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ABSTRACT: Time-varying media offer a platform to realize novel and exotic
wave effects, including photonic time crystals characterized by momentum band
gaps with exponential wave amplification. Here we focus on the quantum
electrodynamic properties of time-varying media, in particular, vacuum
amplification and squeezing. For that purpose, we present a theory of photon
pair generation in photonic time crystals that unveils the link between the
classical and quantum electrodynamical properties of these systems: that is, a
direct relation between reflectivity and pair generation through the squeezing
parameter. By working within a Hermitian framework, we are able to
characterize quantum pair generation processes in photonic time crystals,
showing how momentum bandgaps result in an exponential enhancement of
dynamical Casimir processes.
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■ INTRODUCTION
Time-varying media open new doors to controlling the
propagation of electromagnetic waves.1−4 When the optical
parameters of a material are modulated in time, a myriad of
new physical phenomena with no counterpart in spatially
structured systems is unraveled. These include temporal
refraction and reflection,5 frequency conversion,6−9 temporal
diffraction,10 a Fresnel light drag based on synthetic motion,11

spatiotemporal metasurfaces,12 or spontaneous emission from
stationary charges,13 among many others.14−20

The simplest example of a time-varying medium is a
temporal interface, in which the material’s optical properties
change values instantaneously.21−26 Such a system conserves
momentum, but not frequency, and vertical transitions
between different light cones take place.27,28 Lack of energy
conservation allows the incident (forward) wave to change
frequency and be amplified, but for momentum to be the same
before and after the switch, a backward wave emerges, also at a
new frequency. These waves are manifestations of time
refraction and reflection phenomena,29,30 which have been
observed for electromagnetic waves with transmission lines.5

Periodic temporal modulations result in a photonic time
crystal (PTC), which displays band structures with momentum
bandgaps where frequency is complex-valued.4,27 PTCs have
been experimentally realized in the microwave regime.31,32 For
their realization at higher frequencies, low Drude weight
semiconductors, such as indium tin oxide (ITO), are
promising candidates since they enable an ultrafast and
unprecedentedly strong modulation of the refractive
index.33−39

On the other hand, time varying media also offer a very rich
platform from the point of view of quantum electrodynamical
effects.20,40−45 Through the interaction between quantum
fluctuations and the dynamic properties of time-varying media,
these systems allow the amplification of the quantum
vacuum.46 In particular, pairs of photons can be spontaneously
created from the vacuum in a squeezed state at a temporal
interface41 through the dynamic Casimir effect.46−49 Interest-
ingly, time-varying media offer great control over vacuum
amplification processes: anisotropic temporal boundaries
provide angular control over vacuum amplification,43 while
quantum antireflection temporal coatings,50 the temporal
analogues of antireflection coatings, induce a frequency shift
of the quantum state while preserving photon statistics.44

Furthermore, synthetically moving gratings also result in
radiation from the quantum vacuum in an analogue to
Hawking radiation.20 However, a complete theory of photon
pair creation in PTCs that includes the bandgaps and the band
edges within a fully analytic model is lacking, owing to the
difficulty of dealing with the parametric instabilities that
emerge in these time-periodic systems.42,51−54

In this work, we present a theory of photon pair creation in
time-varying media in the PTC regime. For this purpose, we
first consider the classical electrodynamics of PTCs and show
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that the physical properties that characterize this regime
emerge when just a few temporal boundaries are considered.
Next, we introduce field quantization through a transfer matrix
approach. This allows us to describe photon pair generation
within a Hermitian theory that is fully analytical and that
includes the momentum bandgaps and the band edges. In
doing so, we provide a direct link between the properties of
classical light in PTCs, such as the reflectivity and quantum
amplification effects. This way, we describe photon pair
generation and squeezing in PTCs, showing how momentum
bandgaps result in an exponential enhancement of dynamical
Casimir processes.

■ METHODS
Let us consider a spatially homogeneous and isotropic medium
whose permittivity, ε(t), and thus refractive index n(t), is
periodically modulated in time, in a series of instantaneous
temporal interfaces. The refractive index alternatively takes two
values, na and nb; we shall name each of these intervals with a
constant refractive index a temporal slab or slab for
abbreviation. Each slab with n(t) = na lasts for a time ta,
while those with n(t) = nb do so for a time tb, with T = ta + tb
being the period of the PTC. Such a system is depicted in
Figure 1a. Since the medium is homogeneous and isotropic,
both the wavevector k and the polarization σ are conserved
quantities; however, as commented above, the frequency is
not, and vertical transitions take place between the light cones
of adjacent slabs.27 Applying temporal boundary conditions to
Maxwell equations (see Supporting Information for details),
we build up a transfer matrix and use it to connect the field
amplitudes of different n(t) = na temporal slabs,13 as
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Here, Bkσ
(N) is the amplitude of the magnetic induction flux

within the Nth na-type slab, with wavevector k and polarization
σ, and T is the transfer matrix. The T-matrix couples forward
(k) and backward modes (−k) at the 0th and Nth slabs and
guarantees that momentum is conserved. The transfer matrix
depends on the polarization σ of the mode only through a
change of sign in the off-diagonal elements of TN, which shall
be of no importance when calculating classical amplification
and photon pair creation (see SI). Therefore, and taking also
into account that the T-matrix does not couple modes with
different polarizations, we shall omit the σ subscript from now
on.
The eigenvalues λ± of the T-matrix are given by
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The parameter p, which depends on the wavenumber k,
controls whether the eigenvalues form complex conjugate pairs
with unit modulus, which happens for |p| < 1, or if they are
real-valued, which occurs when |p| > 1. Lastly, for the |p| = 1
case, the two eigenvalues become degenerate and we have an
exceptional point.55 On the other hand, from their definition
we see that λ+λ− = 1. This enables us to introduce a Floquet

Figure 1. (a) Sketch of the PTC: the basic unit of the transfer matrix is a nb slab, followed by a na slab. (b−d) Reflectivity, (logarithmic scale) for
N = 1 (b), N = 2 (c), and N = 5 (d) periods of the time modulation. (e−g) Probability for single photon pair creation from the vacuum, again for N
= 1 (e), N = 2 (f), and N = 5 (g) periods.
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frequency, ωF through λ± = exp(∓iωFT). From our previous
analysis we see that for |p| < 1 the Floquet frequencies are real-
valued, while for |p| > 1 they are complex. These k intervals
with complex ωF define the momentum bandgaps of the PTC,
in which exponential amplification of electromagnetic waves
takes place and that can be populated due to energy not being
conserved in these systems.56 As we will see, the T-matrix
enables us to study the emergence of the PTC regime as more
layers are added to the system.
From the realness of the solutions to Maxwell equations, as

well as the conservation of momentum, we can infer the
following properties of the transfer matrix (see SI): (TN)11 =
((TN)22)* and (TN)12 = ((TN)21)*, as well as det(T) = 1.
These properties enable us to write

=T r e( ) cosh( )N i
11

1 (2)

=T r e( ) sinh( )N i
12

2 (3)

where θ1 and θ2 are, respectively, the phases of forward and
backscattered waves, and r measures the strength of forward
amplification and backscattering. It can also be proved (see SI)
that

=T T
N T

T
( )
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sin( )

( )N
12

F

F
12
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Importantly, eq 4 only assumes the modulation to be
periodic, with its shape otherwise completely arbitrary. The
particular modulation profile chosen (either a step or
something smooth) determines only the dispersion relation
for ωF. Here we study the step as a proof of concept, since in
this case an analytical formula for ωF can be derived, as seen
above. Furthermore, the classical transmitivity and reflectivity
of the PTC are given by = | | =T r( ) cosh ( )N

11
2 2 and

= | | =T r( ) sinh ( )N
12

2 2 , respectively. As a consequence of
momentum conservation, = 1. From this constraint we
see 1, meaning the temporal modulation can only
enhance (or be transparent to) an incoming signal, but never
suppress it, and always at the expense of some backscattering.
Both the transmitivity and reflectivity depend on the

wavenumber k, the two values taken by the refractive index
na and nb, the duration of each slab ta and tb, and last, the
number of modulation periods, N. For the sake of simplicity,
we assume ta = tb, and na = 1 + α and nb = 1 − α, with − 1 < α
< 1 measuring the strength of the modulation.

■ RESULTS
Making use of the T-matrix method described above, we first
study the classical reflectivity of the PTC as more slabs/periods
are added to it. In Figure 1b−d we show the reflectivity for N =
1, 2, and 5 slabs as a function of both α and ck/Ω, where c is
the speed of light in the unmodulated medium (α = 0) and Ω
= 2π/T is the modulation frequency. The orange regions
correspond to a reflectivity larger than unity and, hence, to a
strong backscattering, while the blue ones exhibit a
comparatively weaker temporal reflection. For N = 1, see
panel (b), high backscattering regions appear for large values of
|α|. However, these orange regions progressively tend toward
the α = 0 horizontal line (in which = 0) as the number of
periods of the PTC increases [see panels (c) and (d) in Figure
1]. Hence, wave amplification can be achieved with a weaker

modulation if it is sustained for a longer time. As we will see,
this is related to the emergence of the PTC regime.
On the other hand, for N = 1 (Figure 1b), we see dark blue

lines with a negative slope in which the reflectivity vanishes:
these are the transparency lines of the temporal slab, which
satisfy (T)12 = 0, the antireflection temporal coating
condition,15,44,50 and come from destructive interference
between waves backscattered at t = ta and t = ta + T. As the
number of periods of the PTC increases, new transparency
lines start emerging, as seen in Figure 1c,d. These are the zeros
of (TN)12 (eq 4), which also come from the destructive
interference of waves backscattered at different time interfaces.
As seen in both panels, the more slabs added to the PTC, the
more transparency lines accumulate, as can also be inferred
from the N-dependence of the formula for (TN)12. We also see
how the figures become more symmetric with respect to the α
= 0 horizontal line as N increases; this is expected, since after
modulating for a sufficiently long time, the initial value of ε
(either na2 or nb2) becomes unimportant (unless the mode
happens to satisfy (T)12 = 0).
Thus, from our approach we can draw conclusions about the

emergence of the PTC regime with just a few temporal slabs, N
≥ 2. While some broad ranges of values of momentum entail
an exponential amplification of modes (orange areas in Figure
1c,d), the number of transparency lines, in which destructive
interference eliminates any previous amplification, increases
with N (dark blue areas in the plots). The first phenomenology
corresponds to the momentum band gaps, and the second
corresponds to the bands, as we will see more clearly below.
Next, we quantize the field within each temporal slab (see

SI). Employing canonical quantization, the photon operators
of different slabs can be shown to be connected through the
same transfer matrix as the classical fields. This connection
results in a Bogoliubov transformation of the operators along
the PTC,41,43,44

= +† †a r e a r e a( ) cosh( ) ( ) sinh( )k k k
N i i( ) (0) (0)1 2 (5)

= + †a r e a r e acosh( ) sinh( ) ( )k k k
N i i( ) (0) (0)1 2 (6)

where ak̂(N) annihilates a photon with wavevector k for t ∈ [NT,
NT + ta), and correspondingly for the creation operators. The
parameters r and θ1,2 come from the classical transfer matrix,
see eqs 2 and 3. On the other hand, and as can be seen from
eqs 5 and 6, such transformation between forward and
backward photon operators implement a squeezing oper-
ation.57−59 Thus, by defining the complex squeezing parameter

= r iexp( ) (7)

where we recall that r gives the classical reflectivity,
= rsinh ( )2 and where φ = θ1 − θ2, we can introduce the

following two-mode squeezing operator

= * † †S a a a a( ) exp( ( ) ( ) )k k k k
(0) (0) (0) (0) (8)

which acts as the unitary time-evolution operator in this theory
(SI). Thus, we see how each time interface results in the
generation of photon pairs, with forward and backward
photons being correlated in a squeezed state owing to
momentum conservation.41,43,44

Critically, our transfer matrix approach enables a full
analytical study of the quantum electrodynamics of the
whole band structure, including the bandgaps and the band
edges. This is in contrast to previous quantum mechanical
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descriptions of PTCs, which have so far either neglected the
bandgaps and band edges or dealt with them numerically with
FDTD methods,42 owing to the difficulty of including them
within a Hermitian theory.54,55

With our framework, we can compute photon transition
probabilities. These can be obtained from the matrix elements
of the squeezing operator in the number state basis,

| | = + +

=

n m S n m
e r

r

C r

, ( ) ,
( tanh( ))

(cosh( ))

( sinh ( )) ,

k k k k

i n n

n m

l n n

n m

n m n m
l l

n n m m

1

max(0, )

min( , )

, ; ,
2

,
(9)

where

= ! ! ! !
! + ! ! !

C n m n m
l l n n n l m l( ) ( ) ( )n m n m

l
, ; ,

(10)

and where the Kronecker delta in eq 9 ensures momentum
conservation. The probability for the transition |nk, m−k⟩ → |nk′,
m−k′ ⟩ is then given by Prob(m,n;n′,m′) = |⟨nk′,m−k′ |Ŝ(ζ)|
nk,m−k⟩|2. Also, as was the case for the transfer matrix formulas,
eq 9 applies to any periodic modulation, with details of the
modulation entering through the dispersion relation and the
squeezing parameter.
In Figure 1e−g, we plot the probability of creating a single

photon pair starting from the vacuum state, i.e., |⟨1k,1−k|Ŝ(ζ)|
0k,0−k⟩|2, for the same values of N, as considered in Figure 1c,d.
For the case of a single temporal slab, N = 1, a correspondence
between the classical reflectivity of the PTC, = rsinh ( )2 , and
the quantum transition probabilities between number states
can be inferred by comparing Figure 1b and e. As may be
expected intuitively, we find a connection between strong
backscattering and high photon pair creation probabilities,
while weak backscattering implies low photon pair creation
probabilities. However, for N = 2 this correspondence between
the classical and quantum quantities starts to disappear. In
particular, the regions of largest reflectivity and sufficient large
|α| in Figure 1c do not correspond to regions of the largest
photon pair creation probability, Figure 1f, but to regions of a
very low one. Results for a larger number of slabs (N = 5)
show that this effect is even more pronounced (compare
Figure 1d and g), and the (yellow) pockets of high pair
creation probability become smaller and migrate toward lower
values of |α|. Since our theory is unitary, there cannot be a
probability leakage to a surrounding environment; as we will
show below, what is happening is that the probability, which is
conserved, is migrating toward higher order processes |0k, 0−k⟩
→ |mk, m−k⟩, for m > 1, thus reducing the probability of
creating a single pair (m = 1). Interestingly, the photon pair
creation probability in PTCs is quite broad in the photon free-
space frequency ck/Ω. This can be understood from the fact
that in time-varying media energy is not conserved and that,
contrary to the optical parametric amplifier,60,61 there is no
frequency matching to be made between the pump and the
amplified waves.
We now study in detail the dependence of the photon

transition probabilities on the number of photon pairs created.
Figure 2 shows, for a fixed value of α = 0.5 and for an
increasing number of PTC periods (N = 1, 2, 3, 4, and 5), the
reflectivity (a) and the transition probabilities for m = 0, 1, 2,
and 3 pairs (b). In the lower-most panel of each column, we

plot the dispersion relation of the PTC, from the Floquet
frequencies obtained from the T-matrix. We plot Re(ωF) in
blue and Im(ωF) in orange so that the momentum band gaps
can be clearly identified. By looking at the reflectivity plots as
N increases (a) and considering the PTC dispersion relation, it
is clear that the reflectivity exponentially increases with the
number of slabs within the momentum bandgaps for values of
N as low as 2 or 3. The nonvanishing imaginary part of the
Floquet frequency is responsible for this and results in larger
amplification for k values around ∼0.75Ω/c due to the larger
value of Im(ωF) in this gap than in the other two shown in the
figure. Conversely, within the bands, the reflectivity stays lower
and the addition of transparency lines where 0 as N
increases can be clearly seen.
Figure 2b shows photon transition probabilities from the

vacuum state calculated with eqs 9 and 10. For all values of N,
we see that the photon pair creation probability behaves very
differently depending on whether k belongs to a band or a gap
(see the bottom panel for the dispersion relation). Let us first
focus on values of momentum that lie within the band of the
PTC: it is clear that, independent of N, and for a fixed k,
photon transition probabilities decrease as m increases.
However, the particular shape of the probability curves greatly
depends on N, with all the lines displaying more oscillations as
the number of slabs increases, related to the behavior of the
reflectivity in Figure 2a. In particular, there are a series of k

Figure 2. Evolution of PTC classical (a) and quantum (b) properties
with a number of temporal slabs for a fixed modulation strength (α =
0.5). (a) Reflectivity, , is shown in the top 5 panels (N = 1, 2, 3, 4,
and 5, from top to bottom; saturation has been set to −5). (b) The m-
pair (m = 0, 1, 2, and 3) photon pair creation probability starting from
the vacuum state is shown in the top panels, corresponding to N = 1,
2, 3, 4, and 5 slabs, as in panel (a). In both columns, the lowermost
panels show the Floquet frequency versus the wavevector (first
Brillouin zone), with the real part of ωF in blue and the imaginary part
in orange.
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values where the probability of no transition (m = 0) is
maximum (equal to unity), while all of the other transitions (m
≥ 1) are zero. These points originate from the transparency
conditions of the PTC, where (TN)12 = 0. In between these
points, all the photon pair creation probabilities show maxima,
with the single pair case (m = 1) reaching a value of up to
∼0.25. However, as we have discussed, the number of
transparency lines increases with N; therefore, sustaining the
periodic modulation for a longer time makes the PTC
transparent to more waves. Thus, it is not always optimal to
have long lasting modulations in order to maximize the
probability of photon pair creation for a momentum value
within the band, since any mode with real Floquet frequency
will eventually pass through the modulation unperturbed for
some value of N and periodically thereafter (with the period
itself being k-dependent). Moreover, since the separation
between transparent modes (those satisfying (TN)12 = 0) goes
like ΔωF ∼ 1/N (SI), in the N ≫ 1 limit we have ΔωF → 0.
Therefore, in the deep photonic time crystal regime, the
separation between any two consecutive modes transparent to
the time modulation vanishes, with the latter becoming
transparent to all band modes in the N ≫ 1 limit.
Now, focusing on the bandgaps, we see that all the

probabilities get progressively squashed toward zero as N
increases and become vanishingly small, with seemingly no
photons being created inside the momentum gaps, for N ≥ 3.
However, such a conclusion would ignore that higher order
transitions (m ≥ 4) take place and become more probable as
the squeezing strengthens (for complex ωF, r ∼ N for N ≫ 1),
with lower order transitions necessarily becoming less
probable. Furthermore, for a given squeezing strength, r, we

have that Prob(0,0;m,m) = (tanhm(r)/coshm+1(r))2, which
enables us to write

=
+ +Prob(0, 0; m, m)

(1 )

m

m 1 (11)

which decays monotonously with m for fixed . Also,
Prob(0,0;m,m) → 0 as , such as within the band
gaps, for any value of m (a more in-depth discussion is found in
the SI). Therefore, the m-photon pair creation probability
becomes more and more uniform within the bandgaps as more
periods are added to the PTC and the generation of pairs of
photons becomes asymptotically uniform with m in the N ≫ 1
limit. Hence, the photon number becomes, on average, very
large, with all transitions between number states being equally
probable, and although photons are indeed created, there is
uncertainty on how many. Finally, we note that in Figures 1
and 2 we focus on values of the number of slabs of up to N = 5,
as we find that these values, although similarly low, already
display all the phenomenology of PTCs. Results for larger
values of N are shown in the SI. The quantum statistics of the
modes are also discussed in the SI, following refs 62−64.
So far, we have studied the classical and quantum

amplification that occurs in these time-periodic systems and
discussed the connection between them. We now make such a
connection completely explicit by showing that the average
photon number extracted from the vacuum actually coincides
with the classical reflectivity of the PTC. For that purpose, we
calculate the mean photon number at slab N, ⟨n̂k(N)⟩vac =
⟨(ak̂(N))†ak̂(N)⟩vac, through the Bogoliubov transformations given
by eqs 5 and (6). The expectation value is calculated in the

Figure 3. (a) Evolution of the average photon number extracted from the vacuum, ⟨n̂k(N)⟩vac, with the number of periods of the time modulation, N.
The modulation strength is α = 0.5, and the saturation has been set to the lowest value −10 for a better visualization. In the right panels we plot
⟨n̂k(N)⟩vac for ck/Ω = 0.16 (b), 0.27 (c), 0.55 (d). All three values lie within the bands: the first two belong to the leftmost one, while the third one
belongs to the second band starting from the left.
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vacuum state annihilated by the initial field operators (i.e.,
ak̂(0)|vac⟩ = 0). This procedure for computing expectation
values is the one employed in the Heisenberg picture, in which
only the operators evolve in time, while the wave function
remains unchanged with respect to its initial condition.
Proceeding like this, we arrive to = =n rsinh ( )k

N( )
vac

2 .
Thus, we show that the classical reflectivity coincides with the
mean number of photon pairs generated through quantum
vacuum amplification. We once again emphasize that this result
is independent of the chosen modulation profile as long as it is
periodic in time.
In Figure 3a we plot =nk

N( )
vac for different values of the

wavenumber, for a varying number of periods N between 1 and
10, and for a fixed value of α = 0.5. The orange regions of the
contour plot correspond to the momentum bandgaps of the
band structure, while the white to blue ones are the band
modes with real Floquet frequency. In the band gap, quantum
vacuum amplification is much stronger, and the number of
photons grows exponentially with the number of periods N.
This can be seen explicitly from the analytical expression for
(TN)12 given by eq 4. By assuming complex-valued ωF in the
latter and taking the limit N ≫ 1, we arrive at the asymptotic
expression (TN)12 ∼ exp(N Im(ωF)T). Upon squaring its
absolute value, we find ⟨n̂k(N)⟩vac ∼ exp(2N Im(ωF)T) and see
that, indeed, there is exponential growth in the mean photon
number inside the momentum gaps. Our previous analysis
assumes Im(ωF) is positive, but this is not a problem: since the
sine function in eq 4 becomes a hyperbolic sine for the case of
complex ωF, both Im(ωF) > 0 and Im(ωF) < 0 are accounted
for. Thus, in the N ≫ 1 limit, the Im(ωF) > 0 term dominates
and is the one to appear in the asymptotic formula discussed
above.
On the other hand, a glance at the white to blue colored

areas in Figure 3a shows that the phenomenology is different
for modes within the band in which the mean photon number
is much smaller. From a classical point of view, this has to do
with the fact that waves within the bands do not interfere
constructively enough after being scattered by the temporal
interfaces, resulting in a classical reflectivity and hence, in a
mean photon number ⟨n̂k(N)⟩vac, that remains bounded with N
(see eq 4). Additionally, the magnitude of the average photon
number is larger by at least 1 order of magnitude in the first
(fundamental) and fourth bands than in the second and third
ones. Looking at the band structure presented in Figure 2, we
see that in these second and third bands dispersion is much
stronger and the (k,ωF) curve deviates more from the linear
free space one, owing to the influence of the neighboring
momentum gaps. This suggests that, in the scenario in which
ωF is real-valued, a matching between k and ωF (except for a
multiplicative constant with dimensions of velocity) favors
vacuum quantum amplification. This is better seen in Figure
3b−d, in which we plot ⟨n̂k(N)⟩vac for ck/Ω = 0.16, 0.27, and
0.55, respectively. The first two values of momentum lie within
the first (fundamental) band (b,c) while the third one belongs
to the second band (c). We see that the photon number
oscillates with N and that, for ck/Ω = 0.16 (b) and 0.55 (d), it
exhibits a periodic frequency beat. This beating is rooted in the
competition between constructive and destructive interference
between waves backscattered at different temporal interfaces,
and it begins to disappear as we approach the momentum
bandgap, as can be seen in Figure 3c. This can be understood
from the fact that in the bandgaps constructive interference

dominates and classical waves and vacuum quantum
amplification become exponentially amplified. Mathematically,
this frequency beat comes from the interplay between the
Floquet frequency ωF, present in eq 4, and the discrete nature
of the N variable, associated with the modulation frequency Ω:
the first one determines the oscillations of the reflectivity and
the second one determines the sampling of the latter. It is
precisely this mismatch between ωF and Ω that results in these
modulated oscillations in the classical reflectivity and, thus, in
the average photon number. It is also clear from Figure 3c that
the mean photon number in the second band is almost 1 order
of magnitude smaller than in the fundamental one due to its
strong dispersion. Additionally, the maximum value taken by
the average photon number increases as we get closer to the
bandgap, as seen in Figure 3d. The latter can be seen explicitly
from eq 4: the maximum value taken by the classical reflectivity
is = | |T T( ) /sin ( )max 12

2 2
F , which diverges whenever

ωFT → nπ, which is the case at the band edges. Moreover,
when ωF = nπ/T, the mismatch between the Floquet frequency
and the modulation one disappears and so does the frequency
beat. Hence, for those modes within the bands, the closer to
the band edges, the larger the number of photon pairs created
and the weaker the frequency beat since constructive
interference begins to build up (see SI for a more detailed
discussion). Lastly, ⟨n̂k(N)⟩vac vanishes identically for all values
of N for ck/Ω = 0.5 and 1. These values correspond to
(T)12 = 0, in which the period of the oscillations in the mean
photon number matches 2π/Ω, which is the period of the time
modulation.

■ CONCLUSIONS
We have introduced a theory of photon pair creation in
photonic time crystals and unveiled the connection between
their classical electrodynamical properties, through their
reflectivity, and quantum vacuum amplification processes by
means of the squeezing parameter. Temporal interfaces result
in dynamical Casimir processes, whereby pairs of forward and
backward propagating photons are created from the quantum
vacuum in a squeezed state, owing to momentum conservation.
Critically, our approach provides a quantum treatment of the
PTC regime within a Hermitian framework that is fully
analytic, allowing us to fully treat modes within the momentum
bandgaps. We also demonstrate that for the case of vacuum
quantum amplification the average photon number coincides
with the classical reflectivity of the photonic time crystal.
Furthermore, we show that within the momentum bandgaps,
the mean number of photons extracted from the vacuum grows
exponentially with the number of periods N, while for band
modes, it oscillates with a frequency beat and remains
bounded. Moreover, since the formulas we have used apply
to any periodic modulation, the phenomenology herein
described will too be observed beyond the step case. Also, a
step constitutes the building block for smoother variations, and
it can be replicated with a tanh(t/τ) profile for τ ≲ T/10,
where T = 2π/ck.45 Lastly, even though we have consider the
case of a homogeneous system, classical and quantum
amplification of waves would also be observed for a finite
size system, as seen in refs 27, 65, and 66. Understanding
quantum vacuum amplification in time varying media is
important both from a fundamental perspective46 and for its
practical implications in the generation of quantum light
sources.42,67−69
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light in dispersive nanophotonics. Phys. Rev. Lett. 2021, 127, 053603.
(68) Dikopoltsev, A.; Sharabi, Y.; Lyubarov, M.; Lumer, Y.; Tsesses,
S.; Lustig, E.; Kaminer, I.; Segev, M. Light emission by free electrons
in photonic time-crystals. Proc. Natl. Acad. Sci. U. S. A. 2022, 119,
e2119705119.
(69) Bugler-Lamb, S.; Horsley, S. Polariton excitation rates from
time dependent dielectrics. Journal of Physics B: Atomic, Molecular and
Optical Physics 2016, 49, 235502.

ACS Photonics pubs.acs.org/journal/apchd5 Article

https://doi.org/10.1021/acsphotonics.4c02293
ACS Photonics 2025, 12, 1873−1880

1880

https://doi.org/10.1364/OL.402856
https://doi.org/10.1364/OL.402856
https://doi.org/10.1364/OL.402856
https://doi.org/10.1063/5.0042567
https://doi.org/10.1063/5.0042567
https://doi.org/10.1063/5.0042567
https://doi.org/10.1103/PhysRevResearch.6.013334
https://doi.org/10.1103/PhysRevResearch.6.013334
https://doi.org/10.1103/PhysRevA.98.053852
https://doi.org/10.1103/PhysRevA.98.053852
https://doi.org/10.1103/PhysRevLett.128.064501
https://doi.org/10.1103/PhysRevLett.128.064501
https://doi.org/10.1038/nphys3810
https://doi.org/10.1038/nphys3810
https://doi.org/10.1140/epjst/e2016-60258-8
https://doi.org/10.1140/epjst/e2016-60258-8
https://doi.org/10.1063/1.4928659
https://doi.org/10.1063/1.4928659
https://doi.org/10.1063/1.4928659
https://doi.org/10.1126/sciadv.adg7541
https://doi.org/10.1126/sciadv.adg7541
https://doi.org/10.1038/nphoton.2017.13
https://doi.org/10.1364/OL.42.003225
https://doi.org/10.1364/OL.42.003225
https://doi.org/10.1038/s41578-019-0120-5
https://doi.org/10.1038/s41578-019-0120-5
https://doi.org/10.1038/s41467-021-21332-y
https://doi.org/10.1038/s41467-021-21332-y
https://doi.org/10.1103/PhysRevLett.120.043902
https://doi.org/10.1103/PhysRevApplied.18.054067
https://doi.org/10.1515/nanoph-2023-0126
https://doi.org/10.1103/PhysRevA.62.033805
https://doi.org/10.1103/PhysRevA.62.033805
https://doi.org/10.1103/PhysRevA.68.043801
https://doi.org/10.1103/PhysRevA.68.043801
https://doi.org/10.1126/science.abo3324
https://doi.org/10.1515/nanoph-2022-0491
https://doi.org/10.1515/nanoph-2022-0491
https://doi.org/10.1002/lpor.202200720
https://doi.org/10.1002/lpor.202200720
https://doi.org/10.1002/lpor.202200720
https://doi.org/10.1103/PhysRevResearch.6.043320
https://doi.org/10.1103/PhysRevResearch.6.043320
https://doi.org/10.1103/RevModPhys.84.1
https://doi.org/10.1103/RevModPhys.84.1
https://doi.org/10.1103/RevModPhys.84.1
https://doi.org/10.1038/nature10561
https://doi.org/10.1038/nature10561
https://doi.org/10.1073/pnas.1212705110
https://doi.org/10.3390/physics2010007
https://doi.org/10.1364/OPTICA.381175
https://doi.org/10.1364/OPTICA.381175
https://doi.org/10.1109/PROC.1963.2566
https://doi.org/10.1109/PROC.1963.2566
https://doi.org/10.1109/PROC.1967.5775
https://doi.org/10.1109/PROC.1967.5775
https://doi.org/10.1364/OE.476961
https://doi.org/10.1364/OE.476961
https://doi.org/10.48550/arXiv.2404.13287
https://doi.org/10.48550/arXiv.2404.13287
https://doi.org/10.1080/00018732.2021.1876991
https://doi.org/10.1021/acsphotonics.4c00607?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsphotonics.4c00607?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/978-3-642-19409-2_18
https://doi.org/10.1103/PhysRev.130.2529
https://doi.org/10.1103/PhysRevA.40.2494
https://doi.org/10.1103/PhysRevA.40.2494
https://doi.org/10.1103/PhysRevResearch.7.013120
https://doi.org/10.1103/PhysRevResearch.7.013120
https://doi.org/10.1103/PhysRevLett.125.127403
https://doi.org/10.1103/PhysRevLett.125.127403
https://doi.org/10.1103/PhysRevA.107.063501
https://doi.org/10.1103/PhysRevA.107.063501
https://doi.org/10.1103/PhysRevLett.127.053603
https://doi.org/10.1103/PhysRevLett.127.053603
https://doi.org/10.1073/pnas.2119705119
https://doi.org/10.1073/pnas.2119705119
https://doi.org/10.1088/0953-4075/49/23/235502
https://doi.org/10.1088/0953-4075/49/23/235502
pubs.acs.org/journal/apchd5?ref=pdf
https://doi.org/10.1021/acsphotonics.4c02293?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

