σD = 10 nm), labeled S1–S5. The right y axis shows the Q factors of the MQ-B mode for the six samples, revealing that disorder
weakens the collective resonances. The inset illustrates the dipole excitation setup. (b) Magnetic field distribution (Hz) for the MQ-B mode
in the array of identical spheres [denoted MQ0 in (a)], showing antisymmetry with respect to the z axis. (c) Spectral profiles of the magnetic
field for resonant modes excited by a plane wave at normal incidence. The inset shows the plane-wave excitation setup. In an ideal array, the
odd MQ0 mode cannot be excited by the plane wave, but disorder introduces coupling between its disordered version (denoted P1) and the
plane wave. (d) Spectral profile of the normalized magnetic field recorded at the center of the 9 × 8 sphere array, along with the transmittance
spectrum, showing only a 1% change across the resonant peak labeled P0. Both P0 and MQ0 modes correspond to the band-edge mode for their
respective arrays. (e) Magnetic field component (Hz) at the resonant peak in (d), displaying symmetry with respect to the z axis. (f) Electric
field component (Ex), showing symmetry with respect to the y axis. Insets in (e) and (f) depict the far-field distributions of light transmitted
and reflected from the 9 × 8 array, respectively.

2. Effects of increasing disorder on collective resonances

In the early development of photonic crystals, disorder
was believed to play a crucial role in localizing light, draw-
ing inspiration from its effect on localizing electrons via
the Anderson mechanism [60]. However, when examining
the collective resonances of unit cells, disorder may actually
weaken light localization rather than enhance it, as illustrated
in Fig. 10(a). To study these effects, we consider increasing
levels of disorder in the diameters and positions of the spheres
in Fig. 11, which shows the Q factor and peak wavelength of
disordered MQ0 modes in 30 arrays. Figures 11(b) and 11(c)
and Figs. 11(e) and 11(f) show the magnetic field distributions
of four representative samples, labeled MQ1−4 in Fig. 11(a).

Increasing the disorder in diameters while keeping the
sphere positions fixed, the spectral profiles of the Mie

coefficients such as bl ′ in Eq. (10) fluctuate, while the trans-
lational coefficients Al;0

l ′;0(
−−−→
OuOn) remain unchanged, leading

to fluctuations in the resonant wavelength of the collective
mode, ranging from approximately 11 nm for σD = 20 nm
to around 22 nm for σD = 40 nm. These fluctuations cause
some spheres to become off-resonance with others, shifting
the collective resonance to a group of spheres where their
scattering multipoles resonate most strongly. This is visible in
the field distributions shown in Figs. 11(b) and 11(c), where
the strongest field locations are not necessarily at the center
of the array. In Fig. 11(c), the spheres in the lower-left cor-
ner are clearly off-resonant with the rest, acting as scatterers
and weakening the collective resonance. The lower number
of spheres participating in the collective resonance also con-
tributes to the spectral fluctuation of the resonant peak.
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FIG. 11. Effects of increasing disorder in sphere diameter and position on light localization in the 8 × 8 array. (a) Quality factors and
resonant wavelengths of the MQ-B mode in 30 arrays with varying degrees of disorder, either in sphere diameter or position. [(b) and (c)]
Magnetic field distributions for two samples, marked in (a), where disorder is introduced only in the sphere diameter, illustrating the robustness
of the collective resonances. Despite some spheres being off-resonance, the collective resonance persists, with the maximum field location
shifting to the region exhibiting the strongest resonance. (d) Quality factors and resonant wavelengths with strong disorder introduced in both
sphere diameter and position. [(e) and (f)] Magnetic field distributions for two modes, indicated in (a), where disorder is introduced only in
sphere position, showing that the collective resonance predominantly localizes at the center of the array, in contrast to the distributions seen in
(b) and (c).

In contrast, introducing disorder in the in-plane positions
of the spheres does not lead to significant spectral fluctuations
of the resonant peak. Even with strong positional disorder of
σyz = 40 nm, allowing fluctuations in both the y and z direc-
tions, the resonant peaks across five samples only fluctuate
within 2 nm, as shown in Fig. 11(a). However, the Q factor
decreases by an order of magnitude compared to the case of
diameter disorder alone. This highlights the crucial role of
the intersphere distance in maintaining coherent oscillations
between scattering multipoles [Al;0

l ′;0(
−−−→
OuOn) in Eq. (10)]. Po-

sitional disorder introduces strong phase fluctuations in the
scattering multipoles, leading to lower Q factors. Despite this,
since the sphere diameters remain unchanged, their intrinsic
modes are preserved, and the trapped light continues to local-
ize near the array center, as shown in Figs. 11(e) and 11(f) for
two typical samples.

Figure 11(d) shows the Q factor and peak wavelength with
disorder in both the diameters and positions, resulting in char-
acteristics from both types of disorder: The Q factor decreases
due to positional disorder, while the wavelength fluctuates
widely due to diameter disorder. Nonetheless, even in the most

disordered case (σD = 40 nm and σyz = 40 nm), the Q factor
remains above 440, sufficient for certain nonlinear and lasing
applications.

3. Superiority of bonding modes

Figure 12 illustrates the prevalence of Bloch bound states
below the light line compared to their counterparts above the
light line. In finite structures, these Bloch bound states man-
ifest as bonding collective modes, which arise from coupled
Mie modes. At subwavelength scales, dominant Mie modes,
such as dipole, quadrupole, and octupole, dictate light-matter
interactions [4]. When these Mie modes are optically coupled,
they typically form bonding photonic bands, as shown in
Fig. 12 for the 1D array. Only the MQ resonance is strong
enough for its collective resonances to reach the antibonding
regime, corresponding to Bloch modes above the light line.
Extending this 1D structure into a 2D array reduces radiative
losses, enabling Bloch modes from other multipoles, such as
the EQ mode, to appear above the light line, as shown in
Figs. 8 and 9.
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FIG. 12. Prevalence of bonding multipolar modes compared to
weaker antibonding counterparts. The inset illustrates the excitation
scheme of Bloch waves in a linear array. Due to the axial symmetry
of the structure, Bloch modes can be selectively excited by an on-
axis magnetic dipole oriented along the y or z axis. These modes
form bands primarily originating from a few intrinsic low-order
multipoles, including electric dipoles (ED), magnetic dipoles (MD),
quadrupoles (EQ, MQ), and octupoles (EO, MO). This work focuses
on the MQz and MOz bands excited by a z-oriented magnetic dipole,
with particular attention to the infinite Q factors associated with
Bloch modes above the light line. Note that the y axis is in frequency
units, so the light line appears as a straight line.

In finite structures, bonding collective modes exhibit sig-
nificantly stronger resonances, with Purcell and Q factors that
can be orders of magnitude higher. The strongest resonances
are achieved when these collective modes are fine-tuned into
their crossing regime, leading to flatband resonances [38]. The
EDy and EQz flatbands arising from fine-tuning in Fig. 12 are
especially promising for enhancing the Purcell and Q factors.

All photonic modes are subject to radiative losses. Certain
antibonding modes, such as the EQ mode shown in Fig. 9,
can generate vortex beams when excited by a dipolar emitter,
which is promising for nanolaser applications. In terms of far-
field distributions, bonding collective modes such as the MQ0
mode in Fig. 10(b) predominantly emit in-plane, making them
particularly advantageous for on-chip nanophotonic circuitry.
When focusing on Purcell and Q factors, bonding collective
modes are far more promising than their antibonding counter-
parts.

V. DISCUSSION AND CONCLUSION

A. Near-field and far-field excitation of collective resonances

We present a comprehensive picture of high-Q resonances,
encompassing whispering-gallery modes and collective reso-
nances in photonic metastructures. Our focus is on resonant
multiple scattering and the multipole expansion of the
electromagnetic field, aiming to optimize light-matter inter-
actions. In our Mie-tronics methodology, we consider the 3D

environment as a practical continuum. Local excitations using
dipoles can excite all available collective resonances, allowing
all photonic modes to radiate into the far-field region.

Coupling high-Q resonances with incident free-space
beams is inherently complex due to the intricate intrinsic
multipolar content of the collective modes. Conventional laser
beams may prove inadequate, as their intrinsic modes often do
not align favorably with those of the metastructures. Symme-
try considerations must account for the collective nature of the
resonances rather than focusing solely on field components
within a unit cell.

Alternatively, structured light beams with appropriate
multipole content could enable efficient coupling between
free-space light and collective resonances, particularly for ex-
ploring the potential of bonding modes [61,62]. Our proposed
Mie-tronics approach not only enhances the development of
effective design strategies for high-Q resonances but also of-
fers an alternative to excitation methods based on Bloch waves
and group theory [34].

B. Scaling of collective resonances

Our findings offer valuable insights into fundamental limits
to Q and Purcell factors within resonant metastructures. In
these resonant systems of size N , their Q and Purcell factors
follow a power-law scaling Q(N ) ≈ Nα . The primary objec-
tive in optimizing systems of fixed size N is to maximize
α [43]. This scaling parameter is influenced by various prop-
erties including the refractive index, unit cell geometry, and
dominant Mie modes contributing to collective resonances.
We find that generally collective bonding modes exhibit a
scaling factor of α = 3, at least one polynomial degree higher
than their antibonding counterparts. To further increase α,
the most promising strategy involves fine-tuning the systems’
parameters to merge collective resonances and achieve super-
resonances, as exemplified by α = 6 in our recent study [38].

Interestingly, the scaling law and fine-tuning effects are
also observable in collective responses of field-mediated
atoms, each supporting a two-level dipolar transition
state [63,64]. The similarity in behavior between atomic and
photonic systems arises from the analogy between a resonant
mode and a two-level atomic system, as well as the significant
role of multiple light scattering in both scenarios [47,65]. Note
that while dipole interactions are vital, our photonic systems
encompass more general interactions, including higher-order
multipole modes, for a comprehensive understanding of col-
lective responses.

C. Similarities and differences between
photonic and matter BICs

Our results provide a clear picture of photonic and mat-
ter BICs, highlighting both similarities and differences. The
original BIC concept revolves around electron localization in
potentials that extend infinitely, which supports the BIC as an
infinitely narrow resonance [66]. Any introduction of finite-
ness to these potentials transforms the electronic BIC into a
finite-Q resonance [67]. This original BIC is characterized by
the divergence of the sum of partial scattering waves [68].
Our understanding of BICs shares two key similarities: our
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resonant structures also demand infinite extension to induce
the divergence of partial multipole waves, and introducing 3D
finiteness results in finite-Q resonances.

However, a key distinction exists between our photonic
BICs and the original matter-wave BIC. While our pho-
tonic BICs remain coupled to a 3D environment, the original
matter-wave BIC focused primarily on 1D matter waves. This
original BIC relied on layered potential structures, neglecting
coupling to higher dimensions and considering only a sin-
gle continuum channel. The wave confinement mechanism
of this BIC was first analyzed by Lord Rayleigh in 1887,
predating von Neumann and Wigner’s discussions of matter-
wave BICs [69], and has been experimentally observed [67].
However, this BIC is peculiar to 1D structures [69]. Such 1D
structures are not ideal for interfacing with light emitters, such
as quantum dots, because the emitted light can easily couple
into propagating waves in other uniform directions. This poor
3D light confinement also applies to structures based on cou-
pled gratings [55] or low-index photonic crystal slabs [22],
where multiple light scattering is weak, thus limiting the Pur-
cell enhancement.

The crucial distinction for our photonic BICs, despite their
coupling to the 3D environment, lies in the role of retar-
dation effects from Mie resonances. These effects confine
light waves temporarily within resonators, enabling strong
multiple back-scattering and resulting in the divergence of
partial multipole waves at the center of photonic structures.
This divergence suggests that achieving high-Q resonances
involves maximizing scattering multipole coefficients, leading
to the appearance of numerous radiation channels. Interest-
ingly, the oscillating far-field characteristic of our photonic
BICs is also a feature of compact matter BICs, such as
Friedrich-Wintgen BICs [70,71]. However, the existence of
these compact matter BICs relies on closed channels associ-
ated with negative energy states—an aspect not applicable to
light waves, which inherently have positive energies. Conse-
quently, all light modes function as open channels, precluding
the possibility of compact photonic BICs.

D. Collective nature as a unified picture of photonic BICs

Photonic BICs were inspired by the analogy between
resonances and closed channels, along with the association
of diffraction orders with open channels [33]. Since then,
photonic BICs have garnered significant interest within the
photonic crystal community, due to their familiarity with
Bloch waves and a wide range of potential applications. Much

of the research on BICs has focused on diffraction bands
above the light line in band diagrams [7,9,22,23]. These
studies link BICs to the disappearance of reflectance and
transmittance at specific incident angles of plane waves, sug-
gesting complete decoupling from the far-field region [72].

However, our findings challenge this conventional under-
standing, revealing a paradigm shift: BICs correspond to
the divergence of collective resonances that couple to the
far field, even in infinitely extended metastructures. Con-
sequently, the widely held belief that BICs collapse in the
presence of defects and disorder must be reconsidered [35].
The collective nature of high-Q resonances renders them ro-
bust against fabrication defects and structural variations, as
the constituent resonators adapt in phase to maintain their
collective responses. Moderate structural changes may shift
high-Q resonances in spectral space, affecting their strength
without destroying them. We have shown that even with a high
degree of disorder, characterized by σD = 40 nm and σyz = 40
nm, the collective MQ resonance in an array of 8 × 8 spheres
remains sufficiently strong for practical applications.

The collective nature of high-Q resonances explains their
robustness, providing an alternative perspective to their com-
monly associated topological properties [9,23]. Moreover,
multipoles inherently possess topological characteristics, of-
fering an explanation for the topological nature of BICs. This
reevaluation of the origin of infinite Q factors fundamentally
reshapes our understanding of BICs, highlighting the intricate
interplay between resonances, scattering, and the far-field re-
gion.

In conclusion, the allure of high-Q resonances lies in
their capacity to facilitate robust interactions between light
and matter. Here we highlighted the potential of collective
bonding resonances as a pathway for significantly enhancing
interaction efficiency from linear to nonlinear optics and from
THz to visible light and beyond.
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M. Soljačić, and O. Shapira, Observation and differentiation
of unique high-Q optical resonances near zero wave vector
in macroscopic photonic crystal slabs, Phys. Rev. Lett. 109,
067401 (2012).

[37] T. X. Hoang, S. T. Ha, Z. Pan, W. K. Phua, R. Paniagua-
Domínguez, C. E. Png, H.-S. Chu, and A. I. Kuznetsov,
Collective Mie resonances for directional on-chip nanolasers,
Nano Lett. 20, 5655 (2020).

[38] T. X. Hoang, D. Leykam, and Y. Kivshar, Photonic flatband
resonances in multiple light scattering, Phys. Rev. Lett. 132,
043803 (2024).

[39] M. J. Hartmann, F. G. Brandao, and M. B. Plenio, Strongly
interacting polaritons in coupled arrays of cavities, Nat. Phys.
2, 849 (2006).

[40] A. Reiserer and G. Rempe, Cavity-based quantum networks
with single atoms and optical photons, Rev. Mod. Phys. 87,
1379 (2015).

[41] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung,
and H. J. Kimble, Colloquium: Quantum matter built from
nanoscopic lattices of atoms and photons, Rev. Mod. Phys. 90,
031002 (2018).

[42] N. Ustimenko, C. Rockstuhl, and A. B. Evlyukhin, Res-
onances in finite-size all-dielectric metasurfaces for light
trapping and propagation control, Phys. Rev. B 109, 115436
(2024).

[43] M. Mikhailovskii, M. Poleva, N. Solodovchenko, M.
Sidorenko, Z. Sadrieva, M. Petrov, A. Bogdanov, and R.
Savelev, Engineering of high-Q states via collective mode
coupling in chains of Mie resonators, ACS Photon. 11, 1657
(2024).

013316-19

https://doi.org/10.1038/s42254-023-00642-8
https://doi.org/10.1038/s41586-019-1664-7
https://doi.org/10.1038/s41467-021-24502-0
https://doi.org/10.1016/j.scib.2021.10.020
https://doi.org/10.1364/OL.394940
https://doi.org/10.1088/2040-8986/ac868d
https://doi.org/10.1038/s42254-023-00583-2
https://doi.org/10.1038/nature20799
https://doi.org/10.1038/s41565-018-0245-5
https://doi.org/10.1103/PhysRevLett.123.253901
https://doi.org/10.1103/PhysRevB.60.5751
https://doi.org/10.1103/PhysRevB.65.235112
https://doi.org/10.1103/PhysRevA.76.013620
https://doi.org/10.1038/nature12289
https://doi.org/10.1103/PhysRevLett.113.257401
https://doi.org/10.1103/PhysRevLett.118.267401
https://doi.org/10.1103/PhysRevB.109.085426
https://doi.org/10.1063/1.1666629
https://doi.org/10.1364/OE.22.008949
https://doi.org/10.1063/1.1707320
https://doi.org/10.1364/OE.25.013125
https://doi.org/10.1103/PhysRevA.86.033817
https://doi.org/10.1103/PhysRevApplied.15.034041
https://doi.org/10.1103/PhysRevB.100.115303
https://doi.org/10.1103/PhysRevLett.100.183902
https://doi.org/10.1103/PhysRevB.102.035434
https://doi.org/10.34133/ultrafastscience.0033
https://doi.org/10.1103/PhysRevLett.109.067401
https://doi.org/10.1021/acs.nanolett.0c00403
https://doi.org/10.1103/PhysRevLett.132.043803
https://doi.org/10.1038/nphys462
https://doi.org/10.1103/RevModPhys.87.1379
https://doi.org/10.1103/RevModPhys.90.031002
https://doi.org/10.1103/PhysRevB.109.115436
https://doi.org/10.1021/acsphotonics.3c01874


THANH XUAN HOANG et al. PHYSICAL REVIEW RESEARCH 7, 013316 (2025)

[44] Y. E. Geints, Phase-controlled supermodes in symmetric pho-
tonic molecules, J. Quant. Spectrosc. Radiat. Transf. 302,
108524 (2023).

[45] Y. E. Geints, Manipulating the supermodes in photonic
molecules: Prospects for all-optical switching and sensing,
J. Opt. Soc. Am. B 40, 1875 (2023).

[46] E. N. Bulgakov and A. F. Sadreev, High-Q resonant modes in
a finite array of dielectric particles, Phys. Rev. A 99, 033851
(2019).

[47] A. Lagendijk and B. A. Van Tiggelen, Resonant multiple scat-
tering of light, Phys. Rep. 270, 143 (1996).

[48] K. Koshelev, Y. Kivshar, and A. Bogdanov, Engineering with
bound states in the continuum, Opt. Photon. News 31, 38
(2020).

[49] V. Giannini, G. Vecchi, and J. Gómez Rivas, Lighting up
multipolar surface plasmon polaritons by collective resonances
in arrays of nanoantennas, Phys. Rev. Lett. 105, 266801
(2010).

[50] A. D. Utyushev, V. I. Zakomirnyi, and I. L. Rasskazov, Collec-
tive lattice resonances: Plasmonics and beyond, Rev. Phys. 6,
100051 (2021).

[51] J. B. Khurgin and G. Sun, Comparative analysis of spasers,
vertical-cavity surface-emitting lasers and surface-plasmon-
emitting diodes, Nat. Photon. 8, 468 (2014).

[52] S. Rodriguez, M. Schaafsma, A. Berrier, and J. G. Rivas, Col-
lective resonances in plasmonic crystals: Size matters, Phys. B:
Condens. Matter 407, 4081 (2012).

[53] C. J. Chang-Hasnain and W. Yang, High-contrast gratings for
integrated optoelectronics, Adv. Opt. Photon. 4, 379 (2012).

[54] V. Ardizzone, F. Riminucci, S. Zanotti, A. Gianfrate, M.
Efthymiou-Tsironi, D. Suàrez-Forero, F. Todisco, M. De Giorgi,
D. Trypogeorgos, G. Gigli et al., Polariton Bose–Einstein con-
densate from a bound state in the continuum, Nature (London)
605, 447 (2022).

[55] N. D. Le, P. Bouteyre, A. Kheir-Aldine, F. Dubois, S. Cueff, L.
Berguiga, X. Letartre, P. Viktorovitch, T. Benyattou, and H. S.
Nguyen, Super bound states in the continuum on a photonic flat-
band: Concept, experimental realization, and optical trapping
demonstration, Phys. Rev. Lett. 132, 173802 (2024).

[56] Y. Zhou, M. Moewe, J. Kern, M. C. Huang, and C. J. Chang-
Hasnain, Surface-normal emission of a high-Q resonator using
a subwavelength high-contrast grating, Opt. Express 16, 17282
(2008).

[57] X. Jia, J. Kapraun, J. Wang, J. Qi, Y. Ji, and C. Chang-
Hasnain, Metasurface reflector enables room-temperature

circularly polarized emission from vcsel, Optica 10, 1093
(2023).

[58] C. Liu, M. V. Rybin, P. Mao, S. Zhang, and Y. Kivshar,
Disorder-immune photonics based on Mie-resonant dielectric
metamaterials, Phys. Rev. Lett. 123, 163901 (2019).

[59] Z. Hu, C. Liu, and G. Li, Disordered optical metasurfaces:
From light manipulation to energy harvesting, Adv. Phys.: X
8, 2234136 (2023).

[60] S. John, Strong localization of photons in certain disordered
dielectric superlattices, Phys. Rev. Lett. 58, 2486 (1987).

[61] T. X. Hoang, X. Chen, and C. J. Sheppard, Multipole theory
for tight focusing of polarized light, including radially polarized
and other special cases, J. Opt. Soc. Am. A 29, 32 (2012).

[62] K. Y. Bliokh, E. Karimi, M. J. Padgett, M. A. Alonso, M. R.
Dennis, A. Dudley, A. Forbes, S. Zahedpour, S. W. Hancock,
H. M. Milchberg et al., Roadmap on structured waves, J. Opt.
25, 103001 (2023).

[63] Y.-X. Zhang and K. Mølmer, Subradiant emission from regular
atomic arrays: Universal scaling of decay rates from the gener-
alized Bloch theorem, Phys. Rev. Lett. 125, 253601 (2020).

[64] I. A. Volkov, N. A. Ustimenko, D. F. Kornovan, A. S. Sheremet,
R. S. Savelev, and M. I. Petrov, Strongly subradiant states in
planar atomic arrays, Nanophotonics 13, 289 (2024).

[65] S. Asselie, A. Cipris, and W. Guerin, Optical interpretation of
linear-optics superradiance and subradiance, Phys. Rev. A 106,
063712 (2022).

[66] F. H. Stillinger and D. R. Herrick, Bound states in the contin-
uum, Phys. Rev. A 11, 446 (1975).

[67] F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and
A. Y. Cho, Observation of an electronic bound state above a
potential well, Nature (London) 358, 565 (1992).

[68] F. Stillinger, Potentials supporting positive-energy eigenstates
and their application to semiconductor heterostructures, Physica
B+C 85, 270 (1976).

[69] E. Yablonovitch, Photonic crystals: What’s in a name? Opt.
Photon. News 18, 12 (2007).

[70] L. Fonda, Bound states embedded in the continuum and the
formal theory of scattering, Ann. Phys. 22, 123 (1963).

[71] H. Friedrich and D. Wintgen, Interfering resonances and bound
states in the continuum, Phys. Rev. A 32, 3231 (1985).

[72] Z. Dong, Z. Mahfoud, R. Paniagua-Domínguez, H. Wang, A. I.
Fernández-Domínguez, S. Gorelik, S. T. Ha, F. Tjiptoharsono,
A. I. Kuznetsov, M. Bosman et al., Nanoscale mapping of op-
tically inaccessible bound-states-in-the-continuum, Light Sci.
Appl. 11, 20 (2022).

013316-20

https://doi.org/10.1016/j.jqsrt.2023.108524
https://doi.org/10.1364/JOSAB.491320
https://doi.org/10.1103/PhysRevA.99.033851
https://doi.org/10.1016/0370-1573(95)00065-8
https://doi.org/10.1364/OPN.31.1.000038
https://doi.org/10.1103/PhysRevLett.105.266801
https://doi.org/10.1016/j.revip.2021.100051
https://doi.org/10.1038/nphoton.2014.94
https://doi.org/10.1016/j.physb.2012.03.053
https://doi.org/10.1364/AOP.4.000379
https://doi.org/10.1038/s41586-022-04583-7
https://doi.org/10.1103/PhysRevLett.132.173802
https://doi.org/10.1364/OE.16.017282
https://doi.org/10.1364/OPTICA.490176
https://doi.org/10.1103/PhysRevLett.123.163901
https://doi.org/10.1080/23746149.2023.2234136
https://doi.org/10.1103/PhysRevLett.58.2486
https://doi.org/10.1364/JOSAA.29.000032
https://doi.org/10.1088/2040-8986/acea92
https://doi.org/10.1103/PhysRevLett.125.253601
https://doi.org/10.1515/nanoph-2023-0624
https://doi.org/10.1103/PhysRevA.106.063712
https://doi.org/10.1103/PhysRevA.11.446
https://doi.org/10.1038/358565a0
https://doi.org/10.1016/0378-4363(76)90021-8
https://optoelectronics.eecs.berkeley.edu/ey2007opn183.pdf
https://optoelectronics.eecs.berkeley.edu/ey2007opn183.pdf
https://optoelectronics.eecs.berkeley.edu/ey2007opn183.pdf
https://optoelectronics.eecs.berkeley.edu/ey2007opn183.pdf
https://doi.org/10.1016/0003-4916(63)90299-9
https://doi.org/10.1103/PhysRevA.32.3231
https://doi.org/10.1038/s41377-021-00707-2

