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We develop a framework that provides a few-mode master equation description of the interaction
between a single quantum emitter and an arbitrary electromagnetic environment. The field quantization
requires only the fitting of the spectral density, obtained through classical electromagnetic simulations, to a
model system involving a small number of lossy and interacting modes. We illustrate the power and validity
of our approach by describing the population and electric field spatial dynamics in the spontaneous decay
of an emitter placed in a complex hybrid plasmonic-photonic structure.
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Motivated by the desire to use nanophotonic devices
for quantum optics and quantum technology applications,
there is large interest in developing strategies for quantizing
electromagnetic (EM) modes in open, dispersive, and
absorbing photonic environments, where standard ways
of obtaining quantized modes are not valid [1,2]. While
macroscopic quantum electrodynamics (QED) provides a
framework for such quantization in material structures
described by EM constitutive relations [3–9], it describes
electromagnetic fields by a continuum of harmonic oscil-
lators, restricting its applicability to cases where they can be
treated perturbatively or eliminated by Laplace transform
or similar techniques. It is thus desirable to develop
tractable but versatile models using only a small number
of EM modes. One notable development in this direction is
pseudomode theory [10–12]. Work on specific structures
has focused on (possibly approximately) obtaining
quantized few-mode descriptions for plasmonic (metallic)
geometries such as surfaces [13], spheres [14–17], or
sphere dimers [18,19].
Within nanophotonics, increasing attention has recently

focused on hybrid metallodielectric setups [20–23], aiming
to combine the strong field confinement and enhanced
light-matter interactions of plasmonic resonances with the
long lifetime (large quality factors) of microcavity or
photonic crystal modes. EM field quantization is then
particularly complex due to the inherent coexistence of
modes with very different properties and their mutual

coupling. Quasinormal modes [22,24–26] can be useful
to unveil the EM mode structure, but due to their lossy
nature, direct quantization remains challenging, and has
only been carried out within limited spectral windows
[23,27]. A complementary technique developed very
recently in the context of x-ray quantum optics is based
on a partition of the physical space [28].
The interaction of a single emitter with an arbitrary EM

environment can be fully described by the spectral density
JðωÞ, obtained from classical EM calculations, which
encodes the EMmode density and emitter-mode coupling.
In this Letter, we present a simple and easily implement-
able framework for obtaining a few-mode quantum
description of any given spectral density. Starting from
macroscopic QED, we construct a model system consist-
ing of a discrete number of interacting modes coupled to
independent flat background baths; see Fig. 1. Fano
diagonalization [29,30] then provides a compact form
for the model spectral density, JmodðωÞ, which can be
fitted to any level of accuracy to JðωÞ. We illustrate
the power and validity of this procedure in a hybrid
structure comprising a plasmonic nanocavity and a high-
refractive-index microresonator. The few-mode model
retains the information about the full environment, as
we show by accurate calculations of far- and near-field
observables.
For a single emitter, the macroscopic QED Hamiltonian

can be written as (ℏ ¼ 1 here and later) [16,31–33]

Hf ¼ He þ
Z

∞

0

dω½ωa†ωaω þDegðωÞðaω þ a†ωÞ�; ð1Þ

where He is the bare emitter Hamiltonian and De is its
dipole operator. The bosonic annihilation operators aω,
with ½aω; a†ω0 � ¼ δðω − ω0Þ, describe “emitter-centered”
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EM modes at frequency ω [34] and correspond to the “true
modes” of Refs. [11,12]. The light-matter coupling is

gðωÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2

πϵ0c2
n⃗ · ImfGðr⃗e; r⃗e;ωÞg · n⃗

s
; ð2Þ

with r⃗e the emitter position, n⃗ the orientation of its dipole
moment (for simplicity, we assume that all relevant
transitions are oriented identically), and Gðr⃗; r⃗0;ωÞ the
classical dyadic Green’s function. This is directly related to
the spectral density, JðωÞ ¼ μ2gðωÞ2 for transition dipole
moment μ [35].
Without approximations, the treatment of an EM con-

tinuum, as present in Eq. (1), is only possible with
advanced and costly computational techniques, such as
tensor network approaches [36,37]. Our goal is thus to
construct an equivalent system described by dynamical
equations that can be solved easily. Our model (sketched in
Fig. 1) consists of N interacting EM modes with ladder
operators ai, a

†
i . Each is linearly coupled to the quantum

emitter, and also to an independent Markovian (spectrally
flat) background bath. The resulting Hamiltonian is
H ¼ HS þHB, with

HS ¼ He þ
XN
i;j¼1

ωija
†
i aj þDe

XN
i¼1

giðai þ a†i Þ; ð3aÞ

HB ¼
XN
i¼1

Z �
Ωb†i;Ωbi;Ω þ

ffiffiffiffiffiffi
κi
2π

r
ðb†i;Ωai þ bi;Ωa

†
i Þ
�
dΩ:

ð3bÞ

HS is the system (emitter þ discrete modes) Hamiltonian,
where the real symmetric matrix ωij describes the mode
energies and their interactions, and the real positive vector gi
describes their coupling to the emitter. The bathHamiltonian
HB contains both the continuous bath modes, described by
bosonic operators fulfilling ½bi0;Ω0 ; b†i;Ω� ¼ δi;i0δðΩ −Ω0Þ,
and their coupling to the system, characterized by the rates
κi. Note that the linear character of the light-matter coupling
in Eq. (3) originates directly from Eq. (1).
The power of our approach lies in the fact that the

Hamiltonian above can be analytically treated in two
different ways: First, the Markov approximation for the
completely flat background baths HB is exact and the
dynamics described by H is identically reproduced, as
proven recently [38], by the master equation

_ρ ¼ −i½HS; ρ� þ
X
i

κiLai ½ρ�; ð4Þ

where ρ is the system density matrix and LO½ρ� ¼ OρO† −
1
2
fO†O; ρg is a standard Lindblad dissipator. For N ¼ 2,

Eq. (4) recovers the ad hoc master equation model in
Ref. [39] describing a single photonic Fano resonance.
Second, the system of N interacting modes and continua

can be diagonalized by adapting Fano diagonalization,
originally developed for autoionizing states of atomic
systems [29], and related to quasimode and pseudomode
theory [11,12] in this context. This strategy allows us to
obtain a simple, closed expression for JmodðωÞ. This is
achieved by solving the Lippmann-Schwinger equations to
obtain the N eigenmodes of the model at each frequency ω.
Subsequently forming their unique linear superposition
(the “bright” or “emitter-centered” mode) coupling to the
emitter leads to a compact expression for the model spectral
density (for details, see the Supplemental Material [40]):

JmodðωÞ ¼
μ2

π
Im

�
g⃗T

1

H̃ − ω
g⃗

�
: ð5Þ

Here, g⃗T ¼ ðg1; g2;…; gNÞ is an N-element vector. The
N × N matrix H̃ has entries H̃ij ¼ ωij − i

2
κiδij, where

Lamb shifts due to the coupling with the baths have been
absorbed into the mode frequencies ωii [as also implicitly
done in Eq. (4)]. As required for a spectral density, JmodðωÞ
is non-negative for all ω [40].
The last step in our approach consists in using Eq. (5) to

fit JðωÞ for a given EM environment to parametrize Eq. (4)
for that system. Although the number of unknowns in
JmodðωÞ is relatively large (N2 þ 2N real numbers for ωij,

FIG. 1. Sketch of the model and quantization approach. Fitting
an original spectral density, JðωÞ (usually obtained by numerical
simulations) to a few-mode model JmodðωÞ, Eq. (5), provides
quantized EM modes described by the master equation Eq. (4).
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κi, and gi), the fit procedure turns out to be stable even
for large numbers of modes (N ¼ 20 in the example
below). A similar procedure based on the fitting of the
bath correlation function has been reported as problematic
recently [43]. For noninteracting modes, ωij ¼ ωiδij,
Eq. (5) simplifies to a sum of Lorentzians of the
form JmodðωÞ ¼

P
iðμ2g2i =πÞf½κi=2�=½ðω − ωiÞ2 þ κ2i =4�g,

reproducing the well-known relation between Lorentzian
spectral densities and lossy modes [10,44] that has been
widely used to quantize simpler EM environments such as
plasmonic cavities in the quasistatic approximation
[13,15,17,18]. The introduction of interactions allows
significantly more freedom in fitting JmodðωÞ, and, in
particular, allows for the representation of interference
effects indicated by Fano-like line shapes. In the
Supplemental Material [40], explicit expressions of
Eq. (5) for up to 4 interacting modes are presented, as
well as their fitting to JðωÞ in two recent studies [22,23].
In the following, we illustrate the power of our approach
by considering a hybrid nanophotonic structure with a
significantly more complex spectral density.
Figure 2(a) shows the system under study: a 600 nm

radius GaP [45] microsphere (εsph ¼ 9) embedding two
120 nm long silver nanorods (with permittivity taken from
Ref. [46]) separated by a 3 nm gap, substantially displaced
from the center of the sphere. The microsphere by itself
supports many long-lived and delocalized Mie resonances,
while the plasmonic dimer sustains confined surface
plasmons with strongly subwavelength effective volumes
[47]. The interaction between these different modes leads
to a complex EM spectrum, shown in Fig. 2(b) through
the Purcell factor PðωÞ ¼ JðωÞ=J0ðωÞ, with J0ðωÞ ¼
ðω3μ2=6π2ℏε0c3Þ the spectral density in free space, for
an emitter located in the center of the nanorods. The thick
black line plots classical EM simulations performed with
the Maxwell equation solver of COMSOL Multiphysics.
This Purcell factor, and the corresponding JðωÞ, presents a

large number of maxima, with several Fano-like profiles
that indicate interference effects as typical for hybrid
metallodielectric systems [22,23].
In order to stably fit JmodðωÞ to JðωÞ despite the large

number of parameters, we first fit the noninteracting model
(where ωij ¼ ωiδij), which converges rapidly by using the
positions, curvatures, and amplitudes of the local maxima
in JðωÞ to obtain initial guesses for the frequencies ωi, loss
rates κi, and coupling strengths gi. This gives a good fit for
many of the peaks [dashed light blue line in Fig. 2(b)], but
strongly overestimates the background at lower frequen-
cies, and fails to reproduce the Fano-like asymmetric
profiles due to hybridization between sphere and dimer
modes. Using the noninteracting model for the initial
values leads to rapid convergence for the full model
with interactions. The resulting spectrum [orange line in
Fig. 2(b)] is in almost perfect agreement with the numerical
result over the full frequency range. We remark that
JmodðωÞ involves only 20 interacting modes, while numeri-
cal calculations (not shown here) indicate that the number
of quasinormal modes in the broad frequency range
spanned in Fig. 2 is significantly larger. Furthermore, a
similarly accurate fit using noninteracting modes would
require a significantly larger number of modes.
The thin gray lines in Fig. 2(b) indicate the (real part) of

the eigenenergies of the matrix H̃. These correspond to the
complex resonances (poles) of JðωÞ [12]. The insets show
the field profiles of two of these modes projected into the
space of the modes aω of Eq. (1), obtained by identifying
the eigenstates of the model [40] with the original modes
aω and using their field profiles given in Eq. (7) below. This
shows the clearly different character of the two modes that
interfere to produce a nontrivial spectral density feature
at ℏω ≈ 1.15 eV.
We next demonstrate that the model system indeed

gives a faithful representation of the EM environment,
i.e., that the dynamics with the model and with the original

(a) (b)

FIG. 2. (a) Sketch of the model system consisting of a silver dimer nanoantenna embedded in a dielectric microsphere. (b) Purcell
factor JðωÞ=J0ðωÞ for the system (thick black line), for the fitted model described by Eq. (5) with 20 modes (orange line), and for a
model without interactions with the same number of modes (dashed light blue line). Thin gray lines indicate the energy positions of the
eigenstates of H̃ for the fitted interacting system. The red dotted line indicates the frequency of the emitter used in Fig. 3 and Fig. 4. The
insets show the electric field distributions for the two modes indicated by the arrows (see main text for details).
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Hamiltonian are equivalent. To do so, we treat the canonical
spontaneous emission (Wigner-Weisskopf) problem for a
two-level emitter initially in its excited state [48], with
He ¼ ωegσ

þσ− and De ¼ μðσþ þ σ−Þ, where σ� are Pauli
matrices. The emitter parameters are chosen to represent
InAs/InGaAs quantum dots [49], with transition energy
ℏωeg ¼ 1.145 eV [dotted red line in Fig. 2(b)], and
transition dipole moment μ ¼ 0.55 e nm.
Since in this problem, there is at most one excitation in

the system (either in the emitter or in one of the EM
modes), it can be solved easily for arbitrary spectral
densities [44]. The exact excited-state population
hσþσ−iðtÞ obtained through this approach is shown in
Fig. 3 (thick black line). The clearly reversible dynamics
proves the non-Markovian character of the interaction
between the emitter and its EM environment. The pop-
ulation obtained from the full model (orange line) repro-
duces the exact results perfectly, while the noninteracting
model (light blue) fails to do so and shows significant
deviations after about 100 fs. In the Supplemental Material,
we additionally show that perfect agreement is also
obtained when considering a four-level emitter that decays
by two-photon emission [40]. The solution of the model
master equations was calculated using QuTiP [50].
In order to gain further insight into the relevance and

meaning of the discrete modes obtained in our fit, we also
show the populations of the modes ãα obtained by
diagonalizing the real symmetric matrix ωij. This corre-
sponds to an orthogonal transformation of the modes ai,
with ãα ¼

P
i Vαiai. The dashed lines in Fig. 3 show the

populations of modes ã6 and ã7, the modes closest to
resonance to the emitter frequency, ω̃6 ¼ 1.129 and ω̃7 ¼
1.149 eV (see Fig. 2). The sum over all other mode
populations, shown as a dashed magenta line in Fig. 3,

remains small during the whole propagation. This demon-
strates that our approach also allows the identification of
the relevant modes in the dynamics. However, we note that
the emitter dynamics are not correctly reproduced if the
other modes are dropped from the simulation. In particular,
the broad plasmonic pseudomode peak extending from
≈1.85 to 2.5 eV, which contains the effect of many higher-
order multipole modes, induces a significant energy shift
on the emitter [15], which is not captured correctly when
these modes are removed from the simulation.
Finally, we show that although the model system is

written in terms of discrete lossy modes, it retains the
full information about the EM near and far field. The
electric field operator for the modes aω in Eq. (1) can be
written as [34]

E⃗ðþÞðr⃗Þ ¼
Z

∞

0

E⃗ðr⃗;ωÞaωdω; ð6Þ

where the field mode profile is given by

E⃗ðr⃗;ωÞ ¼ ℏω2

πϵ0c2gðωÞ
ImfGðr⃗; r⃗e;ωÞg · n⃗: ð7Þ

Formally integrating the Heisenberg equations of motion
for aωðtÞ yields

aωðtÞ ¼ aωð0Þe−iωt − igðωÞ
Z

t

0

Deðt0Þe−iωðt−t0Þdt0: ð8Þ

Inserting into Eq. (6) and defining the temporal kernel

K⃗ðr⃗; τÞ ¼ ℏ
πϵ0c2

Z
∞

0

ω2 ImfGðr⃗; r⃗e;ωÞg · n⃗eiωτdω ð9Þ

gives compact expressions for, e.g., the electric field
intensity

hE⃗ð−Þ · E⃗ðþÞi ¼
Z

t

0

dt0
Z

t

0

dt00hDeðt0ÞDeðt00Þi

× K⃗ðr⃗; t − t0ÞK⃗�ðr⃗; t − t00Þ; ð10Þ

where we have assumed that the field is initially in the
vacuum state.
Equation (10) enables the calculation of the field

intensity anywhere in space through the emitter correlation
functions, easily obtained from Eq. (4). This is displayed
for the spontaneous emission case of Fig. 3 in Fig. 4. Panel
(a) shows the temporal dependence of the electric field
intensity at various points in space, with locations indicated
by numbered white circles in panel (c). The “direct”
calculation (not shown) of the field intensities, possible
for the Wigner-Weisskopf problem, gives essentially per-
fect agreement with the results obtained through Eq. (10).
The intensities at each point are normalized to their

FIG. 3. Emitter and mode dynamics for the spontaneous
emission problem. Solid lines show the emitter excited-state
population hσþσ−iðtÞ for the exact calculation (black) and fitted
models with (orange) and without (light blue) interactions.
Dashed lines indicate the populations hã†αãαiðtÞ of modes α ¼
6 (blue) and α ¼ 7 (red) (see text for details), and the sum over all
other mode populations (magenta).
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maximum value (see figure caption). Panels (b) and
(c) show snapshots of the field intensity profile in space
at t ¼ 10 and t ¼ 100 fs, respectively. A movie showing
the field evolution is available in the Supplemental Material
[40]. We note explicitly that in this spontaneous emission
problem, there is no coherent field, hE⃗ðþÞ þ E⃗ð−Þi ¼ 0, and
the field dynamics are only visible in the intensity.
Interestingly, the dynamics at points next to the emitter,
(position 1), and in the far-field 1.5 μm away from the
emitter, (position 4), are quite similar, reaching their
maximum value within tens of femtoseconds and then
decaying rapidly. In contrast, points (position 2) and
(position 3) inside and just outside the dielectric sphere
(but at some distance to the nanorod dimer) show a much
slower buildup and decay of the field intensity in time.
Comparison with Fig. 3 reveals that modes 6 and 7 give the
largest contribution to the field intensity at positions 2 and
3, while the initial fast decay is due to the contribution of
other modes and leads to an intense initial pulse radiated
from the system (position 4).
To conclude, we have presented a simple and insightful

procedure to quantize the electromagnetic field in arbitrary
nanophotonic systems. Our approach is based on fitting a
model spectral density, obtained through Fano diagonal-
ization and involving only a small number of lossy and
interacting electromagnetic modes, to the full spectral
density obtained from Maxwell’s equations. This makes
it possible to construct and parametrize a few-mode master
equation accurately describing the interaction of a quantum
emitter with the original EM environment. We have
illustrated the power and validity of our ideas by calculating
the population dynamics and near- and far-field intensity
for an emitter placed within a hybrid structure comprising
a dielectric microresonator and a plasmonic cavity.
Our findings offer a versatile and easily implementable
framework for the theoretical description of quantum
nano-optical phenomena with dyadic Green’s function
calculations as the single input.
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