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Abstract: A new approach for the spatial and temporal modulation of
electromagnetic fields at terahertz frequencies is presented. The waveguid-
ing elements are based on plasmonic and metamaterial notions and consist
of an easy-to-manufacture periodic chain of metallic box-shaped elements
protruding out of a metallic surface. It is shown that the dispersion relation
of the corresponding electromagnetic modes is rather insensitive to the
waveguide width, preserving tight confinement and reasonable absorption
loss even when the waveguide transverse dimensions are well in the
subwavelength regime. This property enables the simple implementation
of key devices, such as tapers and power dividers. Additionally, direc-
tional couplers, waveguide bends, and ring resonators are characterized,
demonstrating the flexibility of the proposed concept and the prospects for
terahertz applications requiring high integration density.
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1. Introduction

Electromagnetic radiation in the terahertz (THz) regime is a central resource for many sci-
entific fields such as spectroscopy, sensing, imaging, and communications. We are currently
witnessing the take off of THz technologies [1, 2, 3] with applications as diverse as astron-
omy [4], medicine [5], or security [6]. Within this general endeavour, the building of compact
THz circuits would stand out as an important accomplishment. This requires the design of THz
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waveguides carrying tightly confined electromagnetic (EM) modes, preferably with subwave-
length transverse cross section. Besides circuit integration and compact device design, sub-λ
localization may be advantageous for waveguide THz time-domain spectroscopy [7] and non-
diffraction-limited imaging [8]. Although a number of structures has been put forward, none
of them passes all the following requirements. First, structures should be easily manufactured
and, if possible, planar and monolithic. Second, as above motivated, subwavelength transverse
size is also needed. Finally, absorption and bend losses should be small, and the waveguides
sufficiently versatile for the design of key functional devices. Particularly important are in/out-
couplers since they work as the interface to external waves. In this context, compact tapers able
to laterally compress the modes down to the sub-λ level seem essential.

With these requirements in mind it is illuminating to compare optical waveguides with those
proposed for the THz range. Optical fiber modes exhibit a cut-off diameter such that fibers can-
not be of subwavelength size and, moreover, modal size grows as this cut-off is approached.
In the THz regime dielectric wires [9] meet the same limitation. The photonic crystal fiber
approach [10] shares the inability of sub-λ confinement, and low-index discontinuity waveg-
uides [11] perform better regarding modal size but are neither planar nor monolithic. Metals are
an alternative when operating at optical frequencies because surface plasmon polaritons (SPPs)
propagating on flat metal-dielectric interfaces provide subwavelength confinement in the direc-
tion perpendicular to the surface. This metallic route has been tried for the THz regime, but
the corresponding EM modes, known as Zenneck or Sommerfeld waves, loose their confined
character at these frequencies [12, 13].

Geometrically-induced surface plasmons [14] supported by periodically corrugated metallic
surfaces overcome the low localization of Zenneck waves. A number of waveguiding structures
based on this concept has been already suggested [15, 16, 17, 18], but they have failed to meet
simultaneously all the above mentioned requirements. In this work we present structures based
on this metamaterial approach that, thank to their superior properties, fulfill the requisite easy
fabrication, subwavelength confinement, low loss, and device flexibility.

2. Modal properties of domino plasmons

The basic structure consists of a periodic arrangement of metallic parallelepipeds standing on
top of a metallic surface and resembling a chain of domino pieces, see inset of Fig. 1(a). In
contrast with corrugated wires [16], this is a planar and monolithic system and should not
pose significant manufacturing problems, its geometry being much simpler than corrugated V-
grooves [17] or wedges [18]. The properties of its guided modes, hereafter referred to as domino
plasmons (DPs), are mainly controlled by the geometric parameters defining the dominoes, i.e.,
periodicity d, parallelepiped height h, lateral width L, and inter-domino spacing a.

First, the basic properties of DPs are described starting with the dispersion relation. To gain
physical insight we model the metal as a perfect electric conductor (PEC). Later, realistic metals
will be considered, letting us to discern what is the frequency regime where DPs display the
most promising behaviour. The numerical technique is described in the Methods section. Due
to the simple scaling properties of PECs, we choose the periodicity d as the length unit. The
value of a is not critical for the properties of DPs and is set as a = 0.5d in this work. DP bands
present a typical plasmonic character, i.e., they approach the light line for low frequencies
and reach a horizontal frequency limit at the edge (kedge = π/d) of the first Brillouin zone
(Fig. 1(a), notice that only fundamental modes are plotted). In all cases DP modes lie outside the
light cone, a fact that explains their non-radiative character. While the limit frequency of SPPs
for large k is related to the plasma frequency, the corresponding value for DPs is controlled
by the geometry. The influence of the height h is clear: the band frequency rises for short
dominoes (h = 0.75d, blue line) as compared with that of taller ones (h = 1.5d, black line).
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Fig. 1. Modal properties of domino plasmons. (a), Dispersion relation of DPs for various
lateral widths L. Black and grey (blue) lines correspond to height h = 1.5d (h = 0.75d).
Dashed line stands for infinitely wide dominoes (L = ∞). Inset: diagram of the domino
structure and geometric parameters (the arrow depicts the mode propagation direction). (b)
and (c), Modal shape of DPs: transverse (xy) electric field (arrows) and horizontal (xz)
electric field (color shading) for DPs of height h = 1.5d and widths L = 0.5d (b) and
L = 8d (c). (d) and (e), Same as in panels (b) and (c), but now for a 1D array of free-
standing metallic rods (h = 3d). The designations even and odd label the symmetries of the
modes with respect to the corresponding white lines. The fields in (b)-(d) are plotted for
d/λ = 0.125, marked with a red open dot in (a), the white bar in (c) being the wavelength
(valid for panels (b)-(d)). The field in (e) is computed for the same k as in panels (b)-(d),
corresponding now to d/λ = 0.056. In panels (a)-(e) metals are modelled as PECs. (f), DP
modal effective index as a function of lateral dimension L in units of wavelength. Various
operating frequency regimes are considered: λ = 1.6mm (red), λ = 0.16mm (green), λ =
0.016mm (blue), and λ = 1.5 μm (magenta). To compute panel (f), a realistic description
of the metals is used. As described in the main text, the periodicity d is different for the
various operating frequencies, and h = 1.5d, a = 0.5d, L = 0.5d, . . . ,24d.
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This can be understood as follows. When L = ∞, dominoes become a one-dimensional (1D)
array of grooves which supports a geometrically-induced plasmon mode. Its dispersion relation
is represented, for h = 1.5d, with a dashed line in Fig. 1(a). An approximation for the dispersion
relation in this limit, neglecting diffraction effects and for λ >> d, is [19]

k = k0

√
1+

(a
d

)2
tan2(qyh), (1)

where k is the modal wave vector, k0 = 2π/λ , and the y component of the wave vector inside
the grooves, qy, is related with the corresponding x and z components by q2

x +q2
y +q2

z = k2
0. The

EM fields inside the grooves are independent of x and z for the chosen longitudinal polarization
and thus qx = qz = 0, qy = k0. This means that Eq. (1) presents an asymptote for k0h = π/2 or, in
other words, for a normalized frequency d/4h. Such dependence with h explains the behaviour
observed in Fig. 1(a). For h = 1.5d, the value chosen in the rest of the paper, this estimation
for the limit normalized frequency provides a figure of about 0.17, not far from the numerically
computed value of 0.14.

The most striking characteristic of DPs is their behaviour when the lateral width L is changed.
All bands in the range L = 0.5d, . . . ,3d lie almost on top of each other (Fig. 1(a), grey curves).
In other words, the modal effective index, neff = k/k0, is rather insensitive to lateral width.
If we now look at the numerically computed dispersion relations of Fig. 1(a) in the light of
Eq. (1), it seems that qy ≈ k0 for a wide range of L. Remarkably, the bands remain almost
unchanged even for L = 0.5d, whose modal size is well inside the subwavelength regime, as
observed in the field distribution plotted in panel (b) for a narrow structure (L = 0.5d). Notice
that the white bar representing λ in panel (c) is valid for panels (b)-(d), and the modal size,
defined as the FWHM of the modulus of the Poynting field distribution, is 0.21λ for panel
(b). The described behaviour is to be contrasted with that of conventional plasmonic modes
in the optical regime for which sub-λ lateral confinement is not a trivial issue [20]. When the
lateral size of the structure supporting such modes becomes subwavelength, either the modal
size grows, or the effective index increases. This is best illustrated for a free standing metallic
stripe [21]. A stripe of large lateral width essentially supports an SPP mode but, as this width is
decreased and becomes sub-λ , the plasmonic modes that are not cut-off become either highly
confined but quite lossy, or otherwise highly delocalized.

The insensitivity of DPs to lateral size, which constitutes the foundation of some of the
devices presented later, can be linked in an intuitive way to the structure geometry. The key
role played by the metallic substrate can be explained by comparison of DPs and the modes of
a Yagi-Uda structure, i.e., a periodic array of free standing metallic rods [22, 23, 24]. For small
L the dispersion of DPs of height h is identical to that of the fundamental mode of a Yagi-Uda
structure of height 2h, and the field of the DP is simply the upper half of the fundamental mode
of a rod array of height 2h, see Figs. 1(b) and (d). For large L this correspondence does not
hold anymore, as demonstrated by comparison of panels (c) and (e) which display completely
different symmetries. For dominoes, a mode with the same symmetry as the Yagi-Uda mode
shown in panel (e) is forbidden because the horizontal electric field has to be zero at the metallic
ground. This mode suppression is critical because the frequency of the fundamental mode of a
Yagi-Uda structure, which is essentially controlled by the length of the long axis of the rods,
is very sensitive to the lateral width L, being very different for short vertical rods and long
horizontal rods. It is similarly important that the air gaps between the dominoes are laterally
open. Let us imagine that, instead of being open, they were laterally closed by PEC walls.
Since the electric field inside the gap points longitudinally from one domino to the next one,
it should then vanish at both PEC lateral walls, giving a cosine-like x dependence. It is then
clear that the mode frequency should increase when the lateral size L is decreased, arriving
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to the conclusion that the modes of such an structure have L-sensitive bands. In contrast, for
DPs the boundary conditions at the laterally open gaps are more akin to perfect magnetic walls,
and the corresponding field is approximately x-independent inside the air gaps even when L →
0. Our description considers infinitely extended metallic substrates, but realistic structures do
not require so large substrates due to the lateral confinement of DPs. For instance, Fig. 1(b)
suggests that for L = 0.5d a substrate of lateral size about 2λ should be sufficient to achieve
the mentioned effects.

Let us scrutinize in more detail the role played by the lateral dimension L, considering now
realistic metals and paying attention to the spectral regime. The periodicity d is chosen to set
the operating wavelength in the desired region of the EM spectrum, and L is varied in the range
L = 0.5d, . . . ,24d, while the remaining parameters are kept constant (a = 0.5d, h = 1.5d).
Aluminum is selected for low frequencies, where metals behave almost like PECs. In order to
work at λ = 1.6mm, providing an operating angular frequency of the order of 1 THz, we first
consider d = 200 μm. The evolution of the modal effective index as a function of the lateral
dimension normalized to the wavelength is plotted in Fig. 1(f). The curves corresponding to
a PEC (black line) and aluminum at λ = 1.6mm (red line) are, as expected, almost identical.
We can now quantify the sensitivity of the effective index to L, its variation being only about
12% even when L goes from L = ∞ to L = 0.5d = λ/16, well inside the sub-λ regime. The
rapid variation of neff when L << d can be understood with the help of Eq. (1). In this limit the
EM fields start to be z-dependent inside the air gaps, as verified by inspection of the fields (not
shown here), letting us to conclude that qz �= 0 and consequently qy < k0. Then, if we assume
that Eq. (1) is still valid in this limit, it predicts that the modal effective index is reduced when
L → 0. To investigate the performance of DPs at higher frequencies, the structures have been
scaled down by factors 1/10 and 1/100. The fact that the curves corresponding to λ = 0.16mm
(green line) and λ = 0.016mm (blue line) do not lie on top of the previous ones is a signature
of the departure of aluminum from the PEC behaviour. Nevertheless, even at λ = 0.016mm,
the variation of the effective index is still smaller than 15%, a property that can be exploited for
taper design in the far infrared, albeit with slightly reduced performance as compared with the
THz case. When the operating frequency moves to the telecom regime (λ = 1.5 μm, magenta
line) the variation of the effective index is much larger (about 38%). Let us mention in passing
that, for this wavelength, we have used gold because it has lower loss than aluminum, and that
the geometric scaling had to be different (the periodicity is now d = 0.13 μm) because with the
same simple scaling as before no DP mode is supported due to the value of the permittivity
of gold. The important message of panel (f) is that, although a variation of neff begins to be
noticeable when the lateral dimension L goes below λ/2, DP bands are fairly insensitive to
L in the range L = 0.5d, . . . ,24d when operating at low frequencies. Such property has, to
our knowledge, never been reported for geometrically-induced plasmon modes in corrugated
wedges, channels, or wires.

Now that we have identified the THz range as the most promising operation regime, we will
characterize the corresponding absorption (ohmic) and bending losses. Figure 2(a) displays the
propagation length (� = [2Im(k)]−1) of DPs as a function of wavelength for various widths L
(d = 200 μm for all curves). The only source of damping in the domino structure is absorption
by the metal as no radiation losses occur in such straight waveguide. Propagation length is very
short for small λ , when the Brillouin zone edge is reached, but it rises for increasing wavelength
as the dispersion curve approaches the light line. Several lateral widths L are considered and it
is observed that DPs in structures of smaller L travel longer distances before being damped. In
the limit L → 0 the propagation length grows and the penetration of the EM field in the vacuum
surrounding the structure grows, as expected from the effective index behaviour observed in
Fig. 1(f). Nevertheless the DP modal size decreases when L is reduced from L = ∞ to L = 0.5d
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Fig. 2. Absorption (ohmic) and bend (radiation) losses. (a), Normalized propagation length
of DPs in rectilinear guides of various L as a function of λ (h = 1.5d, a = 0.5d, d =
200 μm). (b), Bend loss of DPs for three radii of curvature as a function of λ (h = 1.5d,
a = 0.5d, L = 0.5d, d = 200 μm). Inset: Poynting vector field (modulus) distribution in
a horizontal plane slightly above (30 μm) the height of the bend (top view). The chosen
wavelength and radius of curvature are marked with an open black dot in panel (b). The red
solid vertical lines in both panels indicate the operating wavelength used later, λ = 1.6mm.

due to the shrinkage of the structure lateral size. We have compared DPs, with the modes sus-
tained by corrugated channels (channel plasmons, CPs) and wedges (wedge plasmons, WPs).
For standard geometric parameters providing similar bandwidth in all three cases [17, 18], it
is observed that the modal size of DPs is smaller than that of CPs but larger than that of WPs.
As it was to be expected, the propagation length of DPs lies also between those of WPs and
CPs, the shorter one corresponding to WPs. The radiation losses occurring in a waveguide of
L = 0.5d with a 90 degree bend are analyzed in panel (b). In this case the metal is modelled
as a PEC for easier evaluation of radiation losses. Data for three radii of curvature of the bend,
R = λ/2,λ ,2λ , are presented. In all three cases, losses are low for small λ but they grow as the
wavelength is increased and the modal wave vector approaches k0. The dependence with the
radius of curvature of the bend is not surprising either, radiation losses being higher for smaller
radius of curvature. Consideration of absorption and bending losses suggests that λ = 1.6mm
can be an appropriate operating wavelength. For λ = 1.6mm and L = 0.5d = 100 μm, the modal
size is 0.34mm, i.e., about λ/5. The propagation length is about 20λ , much larger than the size
of the devices presented later, and the bend loss for R = λ is reasonably low, about 10%. Notice

#120925 - $15.00 USD Received 3 Dec 2009; revised 30 Dec 2009; accepted 30 Dec 2009; published 5 Jan 2010
(C) 2010 OSA 18 January 2010 / Vol. 18,  No. 2 / OPTICS EXPRESS  760



(b)

(c)

(d)

(e)

λ=1.6mm
(a)

λ=
1.

6m
m

θ=31°

in
pu

t
p

0 3 4 9
Normalized electric field

y

x

Fig. 3. Subwavelength concentration of a domino plasmon. (a), Poynting vector field (mod-
ulus) distribution in a horizontal plane slightly above (30 μm) the height of the tapered
domino structure (top view). The lateral width is tapered from Lin = 16d to Lout = 0.5d
(h = 1.5d, a = 0.5d, d = 200 μm, λ = 1.6mm). (b)-(e), Amplitude of electric field in trans-
verse vertical planes (longitudinal views) at the locations shown by white dashed lines in
(a). The white bar in (b) showing the operating wavelength is valid for the last four panels.

that for corrugated V-grooves, the bend loss for R = 2λ is around 50% [17].

3. Domino plasmon THz devices

In the rest of the paper we present a number of devices enabling the spatial and temporal mod-
ulation of EM fields. The operating wavelength is λ = 1.6mm and d = 200 μm. In all ensuing
computations the metal is considered as a PEC, to easily quantify the device radiation loss.
Waveguide tapering [16, 25, 26, 18] is interesting for field concentration and amplification,
both important requirements for imaging applications [27, 28] and circuit integration [29]. Ta-
pering is expected to be easy in domino structures due to the insensitivity to lateral width L of
the dispersion relation of DPs. This hypothesis is confirmed in Fig. 3(a), which shows a top
view of the propagation of power along a tapered domino structure. The lateral widths of the
waveguide are Lin = 16d at the input port (bottom) and Lout = 0.5d at the output port (top).
The length of the taper is 16d, i.e., two wavelengths at the operating frequency, corresponding
to a taper semi-angle of θ = 31◦. Remarkably, reflection is smaller than 2% and only 5% of
the incoming power is lost as radiation due to the shrinkage of the lateral dimension along the
taper. Panels (b)-(e) are cross sections at different positions along the taper, vividly showing the
process of field subwavelength concentration and enhancement. As mentioned above, the same
design does not work in the telecom regime due to the sensitivity of DP bands to the lateral
dimension L at those frequencies. A more adiabatic taper, i.e., with smaller change of neff per
unit length, would not circumvent the problem because absorption loss is high in the telecom
regime (for instance, for λ = 1.5 μm, d = 0.13 μm, and L = 16d, the propagation length is
� = 1.2 μm).

We now discuss how to construct power dividers and directional couplers [30, 31]. Figure 4
plots the dispersion relation of the modes supported by one and two parallel domino chains.
Black solid line corresponds to the DP of L = 0.5d. For two parallel waveguides (both with
L = 0.5d), interaction gives rise to symmetric and antisymmetric supermodes which, for a sep-
aration s = 0.5d, are shown by magenta curves with the solid line depicting the even supermode
whereas the dashed one represents the odd supermode. Blue dashed-dotted line corresponds to
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Fig. 4. Dispersion relations corresponding to one and two parallel domino structures. Black
solid (blue dashed-dotted) line is for DP of L = 0.5d (L = 1.5d). Magenta solid (dashed)
line is for the even (odd) supermode of parallel domino structures separated a distance
s = 0.5d, whereas green solid (dashed) line is the corresponding supermode for s = 1.25d.
The individual dominoes in double structures have L = 0.5d. The red solid horizontal line
indicates the operating wavelength, λ = 1.6mm, used later. Insets: longitudinal electric
field for the odd and even supermodes of two parallel domino structures separated a dis-
tance s = 1.25d at the operating wavelength, and displayed in a transverse cross section ly-
ing at the center of the inter-domino gaps. For all structures h = 1.5d, a = 0.5d, d = 200 μm.

a wider structure of L = 1.5d and, importantly, this band stays very close to that of the s = 0.5d
even supermode. Due to this good overlapping, a simple linking of a wide domino structure
with L = 1.5d to two parallel domino chains (widths L = 0.5d and separation s = 0.5d) should
not result in an important impedance mismatch. This is verified in Fig. 5(a), displaying a top
view of a power divider based on the previous idea. The input port (L = 1.5d) at the bot-
tom feeds the wide domino which, after 5 periods, is linked to two parallel domino structures
(L = 0.5d, s = 0.5d). Due to symmetry only the even supermode is excited. The lateral separa-
tion s between the individual waveguides is then increased, followed by 90◦ waveguide bends.
Simulations show that reflection is also negligible in this power splitter. Total radiation loss in
the device is equal to that happening in the bends (previously discussed in Fig. 2(b)), each being
5% of the incoming power, which is small taking into account that the bend radius is equal to
the operating wavelength.

Coupling between parallel domino structures can also be easily understood with the help
of Fig. 4, displaying with green lines the even (solid) and odd (dashed) supermodes for par-
allel domino chains separated a distance s = 1.25d. The insets show the modal shape of both
modes. A larger s is chosen in this simulation to prevent the cut-off of the odd supermode. The
coupling length needed to exchange the carried power between the waveguides is estimated as
π/|keven − kodd| = 2.05mm. This value agrees with the result found in the simulation of a
directional coupler. Figure 5(b) displays a top view of two parallel domino chains (L = 0.5d)
separated a distance s = 1.25d. A mode is launched in the left bottom waveguide and charac-
teristic beatings with the predicted coupling length are observed when a second waveguide is
located close to it.

As a final example a waveguide ring resonator is demonstrated. This device enables the rout-
ing of various frequencies to different output ports [32]. Notice that, beside moulding the spatial
flow of the EM fields, this filtering system performs discrimination of the temporal frequencies.
Therefore it can be considered as a basic device providing passive temporal modulation of the
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Fig. 5. Domino plasmon devices. Top view of: (a), Power divider. (b), Directional coupler.
(c), Waveguide ring resonator. The Poynting vector (modulus) is displayed in a horizontal
plane slightly above (about 30 μm) the height of the domino structures. White bars show
the operating wavelength in each panel. The various geometric parameters are described in
the main text, the periodicity being d = 200 μm in all cases.

EM signal. To show once more the robustness of our proposal, this device has been designed
with posts of circular cross section as seen from above (radius r = 0.28d), instead of square
cross section parallelepipeds. We have checked that similar results are obtained for the square
geometry. The top view of this device is displayed in Fig. 5(c). For the chosen geometric pa-
rameters (ring radius R = 2mm, minimum separation in the coupling sections s = 1.25d), it is
possible to drop a resonant wavelength λ = 1.54mm at the output port. Non-negligible radia-
tion losses only occur at the bends in the waveguide ring and they are about 25% of the input
power, reasonably small considering that no optimization was attempted.

In summary, we have presented a new class of surface electromagnetic modes, termed
domino plasmons, which feature an extraordinary characteristic: their insensibility to the lat-
eral dimension of the structure supporting them. We have shown how the guiding properties of
these modes enable the planar routing of THz radiation at a deep subwavelength level. Finally,
the flexibility and versatility of waveguides based on domino plasmons have been demonstrated
through the implementation of a variety of functional devices, which may thus prove very useful
as a new concept for subwavelength THz circuitry.

4. Computational methods

All results in this paper have been obtained by means of numerical simulations performed with
the Finite Element Method (FEM) using commercial (COMSOL Multiphysics) software. A
summary of the main modelling details follows. The technique is a volume FEM operating in
frequency domain. Due to the various length scales involved, highly non-uniform meshes are
used. In order to ensure an adequate representation of the electromagnetic fields, the size of the
elements is a fraction of the skin depth inside the metallic parallelepipeds, a fraction of the char-
acteristic geometric dimension (e.g., a) in the neighborhood of the structure, and a fraction of
the operating wavelength at the boundaries of the simulation domain. The mesh size is refined
until the results are stable with an accuracy of 1%. For instance, in the case of band structure
computations, the convergence criterium is based on the value of both the real and imaginary
parts of the wave vector. The final mesh is different for each simulation, but typical values of
the tetrahedra sizes in different regions of the simulation domain are of the order of 1/5 of the
skin depth and characteristic geometric dimension, and 1/10 of the wavelength. The typical
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number of degrees of freedom lies between 3× 105 and 3× 106, a range in which the matrix
equations are inverted with direct solvers. For the computation of band structures, the corre-
sponding eigenvalue problem is posed in a single unit cell where Bloch boundary conditions
together with Scattering boundary conditions are used. For device modelling, the excitation of
the corresponding scattering problem is provided by Port boundary conditions, the ports being
fed by the solutions of the corresponding eigenvalue problem. Open space is mimicked with
Perfectly Matched Layers or/and Scattering boundary conditions. For the simulation of ideal
metals, Perfect Electric Conductor (PEC) boundary conditions are employed. For realistic met-
als the dielectric permittivities are taken from Ref. [33] for Al (εAl =−3.39×104 + i3.5×106

at λ = 1.6mm), and Ref. [34] for Au (εAu = −103+ i8.7 at λ = 1.5 μm). At low frequencies
it was often sufficient to simulate the domains outside the conductors together with Surface
Impedance Boundary Conditions, as verified by comparison with simulations fully accounting
for the EM fields inside the metals.
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