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Abstract

English

This thesis is devoted to the study of the electromagnetic phenomena assisted by surface

modes bound to metal structures. In order to treat the interaction of light with these

complex systems, we have developed a theoretical formalism based on the modal ex-

pansion of the electromagnetic fields. Within this framework, metals are modelled as

perfect conductors, which prevents the penetration of electromagnetic fields into them.

This approximation provides accurate results at low frequency domains (microwave and

terahertz regimes) and still has semi-quantitative value at visible and optical frequencies.

We analyze the formation of geometrically induced electromagnetic modes in different

metallic structures. The dependence of the modal characteristics on the various geometric

parameters is thoroughly studied. Based on this analysis, we develop several guiding

and focusing schemes featuring subwavelength confinement of electromagnetic fields.

Our models are designed to operate in the terahertz regime, which is being currently

explored due to its high technological potential. The agreement between our theoretical

results and experiments realized in this frequency range is excellent.

Our theoretical formalism also enables us to treat the scattering properties of per-

forated metallic films. In this context, we study the role of order in the extraordinary

transmission phenomenon. Considering periodic and quasiperiodic arrays of apertures,

we link the transmittance to the structure factor and identify the leaky modes supported

by these systems as the main actors in the transmission process.

Finally, the transfer of extraordinary transmission and beaming effects to matter waves

is studied. We show that, as in the electromagnetic case, surface modes are the funda-

mental ingredient for the appearance of these phenomena for cold atoms.
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Abstract

Español

Esta tesis se ocupa del estudio de fenómenos electromagnéticos basados en modos super-

ficiales de estructuras metálicas. Para tratar la interacción de la luz con estos complejos

sistemas, hemos desarrollado un formalismo teórico basado en la expansión modal de

los campos electromagnéticos. En este marco teórico, consideramos que los metales se

comportan como conductores perfectos, lo que impide la penetración de los campos

electromagnéticos dentro de ellos. Esta aproximación proporciona resultados precisos a

bajas frecuencias (microondas y terahercios) y tiene una validez semicuantitativa en los

rangos visible y óptico.

Hemos analizado la formación de modos electromagnéticos de origen geométrico en

distintas estructuras, y hemos estudiado la dependencia de sus características con los

diferentes parámetros del sistema. Basándonos en estos resultados, desarrollamos dife-

rentes diseños que permiten el guiado y focalización de campos electromagnéticos con-

finados en regiones menores que la longitud de onda. Nuestros modelos están ideados

para trabajar en el régimen de terahercios, que actualmente está despertando un gran

interés tecnológico. La comparación de nuestros resultados teóricos con experimentos

realizados en este rango es excelente.

Nuestro formalismo teórico nos permite también tratar las propiedades de scattering

de láminas metálicas perforadas. En este contexto, estudiamos el papel que juega el

orden en la aparición del fenómeno de transmisión extraordinaria. Analizando conjuntos

de aperturas periódicos y quasiperiódicos, relacionamos la transmitancia con el factor

de estructura, e identificamos a los modos radiativos soportados por el sistema como los

actores principales en el proceso de transmisión.

Finalmente, hemos estudiado la transferencia de los fenómenos de transmisión extraor-

dinaria y colimación a ondas de materia, mostrando que el ingrediente fundamental para

la aparición de estos fenómenos es, como en el caso electromagnético, la presencia de

ondas de superficie.
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1. General introduction

The enormous development of telecommunications technology during the last century

has led to a growing interest in electromagnetic (EM) surface waves among the scien-

tific community. Already around 1900, Sommerfeld [1] and Zenneck [2] published their

pioneering works accomplishing the mathematical description of the propagation of ra-

dio waves along conductors of finite conductivity. Since then and during the whole 20th

century, surface EM waves have been rediscovered in a variety of different contexts.

Soon after the publication of the Sommerfeld’s work, Wood [3] reported the appear-

ance of anomalous intensity drops in the spectra produced when visible light reflects

at metallic gratings. Only five years later, Lord Rayleigh [4] devised his theoretical de-

scription of the scattering of scalar waves by periodic surfaces. However, it was not until

the early 40’s when Fano [5] connected the Wood’s findings with the former theoretical

works. In the late 50’s, based on experiments studying the diffraction of electron beams

by thin metal films, Ritchie [6] predicted that fast moving charged particles could excite

surface waves in metals, and considered such modes as elementary excitations in solids.

Ten years later, this was confirmed by experiments [7], which demonstrated the close

link between these surface waves and the reflection anomalies observed by Wood more

than fifty years before. By that time, the excitation of surface waves with visible light

was also realized [8], and an unified description of all these phenomena in the form of

surface plasmon polaritons (SPPs) was finally established.

SPPs are guided EM waves confined at the interface between a metal and a dielectric.

Their origin resides in the interaction between light and the conduction electrons in the

metal surface [9]. SPPs arise in metals because of the quasi-free character of conduction

electrons, which allows them to respond collectively to external EM fields. This fact pro-

vides SPPs a mixed electromagnetic-wave and surface-charge nature. Such hybrid charac-

ter is illustrated in the left panel of Fig. 1.1, which depicts the interaction between surface

charges and EM fields associated with SPPs. This interaction binds SPPs to the metal sur-

face and makes EM fields decay exponentially into both the metal and dielectric media.

The dispersion relation (dependence of the mode frequency, ω, on the parallel wave

vector, k) that Maxwell equations yields for such surface waves is sketched in the right

panel of Fig. 1.1. At low frequencies, SPPs lie close to the light line (ω = ck) and are pre-

1



1. General introduction

k
kSSP

=ck
(kSSP)

c

Figure 1.1.: Left panel: Electric field and charge distribution associated with SPPs travelling
within a metal-dielectric interface. Right panel: Dispersion relation for SPPs. Note that
the SPP wave vector is always larger than that corresponding to freely propagating waves,
kSPP > ω/c.

dominantly light-like. For larger frequencies, the dispersion relation deviates from this

linear dependence and the wave vector becomes much larger than for freely propagating

waves. For most metals, this increase in k takes place in the telecom and visible regimes,

which correspond to wavelengths of the order of hundreds of nanometers up to a few

microns (300 nm � λ � 1 µm). There are another two parameters which characterize

SPP modes: the decay length and the propagation length. The first one is related to the

normal component of the SPP wave vector into the dielectric and reflects the binding of

the EM fields to the metal surface. The second one, which is given by the imaginary part

of k, provides the distance that SPPs can travel before they attenuate due to the damping

of the electronic oscillations inside the metal. These two magnitudes are closely related.

Large decay lengths imply that SPPs are weakly bound to the metal surface, which re-

duces energy losses inside the metal and enlarges the propagation lengths. This occurs

at low frequencies, where the SPP band approaches the light line. At higher frequencies,

SPPs become confined and the absorption at the metal surface increases rapidly, which

makes both decay and propagation lengths decrease. This is the well-known trade-off

between SPPs confinement and propagation [9].

Traditionally, the use of metals in optical components has been reduced to the areas

of mirrors and highly absorbing media. The reason for this is the presence of SPPs dec-

2



orating their surfaces. As we have shown above, the localization of EM fields linked to

SPPs, if uncontrolled, represents an energy sink. However, the scientific and technologi-

cal developments in the last decade has changed this perception drastically. In particular,

modern nanofabrication and characterization techniques have made possible to struc-

ture metal surfaces in order to control the flow of SPPs and to map the associated fields

with unprecedented detail. Although absorption remains a very important issue which

prevents the use of metals for long distance communications, SPPs have opened the

way to the use of metallic surfaces for miniaturized optical and optoelectronic devices.

Up to the emergence of SPPs, dielectric-based optical components were constrained by

the so-called diffraction limit [10], according to which light can not be squeezed into vol-

umes smaller than the wavelength. This meant a crucial drawback for the development of

photonic compact devices, whose sizes could not be smaller than those of electronic com-

ponents. Note that the dimensions of current microelectronic circuits are below 100 nm,

several times smaller than optical wavelengths.

There are several features which make SPPs so promising from the technological point

of view. On the one hand, as we have mentioned above, they present a unique ability

for concentrating EM energy in subwavelength volumes. Moreover, they can propagate

EM fields along distances up to hundreds of wavelengths. Finally, they allow combining

electromagnetic and electronic phenomena in the same material platform. Therefore, it is

clear that the challenge consists in achieving compact SPP-based photonic elements with

specific functionalities. Such devices would allow overcoming the limitations of current

microelectronic technology, which are mainly related to the lost of efficiency as the size

of the chips is reduced. These photonic circuits would operate as follows: first, free

radiation would be converted into SPPs, which would then propagate and be processed

by logic elements, before being transformed back into light. The building of photonic

devices requires the development of a broad variety of active and passive components

such as couplers, filters or switchers [11].

In the last decade, many research efforts have been devoted to the design and realiza-

tion of structures with SPP functionalities. This has converted SPP-based photonics, also

termed plasmonics [12, 13], in a well established research field. One of the main factors be-

hind the fast development of plasmonics is the excellent agreement between experiments

and theory, which is highly non-trivial. From the experimental side, small imperfections

in sample fabrication can ruin the flow of SPPs either by increasing of absorption or by

coupling to radiation out of the structure. From the theoretical point of view, although

the equations that govern EM phenomena are well known (Maxwell equations plus the

constitutive relations describing the material properties), solving them is a very diffi-

cult task due to the very different length scales explored by SPPs: the wavelength, the
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1. General introduction

Figure 1.2.: Plasmonic waveguiding schemes. Left panel: Near field map of the SPPs propagation
along a metal strip. Right panel: Comparison between experimental (a) and theoretical (b)
fields distribution in a periodic chain of square gold nanoparticles.

propagation length, the decay length, and the metal skin depth. The good comparison

with experiments means that theoretical results have predictive value, which is crucial

for understanding and discovering new fundamental phenomena as well as guiding the

optimization of structures.

Among the great amount of plasmonic designs with different functionalities proposed

in the last years, undoubtedly, waveguides have been one of the most thoroughly ex-

plored. These could be used to interconnect the various elements within a photonic

device as well as different components comprising a more complex circuit. The hybrid

nature of SPPs enable them to carry both optical signals and electric current, making

plasmonic waveguides also useful as interconnections of microelectronic elements. The

latter offers the potential to combine the technical advantages of photonics and electron-

ics in the same chip [14]. Depending on the characteristics required, SPP waveguides

can be configured using various geometries. In what follows, some of the most relevant

proposals are briefly described.

The most straightforward SPP guiding scheme consists in a two-dimensional flat metal

surface. By creating defects on it, the pathway of the surface waves can be modified, al-

lowing the direct implementation of functional elements such as mirrors or splitters [15].

Another simple routing system is made up of a metallic strip of width comparable to

λ. It has been shown that lateral confined surface EM waves are efficiently excited on
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these waveguides by SPPs launched in 2D homogeneous surfaces [16]. A near field map

of the SPPs propagation along a metal strip waveguide is shown in Fig. 1.2. Modulated

surfaces can also be used for routing purposes. By structuring periodically a metal sur-

face, a photonic band gap arises in the SPP dispersion relation [17]. In these systems,

SPP waveguides correspond to line defects created in the surface lattice [18].

Thin metallic films embedded in dielectric media have been also used as plasmonic

waveguides [19]. This geometry offers long propagation lengths but large modal sizes.

Considering thin strips instead of homogeneous 2D films [20, 21] allows reducing the

modal size in these waveguides. Metal nanowires have been also tested as routing de-

vices [22]. They display subwavelength confinement in the transverse plane but the losses

associated with resistive heating limit the propagation of light in these structures. A com-

pletely different approach consists of nanoparticle arrays. These guides feature subwave-

length transverse confinement of EM fields but, again, the high localization of EM energy

increases the absorption effects in these systems [23, 24]. The fields distribution (exper-

iment and theory) in an SPP waveguide composed of square nanoparticles is shown in

Fig. 1.2.

The examples above indicate that the main difficulty in the design of plasmonic wave-

guides is finding structures that support EM fields with small modal sizes and large

propagation lengths. In the last years, two different guiding schemes have been proposed

satisfying these requirements. The first of these designs consists in V-shaped grooves

carved in a flat metal surface. The EM modes supported by such structure, termed chan-

nel plasmon polaritons (CPPs), were studied within the electrostatic approximation two

decades ago [25]. Subsequently, several theoretical works analyzing CPPs in realistic ge-

ometries were published [26–28]. Recently, CPPs have been experimentally investigated

at telecom frequencies [29, 30], displaying strong confinement, low damping, and ro-

bustness against channel bending. Thank to these properties, prototypes of basic devices

such as splitters, interferometers or resonators have been demonstrated [31].

The potential of V-grooves in the context of SPP waveguiding has given rise to compre-

hensive theoretical studies on the modal characteristics of CPPs [32]. Importantly, these

works have shown that a strong field enhancement occurs in the CPPs modal shape at

the groove edges. This fact indicates that for relatively shallow grooves, CPPs are hy-

bridized with EM modes travelling along the channel corners. These are the so-called

wedge plasmon polaritons (WPPs). EM modes sustained by metal wedges were theoreti-

cally suggested more than 30 years ago [33]. However, the guiding capabilities of WPPs

have not been demonstrated until very recently [34–36]. These papers have shown that

WPPs, while having propagation lengths similar to CPPs, exhibit smaller modal sizes.

Apart from their advantageous guiding properties, CPP and WPP based plasmonic wave-
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1. General introduction

Figure 1.3.: Left panel: Theoretical transverse electric field of CPP (up) and WPP (bottom) modes
sustained by structures of the same dimensions. Right panel: CPP based Y-splitter (left) and
Mach-Zehnder interferometer (right) operating at telecom frequencies. SEM (up) and near
field optical SNOM (bottom) images are shown.

guides can be easily combined with planar metal structures, which is very convenient

for technological purposes. It is also remarkable that edges and corners appear when-

ever a surface is folded. In this sense, CPPs and WPPs constitute building blocks present

in other kinds of plasmonic guides. In the left panel of Fig. 1.3, the modal shape for

the CPP and WPP modes supported by structures of the same dimensions are depicted

[36]. The right panel shows the experimental realization of a CPP-based Y-splitter and a

Mach-Zender interferometer operating at telecom frequencies [31].

The emerging field of plasmonics is not only limited to to the propagation and process-

ing of EM signals. SPPs have been identified as key actors in many other EM phenomena

[12, 14]. Due to both fundamental and technological reasons, one of the most relevant is

the so-called extraordinary optical transmission (EOT) through perforated metallic films.

The diffraction of light by an aperture drilled in a metal film is an old problem. It was

firstly treated using a full vectorial approach by Bethe [37] in 1944. Bethe’s theory es-

tablished that the transmission of the EM energy through a circular aperture pierced
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Figure 1.4.: Left panel: SEM image of an Au film perforated with a periodic array of 17× 17 holes.
Right panel: Experimental zero-order transmittance through a 31 × 31 hole array of period
600 nm.

in an infinitely thin metallic film is proportional to (a/λ)4 (where a is the aperture ra-

dius). Thus, in the limit of aperture sizes much smaller than the incoming wavelength

(a << λ), only a negligible fraction of the incident EM flux is transmitted. More than

40 years later, Roberts [38] revisited the problem. By means of numerical calculations,

she demonstrated that the transmissivity of the aperture was even lower when the finite

thickness of the film was taken into account.

It was thought that Bethe’s theory described correctly the scattering of light by aper-

tures much smaller than the wavelength. However, in 1998, Ebbesen and co-workers [39]

found accidentally, while analyzing the optical properties of cylindrical cavities in me-

tallic films, that the transmittance of visible light through a periodic array of nanometric

holes was several orders of magnitude larger than expected. They observed that, surpris-

ingly, at certain wavelengths, the transmission efficiency (normalized to the total area of

the holes) exceeded unity. In other words, for these wavelengths a periodic array of sub-

wavelength holes transmits more light than a large, macroscopic hole of the same area

as the sum of all the holes. This finding indicated that the metal film was not merely a

screen, which blocks the light, but rather an active participant in the transmission pro-

cess, and that a collective response of the periodic array of holes should occur in order to

give rise to such enhancement in the transmissivity. The term extraordinary optical trans-
mission was coined in the seminal paper [39] where the phenomenon was reported for

the first time. Left panel of Figure 1.4 shows the type of structures considered in the
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1. General introduction

experiments [40]: a periodic hole lattice pierced in a metal film. The right panel displays

the transmittance spectrum measured from an array of holes of radius a = 135 nm. A

transmission peak occurs at wavelengths much larger than the hole radius, where the

Bethe’s theory predicts that the transmissivity should decrease smoothly with increasing

wavelength.

The discovery of EOT gave rise to an exhaustive research to clarify the physical mecha-

nisms behind the effective response of the apertures observed in the experiments. Due to

its simplicity, first theoretical analysis considered the one-dimensional analog of the ex-

perimental structure: a periodic array of slits [41–43]. As a result, it was shown that EOT

also takes place in these systems, pointing out that the phenomenon was more general

than expected. In 2001, the first complete theoretical treatments of EOT in hole arrays

where published [44–46]. These works provided the explanation of the phenomenon

which is generally accepted today. According to it, the light impinging on the apertures

is collected by the SPPs supported by the input side of the film. These explore the film

surface and tunnel the EM energy through the holes. At the output side of the film, SPPs

scatter again with the aperture openings and emit the EM energy out of the structure.

This resonant transmission process is strongly dependent on the incoming wavelength,

as it controls the coupling between light and SPPs at both film surfaces and the transport

of EM energy through the holes. Since these first studies, a great amount of experimental

and theoretical works have been devoted to further investigate the fundamental aspects

of the phenomenon. Remarkably, EOT has also found applications in a broad range of

areas such as sensing or optoelectronics [47].

Four years after the publication of the first experiments, the appearance of EOT in

single apertures was demonstrated experimentally [48]. It was shown that an aperture

much smaller than the incident wavelength can exhibit transmission resonances if it is

surrounded by periodic indentations located at the input side of the film. Moreover, the

light exiting from this system can be collimated into a very narrow beam if the output

surface of the film is also corrugated. This phenomenon was addressed theoretically

only one year later [49, 50]. These works demonstrated that transmission resonances and

beaming effects are almost independent, and that they are due to the presence of SPPs at

the input and output sides of the film, respectively. In Figure 1.5, the structures studied

in [48] are depicted. The angular distribution of the beam emerging from the bull’s eye

geometry (upper image) is rendered. Light is directionally transmitted by the structure

with an angular divergence of a few degrees.

Up to this point, we have focused our attention on the appearance of extraordinary

transmission in the optical regime. However, already in 2001 [45], it was shown that EOT

occurs even in perforated perfect electric conducting (PEC) films. A perfect conductor
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Figure 1.5.: Left panels: FIB micrograph image of a bull’s eye structure (up) and its 1D analog
(bottom). Experimental angular transmission-intensity distribution at resonance emerging
from the bull’s eye geometry.

is a theoretical idealization which models the dielectric response of metals by taking

εM = −∞ (where εM stands for the metal permittivity). This makes the conduction elec-

trons completely free and able to respond immediately to any EM disturbance. Therefore,

PEC materials are impenetrable to EM fields, which prevents the presence of SPPs dec-

orating their surfaces. The discovery of EOT in PEC structures led to the study of the

transmission properties of drilled films at frequencies below the optical regime, where

PEC models are quasi-exact and SPPs are not confined to metal-dielectric interfaces. In

the following years, extraordinary transmission was experimentally reported at terahertz

(THz) [51–53] and microwave [54, 55] frequencies.

The formation of transmission resonances in structures which do not support tightly

bound SPPs reopened the problem of the fundamental physics behind EOT. The issue

was clarified by two theoretical papers published in 2004 and 2005 [56, 57] demonstrated

that the texturing of a flat PEC surface makes it behave as an effective metal whose

dielectric response is controlled by geometry. These works also showed that such struc-

tures sustain EM modes whose characteristics resemble those of SPPs. For this reason,
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1. General introduction

Figure 1.6.: Left panel: Dispersion relation of the spoof SPPs supported by periodic holes filled
with a dielectric. Right panel: Photograph of the experimental sample supporting SPPs at
microwave frequencies.

these surface waves were termed spoof SPPs. The physical origin of these EM modes is

completely different from conventional SPPs, whose attributes are dictated by the metal

composition. The dispersion relation of spoof SPPs is governed by the geometry of the

structured PEC surface supporting them. The left panel of Fig. 1.6 renders ω(k) for the

spoof SPPs propagating along a periodic array of holes [57]. Note that the behavior of

the mode frequency with increasing k is similar to that of conventional SPPs (see Fig.

1.1).

Bound EM modes in periodic metal structures have been studied for decades in the

context of radio waves [58–60]. However, the emergence of the spoof SPP concept has

renewed the interest on the fundamental and applied aspects of these EM modes. As

a result, in the last years, the first spoof SPP models have been corrected [61, 62] and

extended to different geometries [63]. Moreover, spoof SPPs have been recently verified

experimentally in the microwave [64, 65] and THz [66] regimes. The right panel of Fig. 1.6

shows a photograph of the sample in which leaky spoof SPPs at microwave frequencies

were observed for the first time [64].

Although the origin of spoof SPPs is linked to the EOT phenomenon, it was soon real-

ized that these EM modes can be used to guide radiation in the same way as conventional

SPPs [57]. The behavior of conventional SPPs is imposed by the electronic properties of

metals. However, the characteristics of spoof SPPs can be tailored in order to control
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the flow of light just by playing with the geometry of the indentations disposed at the

metal surface. This geometric character of spoof SPPs has allowed considering textured

metallic surfaces as plasmonic metamaterials, since they gain their properties from their

structure rather than their composition.

The application of the spoof SPP concept in the optical regime allows combining intrin-

sic plasmonic and geometric effects. Moreover, plasmonic metamaterials also make pos-

sible to transfer the routing and confinement capabilities of conventional SPPs to lower

frequency domains. Specifically, spoof SPPs are expected to play a key role in the devel-

opment of the emergent THz technology [67]. THz radiation is situated between the in-

frared and microwave parts of the EM spectrum. During the last decades, this frequency

range has remained unexplored because of its resistance to the techniques commonly

employed in these well established neighbor bands. This situation has changed in the

last decade. Advances in material science have led to the development of new routes for

generation [68] and detection [69] of THz waves and the potential of this radiation for ad-

vanced physics research has been demonstrated. Moreover, current THz technology is an

extremely attractive field, with applications in areas such as time-domain spectroscopy

[70], biosensing [71] or security [72] and biomedical [73] imaging. Thus, an intense scien-

tific activity is currently devoted to exploit the opportunities that spoof SPPs provide in

the context THz photonics.

The recent research on SPPs borrows fundamental concepts, approaches and tech-

niques from different areas of physics such as electromagnetics, optics or solid state

physics. The multidisciplinary character of plasmonics has made analogies play a promi-

nent role in the development of the field. They constitute a basic research strategy which

allows the transfer of notions from one area to another, yielding deeper physical in-

sights in both areas. Following this approach, and taking advantage of the broad per-

spective that spoof SPPs have provided on the extraordinary transmission phenomenon,

in the last years, many research efforts have been dedicated to analyze the transferability

of EOT to other physical domains. As a result, enhanced transmission and associated

beaming effects have been reported in photonic crystals [74–76]. Subsequently, the EOT

process have been also applied to other undulatory entities such as cold atoms (matter

waves) [77] or sound (acoustic waves) [78–82]. In these physical systems, the fundamen-

tal ingredient needed for the appearance of extraordinary transmission is the presence of

localized waves playing the same role as SPPs in the original version of the phenomenon.
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1. General introduction

Structure of the thesis

Once we have outlined the research frame within which our theoretical investigation has

been carried out, in the last part of this chapter, the contents of this thesis are briefly

summarized:

In Chapter 2, the theoretical tools employed in our research are presented. First, the

fundamentals of our modal expansion formalism are detailed. We demonstrate the suita-

bility of this approach for analyzing the scattering properties of perforated metallic films

and for studying the electromagnetic modes sustained by structured metals. We show

how both infinitely periodic and finite systems can be treated within this framework.

Additionally, the reciprocal-space version of our formalism is developed. In the last sec-

tions of the chapter, three different numerical schemes employed in our investigation,

the transfer matrix method, the finite difference time domain method, and the finite

integration technique, are briefly described.

In Chapter 3, we study the formation of spoof surface plasmon polaritons in differ-

ent geometries. First, the electromagnetic modes bound to planar structures are consid-

ered. We analyze the modal characteristics in both single surfaces and films. Moreover,

the comparison of our theoretical results with experiments performed in the terahertz

regime is shown. Secondly, we treat the spoof surface polariton modes sustained by

cylindrical structures. We analyze the dependence of the mode characteristics on the ge-

ometrical parameters for the case of milled wires. Based on these results, we propose a

conical design for achieving subwavelength focusing of light. Our theoretical predictions

are verified by experiments performed on helical grooved wires at terahertz frequencies.

Finally, two distinct routing schemes featuring subwavelength confinement in the trans-

verse plane are presented. They combine the spoof plasmon concept with channel and

wedge plasmon polaritons. The dimensions of the designs are chosen so that the optimal

frequencies for guiding lie in the terahertz range of the electromagnetic spectrum.

Chapter 4 studies the transmission properties of finite arrays of apertures perforated in

metallic films. We consider periodic as well as quasiperiodic arrangements of both slits

and holes. By means of our modal expansion formalism, we obtain the transmittance

and the distribution of electromagnetic fields in such structures. In its reciprocal version,

our theoretical framework enables us to link the transmission resonances in these sys-

tems with their structure factor. Finally, we identify the leaky electromagnetic modes

supported by perforated films as the main actors in the transmission process.

In Chapter 5, the appearance of extraordinary transmission and beaming for non-

interacting cold atoms in various geometries is demonstrated theoretically. We show that

the resonant excitation of surface matter waves, the analog of surface plasmon polaritons
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in the electromagnetic case, leads to the formation of efficient transmission channels in

these systems. In contrast to their electromagnetic counterpart, surface matter waves re-

quire an attractive potential close to a solid surface in order to be supported. In our

research, we consider simple models based on square well potentials which nevertheless

contain all the physical mechanisms behind both phenomena. The issue of a feasible

scenario for the implementation of these ideas is also addressed. We propose an exper-

imental setup in which extraordinary transmission of matter waves takes place. In this

system, the realistic attractive potential sustaining surface matter waves results from the

combination of the van der Waals interaction between a neutral atom and a dielectric

surface and an external repulsive optical potential.

Finally, in Chapter 6 a short overview of the main results and the general conclusions

of this thesis are presented.
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2. Theoretical methods

2.1. Introduction

In this chapter we describe in detail the different theoretical approaches used through-

out this thesis. First, we present our quasi-analytical formalism based on the modal

expansion technique. It is illustrated through the analysis of the scattering properties

of arrays of one and two-dimensional apertures perforated in metallic films. We treat

both infinitely periodic and finite systems, and develop the reciprocal-space version of

the formalism. Moreover, we show how the theoretical framework presented allows the

study of the geometrically induced bound electromagnetic modes supported by corru-

gated metallic surfaces. Finally, the incorporation in an approximate way of the dielectric

properties of real metals into the formalism is also described.

In our research, we have also used three different numerical schemes: the transfer

matrix method, the finite difference time domain method, and the finite integration

technique. In the second part of this chapter, the fundamentals of these computational

approaches are detailed. Additionally, the characteristics of the three methods are com-

pared in terms of efficiency, versatility and numerical stability.

2.2. Modal expansion formalism

The Modal Expansion (ME) technique is a very general method for solving linear differ-

ential equations describing physical systems of very different nature. It is a very useful

tool in current research in a broad range of fields such as acoustics, quantum mechan-

ics or electromagnetics. In this section, we present a theoretical formalism for solving

Maxwell equations in complex metallic structures based on this technique.

Due to its suitability for analyzing electromagnetic (EM) processes occurring at tex-

tured metallic surfaces, first ME methods were already used by engineers in the early

50’s and 60’s for the design and analysis of antennas, transmission lines and filtering

devices operating in the microwave regime [83]. ME approaches were also a useful tool

[84–86] for the study of the Surface Enhanced Raman Scattering [87], discovered in the

70’s. Finally, in the last decade ME has become a very fruitful framework for theoretical
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Figure 2.1.: View of the periodic structures under study. The geometrical parameters defining the
arrangement of holes are the array periods, dx and dy, and holes sides, ax and ay. The array
of slits is characterized by the periodicity d and the slits width a. In both cases, the film
thickness is denoted by h.

research in nanophotonics, being applied in various fields such as extraordinary optical

transmission (EOT) [43, 49, 50] or metamaterials science [56, 88].

The ME technique is based on the decomposition of the EM fields into eigenmodes

of the Maxwell equations within the various regions comprising the complex structure

under study. Therefore, by imposing the appropriate continuity conditions [89] at the

region boundaries, Maxwell equations can be solved in all the space. We have developed

a ME framework which has enabled us to model and analyze very different physical

systems. Throughout this thesis, our formalism will be presented and all the modifica-

tions performed on it for each problem will be shown. However, the fundamental aspects

of the ME technique are illustrated in the following sections through the study of two
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2.2. Modal expansion formalism

simple problems: the scattering of light by metallic films perforated with periodic ar-

rangements of subwavelength apertures and the formation of geometrically induced EM

modes in these structures. In order to give a general view of the method, two different

geometries are considered, two-dimensional (2D) arrangements of rectangular holes and

one-dimensional (1D) arrays of slits (see Figure 2.1).

The only approximation involved in our model consists in treating the metal as perfect

electric conducting (PEC) [10], i.e., the metal permittivity εM = −∞. This involves ne-

glecting the penetration of the fields into the metal, which enables us to express EM fields

in the apertures in terms of waveguide modes, which are analytically known for both

geometries (holes and slits). Additionally, the use of PEC boundary conditions make all

lengths involved in the system scalable, which allows transferring the results obtained

in one frequency range to another ones. However, since the PEC approximation prevents

the penetration of EM fields into metallic media, it works properly at microwave and far

infrared frequencies, whereas it is less accurate in the optical and telecom ranges of the

EM spectrum. In Section 2.2.5, we discuss briefly how this limitation of the model can

be overcome by incorporating surface impedance boundary conditions (SIBCs) [90, 91]

in our ME formalism.

2.2.1. Periodic systems

Hole arrays

Panel (a) of Figure 2.1 shows a schematic picture of the most general structure under

study, a periodic 2D arrangement of rectangular holes. The geometrical parameters defin-

ing the system are the film thickness, h, the array periods, dx and dy, and the holes sides,

ax and ay. Slit geometries, shown in panel (b), can be considered as a limiting case of

rectangular holes with dy, ay → ∞. Here, we present our theoretical framework based

on the ME method through its application to the problem of the scattering properties of

periodic 2D structures. The modifications performed in the formalism in order to deal

with 1D apertures are also detailed.

The ME technique allows writing EM fields in a very compact representation. In prin-

ciple, the full EM field comprises six components, three for the electric field, E, and three

for the magnetic field, H. However, in our approach, EM fields are expanded in terms of

eigenmodes having a well defined propagation constant along z-direction (see Fig. 2.1).

This enables us to keep track of only the transverse components, Et and Ht (parallel to

xy plane). The longitudinal components, Ez and Hz, can be straightforwardly obtained

from the transverse ones through the divergence Maxwell equations, ∇ · H = 0 and

∇ · E = 0. Thus, we can describe the EM fields through only two bivectors, that using
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Figure 2.2.: Sketch of the modal expansion procedure for the case of hole arrays. The space is
divided into three regions. In region I, EM fields are expressed as a sum of the imping-
ing plane wave (black arrow) plus reflected waves (red arrows). In region II, the basis is
comprised by waveguide modes propagating (blue) and counterpropagating (orange) along
z-direction. Finally, EM fields in region III are expanded as a sum of diffracted waves (green
arrows).

Dirac’s notation can be written as |Et〉 and |Ht〉.
By introducing the index σ, our ME method incorporates the classification of EM

fields according to the polarization. Thus, fields with Ez = 0, which correspond to s-

polarized light or transverse electric (TE) modes, are labelled with σ = 1, whereas σ = 2

is associated with fields with Hz = 0, p-polarized light or transverse magnetic (TM)

modes.

The expansion of EM fields in TE and TM modes with a well defined propagation con-

stant enables us to link magnetic and electric fields associated with free space and wave-

guide eigenmodes by means of modal admittances Ymode, having −uz × |Ht〉 = Ymode|Et〉.
The modal admittances are defined through the application of the curl Maxwell equa-

tions in the frequency domain, ∇ × E = i ω
c H, and ∇ × H = −iε ω

c E. Note that we

assume a e−iωt temporal dependence of the EM fields.

Figure 2.2 shows a schematic view of the fields expansion procedure. The system is di-

vided into three regions along the z-direction. Taking advantage of the periodic character
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2.2. Modal expansion formalism

of the structure within the xy plane, we can apply Bloch’s theorem and solve Maxwell

equations only inside a unit cell of area dx × dy, which contains only one rectangular

hole (represented by the black dashed line in Fig. 2.2). Before describing in detail the

expansion procedure, we provide analytical expressions for the eigenmodes associated

with the different regions comprising the structure.

In regions I (z < 0) and III (z > h), EM fields can be expressed in terms of Bloch

waves labelled with index σ, which indicates the polarization, and two integers, m and

n, defining the transverse wave vector

kmn = ki + m
2π

dx
ux + n

2π

dy
uy, (2.1)

where ki is the transverse wave vector of the plane wave impinging from the top on the

film (represented by a black arrow in Fig. 2.2). It is convenient to define the components

along x and y-directions, k(m)
x = ki · ux + m 2π

dx
and k(n)

y = ki · uy + n 2π
dy

, respectively.

Therefore, the bivectors associated with s-polarized (σ = 1) Bloch waves in real space,

r = xux + yuy = (x y), can be written as

〈r|kmn, σ = 1〉 =
eikmnr

|kmn|
√

dxdy

(
−k(n)

y

k(m)
x

)
, (2.2)

whereas for p-polarized (σ = 2) waves, we have

〈r|kmn, σ = 2〉 =
eikmnr

|kmn|
√

dxdy

(
k(m)

x

k(n)
y

)
. (2.3)

Note that these Bloch waves are, by definition, orthonormal, i.e., they satisfy

〈kmn, σ|km′n′ , σ′〉 =
∫

dr〈kmn, σ|r〉〈r|km′n′ , σ′〉 = δmm′δnn′δσσ′ , (2.4)

where the integral ranges the unit cell area dx × dy, and δ denotes the Kronecker’s delta

function.

Region II (0 ≤ z ≤ h) corresponds to the perforated metallic film. PEC approximation

makes EM fields vanish within this region except inside the rectangular holes, where

they can be expressed in terms of hole waveguide modes |qls, γ〉. As Bloch waves, these

modes are labelled with three indexes: the polarization γ, and l and s, which characterize

the transverse wave vector

qls = l
π

ax
ux + s

π

ay
uy. (2.5)

The bivectors for TE modes (γ = 1) are given by

〈r|qls, γ = 1〉 =

⎛
⎝ sπ

ay|qls|
√

2(2−δl0)
axay

cos lπ
ax

(
x + ax

2

)
sin sπ

ay

(
y + ay

2

)
− lπ

ax |qls|
√

2(2−δs0)
axay

sin lπ
ax

(
x + ax

2

)
cos sπ

ay

(
y + ay

2

)
⎞
⎠ , (2.6)
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and for TM (γ = 2) modes

〈r|qls, γ = 2〉 =

⎛
⎝ lπ

ax |qls|
√

2(2−δl0)
axay

cos lπ
ax

(
x + ax

2

)
sin sπ

ay

(
y + ay

2

)
sπ

ay|qls|
√

2(2−δs0)
axay

sin lπ
ax

(
x + ax

2

)
cos sπ

ay

(
y + ay

2

)
⎞
⎠ . (2.7)

These waveguide modes are also defined as orthonormal, having

〈qls, γ|ql′s′ , γ′〉 =
∫

dr〈qls, γ|r〉〈r|ql′s′ , γ′〉 = δll′δss′δγγ′ , (2.8)

where now the integral ranges only the hole area, ax × ay. Wavefunctions for TE and TM

waveguide modes for circular holes are provided in Appendix B.

Once we have defined a complete set of wavefunctions for the three regions forming

the structure, we describe the mode matching procedure. EM fields in region I can be

expressed as the incident plane wave |ki, σi〉 plus a sum of reflected Bloch waves |kmn, σ〉
(red arrows in Fig. 2.2) weighted with their corresponding reflection coefficients, rmnσ,

|Et〉 = |ki, σi〉eik(i)
z z + ∑

m n σ

rmnσ|kmn, σ〉e−ik(mn)
z z, (2.9)

−uz × |Ht〉 = YI
kiσi

|ki, σi〉eik(i)
z z − ∑

m n σ

YI
kmnσ rmnσ|kmn, σ〉e−ik(mn)

z z. (2.10)

The longitudinal component of the wave vector associated with the mnth reflected Bloch

wave is k(mn)
z =

√
k2

0 − |kmn|2, where k0 = ω
c = 2π

λ denotes the wave vector modulus.

Finally, the mode admittances are YI
kmnσ=1 = k(mn)

z /k0 for TE modes, and YI
kmnσ=2 =

k0/k(mn)
z for TM modes.

In region II, EM fields can be expanded into hole waveguide modes propagating and

counterpropagating (blue and orange arrows in Fig. 2.2) along the z-direction

|Et〉 = ∑
l s γ

[Alsγeiq(ls)
z z + Blsγe−iq(ls)

z z]|qls, γ〉, (2.11)

−uz × |Ht〉 = ∑
l s γ

YII
lsγ[Alsγeiq(ls)

z z − Blsγe−iq(ls)
z z]|qls, γ〉, (2.12)

where Alsγ and Blsγ are the expansion coefficients. The wave vector component along

z-direction is defined as q(ls)
z =

√
k2

0 − |qls|, and YII
lsγ=1 = q(ls)

z /k0 and YII
lsγ=2 = k0/q(ls)

z

are the admittances for TE and TM modes, respectively.

In region III, EM fields are written as a linear combination of diffracted Bloch waves

(green arrows in Fig. 2.2), with transmission coefficients tmnσ. We have

|Et〉 = ∑
m n σ

tmnσ|kmn, σ〉eik(mn)
z z, (2.13)

−uz × |Ht〉 = ∑
m n σ

YIII
kmnσ tmnσ|kmn, σ〉eik(mn)

z z, (2.14)
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2.2. Modal expansion formalism

where k(mn)
z has the same form as in region I and YIII

kmnσ = YI
kmnσ.

The unknown expansion coefficients rmnσ, Alsγ, Blsγ and tmnσ′ are calculated by impos-

ing the appropriate continuity conditions to the EM fields at the two interfaces of the

system (z = 0 and z = h) [89]. The continuity equations for |Et〉 and |Ht〉 at the interface

between regions I and II (z = 0) read

|ki, σi〉 + ∑
m n σ

rmnσ|kmn, σ〉 = ∑
l s γ

[Alsγ + Blsγ]|qls, γ〉, (2.15)

YI
kiσi

|ki, σi〉 − ∑
m n σ

YI
kmnσ rmnσ|kmn, σ〉 = ∑

l s γ

YII
lsγ[Alsγ − Blsγ]|qls, γ〉, (2.16)

whereas for the interface II-III (z = h), we have

∑
l s γ

[Alsγeiq(ls)
z h + Blsγe−iq(ls)

z h]|qls, γ〉 = ∑
m n σ

tmnσ|kmn, σ〉eik(mn)
z h, (2.17)

∑
l s γ

YII
lsγ[Alsγeiq(ls)

z h − Blsγe−iq(ls)
z h]|qls, γ〉 = ∑

m n σ

YI
kmnσ tmnσ|kmn, σ〉eik(mn)

z h. (2.18)

Equations (2.15) and (2.17) hold within the entire unit cell, as Et is continuous in

the whole space. However, Eqs. (2.16) and (2.18), which are linked to Ht, are fulfilled

only within the hole area. The use of PEC boundary conditions in our model leads to

the appearance of discontinuities in the parallel components of the magnetic field at

the structure interfaces (see Sec. 2.2.5). Their origin resides in the formation of induced

surface charge densities and currents at the film sides. For fundamental and technical

reasons, it is convenient to project the continuity equations associated with Et over Bloch

waves 〈kmn, σ| (different from zero within the entire unit cell) and equations for Ht over

hole waveguide modes 〈qls, γ| (which vanish outside the apertures). Hence, the matching

equations at the interface between regions I and II now read

δm0 δn0 δσσi + rmnσ = ∑
l s γ

[Alsγ + Blsγ]Slsγ
mnσ, (2.19)

YI
kiσi

(Slsγ
00σi

)∗ − ∑
mnσ

YI
kmnσ rmnσ(Slsγ

mnσ)∗ = YII
lsγ[Alsγ − Blsγ], (2.20)

where we have used orthonormality relations (2.4) and (2.8), and we have defined the

overlapping integrals

Slsγ
mnσ = 〈kmn, σ|qls, γ〉 =

∫
dr〈kmn, σ|r〉〈r|qls, γ〉. (2.21)

In Appendix A, general expressions for these integrals are presented. Additionally, over-

lapping integrals between Bloch waves and circular hole waveguide modes are shown in

Appendix B.
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The continuity equations for the transverse EM fields at the interface II-III have the

form

∑
l s γ

[Alsγeiq(ls)
z h + Blsγe−iq(ls)

z h]Slsγ
mnσ = tmnσeik(mn)

z h, (2.22)

YII
lsγ[Alsγeiq(ls)

z h − Blsγe−iq(ls)
z h] = ∑

m n σ

YI
kmnσ tmnσ(Slsγ

mnσ)∗eik(mn)
z h. (2.23)

It is convenient to write continuity equations in a compact form. By combining Eqs.

(2.19) and (2.20), we can write the continuity of EM fields at z = 0 in terms of only the

the waveguide mode coefficients, Alsγ and Blsγ, as

2YI
kiσi

(Slsγ
00σi

)∗ − ∑
l′ s′ γ′

[
∑

m n σ

YI
kmnσ(Slsγ

mnσ)∗Sl′s′γ′
mnσ

]
[Al′s′γ′ + Bl′s′γ′ ] =

= YII
lsγ[Alsγ − Blsγ]. (2.24)

Similarly, from Eqs. (2.22) and (2.23), fields continuity at z = h can be expressed as

∑
l′ s′ γ′

[
∑

m n σ

YI
kmnσ(Slsγ

mnσ)∗Sl′s′γ′
mnσ

]
[Al′s′γ′eiq(l′s′)

z h + Bl′s′γ′e−iq(l′s′)
z h] =

= YII
lsγ[Alsγeiq(ls)

z h − Blsγe−iq(ls)
z h]. (2.25)

Note that for every |qls, γ〉 we have included in the expansion of the EM fields inside

region II we have two continuity equations, one for each system interface. This is one

of the most relevant characteristics of our formalism, that the number of linear equa-

tions to solve in order to know the expansion coefficients is equal to twice the number

of waveguide modes considered inside the apertures. Below, we will see why this fact

makes this theoretical framework very suitable for analyzing the transmission properties

of apertures smaller than the wavelength.

We define the quantities

Elsγ = Alsγ + Blsγ, (2.26)

E′
lsγ = −[Alsγeiq(ls)

z h + Blsγe−iq(ls)
z h], (2.27)

which are related to the amplitudes of the transverse electric field linked to the wave-

guide mode |qls, γ〉 at the input (Elsγ) and output (E′
lsγ) sides of the holes. Thus, we can

rewrite Eqs. (2.24) and (2.25) in their final form

(Glsγ
lsγ − εlsγ)Elsγ + ∑(l′s′γ′) �=(lsγ) Gl′s′γ′

lsγ El′s′γ′ − GV
lsγE′

lsγ = Ilsγ,

(Glsγ
lsγ − εlsγ)E′

lsγ + ∑(l′s′γ′) �=(lsγ) Gl′s′γ′
lsγ E′

l′s′γ′ − GV
lsγElsγ = 0.

(2.28)
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Figure 2.3.: Schematic representation of the terms in Eqs. (2.28).

This set of linear equations describes the behavior of the EM fields at the illuminated

[upper equation in (2.28)] and non-illuminated [lower equation in (2.28)] sides of the

perforated film. It will appear throughout this thesis when applying the ME technique to

the study of different designs. Although the specific form of the various terms appearing

in Eqs. (2.28) depends on the system under study, it is possible to give them a simple

physical interpretation, valid for all cases. An schematic picture of the role played by all

the terms in Eqs. (2.28) is shown in Figure 2.3.

The term Ilsγ is only present in the upper equation of (2.28), which, as stated above, is

linked to the input face of the film. It has the form

Ilsγ = 2iYI
kiσi

(Slsγ
00σi

)∗. (2.29)

Notice that it is proportional to the overlapping integral between the incident plane

wave and the holes waveguide modes. Therefore, we can relate it to the direct initial

illumination over the holes.

There are two terms involving only the waveguide mode |qls, γ〉

εlsγ = YII
lsγ cot(q(ls)

z h), (2.30)

GV
lsγ = YII

lsγ

1

sin(q(ls)
z h)

. (2.31)

The difference between these two terms can be easily understood by looking at Eqs.

(2.28). εlsγ describes how EM fields in the illuminated (non-illuminated) face of the film

modify the electric field amplitudes at the input (output) side of the holes, Elsγ (E′
lsγ). On
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2. Theoretical methods

the other hand, GV
lsγ takes into account the effect of EM fields at each surface of the film

on the amplitudes at the other side of the holes. Thus, we can link εlsγ to the bouncing

back and forth of the EM fields inside the apertures, and the term GV
lsγ to the coupling

of EM fields at the two sides of the film through the holes.

Finally, the term

Gl′s′γ′
lsγ = i ∑

m n σ

YI
kmnσ(Slsγ

mnσ)∗Sl′s′γ′
mnσ , (2.32)

reflects the radiation that the waveguide mode |ql′s′ , γ′〉 emits into diffracted waves,

|kmn, σ〉, which is finally collected by the mode |qls, γ〉. Note that Gl′s′γ′
lsγ diverges when-

ever one of the diffraction modes in the sum in Eq. (2.32) becomes grazing. This occurs

whenever kmn = 0 for any m and n, which makes YI
kmnσ=2 have a singularity. Therefore,

the term Gl′s′γ′
lsγ governs the behavior of E′

lsγ and E′
lsγ when diffracted waves are tangent

to the film surfaces. We will see in chapter 4, that this behavior of Gl′s′γ′
lsγ can be related

to the appearance of surface EM modes on the sides of the perforated film.

Once Eqs. (2.28) are solved, the set of modal amplitudes Elsγ, E′
lsγ is known, and the

EM fields in all the space can be constructed. Additionally, the transmissivity of the film

(ratio between the transmitted and the incident EM power, ℘t/℘i) can be also calculated.

The EM energy carried by the incoming plane wave is given by the integral of the z
component of the Poynting vector within the unit cell,

℘i =
1
2

∫
dr Re{〈r|E(i)

t 〉 × 〈r|H(i)
t 〉∗} =

=
1
2

∫
dr Re{〈r|E(i)

t 〉 · (−uz × 〈r|H(i)
t 〉)∗} =

1
2
(YI

kiσi
)∗. (2.33)

The EM power transmitted through the structure can be obtained in two different

ways:

1. Through the holes. By integrating the z-component of the Poynting vector associa-

ted to EM fields within region II (see Fig. 2.2), the EM energy flowing through the

holes in the positive z-direction can be expressed as

℘
(1)
t =

1
2

Re{∑
lsγ

YII
lsγ[|Alsγ|2 − |Blsγ|2]} =

1
2

Im{∑
lsγ

GV
lsγElsγE′∗

lsγ}, (2.34)

where we have used relations (2.26) and (2.27). Note that real and imaginary part

functions, Re and Im, ensure that only waveguide modes which are propagating

along z-direction (|qls| < k0) contribute to the summation in Eq. (2.34).

2. In the far field. The total energy exiting from the structure can be written in terms

of the transmission coefficients in region III as

℘
(2)
t =

1
2

Re{∑
mnσ

YI
kmnσ|tmnσ|2} =

1
2

Im{ ∑
lsγ l′s′γ′

Gl′s′γ′
lsγ E′

lsγE′∗
l′s′γ′ }, (2.35)
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Figure 2.4.: Dependence of the transmittance on the number of waveguide modes involved in the
expansion of EM fields inside the apertures. Left panel: square array (dx = dy = d) of square
holes (ax = ay = 0.5d) perforated in a PEC film of width h = 0.4d. Right panel: slit array
under p-polarization with a = 0.3d and h = 0.7d. In both panels, the legend indicates the
number of waveguide modes considered inside the apertures.

where the dependence of tmnσ with the modal amplitudes E′
lsγ is given by Eq. (2.22).

The use of PEC approximation in our model translates into that the transmittances

obtained from ℘
(1)
t and ℘

(2)
t are equal. However, when the dielectric properties of the

metal film are taken into account (see Sec. 2.2.5), absorption effects arise in the model,

and these two magnitudes become distinct. Therefore, in this case, only ℘
(2)
t can be used

to calculate the transmissivity of the structure in the far-field.

The ME technique presented above is a very suitable approach for analyzing the scat-

tering of light with holes much smaller than the wavelength. In this geometric limit,

the EM fields inside the film are accurately described by considering only the lowest

waveguide modes in the summation of Eqs. (2.11) and (2.12), since they are the least

evanescent modes and hence they control the flux of EM energy through the film. As we

have shown above, the size of the set of continuity equations is equal to twice the number

of waveguide modes considered. Therefore, for small enough holes, our ME formalism is

quasi-analytic, which allows us to study the EM phenomena occurring in these complex

structures with very low computational effort. The fast convergency of ME calculations

with the number of modes inside the apertures is shown in Fig. 2.4. The left panel of the
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figure renders the transmission spectrum for an square array (dx = dy = d) of square

holes (ax = ay = 0.5d) perforated in a film of width h = 0.4d. The transmissivity of the

structure displays the resonant features characteristic of the EOT phenomenon [39]. It

is remarkable that the spectrum calculated considering only the two lowest waveguide

modes (red dashed line) is already almost converged.

Slit arrays

Once we have presented our ME formalism for the general case of a periodic 2D hole ar-

ray, we describe here how it can be modified to treat 1D slit arrangements [see schematic

picture in Fig. 2.1 (b)]. These systems display translational symmetry along the direction

parallel to the slits, which we have labelled arbitrarily as y-direction. If the illumination

plane is normal to the slits i.e., ki belongs to the xz-plane, EM fields do not depend on y-

coordinate, and the transverse wave vectors associated to the EM modes at the different

regions of the structure must be parallel to the x-direction. Thus, the wave vector associa-

ted with diffracted Bloch waves in 1D systems have the form km = kmux = (ki + m 2π
d )ux,

whereas for slit waveguide modes, they are ql = qlux = l π
a ux. Note that, for simplicity,

we have done dx = d and ax = a.

The Bloch waves in free space, into which EM fields are expanded above and below

the film, read now

〈x|km, σ = 1〉 =
eikmx
√

d

(
0

1

)
, 〈x|km, σ = 2〉 =

eikmx
√

d

(
1

0

)
, (2.36)

and the slits waveguide modes are given by

〈x|ql , γ = 1〉 =
√

2
a

sin
lπ
a

(
x +

a
2

)( 0

1

)
,

(2.37)

〈x|ql , γ = 2〉 =

√
2 − δl0

a
cos

lπ
a

(
x +

a
2

)( 1

0

)
.

In slit arrays, the overlap between Bloch waves with σ = 1 (σ = 2) and waveguide

modes having γ = 2 (γ = 1) is zero. This reproduces a well-known property of EM fields

which do not depend on one of the spatial coordinate, that the two light polarizations are

decoupled. This fact translates into that in our ME formalism, s and p-polarized waves

are treated independently. This means that only modes having the same polarization as

the incoming light are involved in the fields expansion. Hence, as σi = σ = γ, we can

label the polarization of EM fields in all the space with only one index, γ. Following
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Figure 2.5.: Transmission spectra for a periodic array of slits under s (green line) and p-polarized
(red line) illumination. The geometrical parameters of the structure are the slits width, a =
0.2d, and the film thickness, h = 0.16d.

the same matching procedure as for the 2D case, we end up with a set of continuity

equations of the same form as Eqs. (2.28)

(Gγ
ll − ε

γ
l )Eγ

l + ∑l′ �=l Gγ
ll′E

γ
l′ − GVγ

l E′γ
l = Iγ

l ,

(Gγ
ll − ε

γ
l )E′γ

l + ∑l′ �=l Gγ
ll′E

′γ
l′ − GVγ

l Eγ
l = 0.

(2.38)

All the terms in Eqs. (2.38) have the same form as their 2D counterparts by replacing

the longitudinal wave vectors k(mn)
z and q(ls)

z , by k(m)
z =

√
k2

0 − k2
m and q(l)

z =
√

k2
0 − q2

l ,

respectively. Thus, we have

Iγ
l = 2iYIγ

ki
(σ

γ
0l)

∗, (2.39)

ε
γ
l = YIIγ

l cot(q(l)
z h), (2.40)

GVγ
l = YIIγ

l
1

sin(q(l)
z h)

, (2.41)

Gγ
ll′ = i ∑

m
YIγ

km
(σ

γ
ml)

∗σ
γ
ml′ , (2.42)
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where we have introduced the 1D overlapping integrals (see Appendix A)

σ
γ
ml = 〈km, γ|ql , γ〉 =

∫
dx〈km, γ|x〉〈x|ql , γ〉 = 〈ql , γ|km, γ〉∗. (2.43)

Although, formally, both light polarizations are described equally within our ME

framework, the underlying physics is very different. This fact is reflected by the distinct

behavior of the term Gγ
ll′ . For s-polarized light, the inclusion of a grazing diffracted wave

(k(m)
z = 0) in the sum of Eq. (2.42) makes the corresponding admittance YIγ=1

km
= k(m)

z /k0

vanish. However, for p-polarization, YIγ=2
km

= k0/k(m)
z diverges for diffracted waves tan-

gent to the metallic film. We will see in chapter 4 that this singularity in Gγ
ll′ is a finger-

print of the appearance of bound modes in the system. The strong dependence of the

transmission properties on the polarization of the incoming light is illustrated in Fig. 2.5,

which shows the transmissivity of a periodic array of slits with a = 0.20d and h = 0.16d.

For p-polarization, the spectrum shows the resonant features characteristic of the extraor-

dinary transmission phenomenon [39]. However, for s-polarized light, the transmittance

is much lower and does not develop any resonance, decaying monotonously within the

spectral range considered. In the right panel of Fig. 2.4, the dependence of the ME cal-

culations with the number of slit waveguide modes is analyzed. The figure shows the

transmission spectrum for an array of slits of width a = 0.3d and depth h = 0.7d. Note

that considering only the lowest waveguide mode inside the slits results in a very good

approximation for slits much smaller than the array period. This fact makes our formal-

ism very appropriate for the study of the transmission properties of these systems.

2.2.2. Finite systems

Up to this point, we have applied our ME formalism to the analysis of infinitely periodic

arrays of apertures. In this section, we show how it can be modified in order to treat

structures which are not infinite [92–94], such as finitely periodic, quasiperiodic or disor-

dered aperture arrangements. In what follows, we describe the two steps in which our

formalism is transformed, schematically depicted in Figure 2.6. We focus on the case of

2D holes and, at the end of the section, we provide details for the case of 1D apertures.

First, instead of expanding EM fields within a unit cell including only one hole, as

shown in Fig. 2.2, we consider a supercell of area Lx × Ly containing the finite hole

arrangement that we want to analyze. Thus, the structure that we are describing is com-

prised by a 2D periodic array of these supercells, as shown in panel (a) of Fig. 2.6. Above

(region I) and below (region III) the perforated film, the expressions describing the EM

fields have the same form as in Section 2.2.1, where now, the periods dx and dy must be

replaced by the supercell dimensions Lx and Ly, respectively. However, inside the me-
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Figure 2.6.: Modifications performed in the ME formalism in order to treat finite systems. Panel
(a): Definition of a supercell containing several apertures. Panel (b): Cell dimensions, Lx and
Ly, are taken to infinity.

tallic film (region II), the EM fields are now written in terms of the waveguide modes

corresponding to the different holes inside the supercell, having

|Et〉 = ∑
α

[Aαeiq(α)
z z + Bαe−iq(α)

z z]|α〉, (2.44)

−uz × |Ht〉 = ∑
α

YII
α [Aαeiq(α)

z z − Bαe−iq(α)
z z]|α〉, (2.45)

where, in order to simplify the notation, we have introduced the compact index α, which

characterizes not only the position of the holes inside the supercell but also the order

and polarization of the waveguide modes inside each aperture.

As a result of the mode matching process at the system interfaces, we end up with a

general version of the continuity equations in terms of compact indexes α and β, which

reads

(Gαα − εα)Eα + ∑β �=α GαβEβ − GV
β E′

α = Iα,

(Gα − εα)E′
α + ∑β �=α GαβE′

β − GV
α Eα = 0,

(2.46)
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where the definition of the different terms is the same as in the case of periodic arrange-

ments. As we demonstrated in Section 2.2.1, all these terms refer to only one waveguide

mode, except the G term, which takes into account the interaction of EM fields asso-

ciated with different waveguide modes. As the supercell that we are considering now

contains several apertures, Gαβ in Eq. (2.46) reflects the EM coupling between waveguide

modes which can belong to the same or different apertures. Using the definition of the

overlapping integrals introduced in Eq. (2.21), this term can be written as

Gαβ = i ∑
m n σ

YI
kmnσ〈α|kmn, σ〉〈kmn, σ|β〉, (2.47)

where now kmn = ki + m 2π
Lx

ux + n 2π
Ly

uy. Hence, by writing Gαβ = 〈α|Ĝ|β〉, we can define

the operator

Ĝ = i ∑
m n σ

YI
kmnσ|kmn, σ〉〈kmn, σ|, (2.48)

which couples EM fields corresponding to different waveguide modes, |α〉, through all

the Bloch waves, |kmn, σ〉.
The second step consists of taking the limit Lx, Ly → ∞ in the continuity equations

(2.46), keeping the holes positions inside the supercell. The geometric interpretation of

this limit is sketched in panel (b) of Fig. 2.6. The supercell containing the holes has

become artificial, as no periodicity is present in the structure. This modification does not

affect all the terms in Eqs. (2.46) that refer to only one waveguide mode, whereas the

transformation of the Gαβ term occurs through the operator Ĝ. Taking the limit Lx, Ly →
∞ translates into that discrete diffraction orders cannot be defined and the spectrum of

Bloch waves becomes continuous. Thus, the discrete sum in Eq. (2.48) transforms into an

integral, resulting in a new formal expression for Ĝ, which now reads

Ĝ =
i

4π2

∫ ∫
dk ∑

σ

Yσ(k) |k, σ〉〈k, σ|, (2.49)

where k = kxux + kyuy is the transverse wave vector, k = |k|, and the admittances are

Yσ=1(k) =
√

k2
0 − k2/k0, for s-polarization, and Yσ=2(k) = k0/

√
k2

0 − k2, for p-polarization.

Plane waves |k, σ〉 are given by

〈r|k, σ = 1〉 =
eikr

|k|

(
−ky

kx

)
, 〈r|k, σ = 2〉 =

eikr

|k|

(
kx

ky

)
. (2.50)

Operator Ĝ can be projected into the position basis, |r〉, having

Ĝ(r, r′) = 〈r|Ĝ|r′〉 =
i

4π2

∫ ∫
dkeik(r−r′) 1

k2
0 − k2

(
k2

0 − k2
y kxky

kyky k2
0 − k2

y

)
. (2.51)
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Analytical expressions for the different entries of the tensor

Ĝ(r, r′) =

(
Gxx(r, r′) Gxy(r, r′)
Gyx(r, r′) Gyy(r, r′)

)
, (2.52)

can be given by defining the normalized wave vector, q = k/k0 = (qx, qy), and relative

position, d0 = k0(r − r′) = (d0x, d0y). If we make q = |q| and d0 = |d0|, and using the

relation [95]

i
2π

∫
dq

eiqd0√
1 − q2

=
1
d0

eid0 , (2.53)

which corresponds to the Green’s function associated to the Helmholtz’s equation in 3D,

we find the dependence on the normalized distance, d0, of each component of Ĝ(r′, r)

Gxx(r, r′) = −ieid0

[
1
d0

+
i

d2
0
− 1

d3
0
− d2

0y

(
1
d3

0
+

3i
d4

0
− 3

d5
0

)]
, (2.54)

Gxy(r, r′) = ieid0 d0xd0y

[
1
d3

0
+

3i
d4

0
− 3

d5
0

]
, (2.55)

Gyy(r, r′) = −ieid0

[
1
d0

+
i

d2
0
− 1

d3
0
− d2

0x

(
1
d3

0
+

3i
d4

0
− 3

d5
0

)]
, (2.56)

Gyx(r, r′) = Gxy(r, r′). (2.57)

The scattering properties of finite arrangements of slits can also be described within

our formalism by following the same approach we have developed for 2D hole arrays.

Again, the starting point is a 1D supercell of length L containing the slit arrangement we

want to study. Then, from the matching procedure, a set of continuity equations of the

same form as Eqs. (2.46) can be built for both light polarizations. Therefore, two different

1D operators Ĝγ (where γ indicates the polarization) arise. In the limit L→ ∞, they have

the form

Ĝγ =
i

2π

∫
dk Yγ(k) |k〉〈k|, (2.58)

where k is the transverse wave vector parallel to x-direction and Yγ=1(k) = k0/
√

k2
0 − k2

and Yγ=2(k) =
√

k2
0 − k2/k0. In the position basis, |x〉, Ĝγ for s-polarization (γ = 1) reads

Gs(x, x′) = 〈x|Ĝs|x′〉 =
i

2π

∫
dk

√
k2

0 − k2

k0
eik(x−x′), (2.59)

whereas for p-polarization (γ = 2), it is given by

Gp(x, x′) = 〈x|Ĝp|x′〉 =
i

2π

∫
dk

k0√
k2

0 − k2
eik(x−x′). (2.60)
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Analytical expressions for both operators can be obtained from the 1D version of Eq.

(2.53),

i
2π

∫
dq

eiqd0√
1 − q2

=
1
2

H(1)
0 (d0), (2.61)

where H(1)
0 is the zero order Hankel function of the first kind. Eq. (2.51) corresponds to

the Green’s function for the Helmholtz’s equation in 2D [95]. By making d0 = k0|x − x′|
and q = k/k0, we have that, for s-polarization,

Gs(x, x′) =
ik0

4
[H(1)

0 (k0|x − x′|) + H(1)
2 (k0|x − x′|)], (2.62)

where H(2)
2 is the second order Hankel function of the first kind, whereas for p-polarized

light,

Gp(x, x′) =
ik0

2
H(1)

0 (k0|x − x′|). (2.63)

2.2.3. Reciprocal space formalism

In order to relate the scattering properties of a perforated film to the structure factor [96]

of the aperture array, it is convenient to transform our ME formalism into the reciprocal

space. As we have seen in the previous sections, the real space version of our ME formal-

ism allows constructing the EM fields in all the space from the electric field amplitudes

at the input and output sides of the apertures. Therefore, these modal amplitudes control

the transmission and reflection characteristics of the film. The set of continuity equations

governing them can be rewritten as

−εnEn(R) + ∑R′m GRR′
nm Em(R′) − GV

n E′
n(R) = In(R),

−εnE′
n(R) + ∑R′m GRR′

nm E′
m(R′) − GV

n En(R) = 0,

(2.64)

where the definition of the different terms remains the same as in Eqs. (2.46) but index

α (β) has been split into two different indexes: R (R′), indicating the hole position, and n
(m), which denotes the order of the waveguide mode. We can expect that the connection

between the geometry of the arrangement and its transmission properties resides in the

Fourier components of the electric field amplitudes, E(′)
n (k), defined as

E(′)
n (k) = ∑

R

E(′)
n (R)e−ikR, (2.65)

where the sum ranges over all the apertures. These k-space amplitudes describe the

dependence of EM fields at the sides of the perforated film on the parallel wave vector,

k.
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2.2. Modal expansion formalism

The continuity equations for En(k) and E′
n(k) can be obtained from Eqs. (2.64) by

multiplying each equation by e−ikR, and summing for all R. Thus, for each k, we find a

system of integral equations in which the structure factor of the set of apertures, S(k) =

∑R e−ikR, appears explicitly

−εnEn(k) + ∑m
∫

dk′Gnm;k′S(k − k′)Em(k′) − GV
n E′

n(k) = In(R = 0)S(k − ki),

−εnE′
n(k) + ∑m

∫
dk′Gnm;qS(k − k′)E′

m(k′) − GV
n En(k) = 0.

(2.66)

Note that the εn and GV
n terms remain the same as in real space, as they do not link

EM fields associated to different holes. The illumination term is now given by the prod-

uct of the coupling between the incident light and the nth waveguide mode at R = 0,

In(R = 0), and the structure factor S(k − ki), where ki is the in-plane component of the

incoming wave vector. The integral term ∑m
∫

dk′Gnm;k′S(k − k′)E(′)
m (k′) represents all

the scattering processes that couples E(′)
n (k) to the continuum E(′)

n (k′). The crystal mo-

mentum needed for the coupling is provided by the structure through S(k− k′), and the

amplitude of each scattering process is measured by

Gmn;k =
i

4π2 ∑
σ

Ykσ〈n|k, σ〉〈k, σ|m〉 (2.67)

where |k, σ〉 are the plane waves defined by Eqs. (2.50), and |n〉 and |m〉 are waveguide

modes evaluated at R = 0. Note that Gmn;k diverges whenever a p-polarized diffraction

wave goes glancing.

In what follows, we describe how this k-space framework enables us to reach a better

understanding of the scattering of light by perforated films, although from a numerical

point of view it is more convenient to work with our ME formalism in real space. We

define the functions Σ
(′)
n (k), which satisfy

Σn(k)E(′)
n (k) = ∑

m

∫
dk′Gnm;k′S(k − k′)E(′)

m (q). (2.68)

As we showed in Section 2.2.1, for subwavelength apertures it is a very good approxima-

tion to consider only the least evanescent waveguide mode inside the holes (labelled as

n = 0). Hence, for each k, we can rewrite Eqs. (2.66) as a set of two linear equations

(Σ0(k) − ε0)E0(k) − GV
0 E′

0(k) = I0(R = 0)S(k),

(Σ0(k) − ε0)E′
0(k) − GV

0 E0(k) = 0,

(2.69)

where, for simplicity, we have restricted our analysis to normal illumination, i.e., ki = 0.
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Figure 2.7.: Structure factor for two different periodic arrays of 1024 holes.

Let us consider firstly the case of an infinitely periodic array. Taking advantage of

Bloch’s theorem, we can write E(′)
0 (k + bl) = E(′)

0 (k) and S(k) = 4π2

dxdy
∑bl

δ(k − bl),

where dx and dy are the array periods, bl are the reciprocal lattice vectors, and δ(x) is the

Dirac’s delta function. Introducing these expressions in Eq. (2.68) we obtain Σ
(′)
0 (k) =

4π2

dxdy
∑bl

G00;k+bl . It is well known that, under normal incidence and for wavelengths

larger than the array period, the transmissivity of periodic arrays is governed by the zero-

order diffracted beam. Thus, the transmission features characteristic of such structures

must be reflected in the two k-space linear equations for k = 0

(Σ0 − ε0)E0(0) − GV
0 E′

0(0) = I0,

(Σ0 − ε0)E′
0(0) − GV

0 E0(0) = 0,

(2.70)

where we have done Σ0 = Σ0(0) = 4π2

dxdy
∑bl

G00;bl . Importantly, this Σ0 function coincides

with the real space G-term for periodic hole arrangements defined in Eq. (2.32) when

only the lowest waveguide mode is considered. Thus, as ε0, GV
0 and I0 have the same

form as their Fourier counterparts, we have found that real space (2.28) and reciprocal

space (2.70) continuity equations are exactly the same for the case of perfectly periodic
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2.2. Modal expansion formalism

aperture arrangements.

The arguments presented above can be applied to any finite distribution of apertures

(periodic, quasiperiodic or disordered arrangements). Bloch’s theorem cannot be applied

to such structures and, in principle, Eqs. (2.66) must be solved for a continuum of states k.

However, we have found that for a finite array with a large number of holes, k = ki = 0

is the dominant transmission channel. Therefore, a good approximation can be obtained

by only considering E0(0) and E′
0(0). The equations for these magnitudes are written

like Eqs. (2.70) where Σ0 = Σ
(′)
0 (0) can be calculated numerically from E(′)

0 (k) [see Eq.

(2.68)]. Note that these last quantities can be easily obtained by a Fourier-transformation

of the set of modal amplitudes in real space, {E0(R), E′
0(R)}. Then, within this approach

we are able to relate transmission features with properties of just two equations, as in

the case of an infinite periodic array.

Although here we have considered only the case of 2D hole arrangements, our frame-

work can be easily extended to 1D slit apertures.

2.2.4. Bound modes

In the previous sections, we have applied our ME formalism to the analysis of the scatter-

ing properties of perforated films. Here, we show how the bound EM modes sustained

by periodically structured PEC metals, the so-called spoof surface plasmon polaritons

(spoof SPPs), can be also studied within our theoretical framework.

Our approach allows treating the bound modes in arrays of both 1D and 2D apertures.

Our starting point are the continuity equations (2.28) and (2.38) associated to holes and

slits, respectively. The EM modes supported by perforated films are characterized by

having strong electric field at the film surfaces even for arbitrarily small illuminations.

Therefore, they appear as solutions of the eigenvalue problem set by the ME continu-

ity equations when the illumination term is removed. Hence, spoof SPP modes corre-

spond to the non-vanishing solutions of the homogeneous version of Eqs. (2.28) and

(2.38) which, using the compact notation introduced in Eq. (2.46), read

(Gαα − εα)Eα + ∑β �=α GαβEβ − GV
β E′

α = 0,

(Gα − εα)E′
α + ∑β �=α GαβE′

β − GV
α Eα = 0,

(2.71)

where now index α corresponds to {l, s, γ} for 2D holes, and to {l} for 1D slits.

The bound modes sustained by single corrugated PEC surfaces can also be studied

within our formalism. We showed in Section 2.2.1 that each equation in (2.71) can be

related to one of the sides of the perforated film, and that the GV term reflects the
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coupling of the EM fields at the different film surfaces through the apertures. Thus,

by removing this term, the film sides are disconnected, which enables us to treat the

spoof SPP modes supported by single structured metallic surfaces. Thus, we find that

the bound modes sustained by blind perforations (grooves and dimples) are described

by

(Gαα − εα)Eα + ∑
β �=α

GαβEβ = 0. (2.72)

where the Gαβ and εα terms remain the same as in Eqs. (2.71).

The dispersion relation of the bound modes in such structures is calculated by finding

the values of the parallel component and modulus of the wave vector (k and k0 = ω/c, re-

spectively) for which the determinant associated with the continuity equations vanishes.

Although, in general, this problem must be solved numerically, analytical expressions

for the dispersion relation of spoof SPPs can be obtained by using two approximations:

• Only the fundamental waveguide mode is taken in the expansion of EM fields

inside the aperture, which allows working with the single mode version of Eqs.

(2.71) and (2.72).

• Only the p-polarized zero-order diffraction mode is considered in the G-term,

which provides us simple expressions for this term governing the coupling be-

tween apertures.

The first approximation leads to accurate results for subwavelength apertures, failing

when the size of the indentation is comparable to the array period. The second approx-

imation, which is equivalent to consider the system as a metamaterial represented by

the average EM fields, must be corrected close to the band edges, as it does not reflect

the appearance of gaps due to diffraction effects. Additionally, it has been demonstrated

that this approximation overestimates the binding of spoof SPP modes supported by 2D

apertures [61]. In what follows, we describe how analytical expressions for the spoof SPP

bands can be obtained. Importantly, despite of its approximate character, our analytical

approach enables us to gain physical insight into the problem and to predict the depen-

dence of the exact dispersion relations on the various geometrical parameters defining

the structure (see Sec. 3.2.2).

First, we consider the case of blind apertures, i.e., those which do not pierce completely

the metallic film. Two different periodic structures are analyzed, 1D arrays of grooves and

2D arrangements of dimples. The condition for the existence of bound modes in these

systems reads

G − ε = 0. (2.73)
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2.2. Modal expansion formalism

Neglecting diffraction effects, the G term in (2.73) is given by G = i k0√
k2

0−k2
|S(k)|2, where

S(k) is the overlap between the p-polarized zero-order diffracted mode and the lowest

waveguide mode inside the indentations. Moreover, for apertures much smaller than the

wavelength, the dependence of the overlapping integral on the parallel wave vector can

be neglected, having S(k) ≈ S. Thus, the analytical spoof SPP bands for 1D and 2D blind

apertures is given by

k = k0

√
1 +

|S|4
ε2 . (2.74)

Note that, as expected k > k0 = ω/c, which reflects the bound nature of EM modes.

For groove arrays, ε = cot(k0h) [see Eq. (2.40)], where h is the depth of the indentation.

The overlap can be calculated from Eq. (A-3), having S =
√

a/d for small widths, a.

Therefore, the dispersion relation of the bound modes supported by a periodic array of

grooves reads

k = k0

√
1 +
( a

d

)2
tan2(k0h). (2.75)

On the other hand, for the case of dimple arrays in the subwavelength regime (k0 <

π/a), Eq. (2.30) yields

ε =

√
(π/a)2 − k2

0

k0
coth

(√
(π/a)2 − k2

0 h
)

. (2.76)

The corresponding overlapping integral can be obtained from Eq. (A-7), having S = 2
√

2
π

a
d .

Thus, the analytical spoof SPP band for 2D arrays of dimples is given by

k = k0

√√√√1 +

(
2
√

2a
πd

)4
k2

0

(π/a)2 − k2
0

tanh2
(√

(π/a)2 − k2
0 h
)

. (2.77)

Note that, for simplicity, we are considering only the case of square arrays (of period

d) of square dimples (of side a). Figure 2.8 plots the dispersion relation of the bound

modes sustained by an array dimples of side a = 0.6d and depth h = d. The convergence

with the number of waveguide modes considered in Eq. (2.72) is shown. The number of

diffraction orders considered in the calculations is sufficient to reach convergence. For

comparison, the dispersion relation obtained from Eq. (2.77) is also shown.

We now focus on the bound modes sustained by PEC films fully perforated with pe-

riodic arrangements of slits and holes. The existence of bound modes in such structures

requires the condition

(G − ε) ± GV = 0 (2.78)
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Figure 2.8.: Spoof SPP bands for a square array of square dimples of side a = 0.6d and depth
h = d. The convergence of the spoof SPP bands with the number of waveguide modes
involved in the calculation is shown. In all cases, 25 diffraction orders are considered. Grey
dotted line plots the analytical dispersion relation obtained with Eq. (2.77).

to be fulfilled, where the negative (positive) sign in Eq. (2.78) leads to symmetric (an-

tisymmetric) modes with respect to the film center. Therefore, the analytical spoof SPP

dispersion relation for fully perforated films read

k = k0

√
1 +

|S|4
(ε ± GV)2 . (2.79)

Note that, as in Eq. (2.74), k > k0.

The terms S and the ε in Eq. (2.79) remain the same as in the case of blind aper-

tures. For 1D perforations, the GV term can be calculated from Eq. (2.41), having GV =
1/ sin(k0h). For 2D square holes, this term can be calculated from Eq. (2.31), having

GV =

√
(π/a)2 − k2

0

k0

1

sinh
(√

(π/a)2 − k2
0 h
) . (2.80)

Introducing these two expressions in Eq. (2.79), we find the analytical dispersion relation

of the bound modes supported by slit arrays,

k = k0

√
1 +
( a

d

)2 sin2(k0h)
[cos(k0h) ± 1]2

, (2.81)
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Figure 2.9.: Dispersion relation of the spoof SPPs supported by slit (left panel) and groove (right
panel) arrays of the same geometry. The apertures width, a, is fixed to 0.2d. Four waveguide
modes and 21 diffracted waves are considered in the ME calculations. Grey dotted lines plot
the analytical bands obtained from Eqs. (2.81) (left panel) and (2.75) for the case h = 0.8d.

and hole arrangements,

k = k0

√√√√√√1 +

(
2
√

2a
πd

)4
k2

0

(π/a)2 − k2
0

sinh2
(√

(π/a)2 − k2
0 h
)

(cosh
(√

(π/a)2 − k2
0 h
)
± 1)2

. (2.82)

Figure 2.9 renders the dispersion relation of the spoof SPPs sustained by periodic

arrays of 1D apertures of width a = 0.2d. Exact spoof SPP bands for slits (left panel) and

grooves (right panel) are computed from equations (2.71) and (2.72), respectively. In the

calculations, 4 waveguide modes and 21 diffracted orders were considered. Two different

aperture depths, h, are considered. Grey dotted lines plot the analytical spoof SPP bands

for h = 0.8d obtained from equations (2.81), for slits, and (2.75), for the case of grooves.

Within the frequency range shown in the figure, only a symmetric mode (positive sign

in Eq. (2.79)) is supported by the slit arrays considered.
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Figure 2.10.: Behavior of EM fields at a metal-dielectric interface within the perfect conductor
and surface impedance approximations.

2.2.5. Surface impedance boundary conditions

Surface impedance boundary conditions (SIBCs) [90] allow the incorporation, in an ap-

proximate way, of the dielectric properties of real metals into our ME formalism. Before

describing the basic ideas behind the SIBCs, we review briefly how EM fields behave at

the interface between a PEC metal and a dielectric [10]. The main characteristic of PEC

metals is that EM fields vanish inside them. Thus, just at the metal surface, tangential

electric (Et) and normal magnetic (Hn) fields are set equal to zero. However, this is not

true for normal electric (En) and tangential magnetic (Ht) components of the EM fields.

The appearance of screening charge densities and currents in the surface of PEC metals

gives rise to discontinuities in these two last components of the EM fields. In the left

panel of Figure 2.10 the behavior of EM fields in a PEC metal-dielectric interface are

depicted schematically.

SIBCs allow exploring the changes suffered by EM fields close to a metallic surface

with finite, rather than infinite, conductivity. However, as in PEC interfaces, Maxwell

equations are not solved inside the metallic media. In the surface impedance approach,

the effect of the fields penetration inside the metal is reflected in the EM fields just at

the metallic surface. This is performed by defining a surface impedance ZS that relates
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tangential electric and magnetic fields just at the system interface.

The surface impedance approximation is based on the assumption that the spatial

variation of the fields normal to the interface (z-direction in Fig. 2.10) is much more

rapid than the variations parallel to it. This allows neglecting the parallel derivatives in

the Maxwell-Faraday’s equation, ∇× H = −iεk0E, when it is applied to the tangential

EM fields close to the metal surface. Therefore, the tangential fields inside the metal

and close to its surface satisfy Et = 1
εMk0

∂z(n × Ht), where εM is the metal permittivity

and n is the vector normal to the interface directed outward from the metal. If parallel

variations are much slower than normal ones, then kx, ky << kz and kz � √
εMk0. Thus,

we find that Et and Ht just at the metal interface satisfy

Et|S = − 1√
εM

n × Ht|S = −ZS n × Ht|S, (2.83)

where we have defined the impedance of the metal surface ZS = 1√
εM

.

The surface impedance approach, differently from PEC approximation, allows the exci-

tation of surface plasmon polaritons (SPPs) [6] on metal surfaces. Therefore, the validity

of the approach [91] can be checked by calculating the dispersion relation of conventional

SPPs on a flat surface with SIBCs and comparing it with the exact one. It can be obtained

by combining Eq. (2.83) with the definition of the modal admittance presented in Sec.

2.2.1 (−uz × Ht = YmodeEt) which provides us with the condition for the existence of

SPPs under SIBCs, (1 + ZS)Ymode = 0. Introducing the admittance of p-polarized plane

waves, Ymode = k0√
k2

0−k2
, we find the dispersion relation of SPPs within the SIBCs approx-

imation

k = k0

√
εM − 1

εM
. (2.84)

For |εM| >> 1, this expression coincides with the exact one, k = k0

√
εM

εM+1 (see Sec.

3.2.1). Thus, we can expect that SIBCs provide accurate results for metals with large

permittivities. This is true for most real metals in the terahertz and infrared regimes

[97], where SIBCs are an excellent approximation . Furthermore, the surface impedance

approach still leads to reasonable results in the telecom and optical ranges of the EM

spectrum, where metal permittivities are lower [98, 99].

We illustrate the incorporation of SIBCs into our formalism by considering the case

of an infinitely periodic array of holes. They are imposed at all the metal-dielectric in-

terfaces except in those corresponding to the apertures walls, which are still treated as

PEC. Thus, we avoid the application of SIBCs at corners [100], which would increase the

complexity of our model. Moreover, considering the apertures walls as PEC enables us
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to expand the EM fields inside them in terms of analytical wavefunctions. The effect of

fields penetration at the apertures can be considered by enlarging the apertures area, so

that the propagation constant of the approximated waveguide modes can be fitted to the

real ones [101].

SIBCs modify the continuity conditions on EM fields at the interfaces of the structure.

As for PEC boundaries, Ht must be continuous only through the apertures. However,

the continuity of Et is now replaced by Eq. (2.83), which must be satisfied over the entire

unit cell. Therefore, it is convenient to define two effective transverse fields, FI−I I =
Et + ZS uz × Ht and FI I−I I I = Et − ZS uz × Ht, whose continuity is imposed at z = 0 and

z = h, respectively (see Fig. 2.1). From these continuity conditions, a new set of linear

equations of the same form as Eqs. (2.28) and (2.38) is obtained. However, the various

terms appearing in this set of equations are now different from the PEC ones. For the

general case of periodic 2D hole arrays, they read

Ilsγ = 2i
YI

kiσi

1 + ZSYI
kiσi

(Slsγ
00σi

)∗, (2.85)

εlsγ = iYII
lsγ

eiq(ls)
z h(1 + ZSYII

lsγ) + e−iq(ls)
z h(1 − ZSYII

lsγ)

eiq(ls)
z h(1 + ZSYII

lsγ)2 − e−iq(ls)
z h(1 − ZSYII

lsγ)2
, (2.86)

GV
lsγ =

2iYII
lsγ

eiq(ls)
z h(1 + ZSYII

lsγ)2 − e−iq(ls)
z h(1 − ZSYII

lsγ)2
(2.87)

Gl′s′γ′
lsγ = i ∑

mnσ

YI
kmnσ

1 + ZSYI
kmnσ

(Slsγ
mnσ)∗Slsγ

mnσ. (2.88)

Similar expressions can be obtained for 1D periodic structures and 1D and 2D finite

systems by applying the procedure described here to the corresponding continuity equa-

tions.

Notice how SIBCs modify the G-term (2.88) from its PEC version (2.32). As we stated

in Section 2.2.1, under the PEC approximation, singularities in YI
knmσ make Gl′s′γ′

lsγ diverge.

We associated those divergences with the formation of geometrically induced bound

modes in the structure. Importantly, SIBCs shift that resonant condition and Gl′s′γ′
lsγ now

explodes if 1 + ZSYI
kmnσ = 0. This equation coincides with the condition for the exis-

tence of conventional SPPs under the surface impedance approximation [see Eq. (2.84)].

Therefore, we have found that the divergences in the G-term (2.88) are related to the

appearance of conventional SPPs in the system (described with SIBCs).

Figure 2.11 depicts the transmittance of a 200 nm thick Ag film perforated with a

square array of square holes of side 250 nm and period 500 nm. The comparison of ME

calculations and exact FDTD results is shown. The fundamentals of the FDTD method
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Figure 2.11.: Transmission spectrum for a 200 nm thick Ag film perforated with a square array
of square holes. The array period is 500 nm and the holes side 250 nm. The number of
hole waveguide modes and Bloch waves considered in the ME calculation are 4 and 121,
respectively. The square mesh size used in the FDTD calculations is equal to 5 nm.

are detailed in Sec. 2.4. Red dotted dashed and black solid lines correspond to ME cal-

culations under perfect conduction and surface impedance approximations, respectively.

Blue dashed line plots the transmission obtained from FDTD simulations with a square

mesh size of 5nm. The permittivity of Ag has been taken from the fitted Drude-Lorentz

formula considered in [99]. The comparison of the ME calculations with exact FDTD re-

sults demonstrates the predictive value of our approach. It is remarkable that ME results

reproduce, even with PEC boundaries, the main features appearing in the transmission

spectrum of such structures even at optical wavelengths.

2.3. Transfer matrix method

In the early 90’s the experimental realization by Yablonovitch and co-workers [102, 103]

of photonic crystals featuring a full photonic band gap, grabbed the attention of solid

state physicists who, at that time, were working on describing the properties of electrons

moving in periodic structures. Theorists began trying to analyze the behavior of EM
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fields in periodic dielectric media with the same tools that they used for calculating

electronic band structures.

Very soon, they realized that the light could not be treated as a scalar quantity, similar

to the electronic wavefunction, and that new approaches were needed for describing the

full vector nature of EM fields. The transfer matrix method (TMM) [104] was then devel-

oped as a high efficient approach for solving Maxwell equations in complex media. In

comparison with other proposed techniques, the TMM had several characteristics which

made it very suitable for addressing the problems that the incipient field of nanophoton-

ics was facing at that time. Some of these characteristics are:

• As a difference with other methods which provide the frequency, ω, associated

with each real wave vector, k, TMM allows calculating photonic bands by finding

all complex k’s associated with a single ω, similarly to the experimental procedure.

• TMM works in real space, which allows avoiding the high computational efforts

required to Fourier transform dielectric constants ε(r) displaying abrupt spatial

variations.

• Within TMM, frequency dependent permittivities are treated straightforwardly,

whereas in approaches working at a fixed k, the treatment of media having a di-

electric constant ε(ω) translates into that the dispersion relation, ω(k), must be

obtained in a self-consistent manner.

• The fact that TMM works at a fixed frequency, enables the calculation of transmis-

sion and reflection coefficients of complex objects in a very efficient manner.

In this section, we describe the fundamentals of the TMM, focusing on the problem

of the discretization of Maxwell equations, which lies at the core of this approach. Our

starting point are the curl Maxwell equations which, in the reciprocal space {k, ω}, have

the form

ik × E = i
ω

c0
µ(r)H, (2.89)

ik × H = −i
ω

c0
ε(r)E. (2.90)

Note that in this section, in order to avoid confusion with the unit vector that will be

introduced below, the speed of light in vacuum is denoted as c0.

Approximations crucial to the transfer matrix approach are now performed. In Eq.

(2.89), we make

kx ≈ (eikxa − 1)/ia, ky ≈ (eikyb − 1)/ib, kz ≈ (eikzc − 1)/ic, (2.91)
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where the unit vectors a = aux, b = buy, and c = cuz define the hexahedral mesh in

which Maxwell equations are discretized. In Eq. (2.90), we make

kx ≈ −(e−ikxa − 1)/ia, ky ≈ −(e−ikyb − 1)/ib, kz ≈ −(e−ikzc − 1)/ic. (2.92)

Fourier transforming back to real space the approximated version of Eq. (2.89), we

have

i
[Ez(r + b) − Ez(r)

b
− Ey(r + c) − Ey(r)

c

]
= −ω

c0
µ(r)Hx(r)

i
[Ex(r + c) − Ex(r)

c
− Ez(r + a) − Ez(r)

a

]
= −ω

c0
µ(r)Hy(r) (2.93)

i
[Ey(r + a) − Ey(r)

a
− Ex(r + b) − Ex(r)

b

]
= −ω

c0
µ(r)Hz(r)

and from Eq. (2.90), we obtain

i
[Hz(r − b) − Hz(r)

b
− Hy(r − c) − Hy(r)

c

]
=

ω

c0
ε(r)Ex(r)

i
[Hx(r − c) − Hx(r)

c
− Hz(r − a) − Hz(r)

a

]
=

ω

c0
ε(r)Ey(r) (2.94)

i
[Hy(r − a) − Hy(r)

a
− Hx(r − b) − Hx(r)

b

]
=

ω

c0
ε(r)Ez(r)

Introducing the z-component of Eqs. (2.93) into the x and y ones and defining H′ =
ic0
cω H, we can write

Ex(r + c) = Ex(r) +
c2ω2

c2
0

µ(r)H′
y(r)

+
c2

aε(r)

[ a−1[H′
y(r − a) − H′

y(r)]
−b−1[H′

x(r − b) − H′
x(r)]

]

− c2

aε(r + a)

[ a−1[H′
y(r) − H′

y(r + a)]
−b−1[H′

x(r + a − b) − H′
x(r + a)]

]
, (2.95)

Ey(r + c) = Ey(r) − c2ω2

c2
0

µ(r)H′
x(r)

+
c2

bε(r)

[ a−1[H′
y(r − a) − H′

y(r)]
−b−1[H′

x(r − b) − H′
x(r)]

]

− c2

bε(r + b)

[ a−1[H′
y(r − a + b) − H′

y(r + b)]
−b−1[H′

x(r) − H′
x(r + b)]

]
. (2.96)
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The same procedure applied in Eqs. (2.94) yields

H′
x(r + c) = H′

x(r) + ε(r + c)Ey(r + c)

− c2
0

aω2µ(r − a + c)

[ a−1[Ey(r + c) − Ey(r − a + c)]
−b−1[Ex(r − a + b + c) − Ex(r − a + c)]

]

+
c2

0
aω2µ(r + c)

[ a−1[Ey(r + a + c) − Ey(r + c)]
−b−1[Ex(r + b + c) − Ex(r + c)]

]
, (2.97)

H′
y(r + c) = H′

y(r) − ε(r + c)Ex(r + c)

− c2
0

bω2µ(r − b + c)

[ a−1[Ey(r + a − b + c) − Ey(r − b + c)]
−b−1[Ex(r + c) − Ex(r − b + c)]

]

+
c2

0
bω2µ(r + c)

[ a−1[Ey(r + a + c) − Ey(r + c)]
−b−1[Ex(r + b + c) − Ex(r + c)]

]
. (2.98)

These equations express the transverse EM fields on a discrete mesh plane as a func-

tion of the fields on the previous plane. Therefore, given Et and Ht at one end of the

structure under study, Eqs. (2.95)-(2.98) allow integrating through the system to find the

EM fields at the other end. The matrix relating the EM fields on one side of the structure

to those in the other is termed as transfer matrix [104]. Eqs. (2.95)-(2.98) can be written

in a more compact form as

F(z + c) = T(z)F(z), (2.99)

where we have defined the vector F(z) which has 4nxny components, one for each trans-

verse EM field at each point of the plane, and where T(z) denotes the 4nxnynxny transfer

matrix [see panel (a) of Fig. 2.12]. If the structure analyzed is the unit cell of a more

complex system, then the eigenvalues of T(z) give the band structure of the system.

In order to calculate transmission and reflection coefficients, we must express T(z) in

the basis defined by the eigenvectors, F(0)(z), of the transfer matrix in free space, T0.

As, by definition, T0 does not depend on z, F(0)(z) corresponds to plane waves with

eigenvalues of the form eikz. If S(z) is the unitary transformation to this basis, we have

T̂(z) = S−1T(z)S =

(
T̂++ T̂+−

T̂−+ T̂−−

)
. (2.100)

where T̂(z) denotes the transfer matrix in the plane wave basis. It has been decomposed

into four submatrices, which are related to the transmission and reflection matrices of
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Figure 2.12.: Panel (a): Sketch of the TMM approach. The transfer matrix, T(z), expresses trans-
verse EM fields in a given plane, F(z + c), in terms of fields in the previous plane, F(z).
Panel (b): Definition of the transmission and reflection coefficients for a system comprising
a single discrete slice.

the layer by [105]

t−− = (T̂−−)−1, (2.101)

t−+ = −(T̂−−)−1T̂−+, (2.102)

t+− = T̂+−(T̂−−)−1, (2.103)

t++ = T̂++ − T̂+−(T̂−−)−1T̂−+. (2.104)

The physical interpretation of the matrices t is depicted in the panel (b) of Fig. 2.12: t++

and t−+ are the reflection and transmission matrices on the left hand side of the slice

and t−− and t+− are the transmission and reflection matrices on the right.

In order to calculate the reflection and transmission coefficients of large structures

transfer matrices for contiguous layers are multiplied. Then, the main drawback of the

TMM arises, the appearance of numerical instabilities due to the eigenvalues of the form

eikz (with imaginary k) which grow exponentially as z increases. However, this problem

can be overcome by combining the TMM with the multiple scattering formalism [106].

47



2. Theoretical methods

400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

T
ra

n
s
m

it
ta

n
c
e

 (nm)

 FDTD

 TMM

Figure 2.13.: TMM and FDTD transmission spectra for a 350 nm thick Ag film perforated with
a periodic array of slits. The array period and slits width are equal to 500 nm and 100 nm,
respectively. TMM and FDTD results are compared. Mesh sizes in both TMM and FDTD
calculations are equal to 5nm.

Figure 2.13 shows the transmission versus wavelength for a periodic array of slits of

width 100 nm and period 500 nm, drilled in a 350 nm thick Ag film. The dielectric

constant of Ag has been taken from [99]. Numerical results obtained with TMM are

compared with FDTD calculations. TMM allows performing simulations in 2D domains

but the necessity of inverting transfer matrices every few discretized layers, makes the

technique not suitable for treating 3D systems. Thus, although the scattering of light by

1D slits can be analyzed through the method, it is not possible to simulate accurately 2D

apertures due to the high computational effort that TMM calculations require.

2.4. Finite difference time domain method

Differently from the ME and TMM approaches, which work in the frequency domain,

the finite difference time domain (FDTD) method aims at solving the time-dependent

Maxwell equations. The origin of the method can be linked to the limitations shown by

frequency-domain techniques employed in defence and communications technologies in
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2.4. Finite difference time domain method

the 70’s and 80’s. This led to the exploration of a novel alternative approach: direct time-

domain solutions of curl Maxwell equations on spatial lattices. The FDTD method was

the first technique of this class.

The fundamentals of the FDTD approach were established in 1966 by K. S. Yee [107],

who designed the space grid and time-stepping algorithm which lie at the core of the

method. However, it was not until 1980 when A. Taflove validated FDTD models of the

interaction of EM fields with real metallic scatterers and coined the term "Finite differ-

ence time domain" for the method [108]. Since 1990, due to its versatility and modelling

capabilities, the FDTD method has become one of the most extended tools for study-

ing EM fields and their interaction with material structures, with applications ranging

from ultralow-frequency geophysics to microwave communication devices or nano and

biophotonics [109]. Some of the most relevant features of the method are the following:

• FDTD methodology avoids the difficulties with linear algebra that limit the size of

the simulation domain in frequency-domain integral-equation and finite-element

techniques.

• The time-domain character of the method allows obtaining the response of the sys-

tem under study over a wide range of frequencies with a single simulation in which

a broadband pulse is used as the source. This fact makes the FDTD method very

useful in applications where the resonant frequencies are not known or broadband

results are required.

• FDTD treats nonlinear effects naturally, which allows the analysis of a wide va-

riety of EM phenomena arising in linear and nonlinear dielectric and magnetic

structures.

• As a difference with other computational approaches where only some components

of the EM fields are tracked, in the FDTD method the whole EM field is obtained

directly. This fact provides high stability to the calculations and make the technique

very useful in applications where all the components of the EM fields are relevant.

• Since EM fields are calculated in every point of the space as they evolve in time,

FDTD method provides animated displays of the EM fields propagating through

the system. These pictures can lead to a better understanding of the problem, and

represent a way to check the numerical stability of the simulation.

The FDTD method is based on the volumetric sampling of the unknown electric and

magnetic field vectors within the simulation domain and over a period of time. The
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Figure 2.14.: Distribution of electric and magnetic field components in the Yee grid.

discretization in space provides the spatial resolution of the simulation whereas the

sampling in time is related to convergence and numerical stability of the calculation.

Both are linked through the Yee algorithm [107], which represents robustly the curl

Maxwell equations.

Figure 2.14 shows how the components of the electric and magnetic field vectors are

located in the Yee algorithm. They are placed in 3D space so that every component of

E is surrounded by four circulating H components and vice versa. This gives rise to a

filling of the space by interlinked contours of curl Maxwell equations. Moreover, this

distribution of EM fields components enforces the Gauss-Maxwell relations. Thus, Yee

grid is divergence free with respect to both E and H in absence of charges.

Yee algorithm also arranges E and H components in time, following the so-called

leapfrog fashion. The electric field is calculated and stored at a given time using the

magnetic field data obtained in the preceding time step. Then, new results for H compo-

nents are obtained from the electric field just stored and the previous magnetic field. This

cycle, depicted in Fig. 2.15 , is repeated until the loop in time finishes. The explicit char-

acter of this procedure avoids problems arising in other approaches due to simultaneous

equations and matrix inversions.
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Figure 2.15.: Space-time sampling of the Yee algorithm showing the use of central differences for
the spatial derivatives and leapfrog stepping for the time derivatives.

In order to show how the Yee algorithm is incorporated into the FDTD method, we

build discretized expressions for the Faraday and Ampere-Maxwell equations

∇× E = −µ(r)
c

∂tH, (2.105)

∇× H =
ε(r)

c
∂tE. (2.106)

We define ∆x, ∆y and ∆z as the Yee mesh dimensions, and ∆t as the time increment.

Each node of the spatial grid is labelled with three integers, {i, j, k} (see Fig. 2.14), and

we associate index n with each time step (see Fig. 2.15). Thus, we can denote any function

of space and time, u, evaluated at a discrete point in the spatial grid and at a discrete

point in time as u(i∆x, j∆y, k∆z, n∆t) = u|ni,j,k.

The discrete version of the spatial derivatives of this function, evaluated at a fixed time,

are

∂u
∂x

(i∆x, j∆y, k∆z, n∆t) =
u|ni+1/2,j,k − u|ni−1/2,j,k

∆x
+ O[(∆x)2],

∂u
∂y

(i∆x, j∆y, k∆z, n∆t) =
u|ni,j+1/2,k − u|ni,j−1/2,k

∆y
+ O[(∆y)2], (2.107)

∂u
∂x

(i∆x, j∆y, k∆z, n∆t) =
u|ni,j,k+1/2 − u|ni,j,k−1/2

∆y
+ O[(∆y)2].
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Similarly, the time derivative of u, evaluated at a fixed space point i, j, k, has the form

∂u
∂t

(i∆x, j∆y, k∆z, n∆t) =
u|n+1/2

i,j,k − u|n−1/2
i,j,k

∆t
+ O[(∆t)2]. (2.108)

Note that taking increments of the form ±1/2∆ is the most convenient choice in order

to perform the interleave of electric and magnetic field components characteristic of the

Yee algorithm. Thus, we can write the discrete version of Eqs. (2.105) and (2.106) in the

grid shown in Fig. 2.14 as

Ex|n+1/2
i+1/2,j,k = Ex|n−1/2

i+1/2,j,k

+
c∆t

εi+1/2,j,k

[
(∆y)−1[Hz|ni+1/2,j+1/2,k − Hz|ni+1/2,j−1/2,k]

−(∆z)−1[Hy|ni+1/2,j,k+1/2 − Hy|ni+1/2,j,k−1/2]

]
, (2.109)

Ey|n+1/2
i,j+1/2,k = Ex|n−1/2

i,j+1/2,k

+
c∆t

εi,j+1/2,k

[
(∆z)−1[Hx|ni,j+1/2,k+1/2 − Hx|ni,j+1/2,k−1/2]

−(∆x)−1[Hz|ni+1/2,j+1/2,k − Hz|ni−1/2,j+1/2,k]

]
, (2.110)

Ez|n+1/2
i,j,k+1/2 = Ex|n−1/2

i,j,k+1/2

+
c∆t

εi,j,k+1/2

[
(∆x)−1[Hy|ni+1/2,j,k+1/2 − Hx|ni−1/2,j,k+1/2]

−(∆y)−1[Hx|ni,j+1/2,k+1/2 − Hx|ni,j−1/2,k+1/2]

]
, (2.111)

Hx|n+1/2
i,j+1/2,k+1/2 = Hx|n−1/2

i,j+1/2,k+1/2

+
c∆t

µi,j+1/2,k+1/2

[
(∆z)−1[Ey|ni,j+1/2,k+1 − Ey|ni,j+1/2,k]

−(∆y)−1[Ez|ni,j+1,k+1/2 − Ez|ni,j,k+1/2]

]
,

Hy|n+1/2
i+1/2,j,k+1/2 = Hx|n−1/2

i+1/2,j,k+1/2

+
c∆t

µi+1/2,j,k+1/2

[
(∆x)−1[Ez|ni+1,j,k+1/2 − Ez|ni,j,k+1/2]

−(∆z)−1[Ex|ni+1/2,j,k+1 − Ex|ni+1/2,j,k]

]
, (2.112)

Hz|n+1/2
i+1/2,j+1/2,k = Hz|n−1/2

i+1/2,j+1/2,k

+
c∆t

εi+1/2,j+1/2,k

[
(∆y)−1[Ex|ni+1/2,j+1,k − Ex|ni+1/2,j,k]

−(∆x)−1[Ey|ni+1,j+1/2,k − Ey|ni,j+1/2,k]

]
, (2.113)

where εi,j,k and µi,j,k are the discrete version of the permittivity and permeability evalu-

ated at the node {i, j, k}. Eqs. (2.109)-(2.113) illustrate the interspersed distribution of E

and H in the Yee mesh and the performance of the leapfrog approach describing the

evolution in time of the whole EM field.
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Finally, we discuss briefly how the dispersive dielectric constant of real metals can be

implemented in the FDTD approach. We consider a frequency-dependent Drude-like per-

mittivity [96] of the form εM(ω) = ε∞ − ω2
p

ω(ω+iγp)
. In time domain, the relation between

the displacement field, D, and the electric field, E, is given by the convolution

D(t) = ε∞E(t) + 4π
∫ t

0
E(t − τ)χ(τ)dτ, (2.114)

where χ(τ) = −ω2
p

γp
(1 − e−γpt)U(t) is the time-domain susceptibility function, being U(t)

the unit step. This equation describes the causal relation between the displacement and

electric fields, as only τ < t are involved in the convolution. Eq. (2.114) can be discretized

following the recipes presented above, and using a linear approximation for E inside the

integral, having

Dn = ε∞En + 4π
n−1

∑
m=0

[
En−mχm + (En−m−1 − En−m)ξm], (2.115)

where χm =
∫ (m+1)∆t

m∆t χ(τ)dτ and ξm = 1
∆t

∫ (m+1)∆t
m∆t (τ − m∆t)χ(τ)dτ.

The combination of Eq. (2.115) with the discretized Ampere’s law, ∇ × Hn+1/2 =
(c∆t)−1[Dn+1 − Dn], yields

En+1 =
[ ε∞ − 4πξ0

ε∞ − 4π(ξ0 − χ0)

]
En

+
[ c∆t

ε∞ − 4π(ξ0 − χ0)

]
∇× Hn+1/2 +

[ 1
ε∞ − 4π(ξ0 − χ0)

]
Ψn. (2.116)

This vectorial equation allows the updating of the electric field inside a Drude metal.

It replaces Eqs. (2.109)-(2.111) when solving Maxwell equations inside nondispersive

media. In Eq. (2.116), we have introduced the artificial vector

Ψn =
n−1

∑
m=0

[En−m(χm − χm+1) + (En−m−1 − En−m)(ξm − ξm+1)], (2.117)

which reflects the causal relation between D and E without the need to evaluate expli-

citly the convolution integral in Eq. (2.114). Thus, this approach, termed piecewise-linear

recursive-convolution algorithm [110], allows the treatment of metallic media in a very

efficient manner within the FDTD methodology, as vector Ψn can be calculated and up-

dated recursively in time.

2.5. Finite integration technique

One decade after the publication of the seminal paper by Yee [107] establishing the

foundations of the FDTD method, T. Weiland [111] introduced a different computational
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approach for analyzing complex EM phenomena. Instead of starting from differential

Maxwell equations, this novel method, termed finite integration technique (FIT), aimed

at solving the Maxwell equations in integral form. It used all six vector components of

the electric field strength and magnetic flux density on a dual grid system similar to the

Yee mesh. In 1996, Weiland [112] reformulated the FIT in terms of quantities linked to

space objects: electric and magnetic voltages assigned to grid contours, and electric and

magnetic fluxes assigned to grid surfaces. This fact allows the matrix formulation of FIT,

which made it also valid for irregular and non-orthogonal grids. For the case of leapfrog

time-stepping schemes applied to cartesian meshes, the discrete equations coming out

from FIT are identical to the FDTD ones. Therefore, FDTD method can be considered as

a subset of the most general version of FIT [113].

In this section, we describe how the discrete integral Maxwell equations are con-

structed in FIT [114]. The first discretization step consists in the decomposition of the

simulation domain into basic cells. In principle, these can have any geometry, while they

fit exactly to each other, but for simplicity, here we consider the case of a uniform hexa-

hedral computational grid, Γ. We label the positions of the grid nodes as (xi, yj, zk), and

the total number of nodes in Γ as Np = I × J × K, where I, J and K stand for the number

of nodes in the three spatial directions.

We restrict the finite integration procedure to the volume, V, of a single grid cell,

shown in Fig. 2.16. First, we construct the discrete version of the integral Faraday’s law
∮

∂A
E(r, t) · ds = −1

c

∫ ∫
A

∂

∂t
B(r, t) · dA, (2.118)

where ∂A is the contour of the area A. For the face Az(i, j, k) of V [see panel (a) of Fig.

2.16], Eq. (2.118) can be written as

>ex(i, j, k) +>ey(i + 1, j, k) −>ex(i, j + 1, k) −>ey(i, j, k) = −1
c

∂

∂t

>>
bz(i, j, k), (2.119)

where we have defined >ex(i, j, k) =
∫ (xi+1,yj,zk)

(xi ,yj,zk)
E · ds, which is the electric voltage along

one edge of the surface Az(i, j, k). This scalar quantity represents the exact value of the

integral of the electric field along this edge. We have also introduced the magnetic flux
>>
bz(i, j, k) =

∫ ∫
Az(i,j,k) B · dA, given by the integral of the magnetic flux density through

the cell surface Az(i, j, k).

The discrete version of the magnetic Gauss equation in integral form,∫ ∫
∂V

B(r, t) · dA = 0, (2.120)

can be obtained following a similar procedure. Applied to the grid cell [see panel (b)

of Fig. 2.16], the closed surface integral in Eq. (2.120) can be expressed in terms of the
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(a) (b)
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ey(i,j,k)

)

ez(i,j+1,k)
)

bz(i,j,k)
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by(i,j,k)
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bx(i+1,j,k)
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bz(i,j,k+1)
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Az(i,j,k) Az(i,j,k)

Figure 2.16.: Panel (a): FIT cell showing the electric voltages >e on the edges of the face Az(i, j, k))

and the magnetic fluxes
>>
b through this surface. Panel (b): Location of the six magnetic facet

fluxes,
>>
b, considered in the evaluation of the closed surface integral for the non-existence of

magnetic charges within the cell.

magnetic fluxes through each of its faces as

−
>>
bx(i, j, k) +

>>
bx(i + 1, j, k) −

>>
by(i, j, k) +

>>
by(i, j + 1, k)

−
>>
bz(i, j, k) +

>>
bz(i, j, k + 1) = 0 (2.121)

Up to this point, we have presented the integral formulation of Faraday and magnetic

Gauss equations for a single cell. However, this discretization scheme can be extended

to the whole simulation domain by introducing the 3Np-sized vectors

>e = (>ex,n|>ey,n|>ez,n)T
n=1,...,Np

, (2.122)
>>
b = (

>>
bx,n|

>>
by,n|

>>
bz,n)T

i,j,k=1,...,Np
. (2.123)

whose entries correspond to all the electric voltages and magnetic fluxes in Γ. Thus, the
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equation (2.119) for all cell surfaces can be collected in matrix form as⎛
⎜⎜⎝

. . . . . . . . . . . .

. . . 1 1 −1 −1 . . .

. . . . . . . . . . . .

⎞
⎟⎟⎠
⎛
⎜⎜⎝

>e1
...

>e3Np

⎞
⎟⎟⎠ = −1

c
∂

∂t

⎛
⎜⎜⎜⎝

>>
b1
...

>>
bNp

⎞
⎟⎟⎟⎠ , (2.124)

which can be written as

C>e = −1
c

∂

∂t

>>
b (2.125)

where matrix C represents a discrete curl-operator on the grid Γ.

Similarly, Eq. (2.120) for a single cell can be expanded to the whole grid Γ as⎛
⎜⎜⎝

. . . . . . . . . . . . . . . . . .

. . . 1 1 1 −1 −1 −1 . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎠
⎛
⎜⎜⎜⎝

>>
b1
...

>>
bNp

⎞
⎟⎟⎟⎠ = 0, (2.126)

which enables us to define the discrete divergence matrix S and rewrite Eq. (2.126) as

S
>>
b = 0. (2.127)

Note that both the curl, C, and the divergence, S, are discrete operators that only depend

on the grid topology, and their entries satisfy Cij, Sij ∈ {1, 0,−1}.

The integral Ampere’s law in absence of currents reads∮
∂Ã

H(r, t) · ds = −1
c

∫ ∫
Ã

∂

∂t
D(r, t) · dA. (2.128)

The Gauss’ law in absence of charges has the form∫ ∫
∂V

D(r, t) · dA = 0. (2.129)

The discretization of these two remaining Maxwell equations requires the introduction of

a second cell Γ̃ which is dual to the primary cell Γ. For the case of cartesian geometries,

Γ and Γ̃ are equivalent to the electric and magnetic subgrids in the Yee mesh (see Fig.

2.14). Within the dual grid, we define the 3Np-sized vector of magneto motive forces
>
hn =

∫
∂Ãn

H · ds, which contains the integrals of the magnetic field along every edge

∂Ãn in Γ̃. Similarly, we introduce the 3Np-sized vector of displacement fluxes through

all cells faces, Ãn,
>>
dn =

∫ ∫
Ãn

D · dA. With these definitions, we are able to write the FIT

expressions for Eqs. (2.128) and (2.129), having

C̃
>
h = −1

c
∂

∂t

>>
d, (2.130)

S̃
>>
d = 0, (2.131)
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2.5. Finite integration technique

where we have introduced the curl and divergence operators, C̃ and S̃, defined within Γ̃.

Eqs. (2.125), (2.127), (2.130) and (2.131) define the complete set of the so-called Maxwell

grid equations.

Up to here, we have focused on the spatial discretization of Maxwell equations but we

have not considered the dependence on time of the EM fields within FIT. The algebraic

properties of the FIT Maxwell grid equations allows proving charge and energy conser-

vation within several time-stepping schemes. Some of the most extended time-stepping

approaches are the leapfrog FDTD algorithm, certain second order implicit methods,

and implicit time integration techniques [114]. The versatility and space-time stability

featured by FIT distinguish it from many alternative methods whose range of applica-

tion is much narrower and which may become unstable or inaccurate within long term

calculations.
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3. Geometrically induced surface

electromagnetic modes

3.1. Introduction

The occurrence of transmission resonances in perforated perfect conducting films [45],

which do not sustain surface plasmons, has led to a growing interest in these structures.

Recently, it has been demonstrated that corrugations on the surface of a perfect con-

ductor make it behave as an effective metal whose dielectric response is controlled by

geometry [56, 57]. It has been also shown that the geometrically induced electromagnetic

modes sustained by these systems, termed spoof surface plasmon polaritons, have char-

acteristics resembling those of conventional surface plasmon polaritons in the optical

regime.

At low frequencies, electromagnetic modes bound to metal-dielectric interfaces, the

so-called Zenneck [2] or Sommerfeld [1] waves, are not suitable for guiding purposes

due to their weak confinement to the metal surface. For this reason, surface modes in

periodic metal designs have been thoroughly studied in the framework of telecommu-

nication engineering [58–60]. In this context, spoof surface plasmon polaritons, despite

of being theoretical idealizations, open the way to transfer the technological potential

of plasmonics to low frequency domains, where perfect electric conducting metals are

an excellent approximation. This has given rise to an intense scientific activity in the

last years. Recently, theoretical corrections to the spoof plasmon concept have been intro-

duced [61, 62], and its extension to new geometries has been proposed [63]. Moreover, ge-

ometrically induced surface modes have been experimentally verified in the microwave

regime [64, 65].

In this chapter, we study the formation of spoof plasmon modes on planar and cylin-

drical structures and analyze the dependence of their characteristics on the different

geometrical parameters. Additionally, we propose two distinct guiding schemes featur-

ing subwavelength confinement in the transverse plane which borrow ideas from the

spoof plasmon concept and channel and wedge plasmon polaritons in the visible range

[31, 36]. In order to illustrate the technological capabilities of our work, we set the dimen-
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3. Geometrically induced surface electromagnetic modes

sions of our designs so that they operate at terahertz frequencies. Finally, we present the

comparison of our theoretical results with experiments realized in the terahertz regime.

3.2. Planar geometries

3.2.1. Surface Plasmon Polaritons on a flat metallic surface

We motivate our study of geometrically induced electromagnetic (EM) modes by briefly

reviewing the properties of surface plasmon polaritons (SPPs) supported by flat metallic

surfaces [7, 9]. These are p-polarized waves propagating at the interface between a metal

and a dielectric, evanescently confined in the perpendicular direction (see sketch in the

upper inset of Fig. 3.1). In our description, we characterize the metal response through

a lossless Drude-like dielectric function of the form εM(ω) = 1 − ω2
p/ω2, where ωp is

the plasma frequency of the free electron gas modelling the metal. This quantity defines

the frequency range involved in the system. For most metals, ωp lies in the ultraviolet

part of the EM spectrum (∼ 1016 Hz). In the inset of Fig. 3.1, εM versus the normalized

frequency, ω/ωp, is shown.

The dispersion relation for the SPPs supported by a flat metallic surface is obtained by

imposing fields continuity at the system interface, having:

k = k0

√
εM(ω)

εM(ω) + 1
, (3.1)

where k is the wave vector component parallel to the metal-dielectric interface, and k0 =
ω/c. For simplicity, we have chosen ε = 1 for the dielectric medium. According to Eq.

3.1, k > k0 for ω � ωp, which reveals the bound character of SPPs. However, in the limit

ω << ωp, Eq. (3.1) yields k = k0, which indicates that no confined modes are sustained

by flat perfect electric conducting (PEC) surfaces.

The lower panel of Fig. 3.1 renders the SPPs dispersion relation calculated from Eq.

(3.1). The parallel wave vector deviates from the light line for increasing frequency until

ωp/
√

2, where it diverges. This evolution of k with ω controls the normal component of

the wave vector in vacuum, k⊥ =
√

k2 − k2
0. At low frequencies, |εM| >> 1, EM fields

are expelled out of the metal, and SPPs extend into vacuum. However, as ω approaches

ωp/
√

2, |εM| is reduced (see the inset of Fig. 3.1) and the the binding of the mode

increases, achieving subwavelength field localization in the direction normal to the metal-

vacuum interface.

From our brief analysis, we conclude that SPPs present their most interesting prop-

erties at frequencies slightly below ωp, which usually correspond to the visible range
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Figure 3.1.: Upper panel: Metal-vacuum interface supporting SPPs. Lower panel: Dispersion rela-
tion of SPPs supported by a flat lossless metal surface characterized by a Drude-like dielec-
tric function. The inset plots the metal dielectric function versus frequency.

(∼ 1015 Hz). At these frequencies, SPPs transport efficiently EM energy within the metal

surface, featuring subwavelength fields confinement in the perpendicular direction. We

have also shown that at frequencies much lower than ωp, k � k0, EM fields spread into

vacuum and SPPs lose their capabilities.

In the following sections, we describe how the limitations of conventional SPPs at

frequencies much lower than ωp can be overcome through the structuring of the metal

surface. We will show that surface texturing creates surface EM modes even in the case

of perfect conductivity (spoof SPPs). As length and frequency scales are not defined in

PEC metals, this result allows transferring the properties of SPPs from the visible to

lower frequency ranges. We will demonstrate that the characteristics of spoof SPPs are

controlled by the geometry of the surface structure and compare our theoretical results

with experiments performed at terahertz frequencies (� 1014 Hz).
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3. Geometrically induced surface electromagnetic modes

3.2.2. Spoof surface plasmon polaritons: groove and dimple arrays

We begin our analysis of the EM modes bound to textured PEC surfaces by considering

the two geometries in which the concept of spoof SPPs was firstly developed: 1D arrays

of grooves and 2D arrays of dimples. In Section 2.2.4, we introduced these two systems

and discussed the suitability of our ME formalism for analyzing the characteristics of the

EM modes bound to them. We showed that the spoof SPP dispersion relation in these

two geometries is given by the non-vanishing solutions of the ME equations describing

the fields continuity at the metal-vacuum interface (2.72)

(Gαα − εα)Eα + ∑
β �=α

GαβEβ = 0. (3.2)

where α and β label the waveguide modes inside the indentations. The unknowns, Eα,

correspond to the modal amplitudes of the electric field at the input side of the inden-

tations. The term εα reflects the bouncing of the EM fields inside the indentations. It is

given by Eqs. (2.40) and (2.30), for grooves and dimples, respectively. Finally, the term

Gαβ describes the interaction between EM fields linked to waveguide modes α and β

through diffracted waves. Expressions for Gαβ in the two systems considered are pro-

vided in Eqs. (2.42) (grooves) and (2.32) (dimples).

In Section 2.2.4, we demonstrated that it is possible to obtain analytical expressions for

the spoof SPP dispersion relation in these two systems by introducing two approxima-

tions in our formalism. The first approximation consists in considering only the lowest

waveguide mode inside the indentations, which leads to accurate results only for aper-

tures much smaller than the wavelength. The second approximation consists in neglect-

ing diffraction effects, taking only the zero-order diffracted wave in the expansion of the

EM fields outside the indentations. This approximation is only valid for array periods

much smaller than the wavelength, and even in this limit, it overestimates the binding

of the EM modes. All the results shown in this section have been obtained through

calculations including a sufficiently large number of modes as necessary for reaching

convergence. However, it is worth taking into account the analytical dispersion relations

since they enable us to gain physical insight into our problem.

We consider first the case of groove arrays. The left inset of Fig. 3.2 shows the geomet-

rical parameters of the structure: the array period, d, and the grooves width and depth,

a and h, respectively. As all lengths are scalable in PEC metals, we can consider d as the

reference length. The approximated spoof SPP bands reads (2.75)

kx = k0

√
1 +
( a

d

)2
tan2(k0h). (3.3)
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Figure 3.2.: Dispersion relation of the spoof SPPs sustained by arrays of grooves of width a = 0.2d.
Five different grooves depth are represented ranging from h = 0.2d to h = d. Black line
corresponds to the light line. Left inset shows a schematic picture of the structure considered.

This analytical expression enables us to predict the behavior of the exact spoof SPP

dispersion relation when the structure parameters are varied. Thus, according to Eq.

(3.3), the spoof SPP bands deviate from the light line when the grooves depth, h, is

enlarged. For h = 0, kx = k0 and, as expected, no bound mode is supported by the

structure. However, when the PEC surface is milled with deeper grooves, the parallel

wave vector increases having kx > k0.

Figure 3.2 displays the exact dispersion relation of the spoof SPPs supported by groove

arrays of width a = 0.2d and depth varying from h = 0.2d to h = d. As predicted by

Eq. (3.3), the spoof SPP bands shift to lower frequencies (d/λ) when the grooves depth

is increased. This result can be understood in terms of groove cavity resonances. The

lowest TM waveguide mode supported by 1D apertures is always propagating [see the

lower equation in (2.37)]. Thus, the EM fields associated to spoof SPPs explore the whole

groove depth, being very affected by changes in h. This fact provides the spoof SPP

modes supported by 1D indentations a hybrid nature featuring characteristics of both

surface and cavity EM modes.

In Fig. 3.3, the dispersion relation of the spoof SPPs sustained by periodic arrays of
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Figure 3.3.: Dispersion relation of the spoof SPPs supported by arrays of grooves of depth h =
0.6d. The grooves width is varied from a = 0.1d to a = 0.6d. Black line shows the light line.
Right inset: Electric field amplitude at the band edge for the case a = 0.2d.

grooves of depth h = 0.6d is plotted. Four grooves widths between a = 0.1d and a =
0.6d are considered. The bands are lowered with larger a. This dependence on a is also

predicted by Eq. (3.3), where kx grows with increasing a. As we showed in 2.2.4, the ratio

a/d governs the overlap between the zero-order diffracted wave and the first waveguide

mode. Therefore, we can conclude that for wider indentations, the EM coupling at the

system interface is larger, which increases the binding of the spoof SPP modes and shifts

their dispersion relation to lower frequencies.

The right inset of Fig. 3.3 renders the electric field amplitude for the spoof SPPs on

a groove array with a = 0.2d and h = 0.6d. The electric field is evaluated at band edge

(kx = π/d), which corresponds to d/λ = 0.31 (blue line). Note that the electric field

is enhanced inside the indentations at the system interface. The electric field decays

more rapidly into the vacuum region than inside the grooves, which agrees with our

interpretation of a spoof SPP as a hybrid between surface and groove cavity modes.

Now, we analyze the characteristics of the spoof SPPs on dimple arrays. In the inset

of Fig. 3.4, the structure supporting geometrically induced bound modes is depicted. As

in Section 2.2.4, we consider here only the case of square arrays of square dimples. The
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Figure 3.4.: Normalized frequency versus parallel wave vector for the spoof SPPs sustained by
dimple arrays with a = 0.6d. Black line renders the light line. Bands corresponding to depths
ranging from h = 0.1d to h = d are represented. Inset: sketch of the dimple array sustaining
bound EM modes.

geometrical parameters of the system are now the 2D array period, d, taken as reference,

and the dimples side and depth, a and h, respectively. The analytical expression for the

dispersion relation of the corresponding spoof SPP modes has the form (2.77)

kx = k0

√√√√1 +

(
2
√

2a
πd

)4
k2

0

(π/a)2 − k2
0

tanh2
(√

(π/a)2 − k2
0 h
)

. (3.4)

The main difference between Eqs. (3.3) and (3.4) resides in the different character of the

lowest waveguide modes sustained by 1D and 2D indentations. As we showed above, this

mode is always propagating inside 1D grooves. However, the lowest waveguide mode

in 2D dimples, which corresponds to the TE mode with l = 0 and s = 1 in Eq. (2.7), is

evanescent for a < λ (which is the case we are analyzing). This fact leads to the tanh

dependence on h that the analytical dispersion relation shows for dimple arrays. As we

did for grooves, we can use Eq. (3.4) to predict the behavior of the exact spoof SPP bands

when the geometrical parameters are modified.

Figure 3.4 plots the spoof SPP bands for dimples of side a = 0.6d. The depth of the

indentations is varied from h = 0.1d to h = d. Note that the dispersion relations are
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Figure 3.5.: Dispersion relation of the spoof SPPs on dimple arrays with h = 0.6d. The dimples
width is varied from a = 0.4d to a = 0.8d. Black line corresponds to the light line. Insets
render the amplitude of the electric field at the band edge for the case with a = 0.6d. Two
different cross-cuts are shown with different color scale: y = 0.5d and z = −0.2d.

closer to the light line than in the case of 1D indentations. As in Fig. 3.2, the bands move

to lower d/λ when the dimple depth is increased. However, this displacement is much

smaller than in the case of grooves. This difference can be understood through Eq. (3.4).

The tanh dependence on h in the analytical expression indicates that EM fields inside 2D

indentations are evanescent. Thus, they decay before reaching the bottom of the dimples,

making the spoof SPPs be less sensitive to variations in h.

In Figure 3.5, the dependence of the spoof SPP bands on the dimple area is analyzed.

Dimples of depth h = 0.6d, and side between a = 0.4d and a = 0.8d are considered. As

predicted by Eq. (3.4), the bands are bent at smaller d/λ as a is enlarged. Similarly to

groove arrays, this effect can be interpreted as due to an increase in the EM coupling

of diffracted and dimple waveguide modes, which in our analytical approach is propor-

tional to (a/d)2. The left insets render the electric field amplitude evaluated at the band

edge for a = 0.6d and h = 0.5d. The upper inset plots the electric field at y = 0.5d,

whereas the lower one corresponds to the plane z = −0.2d. Note that the color scales

in both cross-cuts are different. As we have predicted, the electric field is mostly located
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at the system interface (z = 0) and decays along the z-direction inside the indentation

(z < 0) and in vacuum (z > 0). This field distribution explains why the dispersion bands

are closer to the light line than in groove arrays, as the binding of the modes to the

surface texture is lower than in that case. Moreover, this result reinforces our view of the

spoof SPPs supported by 2D indentations as surface EM modes.

We have analyzed the dependence of the dispersion relation of the spoof SPP modes

supported by groove and dimple arrays on the depth, h, and width, a, of the indentations.

Importantly, we have demonstrated that these two geometrical parameters govern the

effective plasma frequency (see Sec. 3.2.1) for these EM modes, enabling the control of

their propagation and confinement properties through the design of the surface structure.

The emergence of this geometrically induced EM modes allows considering textured

metallic surfaces as plasmonic metamaterials, as they gain their properties from their

structure rather than their composition.

3.2.3. Spoof surface plasmon polaritons: slit and hole arrays

In this section, we study the spoof SPP modes supported by periodic arrays of 1D and 2D

apertures drilled in PEC slabs of finite thickness and compare their characteristics with

those of textured surfaces. In Section 2.2.4, we showed that, within our ME formalism,

the geometrically induced modes in perforated films are given by the following set of

linear equations describing the continuity of EM fields at both sides of the film (2.71)

(Gαα − εα)Eα + ∑β �=α GαβEβ − GV
β E′

α = 0,

(Gα − εα)E′
α + ∑β �=α GαβE′

β − GV
α Eα = 0.

(3.5)

The unknowns in this system are Eα and E′
α, which are related to the electric field ampli-

tudes at the aperture openings at both sides of the film. The definition of the Gαβ and εα

terms is the same as in Eq. (3.2). The GV term links the electric field amplitudes at dif-

ferent sides of the film and takes into account the EM coupling through the perforations.

Analytical expressions for GV
α are provided in Eqs. (2.41) (slits) and Eq. (2.31) (holes).

As in the case of blind indentations, it possible to obtain analytical dispersion rela-

tions for spoof SPPs in perforated films. The approximations made in the model are the

same as for grooves and dimples: considering only the first waveguide mode inside the

apertures and the zero-order diffracted mode outside the film. For 1D arrays of slits, this

approximate approach yields (2.81)

kx = k0

√
1 +
( a

d

)2 sin2(k0h)
[cos(k0h) ± 1]2

, (3.6)
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Figure 3.6.: Dispersion relation of the spoof SPPs supported by periodic arrays of 1D apertures
(slits and grooves). In both cases, the apertures have the same width a = 0.2d and depth
h = d. Dotted lines render the analytical spoof SPP bands for both structures. Left inset
depicts the amplitude of the electric field at the band edge for the slit array.

where the negative (positive) sign corresponds to spoof SPPs in which the electric field

is symmetric (antisymmetric) with respect to the middle plane of the film.

Figure 3.6 renders the dispersion relation of the spoof SPPs supported by an array

of slits and an array of grooves of the same dimensions. The width and depth of the

apertures are a = 0.2d and h = d, respectively. Note that in the case of slits, h corresponds

to the thickness of the perforated film. For the geometrical parameters considered, both

structures sustain only one bound mode. The dispersion relation for the array of slits

is raised with respect to that of the groove array, which means that the spoof SPPs are

less bounded to the structure. This can be understood by analyzing the behavior of EM

fields inside the film. As we have already mentioned, the lowest TM waveguide mode

in 1D apertures is always propagating, which translates into that EM fields bounce back

and forth inside the perforations. Whereas the bottom of the grooves acts as a mirror, slit

openings allow the coupling of waveguide modes with diffracted waves. This fact enables

the spoof SPPs to extend out of the structure and shifts the spectral position of the cavity

resonances (also termed Fabry-Perot resonances) inside slits to higher frequencies than in
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the case of grooves. Dotted lines plot the bands obtained from our analytical approach.

The approximated dispersion relation for the slit array has been calculated taking the

positive sign in Eq. (3.6), which indicates that the spoof SPP mode is antisymmetric with

respect to the middle plane of the structure.

The inset of Fig. 3.6 displays the electric field amplitude at the band edge for the slit

array considered in the main panel. We can see that the electric field is enhanced at

the slit openings, which demonstrates that the spoof SPPs are strongly influenced by

diffraction effects at the slits ends. It can be also observed that the electric field vanishes

at the center of the slits. This means that, as we have already predicted, the spoof SPPs

have an odd parity with respect to the middle of the film.

Now, we consider the geometrically induced modes sustained by a PEC film pierced

by an square arrangement of square holes. The analytical dispersion relation of these

modes has the form (2.82)

kx = k0

√√√√√√1 +

(
2
√

2a
πd

)4
k2

0

(π/a)2 − k2
0

sinh2
(√

(π/a)2 − k2
0 h
)

(cosh
(√

(π/a)2 − k2
0 h
)
± 1)2

. (3.7)

As in the case of slits, the ± sign indicates the symmetry of the mode. Similarly to dimple

arrays, the evanescent character of the EM fields inside the apertures is reflected through

the hyperbolic functions in Eq. (3.7).

In Section 3.2.2 we demonstrated that the distinct character (propagating or evanes-

cent) of the waveguide modes in grooves and dimples makes the characteristics of the

spoof SPPs in such structures very different. This also occurs in the case of perforated

films. We have seen that the main difference between spoof SPPs in slits and grooves

resides in the modification of the cavity resonances inside the apertures. However, in

the case of 2D perforations, the finite thickness of the PEC structure not only shifts the

bands, but also gives rise to a splitting of the dispersion relation. This effect can be seen

in Figure 3.7. It plots the spoof SPP bands for the case of a dimple array with a = 0.6d
and h = 0.3d. The dispersion relation corresponding to a periodic hole array of the same

geometry is also shown. Note that as in 1D structures, h denotes now the thickness of the

film. As we have anticipated, whereas the dimple array supports only one bound mode,

two different spoof SPP bands appear for the hole array.

The origin of the two distinct spoof SPP modes in the hole array of Fig. 3.7 can be un-

derstood by looking at the field patterns in the upper insets of the figure. They show the

electric field amplitude at y = 0.5d (see insets of Fig. 3.5) corresponding to the two spoof

SPP band edges. We can see that, in contrast to the modal shape displayed in Fig. 3.6,

fields are not localized at the holes openings, but at the film surfaces. This agrees with
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Figure 3.7.: Dispersion relation of the spoof SPPs sustained by periodic arrays of holes and dim-
ples of the same dimensions. The side of the square apertures is a = 0.6d and their depth is
h = 0.3d. Insets show the electric field amplitude at the edge of the two spoof SPP bands for
the hole array.

our interpretation of the spoof SPPs in 2D geometries as surface modes. According to

this physical picture, the two spoof SPP modes in perforated films emerge from the inter-

action between the isolated surface modes at each side of the film. Thus, the lower band

in Fig. 3.7 can be linked to the symmetric combination of both surface modes through

the holes, whereas the higher band corresponds to the antisymmetric superposition of

their evanescent tails. Note that the electric field in panel (a) vanishes inside the holes at

the middle plane of the structure, while in panel (b) it shows a maximum at that position.

This field pattern is similar to that corresponding to long range and short range SPPs in

thin films [115].

Finally, notice that leaky spoof SPPs, whose dispersion relation lies above the light line,

can be also treated with our formalism. These modes radiate while travelling within the

system. Therefore, in the calculation of the dispersion relation for these modes, k must be

considered as a complex quantity whose imaginary part describes the decay experienced

by EM fields as they propagate along the PEC structure. Importantly, these leaky spoof

SPPs play a crucial role in the reflection properties of corrugated surfaces, and in the

transmission and reflection characteristics of perforated films.
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Figure 3.8.: Left panel: Dispersion relation of the spoof SPPs for the two experimental samples.
Solid lines correspond to ME calculations and squares renders FDTD results. The frequen-
cies at the band edge for both structures are indicated. Right panel: Electric field amplitude
evaluated along the direction normal to the surface of sample I at two different positions
within the dimple array unit cell.

3.2.4. Comparison with experiments in the terahertz regime

In this section, we present the comparison between the theoretical predictions obtained

with our ME approach and the experiments carried out by the group of Prof. S. A. Maier

and Dr. S. R. Andrews in the University of Bath on the propagation and confinement of

spoof SPPs at THz frequencies. The measurements are performed on two planar copper

surfaces (samples I and II) perforated by square arrays of square dimples (see insets of

Fig. 3.9). The dimensions of the two samples are the following: the array period in sample

I is d = 150 µm, and the dimple side is a = 91± 5 µm, whereas sample II has d = 100 µm

and a = 66 ± 4 µm. The depth of the dimples in both samples is h = 58 ± 6 µm, and

the thickness of the copper sheets is 0.5 µm. The samples are 40 mm long and 8 mm

wide. Note that the uncertainties in the dimensions reflect systematic variations across

the samples associated with the fabrication technique.

The left panel of Fig. 3.8 plots the theoretical dispersion relation of the spoof SPP

modes supported by PEC dimple arrays with the same dimensions as the experimental

samples. Solid lines correspond to the spoof SPP bands obtained through converged ME

calculations and squares show FDTD results. The frequency at the band edge , fBE, for

both structures is also indicated: 0.98 THz (sample I) and 1.45 THz (sample II).
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3. Geometrically induced surface electromagnetic modes

Figure 3.9.: Sketch of the experimental setup to study the propagation and confinement of spoof
SPPs. Insets show electron micrographs of the top and cleaved edges of sample I.

The right panel of Fig. 3.8 displays the electric field amplitude at the band edge ob-

tained through ME calculations for sample I. Electric field is evaluated along two lines

perpendicular to the sample surface (z-direction), located at different positions within the

structure unit cell (see inset). Black dashed line plots the fitting of the two field profiles

to an exponential decay of the form e−kzz, where the normal wave vector, kz =
√

k2
x − k2

0,

is calculated from the bands shown in the left panel of the figure. Note that 0.1 mm above

the sample, the electric field decay is homogeneous within the dimple array unit cell.

The samples are studied experimentally using THz time-domain spectroscopy, in which

the coherently detected signal current at a particular frequency is proportional to the elec-

tric field. Coupling of p-polarized free-space radiation to spoof SPPs is achieved using an

aperture of wavelength-scale width, h1, defined by a steel razor blade perpendicular to

the sample surface (see Fig. 3.9). Diffraction at the aperture allows the phase matching to

the spoof SPPs. An intermediate aperture, h3, made from a 1.5 mm thick aluminum sheet

is used to probe the extent of the spoof SPP field along the z-direction. Finally, diffrac-

tion at the final razor blade (with aperture h2) is used to transform the spoof SPPs back

into free-space radiation for detection. The propagation distance needed for the modal

shape of the surface EM wave to be fully developed after its excitation is governed by the
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Figure 3.10.: Panels (a) and (c) show the time-domain signal and spectra corresponding to free-
space coupling of the transmitter and receiver and to the propagation on a flat sheet. Panels
(b) and (d) render the signals and spectra for sample I at two different intermediate aper-
tures, h3. Dash vertical line in panel (d) shows the theoretical fBE for sample I.

perpendicular decay length, lz = 1/kz. This makes observations of SPPs on flat surfaces,

the so-called Zenneck waves [2], difficult to measure as lz � 10 cm for copper at 1 THz

[116]. In our case, lz is of the order of few millimeters over a broad frequency range near

the band edge, and therefore we can expect that spoof SPPs are fully developed in our

setup.

Panels (b) and (d) of Fig. 3.10 render the time-domain signals and spectra after prop-

agation along sample I. For comparison, data obtained by direct free-space coupling of

the THz transmitter and receiver (that is, no sample) and for propagation on a perfectly

flat copper surface are shown in panels (a) and (c). The time-domain trace of the unstruc-

tured surface is similar to that obtained with no sample. Because of the extremely low

dispersion of Zenneck waves on flat surfaces, the small change in shape is mainly due

to the effect of the apertures. In contrast, the signals from sample I show pronounced

ringing, which persists for more than 10 ps, and the spectra exhibit sharp cut-offs at

frequencies close to the theoretical fBE, indicated by the vertical dashed line in panel (d).

If we suppose that the intermediate aperture simply passes part of the incident spoof

73



3. Geometrically induced surface electromagnetic modes

SPP without significantly altering its field distribution, then, to a first approximation,

its effect is equivalent to integrate the Poynting vector parallel to the sample surface.

As we have demonstrated in the right panel of Fig. 3.8, field profile for z � 0.1 mm is

homogeneous within the xy plane. This enables us to write the spoof SPPs electric field as

E(z, ω) = A(ω)e−kzz. This approximated expression allows us to relate the electric field

amplitudes at the input and output sides of the intermediate aperture, A1(ω) and A2(ω),

respectively. Conservation of EM energy through h3 requires that the ratio between the

transmitted and incident field amplitudes is given by

A2(ω)/A1(ω) =
√

1 − e−2kzh3 . (3.8)

The detected field after out-coupling, ED(ω) is proportional to A2(ω) if diffraction by

the final razor blade can be neglected, so that kz can, in principle, be determined from

the variation of ED(ω) with h3.

In order to test the assumptions leading to Eq. (3.8) we perform numerical FIT simu-

lations of the SPP propagation in the PEC approximation. Panels (a) to (c) of Fig. 3.11

render the distribution of the electric field evaluated within the xz plane of sample II for

three different values of h3. The aperture dimensions and positions are the same as in

the experiments. The final razor blade is located at the right-hand edge of the structure

and is not depicted in the figure. The frequency of the incident radiation (1.3 THz) is

close to the band edge, where large confinement of the spoof SPP is expected. It is clear

from Fig. 3.11 that the intermediate blade selectively passes the spoof SPP while blocking

unwanted radiation diffracted at the input coupler. In panel (d), several z-cuts along the

propagation direction showing the decay of the spoof SPP field in panel (b) (h3 = 0.5

mm) are presented to allow comparison of the field confinement within and after the

intermediate aperture. The field profile is maintained during the transmission process

and the decay of the spoof SPP in the direction perpendicular to the surface closely cor-

responds to that calculated from the ME dispersion relation (see left panel of Fig. 3.8), as

supposed in the derivation of Eq. (3.8).

We now verify that the dependence of the detected signal on h3 carries information on

the spatial confinement of the spoof SPPs propagating along the sample. In panel (e) of

Fig. 3.11, the ratio A2/A1 obtained through FIT simulations (squares) is compared with

that evaluated using Eq. (3.8) with kz taken from the ME bands of Fig. 3.8. A2/A1 versus

h3 for sample II is shown at two different frequencies 0.7 THz (blue) and 1.3 THz (black).

The good agreement obtained between FIT results, which include diffraction effects at

the apertures, and the ME predictions, which neglect them, demonstrates the ability of

the experimental technique to probe the confinement of the spoof SPP propagating at

the samples, at least for h3 > λ.
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Figure 3.11.: Panels (a), (b) and (c) render FIT electric field amplitudes along sample II evaluated
at 1.3 THz for h3 = 0.1 mm, h3 = 0.5 mm, and h3 = 1.0 mm, respectively. Panel (d) shows the
field profile along the z-direction at the positions indicated by dotted lines in panel (b). Panel
(e) plots the ratio A2/A1 as a function of h3 for two different frequencies: 1.3 THz (black
line) and 0.7 THz (blue line). Squares correspond to values obtained from FIT simulations
and solid lines are obtained using Eq. (3.8).

The experimental variation of ED(ω) with h3 for the two experimental samples is plot-

ted in Fig. 3.12, which also plots theoretical predictions based on equation (3.8) (with kz

obtained from ME calculations) and scaled vertically to fit the data. The theoretical val-

ues for lz are also shown in the figure. The agreement between theory and the measured

amplitudes is very good, particularly for the higher frequencies where the confinement

is strongest and diffraction effects are weakest, and for aperture heights of the order or

greater than the wavelength, as anticipated from the above discussion. A fitting of the

complete datasets (including the smallest aperture height) to Eq. (3.8) overestimates the

decay length by a factor of the order of two for the reasons discussed above. A more
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Figure 3.12.: Experimental (circles) and theoretical (shaded bands) electric field amplitudes as a
function of the razor blade height, h3. The error bars show the uncertainties in experimental
measurements, and the theoretical curves are represented as bands in order to reflect the
uncertainty in geometrical sample parameters. Theoretical results are evaluated from Eq.
(3.8).

accurate experimental determination of lz requires either a near-field probing scheme

avoiding diffraction, or an analytical treatment that takes diffraction into account. How-

ever, it is clear that wavelength-scale energy confinement of the spoof SPPs over a wide

frequency range near the band edge is experimentally observed, and that the degree of

confinement is in close agreement with our theoretical predictions.

The measurements described in this section were the first experimental verification of

the presence of bound spoof SPP modes decorating structured metal surfaces in the THz

regime.

3.3. Cylindrical Geometries

3.3.1. Azimuthally independent surface plasmon polaritons

We introduce our study of geometrically induced EM modes on cylindrical structures

by first analyzing the azimuthally independent SPPs propagating along the surface of

real metal wires. We will focus on their behavior in the PEC limit, which will lead us

to the application of the spoof SPP concept to wires. The rotational symmetry of the
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system implies that the EM fields do not depend on θ (where θ is the azimuthal angle),

leading to a decoupling of light polarizations (s and p). Since SPPs are TM modes, we

restrict our study to the case of p-polarization, i.e., magnetic field normal to the wire

axis (z-direction). In each region of the system, we write the relevant field components

(Ez and Hθ) in terms of the corresponding solutions of Maxwell equations. As we are

interested in EM modes propagating along the z-direction, we impose a eikzz behavior of

EM fields. This allows us to consider only the radial dependence of Ez and Hθ which, in

the vacuum region surrounding the wire, is given by

EV
z (r) = EVK0(kVr), (3.9)

HV
θ (r) = YV(kz)EVK1(kVr), (3.10)

where kV =
√

k2
z − k2

0 is the radial component of the wave vector and YV(kz) = ik0/kV

is the mode admittance. The decaying behavior of the EM fields for increasing r is given

by the modified Bessel functions of the second kind K0 and K1 [95].

Inside the metallic wire, EM fields must decay inwards with increasing distance from

the wire surface (decreasing r). Their radial dependence can be expressed as

EM
z (r) = EM I0(kMr), (3.11)

HM
θ (r) = YM(kz)EM I1(kMr), (3.12)

where kM =
√

k2
z − εM(ω)k2

0 is the wave vector radial component into the wire, and

εM(ω) is the metallic dielectric function. The mode admittance inside the metal is defined

as YM(kz) = −iεM(ω)k0/kV . Finally, the radial dependence of the EM fields is now given

by the modified Bessel functions of the first kind, I0 and I1 [95].

Imposing continuity of the EM fields at the cylindrical wire surface, we obtain the

condition for the existence of nonzero solutions for the electric field amplitudes, EV and

EM. This condition yields the dispersion relation of azimuthally independent SPP modes

kV
K0(kV R)
K1(kV R)

= − kM

εM(ω)
I0(kMR)
I1(kMR)

, (3.13)

where R is the radius of the metallic wire.

In Figure 3.13, the dispersion relations of the azimuthally independent SPPs supported

by lossless Au wires of different R calculated from Eq. (3.13) are plotted. The gold di-

electric function considered in our calculations is taken from the experimentally fitted

Drude-Lorentz-like formula of ref. [97]. We take only the real part of the complex Au

permittivity, neglecting absorption effects inside the metallic wire. The wires radii (R)

range from 0.02 µm (cyan short-dashed line) to 10 µm (green dashed line). It is worth

commenting that the SPPs dispersion relation for the R = 10 µm wire coincides (within
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Figure 3.13.: Dispersion relation of SPPs on lossless Au wires of different radii (R): 10 µm (green
dashed line), 3µm (orange dotted line), 0.2 µm (blue dotted-dashed line), 0.1 µm (red dashed-
doubled-dotted line), and 0.05 µm (cyan short dashed line). Inset: Radial component of the
electric field versus r for the SPPs supported by metallic wires (R = 0.35 µm, f = 330 THz)
with different dielectric constants: εM = −34 (wine-colored short dashed line), εM = −200
(grey dotted-dashed line), εM = −400 (magenta dotted line) and εM = −1000 (dark cyan
solid line).

the precision of our calculations) with the SPPs supported by a lossless Au flat surface,

whereas for narrower wires the frequency of the SPPs grows more slowly with increasing

kz, leading to stronger localization of EM fields to the wire.

The inset of Fig. 3.13 renders the radial dependence of EV
r = (kz/k0)HV

θ for the SPPs

supported by metallic wires of radius R = 0.35 µm at 330 THz. The wine-colored short

dashed line shows the field decay for a lossless Au wire (εM = −34 for gold at 330

THz). It can be observed how for increasing negative values of the metal permittivity EV
r

tends to the 1/r dependence (black dashed line) expected for a PEC wire [89]. Taking

εM → −∞, the SPP dispersion relation approaches the light line (k0 → kz, kV → 0). As a

result EM fields are expelled out from the wire, while in the vacuum region EV
r = HV

r ∝

K1(kVr)→ 1/r [95]. These asymptotic EM fields do not satisfy Gauss law in the absence

of free charges. Thus, we can conclude that PEC wires, as flat surfaces, do not support

surface EM modes [10].
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3.3.2. Spoof surface plasmon polaritons on ring arrays

Once we have demonstrated that uncorrugated metallic wires do not support SPPs in the

limit εM → −∞, in this section we analyze in detail the formation of surface EM modes

on periodically corrugated PEC wires [63], the cylindrical analog of the spoof SPPs on a

flat PEC surface (see Sec. 3.2.2).

We develop a modal expansion formalism similar to that presented in chapter 2 for

planar geometries in order to solve Maxwell equations for the system schematically de-

picted in Fig. 3.14: a PEC wire of radius R milled with a periodic array of subwavelength

rings. We introduce the term metawire for the structure, as the emergence of spoof SPPs

can be viewed in the context of metamaterials (see 3.2.2). We label the array period as d,

and the rings width and depth as a and h, respectively. Taking advantage of the periodic

character of the system, we can apply Bloch’s theorem to the problem and solve Maxwell

equations only inside a unit cell of length d (see Fig. 3.14). Within this unit cell, EM fields

are nonzero only in the vacuum region surrounding the wire (region I), and inside the

perforated rings (region II). As in the previous section, our analysis will be focused on

azimuthally independent p-polarized surface modes. Under this constraint, EM fields in

region I can be expressed as a sum over diffraction modes whose radial dependence is

given by the modified Bessel functions of the second kind. Using Dirac’s notation, we

can write

|EI
z〉 = ∑

n
CnK0(k(n)

r r)|kn〉, (3.14)

|HI
θ〉 = ∑

n
YI

nCnK1(k(n)
r r)|kn〉, (3.15)

where now, kn = kz + n 2π
d and k(n)

r =
√

k2
n − k2

0. The wavefunction for the Bloch waves is

〈z|kn〉 = eiknz√
d

, and YI
n = ik0/k(n)

r , the mode admittance.

Inside the rings, EM fields can be expanded as a sum over propagating and counter-

propagating waveguide modes in the radial direction as:

|EII
z 〉 = ∑

l
Dl

(
J0(q(l)

r r) − αl N0(q(l)
r r)

)
|ql〉, (3.16)

|HII
θ 〉 = ∑

l
YII

l Dl

(
J1(q(l)

r r) − αl N1(q(l)
r r)

)
|ql〉, (3.17)

where q(l)
r =

√
k2

0 − (lπ/a)2 and YII
l = −ik0/q(l)

r . The ring waveguide modes are given

by 〈z|ql〉 =
√

(2 − δl,0)/a cos lπ
a (z + a/2) for |z| < a/2 (inside the rings) and 〈z|ql〉 = 0,

otherwise. The radial dependence of these modes is described by Bessel and Neumann

functions J0,1 and N0,1. The constant αl = J0[q
(l)
r (R− h)]/N0[q

(l)
r (R− h)] is defined so that

the electric field satisfies perfect conducting boundary conditions at the ring bottom.
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Figure 3.14.: Schematic picture of the structure supporting cylindrical spoof SPPs: a PEC wire
drilled with a periodic array of rings.

The matching of the EM fields at the interface of the structure is performed similarly

as in the case of planar geometries, explained in detail in Section 2.2.1. We impose conti-

nuity of the EM fields at the wire outer radius (r = R). The z-component of the electric

field must be continuous everywhere on the interface, whereas the θ-component of the

magnetic field is continuous only at the rings openings. Projecting the electric continuity

equations over Bloch waves, and the equations linked to the magnetic field continuity

over ring waveguide modes, we remove the dependence on z of the matching equations.

Defining the quantities

El = Dl

(
J0(q(l)

r R) − αl N0(q(l)
r R)

)
, (3.18)

which are the modal amplitudes associated with the z-component of the electric field at

the rings openings. The set of ME continuity equations has the form

(Gll − εl)El + ∑
s �=l

GlsEs = 0, (3.19)

where l and s labels the ring waveguide mode order. Note that this system of equations

is formally equal to that obtained for flat structures [Eqs. (3.2)]. Moreover, the various

terms appearing in Eqs. (3.19) have the same physical interpretation as in dimple and

groove arrays. Therefore, the term

εl = YII
l

J1(q(l)
r R) − αl N1(q(l)

r R)

J0(q(l)
r R) − αl N0(q(l)

r R)
(3.20)
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describes all the bouncing processes experienced by the EM fields linked to mode l inside

the rings, whereas

Gls = ∑
n

YI
n

K1(k(n)
r R)

K0(k(n)
r R)

σ∗
nlσns (3.21)

takes into account the EM radiation emitted by waveguide mode s into vacuum Bloch

waves and collected by mode l. The overlapping integral, σnl = 〈kn|ql〉, provides the EM

coupling between the nth Bloch wave and the lth waveguide mode. Analytical expressions

for these overlapping integrals are given in Appendix A.

Once we have constructed the set of homogeneous matching equations (3.19), the dis-

persion relation of the spoof SPPs is given by the nonzero solutions of the modal am-

plitudes El . Here, we introduce a further approximation in our theoretical analysis by

assuming that the wavelength is much larger than the rings width (λ >> a). In Section

2.2.1, we demonstrated that within this subwavelength regime it is a good approximation

to consider only the lowest waveguide mode inside the indentations. Note that in this

case, as in 1D slits, irrespective of the ratio between a and λ, the waveguide mode with

l = 0 is always propagating. Under this approximation, the condition (G00 − ε0) = 0

gives the dispersion relation of the azimuthally independent spoof SPPs sustained by

the metawire. It can be written as

∑
n

k0

k(n)
r

K1(k(n)
r R)

K0(q(n)
r R)

|σn0|2 = − J1(k0R) − α0N1(k0R)
J0(k0R) − α0N0(k0R)

, (3.22)

where σn0 =
√ a

d sinc(kna/2).

In Figure 3.15, the spoof SPP bands for three different ring arrays are plotted. As PEC

boundary conditions are considered, all lengths in the system are scalable and we can

take d as the reference length. The wire radius is R = 2d, and the ring width a = 0.2d.

The three ring depths are: h = 1.6d (red solid line), h = 0.8d (green dotted line) and

h = 0.4d (blue dashed line). We can observe how the spoof SPP dispersion relation

deviates from the light line, resembling the behavior of SPPs propagating along metallic

wires at optical frequencies (see Fig. 3.13).

At low frequencies (λ >> d, a), and for wires much thicker and rings much shallower

than the array period (R, R − h >> d), we can obtain an analytical expression for the

spoof SPP dispersion relation by introducing the asymptotic expansions of the different

Bessel functions involved in Eq. (3.22), obtaining:

kz = k0

√
1 +
( a

d

)2
tan2(k0h). (3.23)
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Figure 3.15.: Normalized frequency versus kz for the θ-independent spoof SPPs supported by
perforated wires of radius R = 2d for three different ring depths. For all the structures,
a = 0.2d. Inset: Electric field pattern at the band edge (kz = π/d) for the four SPP bands
shown in the main panel.

Notice Eq. 3.23 coincides with Eq. (3.3), which corresponds to spoof SPPs bands for a

1D array of grooves of width a and depth h. As in the planar case, the key parameter

governing the surface EM mode confinement is the depth of the rings, h (see Fig. 3.15).

As we showed in Section 3.2.2, dispersion relation (3.23) allows us to analyze the de-

pendence on the structure geometry of spoof SPPs on groove arrays. Here, we use it

to define an asymptotic frequency ωs playing the same role as ωp/
√

2 in conventional

SPPs (see 3.2.1). According to Eq. (3.23), this asymptotic frequency is given by the con-

dition tan(k0h) → ∞, which yields ωs = πc/2h. Note that the inversely proportional

dependence of ωs with h explains the lowering of the dispersion relation for increasing

h observed in groove arrays (see Fig. 3.2). Fig. 3.15 renders the spoof SPP bands for ring

arrays of different depths. We consider first the bands (b), (c) and (d). The electric field

associated to these modes does not present any node in the radial direction (see the inset

of Fig. 3.15). Moreover, as in 1D grooves, the flat region of the dispersion relations occurs

at lower frequencies as h is enlarged. For h = 1.6d, another band, linked to a spoof SPP

mode presenting a radial node inside the ring (see inset (a)), appears at larger frequencies.
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Figure 3.16.: Spoof SPP dispersion relation including higher azimuthal modes (labelled with m)
for a PEC wire of radius R = 2d drilled with rings of width a = 0.2d and depth h = 0.5d.
The insets show the electric field amplitude at the band edge associated to spoof SPPs with
different m. They are ordered with increasing m from the left bottom corner to the right top
corner of the figure.

Importantly, Eq. (3.23) also predicts the formation of this mode, which can be associated

with another asymptotic frequency ωs = 3(πc/2h) also satisfying tan(k0h) → ∞.

Figure 3.16 renders the dispersion relation of the spoof SPPs on a wire of radius R = 2d
perforated by periodic rings with a = 0.2d and h = d. In this calculation, there is no

restriction regarding the azimuthal dependence of the EM fields. The dispersion relation

(red dots) has been obtained by means of a 3D FDTD numerical calculation. The number

of mesh points considered in the calculation is 240 × 240 × 40, with a mesh size equal

to 0.08d. The different bands (labelled with index m) correspond to different azimuthal

symmetries of the electric field amplitude shown in the insets of the figure. For the

structure considered, m ranges from m = 0 (θ-independent SPPs) to m = 5 (see insets

from left bottom corner to right top corner of Fig. 3.16). The electric field associated to

the mth azimuthal mode presents 2m nodes and maxima in θ. Solid blue line shows the

m = 0 band calculated from Eq. (3.22). We can see the very good agreement between the

FDTD and ME results for the azimuthally independent spoof SPP band.
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Figure 3.17.: Dispersion relation (a) and electric field plots (b)-(d) for THz spoof SPPs propagating
along a metawire of radius R = 150 µm perforated by an array of rings of period d = 100 µm.
The rings width and depth are 50 µm. Dotted lines show the three different frequencies
(0.4, 0.6 and 1.0 THz) considered in the FIT simulations of the electric field amplitude in
metawires of length 20 × d illuminated from the left by a radially polarized plane wave.

3.3.3. Conical structures: guiding and focusing of light

One of the possible applications of cylindrical spoof SPPs is to guide EM radiation with

frequencies lying within the microwave or THz ranges of the EM spectrum along a

metallic wire. This functionality is illustrated in Figure 3.17.

In this case, the geometry of the ring array is chosen so that the optimal frequencies for

guiding is around 0.6− 0.8 THz. Panel (a) shows the dispersion relation of the spoof SPPs

supported by the infinite structure calculated with Eq. (3.22) whereas panels (b), (c) and

(d) depict electric field amplitude patterns (evaluated at three different frequencies) for a

finite version of the structure (containing 20 periods), illuminated by a radially polarized

broadband terahertz pulse. These pictures have been obtained through FIT simulations.

As clearly seen in this figure, for the lowest frequency considered, f = 0.4 THz, as kz is

close to the light line, the guiding properties are poor in comparison with f = 0.6 THz

for which the EM radiation is guided efficiently and strongly confined along the wire

surface. At f = 1.0 THz, no spoof SPPs are supported by the system [see panel (d) of Fig.

3.17] and the incident radiation is scattered from the metawire.
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Figure 3.18.: Frequency versus parallel wave vector for spoof SPPs supported by metawires of
different radii perforated with periodic ring arrays of period d = 100 µm and ring dimen-
sions a = 50 µm and h = 30 µm. Dotted lines indicate two different frequencies (0.6 and 1.2
THz). Inset: Electric field radial component versus r − R at f = 0.6 THz for the four infinite
metawires considered in the main panel.

By taking advantage of the dependence of the spoof SPP confinement on the geometry

of the ring array, it is feasible to design a periodically corrugated wire able to concentrate

EM energy at one of its ends [63]. Here, we present just one possible structure. It is a

conical wire, in which the external radius is gradually decreased along the wire but the

depth of the rings is fixed.

In Figure 3.18, we plot the dispersion relation of the spoof SPPs supported by corru-

gated wires in which the depth of the rings, h = 30 µm, their width, a = 50 µm, and the

period of the array, d = 100 µm, are fixed. The four curves correspond to the dispersion

relations for four different values of R, ranging from R = 140 µm to R = 40 µm. As R is

decreased, the spoof SPP bands deviate more and more from the light line. This implies

that the confinement of the corresponding surface EM mode is increased as R is reduced,

as can be seen in the inset of the figure, which displays the radial component of the elec-

tric field, Er, as a function of the distance to the wire, r − R. This magnitude is evaluated

at f = 0.6 THz for the four wires considered in the main panel.
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f=1.2THzf=1.2THz

f=0.6THzf=0.6THz

Figure 3.19.: Guiding and focusing of light through spoof SPPs propagating along a PEC cone
of length 2 mm corrugated by a ring array in which the radius is gradually reduced from
R = 140 µm to R = 40 µm. As expected from the dispersion relation of Fig. 3.17, spoof SPPs
are excited at f = 0.6 THz, while at f = 1.2 THz surface EM modes are not supported by
the structure.

Therefore, it is expected that if we construct a finite metawire in which the depth

of the grooves is fixed and the external radius is gradually reduced from R = 140 µm

to R = 40 µm, EM radiation of frequency f = 0.6 THz will be focused at the end of

the conical design. This focusing effect is demonstrated in Figure 3.19 which shows FIT

simulations on a conical wire of length 2 mm containing 20 periods of the ring array of

Fig. 3.18 for two different frequencies, f = 0.6 and f = 1.2 THz. As expected from the

ME calculations for infinite wires, at f = 0.6 THz, EM radiation is guided along the wire

and focused as it propagates through it. However, the electric field pattern for f = 1.2
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THz shows how EM waves are scattered at the entrance of the wire due to the absence

of spoof SPPs at that particular frequency.

3.3.4. Helically grooved wires: comparison with experiments

This section is devoted to show the comparison between our theoretical study on the

spoof SPPs sustained by PEC metawires with the experimental outcomes obtained by the

group of Prof. S. A. Maier and Dr. S. R. Andrews on the propagation of THz radiation

bound to structured metallic wires. The experimental setup consists of a 150 mm long

helically grooved wire. It is formed by tightly wrapping a steel wire (radius 200 µm)

around a 200 µm radius core. The assembly is then nickel plated (see the upper panel

of Fig. 3.20). For comparison, a bare copper wire of the same outer radius and length

(600 µm and 150 mm, respectively) is also studied. Measurements are performed using

time-domain THz spectroscopy. Radially polarized, broadband (∼ 2 THz) THz beams

are collimated to a diameter of order 6 mm and end-fire coupled to the wires. In order

to discriminate the bound EM modes against unguided free space radiation, the wires

are bent along the arc of a circle of radius 26 cm.

Panel (a) of Fig. 3.20 displays time-domain traces of the receiver current for the wires

with smooth and helically grooved surfaces. It is clear that a single-cycle-like pulse,

which can be associated with a Sommerfeld wave [1], propagates along the smooth wire.

However, propagation on the helical wire exhibits significant dispersion together with

beating due to the presence of bound modes with different frequencies. Panel (b) plots

the amplitude spectra of the traces in panel (a) together with the spectrum of a second,

nominally identical sample of the helical structure which shows the reproducibility of

the data to small variations in optical alignment. Note that the vertical scale is the same

for all three spectra. To a first approximation, the amplitude spectrum is proportional to

the electric field of the guided modes at the end of the wire, convolved with the receiver

response and the transfer function taking into account the radiation of the guided modes

into free space and propagation to the receiver in the far field.

In panel (b) of Fig. 3.20, the frequency at the band edge, fBE, of the three lowest spoof

SPP modes supported by the experimental structure are indicated by vertical arrows.

They are obtained by means of the theoretical calculations described below, and corre-

spond to the peaks in the amplitude spectra at 0.305± 0.002 THz, 0.326± 0.002 THz, and

0.353 ± 0.003 THz. The height of the peaks depends on the orientation of the receiver an-

tenna, which reflects the different azimuthal symmetry of the spoof SPP modes. We show

below that the structure observed in the spectra at frequencies lower than 0.3 THz can

be associated with the propagation of radiation along the wire at smaller wave vectors.
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Figure 3.20.: Upper panel: Electron micrograph of the experimental helically grooved wire. Lower
panels: (a) Receiver current as a function of time delay for the smooth wire (red line) and the
grooved structure (blue line). (b) Amplitude spectra of the time domain data in (a) together
with the spectrum of another, nominally identical, helical sample (green curve, displaced for
clarity). The arrows indicate the three azimuthal modes of the helical groove structure. The
spectrum of the Sommerfeld wave (red curve) on the smooth wire extends to ∼ 1 THz.

In Figure 3.21, the spoof SPP bands for an helical grooved PEC wire calculated using

the FDTD method are displayed. In accordance with the experimental parameters, the

helix pitch is d = 400 µm and the wire radius, R = 600 µm. EM fields are evaluated

inside a unit cell along the direction parallel to the wire axis (z-direction). Due to design

limitations, the modelled groove has a triangular profile of width a and depth h (see

lower inset). We find that a = 200 µm and h = 150 µm give a good match to the experi-
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Figure 3.21.: Dispersion relation of the spoof SPP modes supported by a PEC wire of radius
R = 600 µm inscribed with a triangular cross-section helical groove of pitch d = 400 µm.
The groove has width a = 200 µm and depth h = 150 µm. The upper row of insets displays
snapshots of the electric field at the three band edges, fBE=0.305 THz (left), 0.320THz (center)
and 0.349 THz (right). The next lower row correspond to the first mode at 0.280 THz (left)
and the second mode at 0.180 THz (right). The pattern in the lowest row is for the first mode
at 0.180 THz.

mental results for the fBE’s. The main panel shows the dispersion relation for this set of

geometrical parameters. The three theoretical fBE’s obtained, 0.305 THz, 0.320 THz and

0.349 THz, are in excellent agreement with the spectral peaks found in the experiments.

The insets of Figure 3.21 render snapshots of the electric field amplitude, |E|, of the

spoof SPPs supported by the metawire at various frequencies. Note that, as expected, the

lack of azimuthal symmetry of the metallic structure leads to non-symmetrical |E| distri-

butions. The upper row displays the electric field amplitude at the three fBE’s, increasing

in frequency from left to right. The fields are confined within less than a wavelength of

the wire surface. The field maps depicted in the lower two rows are evaluated at smaller

kz. The two left ones correspond to the first spoof SPP mode at 0.280 THz and 0.180 THz,

and that on the right of the second row to the second spoof SPP at 0.180 THz. At fBE, the

modes exhibit an odd number of azimuthal nodes (1, 3 and 5) whereas with decreasing

kz, the number of nodes is gradually reduced by one and becomes even. Thus, the spoof
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SPPs propagating along the helical structure at low kz resemble the case of a ring array,

where the number of nodes is even (see Sec. 3.3.2).

We analyze now why the spoof SPPs on helical grooved wires exhibit such a kz depen-

dent azimuthal symmetry. Any component of the EM fields bound to a helical structure

[117] can be expanded in terms of diffracted waves as

Fm(r, θ, z) = eikzzeimθ ∑
n

An m−n(r)ein( 2π
d z−θ), (3.24)

where the modal amplitude An m−n(r) contains the radial dependence of the nth-diffracted

wave. Fm(r, θ, z) is an eigenfunction of the helical translation operator, Sφ d
2π φ [118], satis-

fying

Sφ d
2π φFm(r, θ, z) = Fm

(
r, θ + φ, z +

d
2π

φ

)
= ei(m+kz

d
2π )φFm(r, θ, z), (3.25)

where index m controls the symmetry properties of the EM fields. We introduce the

helical coordinate ξ = z − dθ
2π [119], which is parallel to the cylindrical coordinate z, but

measured from the surface z = dθ
2π . EM fields can be expressed in terms of ξ as

Fm(r, θ, ξ) = f (r, ξ)ei(m+kz
d

2π )θ . (3.26)

It is now clear that this eigenfunction, evaluated along the helical surfaces (ξ = constant),

evolves in time as cos[(m + kz
d

2π )θ − 2π f t], where f and t are the mode frequency and

time, respectively. Thus, snapshots of the EM fields with kz = π/d show 2m + 1 nodes

along one helix pitch, whereas for kz = 0, they show only 2m nodes. This result allows

us to label the spoof SPP modes in Figure 3.21 with the indices m = 0, m = 1 and m = 2.

We have also carried out FIT simulations on extended finite wires. As in the experi-

ments, the helical structure is formed by wrapping a PEC wire of radius 200 µm around a

straight cylindrical core of the same radius (see schematic picture of Fig. 3.22). The 9.6 cm

long structure is illuminated in the near field with a radially polarized plane wave propa-

gating parallel to the wire axis. Probes monitoring the longitudinal component of electric

field, Ez, are located along the structure, close to the wire surface (615 µm away from its

axis), at four different azimuthal positions (θ = 0, π
2 , π, and 3π

2 ).

Figure 3.22 renders the amplitude of Ez versus frequency recorded by the probes lo-

cated 1.5 cm away from the illuminated wire end. The simulation time (700 ps) is chosen

so that reflection of the EM fields at the non-illuminated wire end is avoided. The spec-

trum resembles the experimental one, except for the structure in the tails below 0.3 THz.

The black vertical arrows indicate the position of the three experimental peaks. These are

in excellent agreement with the maxima in the electric field amplitude close to the wire

surface in our FIT simulations, and in close correspondence with the fBE’s obtained from
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Figure 3.22.: FIT simulations of the propagation of surface EM modes on a 9.6 cm long wire. The
metawire consists in a PEC wire of radius 200 µm tighly wound on a straight PEC wire
of the same dimensions. The helix pitch is d = 400 µm. Main panel shows the spectra of
Ez at four points close to the structure surface (r = 615 µm, θ = 0, π

2 , π, and 3π
2 ) located

1.5 cm away from the illuminated wire end. Right insets show |Ez| in a cross section at the
three fBE’s obtained from FDTD calculations (from top to bottom: 0.305 THz, 0.320THz and
0.349 THz). In the main panel, these frequencies are indicated by cyan arrows, whereas the
corresponding frequencies in the experimental spectra are shown by black arrows.

FDTD calculations (vertical cyan arrows). In order to confirm that the three maxima in

the FIT spectra correspond to the excitation of guided modes on the structure, we have

also mapped the electric field amplitude in the plane containing the four field probes

described above. The three right insets of Fig. 3.22 show the electric field amplitude at

the frequencies indicated by vertical cyan arrows in the main panel. The field patterns

are consistent with the FDTD results, which demonstrates that the FIT spectral maxima

are associated with the resonant excitation of the m = 0, m = 1, and m = 2 spoof SPP

modes.

The relative amplitudes of the spectral peaks reflects the efficiency with which the

radially polarized incident beam is scattered into the spoof SPP modes and is similar to

that observed experimentally. The modulation in amplitude below 0.3 THz observed in

the experiments (see Fig. 3.20), does not appear in the long tail to lower frequencies in
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the simulation shown in Fig. 3.22. In the experiments, spectral artifacts associated with

reflections or finite delay range have been excluded. Therefore, we tentatively assign

this structure to either variations in the pitch of the metawire or, more likely, to the

frequency dependence of the coupling of the spoof SPPs to free space radiation, which

is not explicitly modelled.

In this section, the propagation of spoof SPPs on corrugated wires has been studied

theoretically and experimentally. In our theoretical analysis, different geometries have

been considered, and a conical focusing scheme has been proposed. Finally, the guid-

ing of THz radiation through spoof SPP modes on helical structures has been reported

experimentally for the first time.

3.4. Corrugated channels and wedges

3.4.1. Spoof channel plasmon polaritons

Waveguides based on spoof SPPs supported by periodic groove and dimple arrays present

a main drawback: the lack of lateral confinement of EM fields. As we showed in Section

3.2, spoof SPPs on these two structures spread infinitely along the in-plane coordinate

perpendicular to the direction of propagation. In the case of dimple arrays, the lateral

extension of the spoof SPPs can be reduced by varying the aperture dimensions [120],

but subwavelength confinement of EM fields can not be achieved through this strategy.

In this section, we present a guiding scheme featuring subwavelength transverse con-

finement of EM fields at a planar surface. Our design, that consists of corrugated V-

grooves milled on a PEC surface, borrows ideas from channel plasmon polaritons (CPPs)

[26] and the concept of spoof SPPs. Moreover, we demonstrate that the combination

of these two different physical mechanisms allows overcoming the limitations of SPPs-

based waveguides at frequencies far below metallic plasma frequencies (see Sec. 3.2.1).

Although our PEC model is scalable, in order to illustrate its functionality, we choose its

geometrical parameters so that it works at frequencies laying in the THz range of the EM

spectrum.

In the visible or telecom regimes, V-shaped grooves milled in metals support low

loss, tightly confined CPPs [27, 29, 31]. The modal size of CPPs grows for increasing

wavelength in such a way that, on PEC V-grooves, CPPs do not exist. As we have shown

in the previous sections, the texturing of a metallic surface leads to the emergence of

bound EM modes even in the PEC limit. Now, we test whether corrugated V-grooves

milled on a flat PEC surface also sustain guided modes. For that, we analyze first the

dependence of the EM modes propagating in the gap between two parallel groove arrays
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Figure 3.23.: Dispersion relation of the guided EM modes propagating between two corrugated
PEC surfaces. Both surfaces are identical and consist of two groove arrays of period d. The
grooves width, a, and depth, t, are equal to 0.5d. Five different gap widths (w) are consid-
ered: 4d (red solid line), 2d (green dashed line), d (blue dotted dashed line), 0.5d (orange
double dotted dashed line), and 0.25d (cyan dotted line). In the lower inset, the electric field
amplitude at the band edge for the case w = 1.5d is depicted. The upper inset renders εeff

(black squares) and the propagation length (red circles) at d/λ = 0.25 obtained within the
SIBC approximation for aluminum and d = 200 µm.

(see lower inset of Fig. 3.23) on the gap width, w. Similar modes supported in the gap

between two metallic surfaces textured with 2D hole arrays have been considered in the

GHz regime [121]. Here we only consider EM modes associated with longitudinal electric

fields having odd parity with respect to the gap center, as they have the same symmetry

properties as the CPPs at optical frequencies [32]. Such modes can be described using

our ME formalism (see Sec. 2.2). We denote the array period as d, and the grooves width

and depth as a and t, respectively (see inset). Thus, in the single mode approximation

(valid for λ >> a), the dispersion relation of these EM modes is given by the condition

G − ε = 0, (3.27)

where ε = cot(k0t) [see Eq. (2.40)] reflects the rebounds experienced by EM fields inside

the grooves. The G term, which describes the coupling of EM fields coming from different
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grooves, reads

G = i ∑
m

k0√
k2

m − k0
|σm0|2 tanh

(√
k2

m − k0
w
2

)
, (3.28)

where km = k + m 2π
d , being k the mode parallel wave vector, and σm0 =

√ a
d sinc(km

a
2)

(see Appendix A). Note that G has the same form as for a single groove array [Eq. (2.42)]

except for the term associated with the tangent function, which takes into account the

anti-symmetric coupling of the EM fields bound to both PEC surfaces across the gap. In

the limit λ >> d, we can neglect higher order diffraction order in G, having√
k2 − k2

0

k0
coth

(√
k2 − k2

0
w
2

)
= |σ00|2 tan(k0t). (3.29)

Note that Eq. (3.29) resembles the dispersion relation of the anti-symmetric gap SPP

modes supported in a dielectric slab sandwiched between two semi-infinite metals [115].

Figure 3.23 renders the dispersion relation of the gap modes travelling between two

identical groove arrays. The bands have been calculated using Eq. (3.27), including a

sufficiently large number of diffraction orders to achieve convergence. In all cases, the

geometrical parameters of the grooves are t = a = 0.5d. Structures with five different

gap widths have been analyzed, ranging from w = 4d to w = 0.25d. Importantly, the

dispersion bands are lowered as w is reduced. Thus, for a given frequency, k is larger

for smaller w. This effect can be quantified by looking at the effective permittivity of the

mode, εeff, defined as εeff = k2/k2
0. In the upper inset of Fig. 3.23, εeff of the gap modes

evaluated at d/λ = 0.25 as a function of w is shown. For decreasing values of w, εeff

increases very rapidly, reflecting a very large lateral confinement of the mode as the gap

is reduced. In the lower inset, the electric field amplitude evaluated at the band edge for

the case w = 1.5d is depicted. The orange arrow indicates the direction of propagation.

In the upper inset of Fig. 3.23, the dependence of the modal propagation length, l,
on the gap width is also shown (red circles). In order to take into account absorption

losses in our model, we have replaced PEC conditions by SIBCs in our ME equations,

following the procedure presented in Section 2.2.5. Thus, the propagation length of the

gap modes is given by the imaginary part of the parallel wave vector, l = 1/[2Im(k)].
The propagation lengths in Fig. 3.23 are evaluated for aluminum at d/λ = 0.25 with

d = 200 µm (which corresponds to f = 0.38 THz). The dielectric function of aluminum

has been taken from [97]. From the evolution of l with w we can conclude that there is

a trade-off between the propagation and confinement of the EM guided modes, as it is

common in plasmonic structures.

The existence of EM guided modes in the gap between two corrugated PEC surfaces

and the dependence of εeff with the gap width suggest that a corrugated V-groove milled
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Figure 3.24.: FDTD dispersion relation of the first three spoof CPP modes supported by a corru-
gated V-channel milled on a PEC surface. An schematic picture of the structure is shown
in the upper inset. Lower insets depict the amplitudes of the longitudinal component of the
electric field evaluated at the band edge for the three modes. The wavelength, λ, and modal
size, δ, for the three cases are represented.

on a PEC film (see upper inset of Fig. 3.24) supports the propagation of EM guided

modes. These would be tightly confined in the transverse plane and localized at the

bottom of the groove, where εeff is maximum. In order to verify this hypothesis, we have

carried out FDTD calculations of the dispersion relation of the EM modes supported

by corrugated V-grooves. The side of the FDTD mesh is 0.025d, and the total number

of mesh points, 360 × 460 × 40. We assume that the metal behaves as a PEC, i.e., no

absorption is present in the structure. The geometrical parameters are a = t = 0.5d,

w = 0.76d, and h = 5d, corresponding to a groove angle of 20◦. The bands associated with

the first three EM guided modes (spoof CPPs) travelling along the corrugated channel

are rendered in Fig. 3.24. As in the case of CPPs at optical frequencies [32], the fact that

the corrugated V-channel has a finite height translates into the existence of a cut-off for

these EM guided modes.

The longitudinal component of the electric field associated with the three spoof CPP

modes is shown in the lower insets of Fig. 3.24. The fields are evaluated at the band edges

of the three dispersion bands. Electric fields are plotted only inside the shallow part of
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the corrugated V-channel, where EM fields are strongly localized. The first and third

modes have odd parity, as the longitudinal electric fields have a different sign at both

sides of the V-channel, vanishing at the middle plane. The lowest mode shows only two

lobes, whereas the third one presents another plane, now parallel to the planar surface, in

which the longitudinal electric field is also zero. The second EM guided mode has even

parity with respect to the symmetry plane. In all three insets both λ and the modal size,

δ, are represented. We have defined the modal size as the transverse separation between

the locations where the electric field amplitude has fallen to one tenth of its maximum

value, having δ = 0.52λ, 1.02λ, and 1.06λ for the three spoof CPPs at the band edge.

Another interesting feature of the spoof CPPs modal shape is that, contrary to what the

behavior of εeff predicts in Fig. 3.24, EM fields are not guided at the groove bottom but

rather at the groove edges. This is due to their strong hybridization with wedge modes

that run on the edges of the groove (see Sec. 3.4.2), much in the same way as it occurs

in conventional CPPs [32]. It is also remarkable the small frequency overlap between

the first and second spoof CPP bands, which facilitates the monomode operation of the

corrugated V-groove as a THz waveguide.

Once we have demonstrated that spoof CPPs are supported by infinitely long corru-

gated V-grooves, it is worth analyzing how these EM modes behave in waveguides of fi-

nite length. For that, we have performed FIT simulations on finite corrugated V-channels.

As in the previous FDTD calculations, PEC boundary conditions are considered. We have

chosen the structure period d = 200 µm, keeping the relation between the rest of the ge-

ometrical parameters and d as in Fig. 3.24. First, in order to cross-check the different

numerical techniques, we analyze the case of a straight channel. The channel is 20 mm

long and the structure is illuminated from one end with a 2D input port mode that re-

sembles the spatial and vectorial dependencies of the lowest spoof CPP mode obtained

from FDTD simulations.

Within FIT it is possible to calculate the EM transmission through the finite waveguide

by integrating the longitudinal component of the Poynting vector in two perpendicular

planes, located near the input and exit sides of the waveguide. Figure 3.25 displays this

FIT transmission spectrum for the finite-length channel described above. Red dashed

arrows indicate the cut-off and band edge frequencies predicted by the FDTD method

(see Fig. 3.23) for the lowest spoof CPP mode supported by the structure. The agreement

between the two distinct numerical techniques in the spectral location of the band edge

is excellent. Regarding the cut-off frequency, FIT predicts a slightly higher location than

that obtained with FDTD. Notice that, as the band approaches its cut-off frequency, the

spoof CPP mode becomes less localized and both numerical calculations are less accurate

due to the inherent finite size of the spatial simulation windows. The important point

96



3.4. Corrugated channels and wedges

0.30 0.35 0.40 0.45 0.50
0.0

0.2

0.4

0.6

0.8

1.0

T
ra

n
s
m

is
s
io

n

f (THz)

f=0.32THz f=0.42THz

Figure 3.25.: FIT simulations of the transmission spectrum for the lower spoof CPP mode sup-
ported by a straight corrugated PEC V-channel of period d = 200 µm and total length 20 mm.
Red dashed arrows indicate the spectral position of the cutoff and band edge frequencies ob-
tained from FDTD calculations. The left insets show the electric field amplitude at 0.32 THz,
and the right ones, at 0.42 THz. Upper (lower) insets correspond to the plane located 9.1 mm
(9.2 mm) away from the illuminated end of the structure.

is that the transmission approaches unity within the spectral region in which the lowest

guided mode is supported.

The insets of Fig. 3.25 render the total electric field amplitudes at two different fre-

quencies. Left panels are evaluated at 0.32 THz and the right ones at 0.42 THz. The upper

insets depict the electric field in the plane located 9.1 mm away from the illuminated

end of the structure and corresponds to the shallow part of the V-channel. The lower

insets are displaced one half of the period, showing the deepest region in the groove. In

accordance with the FDTD calculations, the electric field is strongly confined within the

shallow channel. The insets also show clearly how the lateral confinement of the mode is

much higher at 0.42 THz (δ = 0.42 mm= 0.59λ) than at 0.32 THz (δ = 1.37 mm= 1.46λ).

Importantly, in contrast to other guiding schemes [122], the straight waveguide presented

here features transverse subwavelength confinement of THz radiation.

In the previous calculations, we assumed ideal PEC boundary conditions and hence,

the propagation length, l, is infinite. We can estimate l in a real waveguide operating at
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Figure 3.26.: FIT simulations of the spoof CPPs propagation through four 90◦ bend channels
of different r. All structures are comprised by 100 periods. The upper panel renders the
transmission spectrum for the four channels considered. The lower panels show the electric
field amplitude at 0.40 THz evaluated at a height of 100 µm above the planar surface for the
four structures analyzed.
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3.4. Corrugated channels and wedges

THz frequencies from our ME calculations with SIBCs for the gap EM modes between

two identical groove arrays. In the left inset of Fig. 3.23, l versus w is plotted at f = 0.38

THz, which corresponds to the center of the transmission plateau in Fig. 3.25. The prop-

agation length for w = 0.76d, which coincides with the opening of the V-grooves under

study, is of the order of 60λ. We have obtained similar estimations from FIT simulations

in which the spoof CPPs propagation length is calculated by fitting the exponential de-

cay of the electric field amplitude along straight corrugated aluminum V-channels. In

these simulations, the Drude-like permittivity considered in [97] is used to model the

dielectric response of the metal.

The possible use of spoof CPPs for routing THz radiation requires an study of the

bending losses suffered by these modes. We have performed FIT simulations on corru-

gated bend V-grooves milled on PEC surfaces (in order to isolate bending losses from the

absorption losses previously discussed). The results obtained for four different 90◦ bends

with different radii of curvature, r, are shown in Fig. 3.26. In all cases, the structures

contain up to 100 periods. The groove array period in the straight part of the channel

is equal to 200 µm and is slightly adjusted in the bends in order to conform with the

curved geometry. The transmittance spectra for the four structures analyzed are shown

in the upper panel of Fig. 3.26. For the case of maximum r (10 mm), the transmission

can be as large as 90%, but is reduced as r becomes smaller, being 50% in the case in

which r is 1.5 mm (around two times the wavelength). These bending losses are much

smaller than those reported for metallic wires at THz frequencies [123], as expected due

to the subwavelength character of the spoof CPPs. In the four lower panels of Fig. 3.26,

the electric field amplitude evaluated at 0.40 THz in a plane located 100 µm above the

planar surface is depicted. It is clear how the bending losses in these structures stem

from radiation into vacuum modes occurring just at the bend of the waveguide.

3.4.2. Spoof wedge plasmon polaritons

In the previous section, we have seen that spoof CPPs are not guided at the bottom of the

channel, as εeff for gap modes seemed to indicate, but at its edges. We related such elec-

tric field distribution to the hybridization of spoof CPPs with the EM modes sustained

by the edges of the corrugated channel. In this section, we study these geometrically

induced EM modes and present a new guiding scheme for THz waves based on them.

The structure under study is depicted in Fig. 3.27: a PEC wedge milled with a periodic

array of grooves. We can expect that, as in the case of PEC corrugated channels, the

EM modes supported by such geometry resemble wedge plasmon polaritons (WPPs)

[27, 28, 36] occurring at visible and telecom frequencies. The parameters defining the
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3. Geometrically induced surface electromagnetic modes

Figure 3.27.: Schematic picture of the proposed waveguiding scheme: a PEC wedge milled with
a periodic array of grooves. The white arrow indicates the direction of propagation of the
spoof WPPs supported by the structure.

wedge are the height, h, and angle, θ. The grooves milled on the wedge have depth t and

width a, and the period of the corrugation is d. In our analysis we fix the groove width,

a = 0.5d, and the wedge height, h = 5d.

Fig. 3.28 renders the two lowest bands of the spoof WPPs travelling along wedges with

θ = 20◦. The wedges are textured with grooves of three different depths: t = 0.75d (blue

circles), t = 0.5d (red squares), and t = 0.75d (green diamonds). Dispersion bands are

lowered as the groove depth is increased. Due to the finite height of the wedge, spoof

WPP bands in Fig. 3.28 present a cut-off frequency, as also observed in conventional

WPPs [36]. Insets (a) and (b) depict the longitudinal component of the electric field at

the band edge for the two spoof WPP modes supported by the wedge with t = 0.5d
(red squares). The cross sections correspond to the deeper part of the corrugated wedge,

where the EM fields are mainly localized. Inset (a), which renders the first spoof WPP

mode, presents only one maximum within the transverse plane. However, the electric

field associated to the second WPP, shown in inset (b), displays two lobes of different sign

along the vertical direction, vanishing in the horizontal plane between them. Note that

both EM modes have even parity with respect to the vertical symmetry plane. Although

the longitudinal electric field in inset (a) is similar to that associated with WPPs sustained

by real metals, the modal shape in inset (b) is not featured by conventional WPPs. Both

dispersion relations and electric fields shown in Fig. 3.28 have been obtained from FDTD
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Figure 3.28.: Two lowest spoof WPP bands for wedges with three different depths: t = 0.75d (blue
circles), t = 0.5d (red squares) and t = 0.25d (green diamonds). The rest of the geometrical
parameters are described in the text. Insets (a) and (b) show the longitudinal component of
the electric field at the edge of the two bands for the case t = 0.5d.

calculations with a square mesh size of 5 µm.

Once we have demonstrated that periodically corrugated PEC wedges support spoof

WPP modes whose dispersion relation can be controlled by the groove depth, we study

the influence of the angle, θ, on the modal characteristics. In Figure 3.29, the fundamental

WPP bands for wedges of different θ are shown (for all structures, a and d remain as in

Fig. 3.28, and t = 0.5d). As θ increases, the bands shift to higher frequencies, tending to

the limiting case of a flat (θ = 180◦) groove array (see Sec. 3.2.2), represented by a black

dashed line. The insets of Fig. 3.29 render the electric field amplitude at the band edge

for wedges with (a) θ = 20◦, and (b) θ = 60◦. In both cases, the half-wavelength (λ/2)

is represented by vertical white bars. Following the convention used for spoof CPPs, the

modal size for the 20◦ wedge is δ = 0.28λ, whereas for θ = 60◦, it is equal to 0.78λ. These

results demonstrate the subwavelenth transverse confinement featured by spoof WPPs.

To make our design work at THz frequencies, we set the corrugation period, d, to

200 µm. Although PEC boundary conditions are an excellent approximation in the THz

regime, they do not take into account modal losses. Thus, we estimate the propagation

length of spoof WPPs through FIT simulations in which the metal response is described
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Figure 3.29.: Dispersion relation of the fundamental spoof WPP travelling along corrugated
wedges for different θ. Dashed black line shows the dispersion band corresponding to the
flat (θ = 180◦) case (groove array). The horizontal arrows indicate the frequencies for which
the propagation length is estimated (see the text). Lower insets show the electric field ampli-
tudes at the band edge for (a) θ = 20◦ and (b) θ = 60◦. In both insets, λ/2 is represented by
white bars.

using a realistic dielectric function [97]. We consider a corrugated aluminum wedge with

θ = 60◦ and a length of 40 mm (the remaining geometrical parameters being the same

as in Fig. 3.29). As in the case of channels, the mode propagation length is obtained

by fitting the exponential decay of the electric field amplitude along the wedge. To il-

lustrate the dependence of l on the frequency, we choose three representative values

indicated by orange dotted arrows in Fig. 3.29. Close to the light line, at d/λ = 0.10,

which corresponds to f = 0.16 THz, we find l = 120 mm = 64λ. At larger frequencies,

the propagation length is reduced, being l = 43.2 mm = 29λ at d/λ = 0.13 ( f = 0.20

THz). Finally, as we approach the flat part of the band, the propagation length decreases

abruptly. Thus, at d/λ = 0.18 ( f = 0.27 THz), we obtain l = 1.56 mm = 1.3λ. It is re-

markable that the values obtained for l/λ are comparable to those reported for WPPs in

the telecom regime [36], where the physical origin of the field confinement is completely

different. This correspondence of l/λ between conventional and spoof SPPs has been

also observed in planar and wire geometries [124, 125].

102



3.4. Corrugated channels and wedges

0 10 20 30 40 50
0

4

8

12

16

E
le

c
tr

ic
 f

ie
ld

 a
m

p
lit

u
d

e
 (

a
.u

.)

z/d

z

y

x

(a)

(b)

(c)

(d)

0 10 20 30 40 50

z/d

-2

2

0

-2

2

0

-2

2

0

x
/d

Figure 3.30.: (a) Left inset: Corrugated PEC wedge with θ varying smoothly along the z-direction
from 60◦ to 20◦. Main panel: Electric field amplitude versus z along the line located 100 µm
above the structure apex. Three different frequencies are considered: 0.12 THz (green line),
0.16 THz (red line) and 0.20 THz (black line). Panels (b), (c), and (d) depict the electric field
amplitude within the xz plane located 100 µm above the apex for these three frequencies.
Dashed arrows indicate the position of the maxima of amplitude shown in panel (a).
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Figure 3.29 provides us a hint on how THz waves can be focused and slowed down

with the aid of spoof WPPs. The lowering of the dispersion bands for decreasing θ sug-

gests that radiation of a given frequency propagating in a wedge which is sharpened

along its length [see inset of Fig. 3.30] would be gradually concentrated within the trans-

verse plane. Additionally, THz waves at frequencies above the band edge associated to a

specific θ will never reach sections of the structure sharper than that angle, being slowed

down as they approach it. In order to prevent backreflection and scattering of EM fields

out of the structure, impedance mismatches along the wedge can be minimized by per-

forming the reduction in θ adiabatically.

The inset of Fig. 3.30 shows a diagram of the design proposed: a 10 mm long wedge

with θ varying smoothly from 60◦ to 20◦ milled by 50 grooves disposed periodically with

the same geometrical parameters as in Fig. 3.29. The guiding properties of the structure

are studied by means of FIT simulations under PEC approximation. The wide end of the

wedge is illuminated with a broadband pulse whose modal shape corresponds to that

of spoof WPP modes supported by an infinitely long 60◦ wedge. Panel (a) of Fig. 3.30

renders the electric field amplitude, |E|, on a line parallel to the z-axis and 100 µm above

the wedge apex. |E| is evaluated at three different frequencies within the spectral range

spanned by the dispersion bands shown in Fig. 3.29. Waves at d/λ = 0.08 ( f = 0.12 THz)

propagate until the sharpest end of the wedge, giving rise to a maximum in the electric

field amplitude located at that position (green line). At higher frequencies, radiation is

slowed down and stopped before reaching the wedge end. For d/λ = 0.1 ( f = 0.16 THz),

a peak in |E| is developed at the 42nd groove, for which θ = 26◦ (red line). At d/λ = 0.13

(0.20 THz) EM fields explore an even shorter section of the wedge and |E| presents a

maximum at the 34th groove, which correspond to θ = 32◦ (black line). Note that these

results are in excellent agreement with the FDTD dispersion bands of Fig. 3.29.

Panels (b), (c), and (d) of Fig. 3.30 depict |E| within the xy-plane located 100 µm above

the wedge apex, for the three frequencies considered in panel (a). Vertical dashed arrows

indicate the position of the maxima in panel (a). In these three contourplots, the reduc-

tion of the effective wavelength [λeff = 2π/Re(k)] experienced by the guided EM fields

as they propagate along the structure can be observed. This fact points out that slowing

down and stopping of THz waves is occurring along the wedge, at different locations

depending on the frequency. Note that, as a difference with the scheme proposed in Ref.

[126], the stopping mechanism presented here also leads to the transverse confinement

of EM fields. Panels (b), (c) and (d) indicate that guided waves are not scattered out of

the wedge as they travel in the z-direction. On the contrary, while propagating along the

structure, EM fields are gradually concentrated, leading to frequency selective focusing

of THz waves.
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3.5. Conclusions

In this chapter, we have studied the geometrically induced EM modes supported by dif-

ferent structures. We have introduced our work by reviewing the dispersion relation of

conventional SPPs. Then, we have introduced spoof SPPs in planar geometries, both in

single surfaces (groove and dimple arrays) and films (slit and holes). We have demon-

strated that the characteristics of the EM modes bound to these structures are controlled

by the width and depth of the perforations. Additionally, we have shown that our theo-

retical results are in excellent agreement with experimental measurements of the propa-

gation and confinement of spoof SPPs on dimple arrays at THz frequencies.

Secondly, we have demonstrated that corrugated wires also sustain spoof SPP modes.

We have motivated our study by describing the behavior of conventional SPPs on cylin-

drical surfaces in the limit of PEC metal. We have studied the geometrically induced EM

modes bound to ring arrays, and proposed a scheme for achieving subwavelength focus-

ing of EM fields based on these modes. We have also considered the case of helically

grooved wires, where the comparison with experiments in the THz regime has been also

shown.

Finally, we have presented two different guiding schemes for THz waves based on the

spoof SPP concept. The designs consist of corrugated channels and wedges. We have

demonstrated that subwavelength confinement of EM fields in the transverse plane is

achieved in such structures due to the mode coupling in a similar way as it happens in

channel and wedge plasmon polaritons in the visible and telecom ranges.
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4. Role of order in the phenomenon of

extraordinary transmission

4.1. Introduction

Since the discovery of the extraordinary optical transmission through periodic arrays of

subwavelength holes [39], many theoretical and experimental works have been devoted

to analyze the appearance of the phenomenon in different structures. Apart from hole

arrangements [40, 44–46], resonant transmission has been reported in periodic arrays of

slits [41–43, 127, 128], single apertures [129–133], and single apertures surrounded by cor-

rugations [48–50]. Recently, several experimental works have been published reporting

transmission resonances in quasiperiodic aperture arrays [134–139]. These papers sug-

gest that the presence of long range order in the system is the fundamental ingredient to

observe the phenomenon of extraordinary optical transmission.

In this chapter, we analyze the transmission properties of finite (periodic and quasiperi-

odic) slit arrays, and quasiperiodic hole arrangements. By means of our modal expansion

formalism, we obtain the transmittance and the distribution of electromagnetic fields in

such structures. In its reciprocal version, our theoretical framework enables us to link

the electric field amplitudes at the film surfaces to the structure factor of the system.

This provides us with a complete theoretical description of the connection between the

structure order and transmission resonances. Moreover, we identify the leaky electromag-

netic modes supported by perforated film as the key actors in the resonant transmission

process.

Throughout this chapter, the metallic film will be treated as a perfect conductor, i.e.,

εM = −∞. This is a very good approximation in the microwave and terahertz regimes,

where experiments on quasiperiodic apertures have been performed, and still has semi-

quantitative value at optical frequencies. Additionally, perfect conducting boundaries

make all the lengths involved in the system scalable, which allows transferring our re-

sults to different ranges of the electromagnetic spectrum.
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4.2. Finite and quasiperiodic slit arrays

4.2.1. Infinite array and single slit

We motivate the study of the transmission of light through finite arrays of subwavelength

slits by first analyzing two interesting and limiting cases in which the ME continuity

equations governing the electromagnetic (EM) fields behavior (2.46) have a very simple

form: a single slit and an infinitely periodic array of identical slits, both systems illu-

minated by a normal incident p-polarized plane wave. In spite of being very different

systems, in both cases we find that, by considering only the first waveguide mode inside

the slit(s), the system of linear equations simplifies into just the same two equations

(G − ε)E − GV E′ = I,

(G − ε)E′ − GV E = 0.
(4.1)

For both systems, the illumination term, I = 2i〈slit|k0〉, is proportional to the overlap

between the incident plane wave and the slit(s) waveguide mode. The slit(s) waveguide

mode is given by 〈x|slit〉 = 1/
√

a, where a is the slit(s) width [see Eq. (2.37)]. The term

ε = cot(k0h) (where h is the film thickness) reflects the bouncing back and forth of the

EM fields inside the aperture(s), and GV = 1/ sin(k0h) takes into account the coupling of

the EM fields at different film sides through the slit(s). The only difference between the

two systems resides in the expression for G in Eqs. (4.1), which describes the interaction

of EM fields associated with slit waveguide modes through diffraction waves. For the

single slit case, it reads

G = GS =
∫ ∫

dxdx′〈slit|x〉G(x, x′)〈x′|slit〉, (4.2)

where the integrals on x and x′ run over the width of the slit and G(x, x′) is given by Eq.

(2.63). On the other hand, for the infinite case, the set of continuity equations is obtained

from Eqs. (2.38). Thus, by considering only the fundamental slit waveguide mode, we

can rewrite Eq. (2.42) as

G = G∞ = i ∑
m

Ykm |〈km|slit〉|2. (4.3)

For normal incidence, km = m 2π
d , where d denotes the array period, Ykm = k0/

√
k2

0 − k2
m,

and the wavefunction for the diffraction waves is 〈x|km〉 = eikmx/
√

d.

Several works have been published studying the transmission properties of perforated

films [49] in which the single mode approximation that we are considering in our model

is used. Note that for the case of 1D slits, irrespective of the ratio between a and λ, the first

waveguide mode is always propagating. Since in the subwavelength regime (λ >> a), all
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Figure 4.1.: Transmission spectra normalized to the light impinging the area corresponding to the
array period, d, for a single slit and for an infinite periodic array of slits (for both structures,
h = 0.7d and a = 0.15d). Top: wavelength dependence of the relevant terms in Eq. (4.1) for
the single slit. Bottom: the same but for the infinite array of slits.

higher modes are evanescent, it is a very good approximation to consider that only the

first slit waveguide mode is excited by the incident plane wave.

The central panel of Figure 4.1 shows the comparison between the transmission spec-

tra for a single slit and for an infinite array of slits. In both cases, the transmittance

(defined as the ratio between the EM power exiting and impinging on the structure, see

Section 2.2.1) is normalized to the EM flux incident on the area corresponding to the

array period, d. For the normalization considered, the transmissivity of both structures

can be calculated from the 1D version of Eqs. (2.33) and (2.34), having:

T = (GV/Yk0)Im(EE′∗). (4.4)
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4. Role of order in the phenomenon of extraordinary transmission

In our model, we consider only perfect electric conducting (PEC) films. This means that

all lengths in the structure are scalable and we can take d as the reference length. For the

two structures analyzed in Fig. 4.1, the thickness of the film is chosen to be h = 0.7d and

the slits width, a = 0.15d.

In the wavelength range analyzed, the single slit spectrum presents two maxima which

correspond to the first two slit cavity resonances, located near the Fabry-Perot condition

sin(k0h) = 0. The infinite array spectrum shows these two maxima too, but shifted

to shorter wavelengths. However, slightly above the periodicity (λ � d) this spectrum

presents a strongly peaked feature which does not appear for the single slit. This maxi-

mum can be associated with the excitation of surface resonances at both sides of the film

[43, 45]. It is accompanied by a sharp drop in the transmittance just at the periodicity,

the well-known Wood-Rayleigh’s anomaly [3, 4].

Although the phenomenology for a single slit and for an infinite array of slits is well

known, the novelty of our approach is that it allows to understand the physics and

mathematics behind the transmission resonances in both systems just by analyzing the

terms appearing in Eqs. (4.1). The wavelength dependence of the different terms in these

equations for a single slit and for an infinite array is shown in the top and bottom panels

of Fig. 4.1, respectively. For example, the origin of the Wood-Rayleigh’s anomaly, present

only in the infinite array spectrum, stems from a divergence in G∞ (see lower panel in

Fig. 4.1) that appears just at the wavelength in which a diffraction order (±1, 0) becomes

evanescent (λ = d, kz = 0). This divergence makes the field intensity at the input and

output sides of the slits vanishing, i.e. |E| = |E′| = 0 (see Eqs. (4.1)). As in typical

resonant phenomena, the spectral locations of the EM resonances can be extracted by

looking at the zeroes in the determinant of the matrix defining the associated set of

linear equations [140, 141]. For both structures, the spectral locations of the transmission

peaks coincide with cuts between GV and |G − ε|. Imposing GV = |G − ε| in Eqs. (4.1)

we find that, for wavelengths satisfying this condition, the electric field intensities at both

sides of the slits are equal, i.e. |E| = |E′|. It is straightforward to demonstrate that this

condition also leads to a resonant denominator in the expressions for the corresponding

electric field amplitudes {E, E′}. Therefore, transmission maxima in both spectra rely on

EM resonances with the same mathematics but with a different physical origin.

For a single slit, transmission maxima are due to the excitation of cavity resonances

with the EM fields mainly concentrated inside the slits [129, 131]. For an infinite array,

these slit cavity resonances still emerge in the transmission spectrum but their locations

appear at shorter wavelengths. This shift is due to the EM coupling between the slits

forming the infinite array. This interaction modifies in an effective way the reflectivity

at the boundaries of the Fabry-Perot cavity, changing the spectral location of the corre-
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Figure 4.2.: Electric field amplitude, |E|, at the output side of the single slit and the periodic
array of Fig. 4.1. Panel (a) shows |E| for the single slit evaluated at λ = 1.86d. Panels (b)
and (c) render the electric field pattern for the periodic array at λ = 1.75d and λ = 1.03d,
respectively.

sponding resonances [142]. Additionally, a new transmission peak appears close to the

divergence of G∞, which can be linked to surface resonances at the film sides [41, 42].

In order to check the validity of this physical picture in which transmission maxima

are linked to slit cavity and surface EM resonances, we show in Figure 4.2 the amplitude

of the electric field, |E|, at the exit side of the PEC film for both the single slit and the

periodic array considered in Fig. 4.1. Panel (a) renders |E| at the maximum at λ = 1.86d
in the single slit spectrum. Panels (b) and (c) correspond to the transmission maxima that

the periodic array displays at λ = 1.75d and λ = 1.03d, respectively. As expected, the

electric field in panels (a) and (b) is mostly located inside the slits, which indicates that

the transmission resonances in both systems have the same physical origin. However, in

panel (c), |E| shows a sequence of maxima in the x-direction which indicates that the

resonance that governs the transmissivity of the system has a strong surface character.

Importantly, we can associate the transmission resonances appearing in perforated

PEC films with the spoof SPP modes supported by such structures. As we showed in
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4. Role of order in the phenomenon of extraordinary transmission

Section 3.2.3, in the case of 1D apertures these geometrically induced EM modes have

an hybrid nature, featuring characteristics of both surface and slit waveguide modes.

Thus, whereas at the peak near the Fabry-Perot condition, the spoof SPPs are strongly

influenced by the slit cavity resonance, close to the array period, it is the surface character

of the spoof SPP modes which prevail.

4.2.2. Finite array of slits

Now, we apply our ME formalism to the study of the transmission properties of finite

periodic arrays of N identical slits. As we showed in Section 2.2.2, the set of continuity

equations for the system reads

(Gαα − εα)Eα + ∑β �=α GαβEβ − GV
β E′

α = Iα,

(Gα − εα)E′
α + ∑β �=α GαβE′

β − GV
α Eα = 0,

(4.5)

where index α = 1, 2, ... N, labels the slit positions, xα = αd. Note that the interpretation

of the various terms appearing in Eqs. (4.5) is the same as in Eqs. (4.1). By solving the

2N × 2N system of continuity equations, we obtain the set of unknown modal ampli-

tudes {Eα, E′
α}. Thus, we can calculate the transmittance of the film and evaluate the EM

fields at any point of the structure. The transmittance of a finite array of N slits normal-

ized to the light impinging on the region corresponding to N times the array periodicity

(Nd) reads

T(N) =
1
N

N

∑
α=1

tα =
GV

NYk0

N

∑
α=1

Im
(
E′

αE∗
α

)
, (4.6)

where tα = (GV/Yk0)Im(E′
αE∗

α) gives the transmission per slit forming the array (normal-

ized to the array periodicity) i.e., the contribution of each slit to the total transmissivity

of the structure.

Fig. 4.3 shows the transmission spectra of periodic arrays with increasing number of

slits. The geometrical parameters of all the structures are h = 0.7d and a = 0.2d. We have

focused our analysis on the evolution of the surface and first slit cavity resonant peaks.

The maximum at the cavity resonance (λ = 1.75d), which already appears in the single

slit spectrum, is almost completely formed for an array containing only 2 slits. This fast

development relies on the localized nature of the EM modes involved in the scattering

process. However, at the surface resonance peak (λ = 1.03d), the coupling between the

incident light and the spoof SPPs depends strongly on the corrugation of the structure

and light coming from several slits is involved in the transmission process. It can be

seen in Fig. 4.3 that this peak evolves, not only in height but also in linewidth, gradually
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Figure 4.3.: Evolution of the resonant peaks in the transmission spectra of finite arrays of slits as
the number of slits is increased. The transmittance is normalized to the EM flux impinging
on N times the array period. For all the structures, h = 0.7d and a = 0.2d.

as the size of the array increases. This fact reinforces our interpretation of the surface

resonance as an spoof SPP mode emerging from the collective interaction among slits.

In order to study the effect on the transmittance of the interaction among EM fields

coming from different slits, we have plotted in Fig. 4.4, the normalized to period trans-

mission per slit (tα) for finite arrays of slits evaluated at the surface resonance. We have

taken the same geometrical parameters as in Fig. 4.3. For small arrays (N ≤ 100), the

transmittance is maximum at the center of the array. However, for large enough arrays,

we can distinguish between two kind of slit contributions to the total transmittance of the

structure. The transmission per slit pattern is composed by a flat central region, whose

width grows as the array size is increased, and two edge regions, each of them involving

NE slits, which is almost independent of the array size, N. The transmittance through

the central (N − 2NE) slits is, except some small oscillations, uniform and equal to the

value for the infinite case (T∞ = 1 for the normalization considered). However, for the

NE slits close to each array edge, tα falls from 1 to 0.5 as we approach the array ends. It

can be seen in Fig. 4.4 that, for the structure considered in our calculation, NE � 20.

The transmission per slit distribution depicted in Fig. 4.4 is reflected in the electric field
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4. Role of order in the phenomenon of extraordinary transmission
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Figure 4.4.: Normalized to period transmission per slit evaluated at the surface resonance for
arrays of different sizes with h = 0.7d and a = 0.2d. Dotted black line corresponds to the
uniform transmission pattern for an infinite array of slits.

distribution close to the metallic film. Figure 4.5 renders the electric field amplitude, |E|,
for the periodic array of 30 slits considered in Fig. 4.4. |E| is evaluated at λ = 1.04d, which

corresponds to the location of the surface resonance peak in the transmission spectrum

(see Fig. 4.3). The high transmissivity of the central slits is accompanied by a strong

field enhancement originated by the excitation of spoof SPPs in the central region of the

structure. As in infinite arrays (see Fig. 4.2), the propagation of these leaky EM modes

along the system gives rise to the sequence of maxima in |E| at the film surfaces. We can

relate the distance between two consecutive maxima to the spoof SPPs half-wavelength

which, as expected, is slightly larger than d/2.

Taking advantage of the scalable pattern of tα, we can obtain an approximated expres-

sion for the peak height at the surface resonance as a function of the number of slits

(for large enough arrays). The transmittance through an array containing N slits can be

written as the sum of contributions corresponding the different regions found in Fig

4.4. For the (N − 2NE) central slits, the total transmittance is (N − 2NE)T∞ = N − 2NE.

For the 2NE edge slits, it results in a good approximation to take the average value

2[(1 + 0.5)NE/2]T∞ = 3NE/2. The transmittance of the array normalized to the EM flux
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Figure 4.5.: Amplitude of the transverse component of the electric field evaluated at the surface
resonance for a periodic array of 30 slits.

incident on the area corresponding to N times the array periodicity is then given by

Tmax(N) =
1
N

(
N − 2NE +

3NE

2

)
= 1 − NE

2N
. (4.7)

Figure 4.6 plots the evolution with N of the height of the transmission peak at the

surface resonance for arrays of slits of different widths perforated in a perfect conducting

film of thickness h = 0.7d. Dots correspond to values obtained from the exact calculation

using Eq. (4.6) . For all the structures, peak growth has a similar behavior. For small

arrays, the transmittance depends linearly with N, but for larger ones, it grows much

more slowly, going as the inverse of the number of slits, as predicted by Eq. (4.7). This

change in tendency does not occur abruptly at a fixed array size, but in a range whose

position and width depend strongly on the width of the slits. The narrower the slits, the

wider this range is. We can relate this two tendencies with the tα distribution depicted in

Fig. 4.4. For small arrays (N < 2NE), the peak height grows linearly, while tα is peaked

around the array center. However, for arrays with N > 2NE, the peak goes as the inverse

of the slit number and a flat plateau appears in the transmission per slit pattern. This

picture is reinforced by comparing the case analyzed in Fig. 4.4 (a = 0.20d), where the

flat plateau is formed for 50 < N < 100. The change in tendency for orange up triangles
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Figure 4.6.: Transmittance at the surface resonance calculated from Eq. (4.6) for different slits
width: a = 0.24d (cyan circles), a = 0.20d (orange up triangles), a = 0.15d (blue squares),
a = 0.10d (green down triangles), and a = 0.08d (red diamonds). For all structures h = 0.7d
Solid lines: Fitting curves given by Eq. (4.7) for N > NE. Inset: Linear relation between 2NE

and λ2
∞/∆λ∞ for structures with 0.08λ ≤ a ≤ 0.24d and 0.6d ≤ h ≤ 0.8d.

in Fig. 4.6, which corresponds to the same structure, occurs for N ∼ 70. Solid lines in

Fig. 4.6 correspond to curves of the form of Eq. (4.7) fitted to exact calculated values

for arrays with N > 2NE. NE values obtained from the fitting parameters are in very

good agreement with the corresponding transmission per slit patterns at resonance. For

instance, from Fig. 4.4, we have NE � 20 for a = 0.20d, and from the fitting curve, we

obtain NE = 16.

In the following, we demonstrate that the phenomenological parameter 2NE is closely

related to the spatial extension of the surface EM mode responsible of the enhanced

transmission. This spatial extension can be extracted from the corresponding transmis-

sion spectrum for the infinite array. The linewidth of the resonant peak is related to the

time, ∆τ, that EM fields spend during the resonant process before being re-emitted from

the structure. If we assume that the EM fields associated with the resonant mode travel at

the speed of light, c, the spatial extension of the mode would be c∆τ = (λ2
∞/∆λ∞), with

λ∞ being the peak position and ∆λ∞ the linewidth at half maximum of the peak. In the

inset of Figure 4.6, we represent 2NE versus (λ2
∞/∆λ∞) (in units of d) for the four cases
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4.2. Finite and quasiperiodic slit arrays

analyzed in the main panel and for other ones in which the thickness of the metallic film

is also varied. This figure clearly demonstrates that there is a linear relation between the

two magnitudes, with a proportionality factor being close to 0.4. Although the linewidth

of the resonant peak appearing close to the period of the array is a complex function

of the geometrical parameters of the structure (a, d and h) and the resonant wavelength,

Fig. 4.6 demonstrates that the main controlling factor is the ratio between the width of

the slits and the period of the array, a/d.

All these results have been obtained assuming that the perforated metal behaves as a

perfect conductor. As stated in chapter 2, our results have quantitative value for metals

at microwave or THz frequencies. At optical frequencies, it is expected that absorption

in the metal would play an important role in the evolution of the transmission spectra

as a function of the number of slits. Absorption introduces another lifetime into the

problem, the time taken by the photon to get absorbed. Associated with this lifetime we

can introduce a new length scale, Labs, roughly defined as the product of the photon

lifetime and the light velocity. If Labs is smaller than NEd, the number of slits needed

to obtain the transmittance of the infinite array will be mainly controlled by absorption

in the metal. In the opposite case, transmission resonances can be built up before the

photons are absorbed and hence the values of NE calculated within the perfect conductor

approach still hold.

4.2.3. Fibonacci array of slits

In this section, we analyze the transmission characteristics of slits disposed following a

Fibonacci sequence. This is probably the earliest and best known deterministic aperiodic

system. In its simplest version, it can be generated from two basic elements {a, b} by

iteratively applying the substitution rules:

a→ ab, b→ a, (4.8)

Thus, we can construct Fibonacci chains of increasing number of elements, having:

a⇒ ab⇒ aba⇒ abaab⇒ abaababa⇒ . . . (4.9)

Each sequence Sj in (4.9) can be obtained from the two preceding ones by applying the

recursion relation Sj = Sj−1 ∩ Sj−2 , where symbol ∩ means composition. Sequences of a
and b elements obtained through this iterating process do not have a well defined regu-

larity, but they present several interesting properties due to their quasiperiodic character.

Figure 4.7 depicts a Fibonacci array of slits. The distance between consecutive slits

in this arrangement follows a Fibonacci sequence of two basic lengths, d1 and d2. The
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4. Role of order in the phenomenon of extraordinary transmission

Figure 4.7.: Schematic cross section of the structure analyzed in the text, a perfect conducting
film of thickness h drilled with an array of slits a. Slits are disposed following a Fibonacci
sequence generated from two basic distances d1 and d2 (see text for definition).

position of the slits in a Fibonacci array [143] is given by

xα = d1int
(α

τ

)
+ d2

[
α − 1 − int

(α

τ

)]
, (4.10)

where α = 1, 2, . . . , N, being N the number of slits in the array. The constant τ = (1 +√
5)/2 is the golden ratio and int() denotes the integer part function.

In panel (a) of Fig. 4.8, the modulus of the structure factor, S(k) = ∑α eikxα , for a

Fibonacci array of 200 slits is depicted. The two basic lengths defining the array are

d1 = 0.68d and d2 = 1.55d, where d is the mean distance between slits. Panel (b) renders

the structure factor for a periodic array of 200 slits of period d. It vanishes for all k’s

which are far from the multiples of 2π/d, and is narrowly peaked around each of these

multiples. At wave vectors close to the peaks, all summands in S(k) are in phase, and

|S|max = N = 200. The structure factor for the Fibonacci array also presents several

peaked features. The formation of these maxima relies on the appearance of a limited

degree of coherence among summands in S(k) which makes |S|max < 200 = N (for

k �= 0). These peaks are clear fingerprints of the presence of long range order in the

system. For comparison, in panel (c) we have plotted the structure factor of a random

array of 200 slits of the same size. Except at k = 0, it does not show any peaked feature,

which demonstrates the absence of order in the slits distribution.

In Fig. 4.9, transmission spectra of a PEC film of thickness h = 0.68d perforated with

a Fibonacci (black solid line), a periodic (red dashed line) and a random (blue dotted

line) arrays of 200 slits of width a = 0.17d are shown. Transmittances are normalized to

the transmissivity of 200 independent slits. The transmission of a single slit, T0, taken as
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Figure 4.8.: Absolute value of the structure factor corresponding to: (a) a Fibonacci array of 200
slits with d1 = 0.68d and d2 = 1.55d (where d is the mean distance between the slits), (b)
a periodic array of 200 slits of period d, and (c) a random array of 200 slits of the same
dimensions.

reference for normalization, is plotted in the inset of the figure. Within the wavelength

range considered in our analysis, T0 shows two maxima corresponding to the two first

slit cavity resonances (λ = 0.86d and λ = 1.87d). The Fibonacci and periodic array spectra

display these maxima too, but slightly shifted to shorter wavelengths. This fact leads to

the appearance of two low maxima (Tmax � 2) in the corresponding normalized spectra

(see Fig. 4.9). For the random array, T = NT0. The absence of order in the array makes

the interference of radiation coming from different slits destructive and the spectrum of

the structure is governed by the single slit transmission.

Transmission versus wavelength for periodic and Fibonacci arrangements display nar-

rower and higher peaks that are not present in the single slit spectrum. As we showed
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Figure 4.9.: Transmission spectra of the Fibonacci (black solid line), periodic (red dashed line)
and random (blue dotted line) arrays of 200 slits considered in the text. The slits width is
a = 0.17d and the film thickness, h = 0.68d. Transmittances are normalized to the trans-
missivity of 200 independent slits. Inset: Transmission spectrum of a single slit of the same
dimensions.

in Sec. 4.2.2, the narrow peak that periodic structures present at wavelengths close to the

array period is linked to the excitation of spoof SPPs at the system interfaces. The ques-

tion that arises now is whether the origin of the very similar resonant features observed

in the Fibonacci spectrum is the same.

In the coupling process between the incident light and the surface modes supported

by an infinitely periodic array of slits, Bragg momentum matching conditions must

be satisfied [39]. This fact relates the position of the resonant features in the transmis-

sion spectrum with the structure factor of the aperture array, S∞(k) = ∑∞
α=−∞ eikαd =

2π
d ∑l δ(k − bl) (where δ(x) denotes the Dirac’s delta function). This function defines a

set of resonant parallel wave vectors which turn to be equal to the reciprocal lattice

vectors, bl = l 2π
d . Wave vectors b±1 = ±2π/d provide the lowest incident energy and

momentum needed for the coupling. As a result, a very efficient transmission channel is

opened in the system, which leads to a transmittance peak at a wavelength slightly larger

than the array period, d. Note that, just at λ = d, the system presents the transmission

dip associated with the Wood-Rayleigh’s anomaly. For finite periodic arrays, discrete res-
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Figure 4.10.: Evolution of the transmission peak in a Fibonacci array as the number of slits is
increased. The transmittance is normalized to the EM flux impinging on the slits area. The
geometrical parameters considered are the same as in Fig. 4.9. Inset: Transmission peak
height as a function of the number of slits for a Fibonacci (black squares) and periodic (red
dots) arrays.

onant k’s are not well defined, but the close correspondence between the location of the

first maximum in the structure factor (λ = d) and the surface resonance transmission

peak that the system presents at λ = 1.02d remains.

The connection between the spectral location of transmission peaks and resonant fea-

tures in the structure factor seems to hold also for the Fibonacci array considered in Fig.

4.9. Its structure factor shows a first maximum at kd/2π = 0.375 (λ = 2.66d). The highest

peak in its transmission spectrum occurs at λ = 2.68d (see Fig. 4.9). Moreover, the trans-

mission dip also has its own quasiperiodic counterpart in a narrow drop (λ = 2.66d),

whose position coincides with the maximum in S(k). All these similarities seem to point

out that surface resonances also play a crucial role in the transmission properties of Fi-

bonacci structures. The fact that transmission features are less pronounced in the quasipe-

riodic structure can be interpreted as a consequence of the less efficient coupling between

the incident light and the spoof SPPs due to the absence of a well defined regularity in

the system.

In Figure 4.10 we study the evolution of the transmission maximum with the number
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4. Role of order in the phenomenon of extraordinary transmission

of slits present in a Fibonacci arrangement. The gradual increase of the transmission

peak height observed is compatible with the fact that the origin of the resonance stems

from the excitation spoof SPPs in the film sides. As the number of slits is increased,

the structure factor becomes more and more peaked around the resonant wave vectors,

resulting in a more efficient excitation of the spoof SPP modes and, consequently, in a

higher transmissivity. This behavior is similar to that shown in Fig. 4.3. In the inset of

Fig. 4.10, peak heights for Fibonacci (black squares) and periodic (red dots) arrays with

constant mean distance between slits are plotted as a function of the number of slits.

We can observe that the tendency is very similar in both cases, being the transmittance

always lower for the quasiperiodic system.

From our analysis it seems clear that the structure factor plays a fundamental role in

the transmission properties of slit arrangements. Thus, it is convenient to consider the

k-space version of our ME formalism, in which S(k) appears explicitly. As we stated in

Section 2.2.3, the set of equations which control the k = 0 Fourier component of the

parallel electric field amplitude at the film sides, E0(0) and E′
0(0), has the form

(Σ0 − ε0)E0(0) − GV
0 E′

0(0) = I,

(Σ0 − ε0)E′
0(0) − GV

0 E0(0) = 0.
(4.11)

where, ε0 and GV
0 remain the same as in real space equations (4.1). The term Σ0 is given

by

Σ0 =
1

E(′)(0)

∫ ∞

−∞
dk G00;kS(−k)E(′)(k). (4.12)

It represents the scattering process that couples E(′)(0) to the continuum E(′)(k), the mo-

mentum difference being provided by the apertures through the structure factor S(−k).

Note that we have checked that Σ0 acquires the same values calculated from the modal

amplitudes at the input and output sides of the film. The amplitude of the scattering

process depends on G00;k, which is given by

G00;k =
1

2π
Yγ=2(k)〈k|slit〉 =

ia
2π

k0√
k2

0 − k2
sinc2(ka/2), (4.13)

where simple expressions for the admittance, Yγ=2(k), and the overlapping integral,

〈k|slit〉, are given in Sec. 2.2.2 and Appendix A, respectively. Note that G00;k diverges

whenever a p-polarized diffraction wave goes glancing (k = k0). This indicates the im-

portant role that surface modes play in the formation of transmission resonances, as they

govern the amplitude of the scattering processes between the incoming light and the

structure. In Section 2.2.3, we showed that the zero-order diffracted beam (k = 0) gov-

erns the transmissivity of aperture arrays for wavelengths much larger than the mean
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4.2. Finite and quasiperiodic slit arrays
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Figure 4.11.: Upper panel: Transmission peaks for the Fibonacci and periodic arrays of 200 slits
considered in the text. The transmissivity of an infinitely periodic array with the same ge-
ometry is also shown. Lower panel: Relevant terms in Eqs. (4.11) for these three systems.
Vertical dotted lines indicate the coincidence between the location of the transmission peaks
and the cuts between |Σ0 − ε0| and GV

0 for each system.

distance between apertures. Thus, we can expect that the system of equations (4.11)

describe the physical and mathematical foundation of the transmission resonances ob-

served in finitely periodic and Fibonacci slit arrays.

Let us consider first the case of an infinitely periodic array. As we showed in Sec. 2.2.3,

Σ0 for this structure is equal to the G∞ term [see Eq. (4.1)] which appears in the real-

space version of the ME formalism. Therefore, the phenomenology that we described

in Section 4.2.1 relating transmission resonant features to the behavior of the different

terms in Eqs. 4.1 is also valid for Eqs. 4.11. In Fig. 4.11, we have plotted in grey dotted
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4. Role of order in the phenomenon of extraordinary transmission

line the transmission spectrum (upper panel) and the dependence on λ of the relevant

terms in Eqs. 4.11 (lower panel) for an infinite array of slits with a = 0.17d and h = 0.68d.

We can see that the divergence of |Σ0 − ε0|, which makes E0(0) = E′
0(0) = 0, coincides

with the location of the Wood-Rayleigh’s anomaly. Moreover, at a wavelength slightly

larger, the condition |Σ0 − ε0| = GV
0 is satisfied. This gives rise to the surface resonance

transmission peak in the spectrum, which is accompanied by an enhancement of E0(0)
and E′

0(0).

The arguments presented above can be extended to finite systems. These are also de-

scribed by Eqs. (4.11), where now Σ0 must be numerically evaluated from the expression

(4.12). The lower panel of Fig. 4.11 renders |Σ0 − ε0| for the finitely periodic (red dotted

line), and Fibonacci (black solid line) arrays of 200 slits considered in Fig. 4.9. Although

Σ0 does not diverge for any of them, both arrangements show a dip in transmittance

when |Σ0 − ε0| is maximum. Moreover, for both structures, the condition |Σ0 − ε0| = GV
0

still coincides with the locations of the transmission peaks. This correspondence, indi-

cated by vertical dotted lines in Fig. 4.11, allows us to link the appearance of transmission

peaks with the excitation of spoof SPP modes in both systems.

Our theoretical results on the transmission properties of finite slit arrays are in very

good agreement with experimental works recently published studying the role of order

and finite size effects in such structures [144, 145].

4.3. Quasiperiodic hole arrays

Finite size effects in the transmission of light through periodic hole arrays have been

extensively studied both theoretically and experimentally [146–148]. Here we focus on

analyzing the transmission properties of quasiperiodic hole arrangements disposed fol-

lowing Penrose lattices as those studied experimentally in [135–137]. Penrose tiles are

composed of two different types of rhombuses with equal edges, d, but different angles,

36◦ and 72◦. It can be demonstrated [149] that these two basic elements can be matched to

pave all the 2D plane. Although periodicity is absent in the resulting lattice, it presents

long range order with ten-fold spatial symmetry. Figure 4.12 renders a schematic pic-

ture of such Penrose tiling. The two types of rhombuses comprising the lattice has been

colored in order to make them clearly distinguishable.

We choose the holes parameters to be the same as in the experiments in Ref. [137].

Thus, the hole radius is a = 0.2 mm, the thickness of the metallic film, h = 0.075 mm,

and the rhombuses edge, d = 1 mm. For these geometrical parameters, the transmission

resonances of the structure are located in the THz range of the EM spectrum where, as we
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4.3. Quasiperiodic hole arrays

d
=36º

d

=72º

Figure 4.12.: Schematic picture of the Penrose tiling considered in the text. The two basic rhom-
buses comprising the quasiperiodic lattice are also depicted.

stated in Sec. 2.2.5, PEC boundary conditions are an excellent approximation. The upper

panels in Fig. 4.13 depict the three different types of hole arrangements considered. Left,

center and right panels correspond to a periodic square lattice, a Penrose lattice and a

random distribution of circular holes, respectively. In all three cases, the film thickness,

the number of holes (N = 1506), their radius, and the size of the external diameter are

the same. In this way, the density of holes and the area occupied by them are equal in

the three structures, enabling a direct comparison between them. The coordinates in the

Penrose lattice were generated by the Dual Generalized Method [150, 151]. The periodic

structure is a circular portion of a square lattice of period P = 0.89mm. In the disordered

case, N holes are randomly distributed but without allowing any interhole distance to

be smaller than the minimum one found in the quasiperiodic case.

The scattering properties and EM field distributions for these three systems can be cal-

culated within our real space ME framework [92]. The set of continuity equations for 2D

arrangements has the same form as Eqs. (4.5), where index α runs over hole positions and
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4. Role of order in the phenomenon of extraordinary transmission

Figure 4.13.: (a-c) Structures under study. Square (left), Penrose (center) and random hole ar-
rangements (right). (d) Normalized-to-area transmittance, T, spectra for: single hole (green
line), square array (red line), Penrose lattice (black line) and a random configuration (blue
dots). Gray arrows mark the locations of the dips (thin lines) and peaks (thick lines) of the
experimental transmittance spectrum reported in Ref. [137]. Inset in panel (d) shows the
dependence with N for T at resonant peaks for the quasiperiodic array, λ = 0.83 mm (black
dots) and λ = 0.98 mm (cyan dots).

waveguide modes inside each aperture. By solving it, we get the electric field amplitudes

at the input (Eα) and output (E′
α) sides of the holes. The transmittance of the structure

is then obtained through Eq. (4.6). Panel (d) of Fig. 4.13 depicts the normal incidence

transmission spectra computed for the three structures, along with the transmittance as-

sociated with a single hole (green line). In all cases, the transmittance is normalized to

the flux of light impinging on the area occupied by the holes. In the spectral range con-

sidered, the single hole transmittance is a smooth decreasing function of the wavelength.

In the ordered case (red line), the transmission spectrum is also smooth, except close to
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4.3. Quasiperiodic hole arrays

the resonant peak appearing at λ = 0.92 mm, where the normalized-to-area transmit-

tance, T, is about 5. This is the canonical peak associated with the extraordinary optical

transmission (EOT) phenomenon, which occurs at a resonant wavelength slightly larger

that the array period.

As in the experiments, resonant transmission also appears when holes are arranged in

a Penrose lattice (black curve in Fig. 4.13). In this case, maximum transmission values of

about 1.5 are obtained at two resonant wavelengths, λ = 0.83 mm and λ = 0.98 mm. The

agreement between theory and experiment in the spectral locations of these transmission

peaks is excellent. On the other hand, blue dots in Fig. 4.13 demonstrate that transmission

peaks do not appear for any distribution of holes: the transmission spectrum for the

random array does not show any resonant feature. This is just a representative example

of disordered arrays. We have generated several random configurations finding always

a non-resonant behavior.

As we showed in Section 2.2.3, when dealing with a finite collection of apertures, from

a numerical point of view, it is more convenient to work with the system of linear equa-

tions in real space (4.5). However, the dependence of transmission properties of aperture

arrangements on the lattice structure can be made more apparent by working with the

reciprocal space version of our ME formalism. Physical insight is gained by analyzing

the k-space continuity equations for k = ki = 0. As in 1D structures, we consider only

the fundamental waveguide mode inside the circular holes, which is a linear combina-

tion of the TE11 modes shown in Appendix B. The resulting set of continuity equations

can be written in the same form as Eqs. (4.11), but the different terms in the equations

now read

I = 2i〈hole|ki, σi〉, (4.14)

ε0 = −i

√
k2

0 − υ2

k0

1 + e2iυh

1 − e2iυh , (4.15)

GV
0 = −2i

√
k2

0 − υ2

k0

eiυh

1 − e2iυh , (4.16)

where υ =
√

k2
0 − (γ′

11/a)2, and γ′
11 is the first zero of the derivative of the Bessel function

of first order. Analytical expressions for the overlap between the incident plane wave and

the hole waveguide mode, 〈ki, σi|hole〉, are provided in Appendix B. The Σ0 function is

given by

Σ0 =
1

E(′)
0 (0)

∫
dkG00;kS(−k)E(′)(k), (4.17)

with G00;k = i
4π2 ∑σ Ykσ|〈k, σ|hole〉|2.
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Figure 4.14.: (a) Normalized-to-area transmittance versus wavelength for an infinite periodic array
(magenta line) and several finite square arrays. The geometrical parameters are: a = 0.2mm,
h = 0.075mm and P = 0.89mm. Inset shows the structure factor for the 41x41 case. (b)
|Σ0 − ε0| and GV

0 (gray line) versus wavelength for the cases depicted in (a).

In Figure 4.14, T (panel a) and |Σ0 − ε0| (panel b) versus wavelength are depicted for

an infinite periodic array (magenta line). The geometrical parameters of this array are

the same as the periodic one analyzed in Fig. 4.13. As in 1D structures, Σ0 for infinitely

periodic arrays coincides with the G function appearing in the real space version of the

formalism. It diverges at λ = P = 0.89 mm (as a consequence of the divergence of G00;k

at this λ), both E0(0) and E′
0(0) are zero, which leads to null transmission. Again, we

have the Wood-Rayleigh’s anomaly or anti-resonance as quoted in Ref. [137]. Moreover,

at a wavelength slightly larger, |Σ0 − ε0| = GV
0 , which leads to a resonant enhancement of
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Figure 4.15.: (a) Normalized-to-area transmittance versus wavelength for several quasiperiodic
arrays with different number of holes, N. The geometrical parameters are: a = 0.2mm,
h = 0.075mm and d = 1mm. Inset shows the structure factor for the N = 1506 case. (b) Both
|Σ0 − ε0| and GV

0 (gray line) versus wavelength for the cases depicted in (a).

the electric field amplitudes at the interfaces of the system, and consequently, T presents

a maximum. As in 1D apertures, the field enhancement at the film sides can be assigned

to the excitation of leaky spoof SPPs in the perforated film.

As in 1D slit arrays, the discussion presented above can be also applied to the case of

finite arrays (both periodic and quasiperiodic). In principle, continuity equations (2.66)

should be solved for a continuum of states k for finite hole arrangements. However, as

in 1D structures, we use the approximation of considering only E0(0) and E′
0(0), neglect-
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4. Role of order in the phenomenon of extraordinary transmission

ing the Fourier components of modal amplitudes with k �= 0. This allows us to relate

transmission resonances with the k-space continuity equations under the single mode ap-

proximation (4.11). The results of our approach applied to square periodic arrays (going

from 5× 5 to 41× 41 holes) are shown in Figure 4.14. Again, in finite systems Σ0 presents

no divergences, but there is still a resonant feature appearing close to λ = P. The first

consequence is that transmission dips do not reach zero transmittance in finite arrays.

Moreover, the cut between |Σ0 − ε0| and GV
0 marks the location of the transmission peak

for large arrays (41× 41 and 31× 31). However, for smaller arrays, there is no cut, and the

transmission peak appears at the wavelength in which the difference between |Σ0 − ε0|
and GV

0 is minimal.

The scheme described above is also valid for quasiperiodic arrays. In panel (b) of Fig-

ure 4.15, the evolution of |Σ0 − ε0| versus wavelength is studied for Penrose lattices with

increasing number of holes (ranging from N = 106 to N = 1506, the case analyzed in

Fig. 4.13). |Σ0 − ε0| present maxima at wavelengths corresponding to the two main wave

vectors of the structure factor (see inset of the upper panel of Fig. 4.15): b1 (λ1 = 0.8 mm)

and b2 (λ2 = 0.94 mm). Consequently, T shows two minima at these two wavelengths.

At slightly larger wavelengths, the difference between |Σ0 − ε0| and GV
0 is minimal and

two transmission peaks appear in the spectrum. Therefore, these resonant transmission

peaks stem from the excitation of surface EM modes at the film sides, much in the

same way as in periodic arrays [39, 45]. Notice that, however, in the quasiperiodic case,

there is no minimum wave vector for diffraction (i.e. the structure factor is non-zero for

wave vectors with modula smaller than |b1|, see inset of the upper panel of Fig. 4.15).

This results in diffraction onto additional propagating modes in vacuum (other than

the zero-order mode), which leads to both smaller resonant peaks and less pronounced

Wood-Rayleigh’s anomalies than those emerging in the periodic case.

Finally, it is worth analyzing the spatial distribution of light emerging from the quasi-

periodic array. Figure 4.16 renders the transmission-per-hole in a Penrose lattice of N =
1506 holes at the two resonant wavelengths (λ = 0.83 mm and λ = 0.98 mm in panels (b)

and (c), respectively). For comparison, panel (a) shows the corresponding distribution

for the ordered array at resonance (λ = 0.92 mm). In all three cases, the incident electric

field is pointing along the x-direction. In the ordered case, due to finite size effects, the

maximum transmission is located at the center of the structure [147]. In quasiperiodic

arrangements, the transmission-per-hole distribution presents a completely different pat-

tern: it is far from being uniform, showing the appearance of some holes with high trans-

mission (hot spots), which are highlighted in the insets of panels (b) and (c). Interestingly,

in the Penrose lattice, for a given resonant wavelength, hot spots show similar local envi-

ronment. However, the existence of hot spots does not imply that resonant transmission
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4.4. Conclusions

Figure 4.16.: Transmission per hole (normalized to the single hole transmission) displayed in a
color scale for (a) ordered case evaluated at λ = 0.92mm, (b) Penrose lattice at λ = 0.83mm
and (c) Penrose lattice at λ = 0.98mm. The geometrical parameters are given the same as in
Fig. 4.13.

in quasiperiodic systems is dominated by very localized resonant configurations of holes.

We have observed that the hot spots show an increase of transmittance as a function of

number of neighbors included in the lattice. This point is reinforced by the fact that

the resonant peaks observed in the transmission spectra of finite Penrose lattices do not

saturate for small N values (see inset of panel (d) of Fig. 4.13). Both these results are

consistent with the interpretation based on extended leaky spoof SPPs described above.

4.4. Conclusions

In this chapter, we have analyzed the resonant transmission of light through finite ar-

rangements of apertures perforated in perfect conducting films. We have studied three

different structures: periodic and quasiperiodic (Fibonacci) arrays of slits, and quasipe-

riodic (Penrose) arrays of holes. We have shown that the resonant features occurring in

the transmission spectra of these systems can be explained in terms of the spoof surface

plasmon polaritons supported by the film. Additionally, we have related the excitation of

these electromagnetic modes with the structure factor of the aperture arrangement. This

allows us to explain the appearance of the phenomenon of extraordinary transmission

in general conditions. Finally, we have shown that our theoretical results are in excellent

agreement with experiments recently performed on quasiperiodic systems.
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5. Resonant transmission and beaming of

cold atoms assisted by surface matter

waves

5.1. Introduction

In the last years, several papers have been published reporting enhanced transmission

and beaming of light in photonic crystals [74–76]. These works have demonstrated that

resonant transmission and beaming effects are general electromagnetic phenomena that

do not occur only in metallic structures. This discovery has allowed achieving a more

profound understanding of both phenomena and has opened the way for their transfer

to other undulatory entities such as cold atoms (matter waves) or sound (acoustic waves).

In this chapter, we describe in detail the appearance of resonant transmission and

beaming of non-interacting cold atoms in various geometries. We show that the reso-

nant excitation of surface matter waves, the analog of surface plasmon polaritons in the

electromagnetic case, on both sides of a perforated impenetrable film allows the forma-

tion of efficient transmission channels that assist cold atoms to pass through apertures

much smaller than their de Broglie wavelength (λdB). As a difference with surface plas-

mon polaritons, which propagate on bare vacuum-metal interfaces, surface matter waves

require an attractive potential close to a solid surface in order to be supported. We con-

sider a very simple model of surface matter waves based on square well potentials which

nevertheless contains all the physical mechanisms that are behind the phenomena.

The issue of a feasible experimental implementation of these ideas is also addressed.

We present a possible experimental scenario for the 1D case (array of slits). We show

that a realistic attractive potential supporting surface matter waves can be realized by

combining the intrinsic van der Waals interaction between a neutral atom and a dielectric

surface, and an external repulsive optical potential created by a blue-detuned laser field

propagating along an array of dielectric fibers.
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5.2. Surface matter waves

Surface Matter Waves (SMWs) are solutions of the Schrödinger equation confined in the

direction normal to a vacuum-solid interface and propagating along it. Unlike Maxwell

equations, which admit confined waves at bare metal-dielectric interfaces, Schrödinger

equation requires an attractive potential close to the material surface for the existence of

such waves. The simplest potential supporting SMWs is depicted in Figure 5.1: a semi-

infinite square well along the z-direction (normal to the material surface), translationally

invariant in the surface plane. The energies of the bound states (En < 0) associated with

this potential well are given by the transcendental equation [152]

tan

(√
2m
h̄2

(
En − V0

)
h

)
= −

√
V0 − En

En
, (5.1)

where V0 < 0 is the potential depth, h its width, and m the mass of the non-interacting

atoms forming the SMW.

In what follows, we consider a potential well supporting one single bound state of

energy E0. The dispersion relation of the associated SMWs is

E(k) = E0 +
(h̄k)2

2m
, (5.2)

where E and h̄k are the energy and in-plane momentum of the SMW, respectively. In Fig.

5.1, a cross-cut of the potential function along the z-direction is shown. Blue solid line

corresponds to the bound state energy E0, whereas red dashed line renders its wavefunc-

tion. The associated SMWs propagate parallel to the impenetrable surface (modelled by

an infinite potential barrier) and decay in the z-direction outside the potential well.

Due to energy and momentum conservation principles, SMWs can not be excited by

plane matter waves impinging on the above described structure. As we showed in chap-

ter 4, the periodic corrugation of a flat metallic surface allows the coupling of incident

radiation with surface plasmon polaritons (SPPs). The analogous process involving mat-

ter waves is shown schematically in Fig. 5.1: incident cold atoms of energy Ein (green

line) are transferred to SMWs after receiving the scattering momentum h̄k supplied by

the structure corrugation. This coupling between plane matter waves and SMWs will

later allow the appearance of the resonant transmission phenomenon through perforated

films.

With this motivation, first we calculate the dispersion relation of the SMWs supported

by a corrugated structure, namely a groove array of period Λ surrounded by a square

potential well of depth V0 < 0 and thickness h. The grooves width and depth are w and t,
respectively. The structure is shown in the inset of Fig. 5.1. We develop a formalism based
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5.2. Surface matter waves

Figure 5.1.: Cross-cut along the z-direction of the potential function supporting SMWs (black
line). The potential well has only one bound state of energy E0 (blue line). The correspond-
ing wavefunction (red dashed line) is confined in the z-direction. The indicated transition
(dashed arrow) from a collision state Ein (green line) to the SMWs associated to E0 is only
possible once the surface is modulated. Inset: 2D potential landscape resulting from the
corrugation of the material surface. Colors code the potential as follows: Orange (region
I) → V = 0, blue (region II) → V = V0 < 0, and red (region III) → V = +∞. For
the parameters considered in our calculations (h = 0.30 µm and V0 = −1.06 × 10−11 eV),
E0 = −0.095 × 10−11 eV.

on the modal expansion of the matter wavefunction (Ψ) within the different regions

forming the structure. The ideas behind this approach are very similar to those presented

in chapter 2 for the case of electromagnetic (EM) waves. Taking advantage of the periodic

character of the system, we can apply Bloch’s theorem and solve Schrödinger equation

only inside the unit cell of length Λ along the x-direction (see Fig. 5.1). In region I (see

inset of Fig. 5.1), Ψ is written as a sum over diffracted waves as

|ΨI〉 = ∑n ρn|kn〉eik(n)
z z, (5.3)

where ρn are unknown complex coefficients, and kn = kx + n 2π
Λ and k(n)

z =
√

k2
0 − k2

n are

the wave vector components of the Bloch wave |kn〉 along x and z-directions, respectively.

The SMW modal wave vector is kx, and k0 is the wave vector modulus in vacuum. Note

that k0 =
√

2mE/h̄ = 2π/λdB, where E is the SMW energy and λdB, the de Broglie
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wavelength. Finally, the wavefunction in real space for the nth diffracted Bloch wave is

〈x|kn〉 = eiknx√
Λ

.

In region II, the wavefunction is expanded again in terms of Bloch waves as

|ΨII〉 = ∑n
(

Aneiq(n)
z z + Bne−iq(n)

z z)|kn〉, (5.4)

where An and Bn are the unknown expansion coefficients and q(n)
z =

√
ξk2

0 − k2
n, with

ξ = 1 + |V0|
E , is the wave vector component along the z-direction.

In our analysis, we consider groove widths much smaller than λdB and λdB/
√

ξ (the

de Broglie wavelength inside the grooves). In Section 2.2.1, we showed that taking only

the lowest waveguide mode in the expansion of EM fields inside the apertures is a very

good approximation in the subwavelength regime. We can extend this statement to the

modal expansion of Ψ inside the grooves. The first waveguide mode inside the groove

governs the SMW behavior, as it is the least evanescent wave along the z-direction (note

that here resides an important difference with the EM case for p-polarization, where the

fundamental slit waveguide mode is always propagating). Thus, in region III we have

|ΨIII〉 = C sin(βz)|ψWM〉, (5.5)

where C is unknown. Note that as λdB/
√

ξ << w, the wave vector β =
√

ξk2
0 − (π/w)2

is imaginary and sin(βz) can be replaced by i sinh(|β|z) in Eq. (5.5). The wavefunction in

real space for the first groove waveguide mode is 〈x|ψWM〉 =
√

2
w sin[ π

w (x + w/2)] inside

the groove (|x| ≤ w/2), and 〈x|ψWM〉 = 0, otherwise. We have chosen z = 0 at the groove

bottom so that 〈x|ΨIII〉=0 at that position.

In order to obtain the set of modal expansion coefficients {ρn, An, Bn, and C}, we

impose continuity conditions on Ψ and its z-derivative at the interfaces of the system

(z = t and z = t + h). The wavefunction and its derivative must be continuous in all

space, except at the infinite potential barriers modelling the impenetrable surface, where

∂zΨ presents a discontinuity [152]. Thus, in order to remove their dependence on the

x-coordinate, we project the matching equations at z = t + h onto Bloch waves. Similarly,

equations at z = t associated to Ψ (∂zΨ) are projected onto |kn〉 (|ψWM〉). Defining the

quantity ψ = C sin(βt), which corresponds to the amplitude of the matter wavefunction

at the openings of the grooves, we obtain a single continuity equation of the form

(G − ε)ψ = 0. (5.6)

Note that Eq. (5.6) has the same form as Eq. (2.73) which provides the dispersion relation

of the bound EM modes supported by groove and dimple arrays.

The term ε = β/[k0 tan(βt)] contains the effect of the penetration of matter waves in-

side the grooves. Note that it has exactly the same form as in the case of s-polarized light
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[see Eq. (2.40)]. Its physical meaning can be clarified by comparison with the case of wide

grooves, where β is a real number, and thus propagating modes are supported inside

each groove. In such case, the zeros of the denominator in ε correspond to resonances

within the grooves due to bouncing of the groove mode at the bottom and opening of the

indentation. For the chosen subwavelength grooves, β is imaginary and no propagating

modes nor resonances exist, but the interpretation of ε is analog. The G term reflects the

coupling of the matter wavefunction at different grooves through diffracted waves. It is

given by

G =
∞

∑
n=−∞

iq(n)
z

k0
f (kn, h)|〈kn|ψWM〉|2, (5.7)

where the function f (kn, h) has the form

f (kn, h) =
k(n)

z cos(q(n)
z h) − iq(n)

z sin(q(n)
z h)

q(n)
z cos(q(n)

z h) − ik(n)
z sin(q(n)

z h)
. (5.8)

We have found that the G term describing the SMWs supported by a groove array is very

similar to the case of s-polarized light when only the first waveguide mode is considered

inside the apertures [see Eq. (2.42)]. The only difference resides in the function f (kn, h),

which takes into account the presence of the attractive potential at the material surface.

For kn = 0, the denominator in f (kn, h) vanishes for energies satisfying Eq. (5.1). This

fact indicates the close link between the bound states supported by the potential well

surrounding the modulated surface and resonances in the G term, which governs the

coupling between different grooves. The dispersion relation of the SMWs propagating

along the structure is obtained by imposing the condition |G − ε| = 0, leading to non-

zero solutions of Eq. (5.6). This condition can be rewritten as

cot(βt) =
∞

∑
n=−∞

iq(n)
z

β
f (kn, h)|〈kn|ψWM〉|2. (5.9)

In Figure 5.2, |G − ε| for an array period of Λ = 0.80 µm is plotted. The groove dimen-

sions are w = t = 0.16 µm. The attractive potential depth is V0 = −1.06 × 10−11 eV and

its width h = 0.30 µm. As explained above, this set of parameters is tuned to observe

resonant transmission for the 1D case. Black regions correspond to |G − ε| values close

to zero, showing the dispersion relation of the SMWs supported by the structure. In

our calculations, we have considered that the SMWs are composed of cold 87Rb atoms

(m = 1.45 × 10−25 kg). Kinetic energy versus momentum for free 87Rb atoms is depicted

in dashed green line. Note that SMWs are strictly guided modes only below this line.

The solutions of kx of Eq. (5.6) have an additional imaginary part. This means that above

this line SMWs are leaky, radiating while they propagate along the structure.
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5. Resonant transmission and beaming of cold atoms assisted by surface matter waves

Figure 5.2.: Dispersion relation of the SMWs supported by the groove array depicted in the
inset of Fig. 5.1. The array period is Λ = 0.80 µm and the groove dimensions, w = t =
0.16 µm. The potential well depth and thickness are V0 = −1.06 × 10−11 eV and h = 0.30 µm,
respectively. The SMWs are composed by cold 87Rb atoms (m = 1.45× 10−25 kg). Red dotted
lines correspond to the approximated bands obtained from Eq. (5.2). Green dashed line
renders E versus kx for free 87Rb atoms.

An approximate expression for the dispersion relation of SMWs on corrugated sur-

faces can be extracted from Eq. (5.2) by simply applying Bloch’s theorem to the par-

allel momentum component k = kx. This leads to different bands of energy En(kx) =
E0 + (h̄2/2m)(kx + n 2π

Λ )2 shown in red dotted line in Fig. 5.2. For the potential well con-

sidered in our calculations, E0 = −0.095× 10−11eV is much lower than the kinetic energy

close to the n = 1 band edge, h2/2mΛ2 = 1.48 × 10−11 eV. As we can see in Figure 5.2,

this approximated expression is in very good agreement with the exact SMWs dispersion

relation.

In our design of SMWs we have found several similarities with the case of s-polarized

light. As in the case of matter waves, bare metallic surfaces do not support s-polarized

bound modes. A dielectric slab close to the metal surface is required for the formation

of such bound modes. In fact, our model of SMWs on groove arrays can be mapped
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5.3. Resonant Transmission through slit arrays

into a dielectric-coated textured perfect electric conducting (PEC) surface in which the

dielectric function of the coating is given by ξ = 1 + |V0|/E. Recently, the appearance of

extraordinary optical transmission (EOT) for s-polarization assisted by these modes has

been demonstrated theoretically and experimentally [153, 154].

5.3. Resonant Transmission through slit arrays

Once we have designed SMWs with properties similar to those of SPPs, we study the

appearance of resonant transmission for cold atoms. We go further with our simple

model and consider a material slab perforated with a periodic array of narrow slits and

surrounded by a square potential well (see right inset of Fig. 5.3). Such structure supports

SMWs at both sides of the slab which, as in the EM analog, will play a crucial role in

the resonant transmission process (see chapter 4). The close correspondence between

SMWs and the surface EM modes supported by coated metals introduced in the previous

section leads to several similarities between resonant transmission in slit arrays for cold

atoms and s-polarized light.

We extend the modal expansion framework presented in the previous section to the

study of the transmission of a plane matter wave impinging from the top (z < 0) on

the perforated film. We follow the same strategy as in the case of EM fields, described

in detail in chapter 2. The right inset of Fig. 5.3 shows the division of the system into 5

different regions along the z-direction. The wavefunction in region I can be written as the

incident plane wave with parallel momentum ki =
√

2mE/h̄ sin θ = 2π sin θ/λdB (where

θ is the incidence angle) plus a sum over reflected Bloch waves, |kn〉, with kn = ki + n 2π
Λ

|ΨI〉 = |ki〉eik(i)
z z + ∑∞

n=−∞ ρn|kn〉e−ik(n)
z z. (5.10)

Note that the exponential function describing the dependence of the reflected waves on

z has now a negative sign which did not appear in Eq. (5.3). This is due to the fact that

the orientation of the z-axis with respect to the input side of the film is the opposite to

that considered in groove arrays.

Inside the attractive potential well surrounding the material slab (regions II and IV), Ψ

is written as a linear combination of Bloch waves of the same form as Eq. (5.4). In region

V, the transmitted matter wave can be expressed as a sum of diffracted Bloch waves of

the form

|ΨV〉 =
∞

∑
n=−∞

tn|kn〉eik(n)
z z. (5.11)

For subwavelength slits (w << λdB, λdB/
√

ξ) the behavior of the matter waves inside

region III is accurately described by considering only the first slit waveguide mode |ψWM〉
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5. Resonant transmission and beaming of cold atoms assisted by surface matter waves

in the wavefunction expansion:

|ΨIII〉 =
(
Ceiβz + De−iβz)|ψWM〉. (5.12)

Imposing continuity conditions on the wavefunction and its z-derivative at the struc-

ture interfaces, we end up with a set of two linear equations in the amplitudes of the

matter wavefunction at the entrance, ψ = C + D, and exit, ψ′ = −(Ceiβt + De−iβt), of the

slits:

(G − ε)ψ − GVψ′ = I,

(G − ε)ψ′ − GVψ = 0.
(5.13)

As in the EM version of our formalism, extending the physical picture that we have

linked to Eq. (5.6), the upper (lower) equation in system (5.13) can be associated with

the matter waves at the input (output) film surface. Thus, the inhomogeneous term

I = (2
√

2i/π)ξ/[ξ cos(ξk0h) − i sin(ξk0h)], which is present only in the upper equation,

provides the overlap between the incident matter plane wave and the slits waveguide

mode |ψWM〉. The term GV = β/[k0 sin(βt)] describes the coupling of Ψ at both sides of

the film through the slits, whereas ε remains the same as in the previous section. Finally,

G, which describes the coupling of the matter wavefunction at different slits openings,

is given by Eq. (5.7). Note that, again, the physical interpretation of the various terms in

Eqs. (5.13) is the same as in their EM analog.

Solving Eqs. (5.13), amplitudes ψ and ψ′ are obtained. The matter wavefunction in each

point of the space and also the transmissivity (T) of the structure can be then calculated.

Within our formalism, the last one is given by

T =

∫
Λ jt

z(x)dx∫
Λ ji

z(x)dx
= GVIm[ψ∗ψ′], (5.14)

where jt(i)
z (r) = (h̄/m)Im{Ψt(i)(r)∗∂zΨt(i)(r)} is the z-component of the probability den-

sity current associated to the transmitted (incident) matter waves.

Figure 5.3 renders, in logarithmic scale, the transmittance of cold 87Rb atoms imping-

ing at normal incidence on a film of thickness t = 0.16 µm perforated with a periodic

array of slits of width w = 0.22 µm. The potential depth is V0 = −1.06 × 10−11 eV and its

width h = 0.3 µm. Three different array periods are considered: Λ = 0.80 µm (black solid

line), Λ = 0.78 µm (red dashed line) and Λ = 0.82 µm (green dotted line). Spectra are nor-

malized to the current flux impinging on the array period. Close to Λ, all the structures

display a sharp dip in transmittance (T = 0 within the numerical precision of our calcu-

lations) followed by two adjacent narrow 100% transmission peaks. Note that these two

peaks can not be distinguished in Fig. 5.3 due to the wide spectral region displayed. In
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5.3. Resonant Transmission through slit arrays

Figure 5.3.: Cold 87Rb atoms transmission spectrum through a film of thickness t = 0.16 µm
perforated with a periodic array of slits of width w = 0.22 µm. Three different array periods
are considered: Λ = 0.80 µm (black solid line), Λ = 0.78 µm (red dashed line) and Λ =
0.82 µm (green dotted line). Vertical arrows indicate the values of λSMW

dB obtained from Eq.
(5.15) for each case. Left inset renders T versus λdB for Λ = 0.80 µm and three different
incidence angles: θ = 0◦ (black solid line), θ = 2◦ (blue dash-dotted line) and θ = 4◦

(orange dash-double-dotted line). Right inset: 2D display of the perforated material film
(h = 0.30 µm and V0 = −1.06 × 10−11 eV). Colors code the potential as in Fig. 5.1.

the EM analog, these are the main fingerprints of the presence of EOT. Their appearance

in Fig. 5.3 indicates that the resonant transmission phenomenon for cold atoms occurs in

our model structures.

We showed in chapter 4 that the physical origin of EOT relies on the resonant excitation

of surface EM modes supported by metallic films. In order to confirm that SMWs are the

key actors in the formation of the analogous phenomenon for matter waves, we compare

the spectral position of the transmission resonances with the approximate predictions

obtained from the dispersion relation of SMWs on uncorrugated interfaces (5.2). Since

the coupling between the incident atom beam and SMWs is mainly governed by first

order processes (n = ±1), at normal incidence the parallel momentum of the SMWs

propagating along the film surface is |k±| = 2π/Λ. Thus, the corresponding de Broglie
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5. Resonant transmission and beaming of cold atoms assisted by surface matter waves

wavelength is given by

λSMW
dB =

Λ√
1 + (2mE0/h2)Λ2

� Λ
(

1 +
2m|E0|Λ2

h2

)
, (5.15)

where we have taken into account that, for the parameters we are considering |E0| <<

h2/2mΛ2. For the three arrays of Figure 5.3, λSMW
dB (indicated by vertical short arrows)

coincides with the position of the sharp dip in transmission spectra. In the EOT phe-

nomenon, this close correspondence between the position of the Wood-Rayleigh’s anom-

aly and the frequency of the SPPs supported by the uncorrugated metal surface has been

also observed [142]. In the previous section, we showed that the exact SMWs dispersion

relation (5.9) leads to lower energies than predicted from this approximation. This fact,

together with the interaction through the slits of the SMWs at both sides of the film shifts

the spectral location of the transmission peaks to larger λdB.

Although the dispersion relation of the SMWs supported by the film predicts the posi-

tion of the resonant peaks in the transmission spectra, it does not contain any information

about the peaks shape. In order to understand the asymmetric profile of the transmission

maxima in Fig. 5.3, a more complex interpretation based on a Fano-type picture [155] is

required. Such scheme, which has been successfully applied to the analysis of EOT [156],

distinguishes between two different contributions to the transmission process: a resonant

contribution due to the excitation of surface waves on the film sides and a non-resonant

contribution due to the direct scattering of the incident radiation through the apertures.

The interference between these two channels induces the observed asymmetry in the

transmission maxima. According to this picture, the Wood-Rayleigh’s anomaly can be

associated to the destructive interference between these two channels.

In the left inset of Fig. 5.3, T versus λdB for an array of period Λ = 0.80 µm and three

different incidence angles (θ) is shown. For non-normal incidence, θ = 2◦ (blue dash-

dotted line) and θ = 4◦ (orange dash-double-dotted line), T displays the characteristic

resonant features twice, located at larger and lower λdB than at normal incidence (black

solid line). This splitting of the resonances with the angle of incidence can be understood

again in terms of SMWs on uncorrugated interfaces. For θ �= 0, the incident atom beam

excites SMWs with two different parallel momenta |k±| = 2π| sin θ/λdB ± 1/Λ|. This

leads to the formation of two transmission channels with different resonant energies

E(k±). For small θ, a simple expression for the λdB associated to these SMWs can be

obtained

λSMW±
dB (θ) = λSMW

dB

(
1 ± θ√

1 + (2mE0/h2)Λ2

)
, (5.16)

where λSMW
dB is given by Eq. (5.15). This result is in very good agreement with the spectra
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depicted in the left inset of Fig. 5.3. As predicted, for small angles the transmission peaks

deviate linearly with θ from the normal incidence position.

5.4. Resonant Transmission through hole arrays

The next step in our study is to transfer the resonant transmission phenomenon from 1D

structures (slit arrays) to 2D ones (hole arrays), for which EOT was firstly reported [39].

As in the 1D case, 2D SMWs are supported by a square potential well surrounding the

material film drilled with the hole arrangement. The structure is displayed in the inset

of Fig. 5.4, SMWs propagate along the film surface (xy plane) and decay in z-direction

for increasing distances from the film.

We study the scattering of cold atoms by rectangular arrays of holes (see the inset of

Fig. 5.4) by means of an extension of the formalism applied to 1D structures. The sys-

tem is divided into the 5 regions shown in Fig. 5.3. We expand the matter wavefunction

within each region in terms of the corresponding eigenmodes of the Schrödinger equa-

tion (Bloch waves and waveguide modes). For 2D periodic arrays, Bloch’s theorem labels

the parallel momentum associated to the discrete diffraction orders with two indexes (n
and m)

knm = ki + n
2π

Λx
x̂ + m

2π

Λy
ŷ, (5.17)

where the incident parallel momentum ki =
√

2mE/h̄(sin θ sin φx̂ + sin θ cos φŷ) is char-

acterized by the polar (θ) and azimuthal (φ) angles, and Λx and Λy are the array periods

in the x and y directions, respectively. Bloch waves, |knm〉, form the eigenmode basis onto

which the matter wavefunction is expanded outside the film (regions I, II, IV and V). The

associated wavefunctions in real space are 〈r|knm〉 = eiknmr/
√

ΛxΛy, where r = xx̂ + yŷ.

We focus our analysis on two different aperture shapes: rectangular holes (character-

ized by the hole sides wx and wy) and circular holes (characterized by the hole radius rc).

In both cases, the hole dimensions are much smaller than the de Broglie wavelength, i.e.,

wx, wy, rc << λdB/
√

ξ. Thus, as for 1D slits, it is a good approximation to consider only

the first hole waveguide mode |ψ2D
WM〉 in the description of Ψ inside the slab, having

|ΨIII〉 =
(
Ceiβ2Dz + De−iβ2Dz)|ψ2D

WM〉, (5.18)

where, for rectangular holes, the waveguide mode is given by

〈r|ψ2D
WM〉 = 〈x|ψWM〉〈y|ψWM〉 =

=
2√wxwy

sin
[ π

wx

(
x +

wx

2

)]
sin
[ π

wy

(
y +

wy

2

)]
(5.19)
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Figure 5.4.: Transmittance of cold 87Rb atoms through a film of thickness t = 0.16 µm drilled with
a periodic array of square holes of side w = 0.28 µm as a function of λdB. Three different
structures are considered. Black solid line: Square array with Λx = Λy = 0.800 µm. Red
dotted line: Rectangular array with Λx = 0.790 µm and Λy = 0.810 µm. Green dashed line:
Λx = 0.785 µm and Λy = 0.815 µm. Inset: Schematic view of the structure.

inside the hole and 〈r|ψ2D
WM〉 = 0, otherwise. The z-component of the wave vector is

β2D =
√

ξk2
0 − (π/wx)2 − (π/wy)2.

For circular holes, the wavefuntion for the fundamental waveguide mode is

〈r|ψ2D
WM〉 =

1√
πr2

c [J1(γ01)]2
J0

(γ01

rc
r
)

, (5.20)

where J0 and J1 are the zero and first order Bessel functions of the first kind, respectively,

and γ01 ≈ 2.4048 is the first zero of J0(r). The wave vector along the z-direction is β2D =√
ξk2

0 − (γ01/rc)2. Note that the fundamental waveguide mode of the hole depends only

on the radial coordinate r =
√

x2 + y2. For r > rc, we have 〈r|ψ2D
WM〉 = 0

The continuity equations obtained from the modal expansion procedure for 2D hole

arrays keep the same form as for 1D slit arrays [Eqs. (5.13)], where again the unknowns,

ψ and ψ′, are equal, except for a phase factor, to the wavefunction amplitudes at the hole

openings. The definition and the physical interpretation of the different terms for the

case of 1D apertures still hold for holes, with the only difference that wave vector β must
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Figure 5.5.: Cold 87Rb atoms transmission through square arrays (Λx = Λy = 0.800 µm) of holes
of area equal to 7.84 × 10−2µm2. Four different hole shapes are considered (see main text).
The rest of the parameters defining the structure are the same as in Fig. 5.4.

be replaced by its 2D counterpart β2D. G = G2D is the only term within Eqs. (5.13) which

varies substantially from its 1D version. It includes now a double sum over diffraction

orders,

G2D =
∞

∑
n,m=−∞

iq(nm)
z

k0
f (knm, h)|〈knm|ψ2D

WM〉|2, (5.21)

where f (knm, h) is given by Eq. (5.8) substituting k(n)
z and q(n)

z by k(nm)
z =

√
k2

0 − |knm|2
and q(nm)

z =
√

ξk2
0 − |knm|2, respectively. Once the set of matching equations is solved,

T can be evaluated from Eq. (5.14), where now the total probability current fluxes are

integrated inside the 2D unit cell of area Λx × Λy.

Figure 5.4 shows the transmittance of cold 87Rb atoms at normal incidence through a

material slab of thickness t = 0.16 µm. Three different periodic arrays of square holes are

considered. In all three cases wx = wy = 0.28 µm. Black line corresponds to a square ar-

ray of period Λx = Λy = 0.80 µm. It shows the characteristic twin maxima accompanied

by a sharp dip close to the period already analyzed for 1D structures. In contrast to Fig.

5.3, in Fig. 5.4 the two resonant peaks are clearly distinguishable since the wavelength
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range displayed is much narrower. As in the 1D case, both resonant maxima are linked to

the excitation of SMWs at both film surfaces. However, since the coupling of the SMWs

through the apertures (both slits and holes) is evanescent (β and β2D are imaginary for

the geometrical parameters considered), two different configurations of the matter wave-

function arises [157]. The two possible profiles of Ψ correspond to the symmetric and

antisymmetric superposition of the isolated SMWs through the apertures. It is discussed

below how the symmetric (antisymmetric) profile with respect to the middle of the film

is higher (lower) in energy, leading to a resonant peak at a shorter (larger) λdB in the

transmission spectrum. In EOT, double peaked features only occur in the transmission

spectrum of 2D hole arrangements. In slit arrays, the fact that the lowest slit waveguide

mode is always propagating translates into that only one single peak appears in the

transmission spectrum.

The transmittance versus λdB for two rectangular arrays of periods Λx = 0.790 µm,

Λy = 0.810 µm (red dotted line), and Λx = 0.785 µm, Λy = 0.815 µm (green dashed line)

is also plotted in Figure 5.4. Although both arrays are almost square, the transmission

spectra are very different from the square one. Rectangular arrays present the usual res-

onant features twice. This splitting can be understood again turning back to Eq. (5.2).

In 1D arrays under non-normal incidence, non-zero ki allows the excitation of SMWs

with two different wave vectors k±, leading to different resonant energies E(k±). In 2D

rectangular hole arrays, it is the fact that Λx �= Λy what makes the resonant energies

associated to SMWs propagating along x and y-direction different, i.e., E(k10) �= E(k01).

As expected, transmission resonances for both rectangular arrays in Fig. 5.4 are located

close to Λx and Λy. This splitting of the transmission resonances in rectangular hole

arrays does not occur in the EM case, where the incident light excites only surface EM

modes travelling along the direction defined by the electric field component parallel to

the metallic film. Thus, the polarization of the incident light defines a preferred direction

at the film surface and only transmission resonances associated to the structure period-

icity along that direction appear in the spectra [92].

In order to study the dependence of the transmission properties of hole arrays on the

hole shape, the transmission spectra for square arrays of period Λx = Λy = 0.800 µm

and four different hole geometries are shown in Figure 5.5. The geometrical parameters

of the perforated film are the same as in Fig. 5.4. The hole area is fixed to 7.84× 10−3 µm2.

Black solid line renders the transmittance for square holes of side wx = wy = 0.28 µm.

Green dotted and red dashed dotted lines correspond to rectangular arrays of side wx =
0.21 µm and wy = 0.37 µm, and wx = 0.14 µm and wy = 0.56 µm, respectively. The

transmission for circular holes of radius rc = 0.16 µm is plotted in red dashed line.

The profile of the transmission maxima for the four structures is very similar, whereas
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Figure 5.6.: Modulus of the matter wavefunction passing through periodic hole arrays at reso-
nance. Panels (a) and (b): at the output surface of the square array considered in Fig. 5.4 for
λdB = 0.829 µm and λdB = 0.837 µm, respectively. Panels (c) and (d): cross-cut in xz-plane
for λdB = 0.837 µm and λdB = 0.840 µm. Panels (e) and (f): |Ψ| at the output surface for the
rectangular array in green in Fig. 5.4 evaluated at λdB = 0.816 µm and λdB = 0.850µm. |Ψ|
increases from blue to yellow. Black squares indicate hole positions.
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their width and position change. Thus, although the width of the peaks for square and

circular holes is the same, the spectral position is shifted to shorter λdB in the circular

case. This blue shift of the transmission resonances also occurs for rectangular holes,

accompanied by a reduction of the peaks width. The ratio between hole sides control

this effect: for larger wy/wx, the transmission peaks approach the periodicity while they

become narrower.

In Figure 5.6, the wavefunction modulus, |Ψ| passing through the hole arrays of Fig.

5.4 is depicted. Upper panels show |Ψ| in the output side (z = 0.36 µm) of the square

array of Fig. 5.4. Panel (a) corresponds to the transmission dip at λdB = 0.829 µm and

panel (b) to the peak at λdB = 0.837 µm. As expected from Eq. (5.14), the wavefunction

modulus at holes exit presents a minimum (maximum) at the resonant dip (peak) in

the spectrum. However, in both cases it displays a maximum in the center of the square

formed by four neighbor holes in the array. These maxima do not appear in the EM

case [158] due to the asymmetry of the electric field induced by the incident polarization.

Panels (c) and (d) show a cross-cut of the matter wavefunction inside the xz-plane for the

same structure. They correspond to the resonant transmission peaks at λdB = 0.837 µm

and λdB = 0.840 µm, respectively. They show clearly that the maximum at higher (lower)

λdB is linked to a symmetric (antisymmetric) profile of Ψ with respect to the middle

plane of the perforated film. As a result, the modulus of the wavefunction inside the

holes vanishes at z = t
2 in panel (c), whereas |Ψ| presents a minimum different from

zero inside the holes in panel (d).

Finally, lower panels in Fig. 5.6 render the matter wavefunction at resonance in the

output surface of the rectangular hole array in green in Fig. 5.6. Panel (e) is evaluated at

λdB = 0.816 µm and panel (f), at λdB = 0.850 µm. These two panels demonstrate that the

resonant transmission process for λdB � Λx is controlled by SMWs propagating along

x-direction, whereas for λdB � Λy, SMWs travelling in the y-direction assist it.

5.5. Resonant transmission and beaming through single

apertures

In this section, we study the phenomenon of resonant transmission and beaming through

single apertures for matter waves. It is well known that SPPs constitute a route to mold

the flow of light [48]. The question here is whether SMWs can be tailored in a similar

way to SPPs in order to control the diffraction of matter waves exiting from a single

aperture. We consider a simple 1D structure composed by a central slit flanked by an

array of grooves symmetrically disposed at both sides (left and right) of the aperture in
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5.5. Resonant transmission and beaming through single apertures

both faces (input and output) of the film.

We modify our theoretical formalism to deal with finite structures. We consider an

artificial supercell of length L containing the structure shown in the right inset of Fig.

5.7: a material slab of thickness t perforated with a single slit of width w surrounded by

4 × N grooves of width wg and depth tg. As λdB >> w, wg, the wavefunction inside the

film is accurately described by considering only the first waveguide mode inside each

indentation. If we label the indentations with index α, the wavefunction inside the film

can be written as

|ΨI I I〉 =
N

∑
α=−N

φα(z)|ψα
WM〉, (5.22)

where the function φα(z) contains the dependence on z of Ψ inside indentation α. We la-

bel the central slit with α = 0. The associated waveguide mode in real space is 〈x|ψ0
WM〉 =√

2/w sin[π/w(x + w/2)] for |x| < w/2, and vanishes otherwise. As we saw in Section

5.3, the dependence on z is given by φ0(z) = C0eiβz + D0e−iβz, with β =
√

ξk2
0 − (π/w)2.

The waveguide mode supported by groove α (α �= 0) can be expressed as 〈x|ψα
WM〉 =√

2/wg sin[π/wg(x − xα + wg/2)] if |x − xα| < wg/2 (where xα is the grove position)

and 〈x|ψα
WM〉 = 0, otherwise. The fact that the grooves are arranged periodically allows

us to write xα = αΛ, where Λ is the array period. For grooves milled in the input side of

the structure (0 < z ≤ tg), we have φα(z) = Cα sin βg(z − tg), whereas for grooves in the

output side (t − tg < z ≤ t), φα(z) = Dα sin βg(z − t + tg). In both cases, the z-component

of the wave vector inside the grooves is βg =
√

ξk2
0 − (π/wg)2.

Similarly as we did in Section 2.2.2, we take into account the finite size of the structure

by making the supercell length L tending to infinite (L → ∞). As a result, discrete

diffraction orders can not be defined and the matter wavefunction must be expanded

in terms of a continuum of diffraced waves. As for periodic structures, we define the

quantities ψα (ψ′
α), which give the amplitude of Ψ at the openings of the indentations

perforated in the input (output) surface of the film. At the central slit, we have ψ0 =
C0 + D0 and ψ′

0 = −(C0eiβt + D0e−iβt), whereas for α �= 0, ψα = −Cα sin(βgtg) and

ψ′
α = −Dα sin(βgtg). Imposing continuity of the wavefunction at the interfaces of the

structure, we obtain a set of (4N + 2) equations in the unknowns {ψα, ψ′
α} of the form:

(Gαα − εα)ψα + ∑γ �=α Gαγψγ − GVψ′
0δα0 = Iα,

(Gαα − εα)ψ′
α + ∑γ �=α Gαγψ′

γ − GVψ0δα0 = 0.
(5.23)

The role played by the various terms in Eqs. (5.23) remains the same as in Eqs. (5.13).

The upper (2N + 1) equations control the flow of the matter waves at the input surface of

the film, where Iα = (2
√

2i/π)ξ/[ξ cos(ξk0h) − i sin(ξk0h)] reflects the overlap between
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5. Resonant transmission and beaming of cold atoms assisted by surface matter waves

the normal incident plane wave and the waveguide mode supported by indentation α.

Note that, under normal incidence, Iα does not depend on the position of the groove α.

The term εα describes the penetration of the matter waves inside the indentations. For

α = 0, it has the form ε0 = β/[k0 tan(βt)] whereas for α �= 0, εα = βg/[k0 tan(βgtg)]. The

term GV = β/[k0 sin(βt)] takes into account the overlap of Ψ at both sides of the film

through the slit. It is only present in the equations associated to ψ0 and ψ′
0. Finally, Gαγ =

〈ψα
WM|Ĝ|ψγ

WM〉 describes the coupling of the matter waves coming from indentations α

and γ through the SMWs travelling along the film surfaces. The representation of the

propagator Ĝ in real space is

G(x, x′) =
1

2π

∫ ∞

−∞
dkx

iqz

k0
f (kx, h)eikx(x−x′), (5.24)

where the wave vector along the z-direction is kz =
√

k2
0 − k2

x in vacuum, and qz =√
ξk2

0 − k2
x inside the potential well surrounding the film. The function f (kx, h) is given

by

f (kx, h) =
kz cos(qzh) − iqz sin(qzh)
qz cos(qzh) − ikz sin(qzh)

. (5.25)

Note that, as in periodic structures, the propagator (5.24) has the same form as Gs(x, x′),

defined in Eq. (2.59), except for the function f (kx, h).

The quantities {ψα, ψ′
α} are found by solving the Eqs. (5.23), and once they are known,

the matter wavefunction in all the space can be constructed. The transmissivity of the

structure is then given by the ratio between the transmitted and incident probability

density current fluxes through the slit. This ratio can be expressed as a function of the

matter wave amplitudes at the slit openings as T = GVIm[ψ∗
0 ψ′

0]. As a difference with

the previous sections, the incident wave is now normalized to the slit width w and T
corresponds to the normalized-to-area transmittance.

Figure 5.7 represents T versus λdB for normal incidence of the atoms. The red dashed

line corresponds to the single slit case (w = 0.3 µm and t = 0.16 µm). As λdB >> w,

T < 1 and the transmission spectrum shows an exponentially decaying behavior as λdB

increases. When grooves (wg = 0.22 µm and tg = 0.065 µm) are milled surrounding the

slit on both surfaces of the film, T develops a resonant peak close to the periodicity of the

groove array Λ = 0.8 µm. As the number of grooves increases from N = 5 (blue dashed

dotted line) to N = 15 (green dashed double dotted line), the transmission peak becomes

higher and spectrally narrower. This is a clear fingerprint of the excitation of SMWs

running along the film surfaces. For higher N, the coupling between the incident plane

matter wave and the SMWs becomes more efficient, leading to a better defined resonant
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5.5. Resonant transmission and beaming through single apertures

Figure 5.7.: Normalized-to-area transmittance for four different structures. Dashed red line: single
slit. Blue dashed-dotted line: single slit flanked by N = 5 grooves located at each side (right
and left) of the central slit at both the input and output surfaces. Black solid line and green
dash-double-dotted lines: same as before but with N = 10 and N = 15, respectively. Left
inset renders T versus λdB for N = 10 grooves milled at the two surfaces (black solid line)
or only at the input surface (red dashed line). Right inset: Structure supercell containing the
central slit surrounded by 4N grooves.

transmission peak. In the left inset of Fig. 5.7, the comparison between the transmission

spectrum for a single slit surrounded by N = 10 grooves in both the input and output

sides of the film (solid black line) and the same slit surrounded by N = 10 grooves

only in the input side (red dashed line) is shown. It is clear that the total transmission

is mainly controlled by the corrugation placed at the input surface of the structure. Let

us stress that all the phenomenology described in Fig. 5.7 is similar to that reported for

EOT in a single slit surrounded by corrugations [50].

In order to study the shape of the beam emerging from the structure, we calculate the

transmitted matter wavefunction (Ψt) in the vacuum region below the structure (z > t + h,

see right inset of Fig. 5.7). It can be written as a superposition of plane waves of the form

Ψt(x, z) =
∫ ∞

−∞
dkxt(kx)eikzzeikxx, (5.26)
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5. Resonant transmission and beaming of cold atoms assisted by surface matter waves

Figure 5.8.: Radial probability density current jt
r emerging from a single slit as a function of the

exiting angle θ and the de Broglie wavelength λdB. The slit (w = 0.22 µm) is flanked by
N = 15 grooves of width wg = 0.30 µm and depth tg = 0.065 µm disposed periodically
(Λ = 0.80 µm) at both surfaces of a film of height t = 0.16 µm. White dashed lines indicate
the λdB values considered in Fig. 5.9.

where the transmission coefficient t(kx) depends on the amplitudes ψ′
α as

t(kx) =
qze−ikz(t+h)

[qz cos(qzh) − ikz sin(qzh)]

N

∑
α=−N

[cos(kxwα/2)e−ikxxα

wα[(π/wα)2 − k2
x]

]
ψ′

α. (5.27)

Once Ψt is obtained, the radial probability density current jt
r = (h̄/m)Im{Ψt∗∂rΨt} can

be calculated. Figure 5.8 renders jt
r in the far field (r = 150Λ) as a function of the exiting

angle θ and λdB for the structure with N = 15 grooves perforated on both film surfaces.

At λdB = 0.85 µm, jt
r shows a maximum around θ = 0 which leads to a collimated beam

emerging from the single slit in forward direction. This λdB coincides with the position

of the transmission peak in the spectrum (green dashed double dotted line in Fig. 5.7).

This fact indicates that, as in the EM case [49], the resonant transmission and beaming

phenomena have the same physical origin: the excitation of SMWs propagating along

the film surfaces. We have also studied jt
r for films corrugated only in the input surface.

The angular patterns of jt
r obtained display the uniform behavior characteristic of a wave
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Figure 5.9.: Amplitude of the matter wavefunction emerging from the structure considered in Fig.
5.8 at two different wavelengths: (a) at resonance (λdB = 0.85 µm) and (b) out of resonance
(λdB = 0.96 µm). Note that the color scale is different in each panel.

emerging from a single aperture much smaller that the wavelength. From this result, we

can conclude that the corrugation of the output surface of the film governs the shape

of the atom beam exiting from the central slit. Figure 5.9 renders the amplitude of the

matter wavefunction emerging from a single slit flanked by N = 15 grooves evaluated

at two different de Broglie wavelengths (indicated by white dashed lines in Fig. 5.8).

Wavefunction in panel (a) is associated to the peak (T = 2.5) in transmission spectrum at

λdB = 0.85 µm (see Fig. 5.7). At resonance, the scattering of the SMWs with the grooves

perforated in the output surface of the film leads to a coherent reemission of matter

waves. The interference of these matter waves with those stemming from the central slit

gives rise to a very collimated beam along the z-direction. Panel (b) is evaluated out

of resonance (λdB = 0.96 µm). The transmissivity of the structure is T = 0.25, much

lower than in panel (a). As expected from Fig. 5.8, two different beams emerge from the
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Figure 5.10.: Normalized-to-area transmission spectrum for a single slit flanked by N = 10
grooves. Structures with four different potential depths inside the grooves, Vg, are consid-
ered: Vg = V0 (black solid line), Vg = 9.5V0 (cyan dashed line), Vg = 17V0 (pink dashed
double dotted line), and Vg = 19V0 (violet dashed dotted line). Right inset displays the de-
pendence of the far field (r = 150Λ) transmitted radial current, jt

r, in the vicinity of θ = 0◦

for these four systems. Left inset renders jtr versus θ approaching 90◦ for three cases. Blue
dashed line: single slit. Black solid line: N = 10 and Vg = V0. Pink dashed dotted line:
N = 10 and Vg = 17V0.

structure, travelling with an angle θ ≈ ±8. The matter wave reemission by the surface

corrugation is now much less efficient than at resonance. This fact allows us to see clearly

the SMWs travelling away from the central slit along the film surface at z = t.

We can add a new degree of freedom to our model by making the attractive potential

inside the grooves, Vg, different from the potential well surrounding the material slab, V0.

Thus, the z-component of the wave vector associated with the groove waveguide modes

is now βg =
√

ξgk2
0 − (π/wg)2, with ξg = 1 + |Vg|

E . Figure 5.10 renders the transmission

spectrum for a single slit surrounded by N = 10 grooves with the same geometrical

parameters as in Fig. 5.7. It shows how the transmissivity of the structure evolves as Vg

is increased from Vg = V0 (black solid line) up to Vg = 19V0 (violet dashed dotted line).

There is an optimum value, Vg = 17V0 (pink dashed double dotted line) for which the

transmittance is maximum, which results in an additional enhancement of 7 in T with
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5.6. Feasible implementation for the case of slit arrays

respect to the structure with Vg = V0. For the geometrical parameters considered, Ψ is

propagating along the z-direction inside the grooves. The transmission peak for the case

Vg = 17V0 is located very close to the Fabry-Perot resonant condition sin(βgtg) = 0.

This fact enables us to link the transmission enhancement to the excitation of cavity

resonances inside the grooves, as in the EM analog of the system [50].

The insets of Fig. 5.10 demonstrates that the tuning of the potential inside the grooves

also allows reducing the angular width of the beam of cold atoms exiting from the struc-

ture. In the right inset, we plot the radial probability current in the far field evaluated at

resonance for the four cases considered in the main panel of the figure. Clearly, the trans-

mission enhancement is accompanied by a narrowing of the matter beam. Thus, whereas

for Vg = V0 the beam width is 6◦, for the optimum case, Vg = 17V0, it can be as small

as 2◦. Additionally, the left panel depicts the behavior of jt
r in the vicinity of θ = 90◦ for

these two structures. This quantity provides an estimation of the amplitude of the leaky

SMW after its passage through the groove array. For comparison, we have also plotted

the single slit case (blue dashed line). We can see that the amplitude of the SMW has

been reduced, being the decay even more dramatic for Vg = 17V0. The decrease of the

amplitude of the leaky SMW reflects that part of it has been radiated, leading to the

enhancement in the transmission and collimation effect mentioned above.

5.6. Feasible implementation for the case of slit arrays

Once we have demonstrated that the phenomenon of resonant transmission is possible

for matter waves, let us now discuss a feasible implementation of the 1D slit array ana-

lyzed in Section 5.3. The fundamental ingredient is the existence of a potential well close

to the material interface. In principle, one could take advantage of the atom-surface po-

tential present in front of a dielectric surface as a result of the long-range van der Waals

(vdW) attraction and the very short-range repulsion between the electronic cloud of the

atom and that of the surface. Although this potential supports surface states [159], it suf-

fers from two important drawbacks. First, the energies involved are very different from

the ones we are interested in (cold atoms at temperatures of µK have energies of the

order of 10−11 eV whereas typical values in vdW potentials are of the order of 10−3 eV).

And second, the centers of mass of these bound states are very close to the surface so

that strong electronic interaction between the incident atom and the surface atoms is

expected. In principle, this should be avoided in order to maintain the coherence of the

atom wave and to minimize atom heating during the transmission process. In addition,

if it was possible to externally tune the potential, one could implement an atom switch
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5. Resonant transmission and beaming of cold atoms assisted by surface matter waves

by opening or closing the transmission channel.

For these reasons external forces have to be exerted on the cold atom to obtain a

potential well with a depth of about 10−10 eV at a distance away from the surface of the

order of 1 µm. Such potential can be built by adding to the inherent attractive vdW force

a repulsive dipolar interaction due to a laser field [160, 161]. The frequency of the laser

field is blue-detuned slightly above the frequency of a given optical transition of the atom

so that its polarizability becomes negative, resulting in an effective repulsive potential.

The sum of the optical repulsive potential plus the vdW attraction gives rise to a potential

barrier keeping the atoms sufficiently far away from the surface (a so-called evanescent

atomic mirror [162, 163]), and to a potential well that may support bound states at an

appropriate distance away from the surface. Similar ideas have been used to guide cold

atoms along optical fibers [164, 165]. In addition, periodicity is also needed to couple

the incident plane matter wave to the SMW. A structure fulfilling all these requirements

is an array of parallel cylindrical optical fibers carrying a blue-detuned optical mode

propagating along them. This is the structure we propose to experimentally test the

phenomenon of extraordinary transmission of matter waves through very narrow slits.

The phenomenon occurs in a certain parameter range, and we have chosen the fol-

lowing realistic values in our numerical simulations. The optical fibers have radius

R = 0.20 µm, dielectric constant ε = 13, and the array period is Λ = 0.80 µm. We take

again 87Rb cold atoms and will be considering the atomic transition D2 (52S1/2 → 52P3/2)

at ω0 = 2π × 384 THz. The laser frequency is chosen in such a way that the detuning is

δ = ω − ω0 = 2π × 6 THz. The repulsive optical potential at the position r outside the

fiber is given by [166]

Vopt(r) =
h̄δ

2
Γ2

Γ2 + 4δ2
I(r)
Isat

, (5.28)

where Γ = 2π × 6 MHz is the linewidth of the considered transition, Isat = 2.5 mW/cm2,

and I(r) is the intensity profile of the laser guided mode. The chosen detuning is suffi-

ciently small so that a two-level atom approximation is valid, but large enough so that

recoil heating is low. The vdW attractive potential is obtained by means of a simple cal-

culation assuming pairwise interaction between the atom and the points inside the fiber

(retardation is not taken into account). This leads to the following approximation

VvdW(r) =
1 − ε

1 + ε

πC3

r3

∞

∑
n=1

1
n

(
(2n + 1)!!
2n(n − 1)!

)2 (R
r

)2n

, (5.29)

where r is the distance to the fiber axis and the parameter C3 is 7.78 × 10−12 eVµm3

(C3 is known for vdW interaction with a flat metal interface [167]). Note that r and
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Figure 5.11.: 2D total potential for 87Rb cold atoms impinging on a array of cylindrical dielectric
fibers carrying a blue-detuned optical guided mode. The white circles represent the fibers’
cross section. Color scale codes potential energies in units of 10−11 eV. Blue and green re-
gions correspond to an attractive potential well. The effective slit width is of the order of
0.05 µm.

R are expressed in µm. The total potential is V(r) = Vopt(r) + VvdW(r). The chosen

parameters guarantee that the requirements about potential well depth and position

mentioned above can be fulfilled.

Figure 5.11 plots the total potential for the case when the optical power carried by the

laser mode running along one fiber is P0 = 20.7 mW. As desired, the overall picture of

this potential resembles our basic model [compare inset of Fig. 5.3]. White regions in

Fig. 5.11 correspond to the locations of the fibers. In the immediate vicinity of the fibers’

surfaces vdW attraction dominates (black narrow ring adjacent to the fiber), but for dis-

tances to the fiber center between 0.21 µm and 0.32 µm the total potential is repulsive

(red doughnut-shaped region around the fiber). This potential barrier is much higher

than the incident energy so that tunnelling to the inner attractive ring adjacent to the

surface fiber is negligible. Due to the evanescent character of the optical field outside

the fiber, vdW attraction again dominates for distances larger than 0.40 µm. In the inter-
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Figure 5.12.: Black line renders a crosscut along vertical z line of potential shown in Fig. 5.11.
Green and magenta lines: van der Waals and dipolar contribution to the total potential,
respectively. The energy of the fourth level of this 1D potential is represented by the blue
line, and the red dashed line shows the corresponding wavefunction.

mediate region, a potential well develops (blue and green colored areas). Importantly,

the potential between the fibers is strongly repulsive, leaving out an extremely narrow

effective slit (width ≈ 0.05 µm) for the transmission of atoms through the structure. Fig-

ure 5.12 displays a one-dimensional (1D) crosscut of the potential along the z-direction

through the center of one fiber. This potential well has four bound states, found by solv-

ing the 1D Schrödinger equation using the Numerov’s method [168]. The energy of the

uppermost level is E4 = −0.155 × 10−11 eV (blue line). This bound state is the candidate

to assist in the transmission of Rb atoms with de Broglie wavelengths of the order of the

array periodicity.

Figure 5.13 renders the transmission spectra of normally incident Rb atoms for dif-

ferent values of the laser field power P, taking P0 as a reference. The results have been

obtained through converged transfer matrix calculations (see Sec. 2.3). We have taken

advantage of the correspondence between Schrödinger equation and Maxwell equations

described at the end of Section 5.2. We have mapped the potential landscape, V(r), into
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Figure 5.13.: Transmittance of cold 87Rb atoms orthogonally incident on the structure shown in
Fig. 5.12, as a function of the incident energy. The various lines correspond to different opti-
cal powers P carried by the fibers. Thus, P controls the switch functionality of the structure.

a dielectric function of the form

ε(r) = 1 − V(r)
E

, (5.30)

where E denotes the kinetic energy of the incoming Rb atoms.

Let us first analyze the transmission corresponding to P = P0 (black line in Fig. 5.13).

The spectrum shows two very close maxima reaching 100% transmission and a zero for

slightly larger energy. We can safely conclude that the phenomenon of resonant extraor-

dinary transmission of matter waves is present in the designed structure. This conclusion

is reinforced by looking at the pattern of the wavefunction modulus [Fig. 5.14], associa-

ted to the left peak at about 1.364 × 10−11 eV. Here, it can be distinctly seen that SMWs

above and below the structure are excited, building up an even mode. These SMWs have

maxima at a distance away from the fiber axis of 0.90 µm, in good agreement with the

maximum’s location of the fourth eigenmode in the 1D potential [Fig. 5.12, dashed curve].
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Figure 5.14.: Modulus of the matter wavefunction for the left peak of the curve corresponding to
P = P0 in Fig. 5.13. The scale is normalized to the incident amplitude. The plot corresponds
to 100% transmission.

If the power P of the laser field is now changed, the total potential and the correspond-

ing transmission spectrum are modified. We have found that transmittance is extremely

sensitive to the laser power. This feature opens up the possibility of using the structure

as an atomic switch. When the power P is reduced by just a 10%, the transmission peak

almost vanishes [Fig. 5.13, orange curve]. Notice that, as P is being lowered, two physi-

cal magnitudes change: first, the energy of the eigenmode involved in the transmission

process sinks to lower energies, explaining the shift to lower energies of the transmis-

sion peak found in Fig. 5.13. Secondly, the channels between the fibers broaden so that

the coupling between the SMWs at both interfaces becomes less resonant provoking a
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reduction in the height of the peaks. On the other hand, when P is increased the channel

between the fibers is effectively shut. The two peaks become narrower and closer to each

other and, in the limit, they merge together with the zero and disappear

5.7. Conclusions

In this chapter, we have studied the formation of surface matter waves in vacuum-solid

interfaces, with properties similar to surface plasmon polaritons. In contrast to the elec-

tromagnetic case, the Schrödinger equation requires an attractive potential surrounding

the material surface in order to support such bounded solutions. By means of a simple

model based on square wells, we have studied the appearance of the resonant transmis-

sion phenomenon of matter waves through periodic arrays of apertures. We have shown

how the scalar character of the matter wavefunction leads to important differences with

the electromagnetic case, where polarization effects play a relevant role.

Surface matter waves can also lead to an enhancement of matter waves transmission

through a single aperture flanked by a periodic array of indentations. We have studied

how a collimated beam emerging from the aperture can be obtained by tailoring the

corrugation at the output side of the film.

Finally, we have proposed a feasible implementation for the case of one-dimensional

apertures. We have described how a realistic attractive potential can be constructed by

combining the attractive van der Waals interaction and a repulsive optical potential cre-

ated by a blue-detuned laser field.

The work presented here, together with several others recently published analyzing

the transfer of the extraordinary transmission phenomenon to acoustic waves (sound)

[78–82], demonstrates that both resonant transmission and beaming phenomena are very

general undulatory processes based on the excitation of surface waves on perforated

films. It is also remarkable that other electromagnetic phenomena such as optical cloak-

ing [169–171] have been also exported to matter [172, 173] and acoustical [174] waves.
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6. General conclusions

English

Throughout this thesis, we have studied the electromagnetic phenomena occurring in

metal structures which support localized surface modes. We have developed a theoret-

ical formalism based on the modal expansion technique which enables us to analyze

these complex systems within a quasi-analytical approach. In our models, the dielectric

response of metals is treated within the perfect conductor approximation, which yields

accurate results in the microwave and terahertz regimes. In order to go beyond this ap-

proximation, we have also performed numerical simulations to estimate the effect of the

field penetration into metals in these frequency ranges.

The first step in our research has consisted of a thorough analysis of the geomet-

rically induced electromagnetic modes, also termed spoof surface plasmon polaritons,

supported by different metal structures. Two different planar geometries are studied:

textured surfaces and perforated films. We have demonstrated that spoof plasmon po-

laritons in two-dimensional apertures (dimples and holes) are surface waves localized

at the structure interfaces. However, in the one-dimensional case (grooves and slits),

these modes have a hybrid nature, being strongly influenced by the cavity resonances

occurring inside the apertures. We have found that the modal characteristics in all these

structures are controlled by the width and depth of the perforations, which allows us

to consider these systems as plasmonic metamaterials. The predictive value of our theo-

retical results has been demonstrated through the comparison with recent experiments

realized in the terahertz regime.

The appearance of spoof surface plasmon polaritons in cylindrical structures has been

also considered. We have shown that wires milled with a periodic array of rings support

bound modes whose properties are dictated by the geometry of the corrugation. Taking

advantage of the geometrical origin of these modes, we have designed a conical scheme

achieving subwavelength focusing of terahertz radiation. As in planar structures, our

theoretical predictions are corroborated by experimental studies on the propagation of

terahertz waves along helically grooved wires.

Based on our studies on spoof surface plasmon polaritons in simple geometries, we
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6. General conclusions

have developed two routing schemes for terahertz waves consisting of corrugated chan-

nels and wedges. The electromagnetic modes supported by such designs mimic channel

and wedge plasmon polaritons at optical frequencies. We have demonstrated that these

guided modes allow the subwavelength confinement of electromagnetic fields in the

transverse plane and show long propagation lengths and low bending losses.

The scattering properties of perforated metallic films can be also treated within our

theoretical framework. This has enabled us to analyze the role of order in the extraordi-

nary optical transmission. We have studied three different finite structures: periodic and

quasiperiodic (Fibonacci) arrays of slits, and quasiperiodic (Penrose) arrays of holes. Con-

sidering the reciprocal-space version of our formalism, we have been able to link the res-

onant features in the spectra of these systems with their structure factor. We have shown

that long-range order is the only requirement for the appearance of the phenomenon.

Moreover, we have explained the formation of transmission resonances in terms of leaky

electromagnetic modes supported by the structures. Again, our theoretical results are in

good agreement with experiments performed on quasiperiodic hole arrays.

We have also studied the transfer of extraordinary transmission and beaming phe-

nomena to non-interacting cold atoms. By means of a model consisting of square wells,

we have shown that, as in the electromagnetic case, the presence of surface modes is

the key ingredient in both phenomena. Our model has enabled us to demonstrate that

resonant transmission of matter waves appears in periodic arrays of one and two dimen-

sional apertures, and that enhanced transmission and associated beaming effects emerge

in single apertures surrounded by corrugations. Finally, we have proposed a feasible

implementation of our ideas in which realistic attractive potentials are constructed by

combining the intrinsic van der Waals interaction with an external optical potential.
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Español

A lo largo de esta tesis hemos estudiado los fenómenos electromagnéticos que ocurren

en estructuras metálicas que soportan modos localizados de superficie. Para ello, hemos

empleado un formalismo basado en la expansión modal de los campos electromagnéti-

cos, lo que nos ha permitido analizar estos complejos sistemas con un enfoque cuasi-

analítico. En nuestros modelos, hemos tratado la respuesta dieléctrica de los metales

dentro de la aproximación de metal perfecto, que proporciona resultados precisos en

los regímenes de microondas y terahercios. Hemos superado esta aproximación reali-

zando simulaciones numéricas para estimar el efecto de la penetración de los campos

electromagnéticos dentro del metal a estas frecuencias.

El primer paso en nuestra investigación ha consistido en un analisis exhaustivo de los

modos electromagnéticos de origen geométrico, también llamados polaritones plasmóni-

cos spoof, en diferentes estructuras. Hemos estudiado dos geometrías planas diferentes:

superficies corrugadas y láminas perforadas. Hemos demostrado que los polaritones

plasmónicos spoof en aperturas bidimensionales son ondas de superficie localizadas en

las interfaces de la estructura. Sin embargo, en el caso unidimensional estos modos tienen

una naturaleza híbrida ya que están fuertemente influenciados por las resonancias de

cavidad dentro de las aperturas. En ambos casos, las características de los modos están

controladas por la anchura y profundidad de las perforaciones, lo que nos ha permi-

tido considerar estas estructuras como metamateriales plasmónicos. El valor predictivo

de nuestro trabajo teórico ha quedado demostrado por su excelente acuerdo con experi-

mentos realizados recientemente en el régimen de terahercios.

Hemos tratado también la aparición de polaritones plasmónicos spoof en estructuras

cilíndricas. Demostramos que un conjunto periódico de anillos en la superficie de un

cable metálico soporta estos modos confinados y que sus propiedades están controladas

por la geometría de los anillos. Aprovechando el origen geométrico de estos modos elec-

tromagnéticos, hemos diseñado una estructura cónica que permite focalizar radiación de

terahercios en regiones menores que su longitud de onda. Como en el caso de geometrías

planas, nuestras predicciones teóricas han sido corroboradas por estudios experimentales

analizando la propagación de ondas de terahercios en cables perforados con un surco

helicoidal.

Basándonos en nuestro estudio de polaritones plasmónicos spoof en geometrías sen-

cillas, hemos desarrollado dos diseños para el guiado de radiación de terahercios que

consisten en canales y cuñas metálicas corrugadas. Los modos electromagnéticos sopor-

tados por estas estructuras son similares a los polaritones plasmónicos de canal y de cuña

en el rango óptico. Demostramos también que estos modos guiados permiten el confi-
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namiento de campos electromagnéticos en regiones menores que su longitud de onda

y que muestran grandes longitudes de propagación y pequeñas pérdidas en estructuras

curvas.

Las propiedades de scatering de láminas metálicas perforadas pueden ser también

estudiadas dentro del marco teórico que hemos desarrollado. Esto nos ha permitido

analizar el papel que juega el orden en el fenómeno de transmisión extraordinaria.

Hemos estudiado tres estructuras finitas diferentes: conjuntos periódicos y cuasiperió-

dicos (Fibonacci) de ranuras y conjuntos cuasiperiódicos (Penrose) de agujeros. A través

de la versión en el espacio recíproco de nuestro formalismo, hemos podido vincular las

características resonantes en el espectro de transmisión de estos sistemas con su factor

de estructura. Hemos demostrado que la presencia de orden a largo alcance es el único

requisito que debe cumplir la estructura para la aparición del fenómeno. Esto nos ha per-

mitido relacionar el aumento de transmisión con los modos electromagnéticos radiativos

soportados por las láminas. Una vez más, nuestros resultados teóricos concuerdan con

experimentos realizados en terahercios sobre conjuntos cuasiperiódicos de agujeros.

Hemos estudiado también la transferencia de los fenómenos de transmisión extraor-

dinaria y colimación a átomos fríos no interactuantes. A través de un modelo de poten-

ciales cuadrados hemos demostrado que, como en el caso electromagnético, la presencia

de modos de superficie es el ingrediente principal en ambos fenómenos. Nuestro mod-

elo nos ha permitido mostrar que la transmisión resonante de ondas de materia ocurre

en conjuntos periódicos de agujeros de una y dos dimensiones, y que en el caso de una

apertura rodeada de corrugaciones, el aumento en la transmisión está acompañado de

efectos de colimación. Finalmente, hemos propuesto una posible implementación física

de nuestras ideas en la que los potenciales atractivos realistas surgen de la combinación

de la interacción intrínseca Wan der Waals y un potencial óptico externo.
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A. Overlapping integrals between Bloch

waves and rectangular hole and slit

waveguide modes

In this appendix, we provide analytical formulae for the overlapping integrals between

Bloch waves and rectangular hole and slit waveguide modes appearing in our ME for-

malism under PEC approximation. We present general expressions for both periodic hole

(2D) and slit (1D) arrangements.

For 1D slit arrays, the overlapping integrals are defined as

σ
γ
ml = 〈km, γ|ql , γ〉 =

∫
dx〈km, γ|x〉〈x|ql , γ〉. (A-1)

For TE modes, these overlaps have the form

σ
γ=1
ml =

√
2
ad

∫ a
2

− a
2

dx e−ikmx sin
lπ
a
(

x +
a
2
)

=

=
√

2
ad

lπ/a

k2
m − ( lπ

a

)2

[
(−1)l e−ikm

a
2 − eikm

a
2
]
. (A-2)

For TM modes, they read

σ
γ=2
ml =

√
2 − δl0

ad

∫ a
2

− a
2

dx e−ikmx cos
lπ
a
(
x +

a
2
)

=

=

√
2 − δl0

ad
ikm

k2
m − ( lπ

a

)2

[
(−1)l e−ikm

a
2 − eikm

a
2
]
. (A-3)

Overlapping integrals for 2D hole arrangements are defined as

Slsγ
mnσ = 〈kmn, σ|qls, γ〉 =

∫ ax
2

− ax
2

dx
∫ ay

2

− ay
2

dy〈kmn, σ|r〉〈r|qls, γ〉. (A-4)

Analytical expressions for these overlaps can be written in terms of their 1D counterparts,
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having

Smnσ=1
lsγ=1 =

−1
|kmn||qls|

[
k(n)

y

( sπ

ay

)
σ

γ=2
ml σ

γ=1
ns + k(m)

x

( lπ
ax

)
σ

γ=1
ml σ

γ=2
ns

]
, (A-5)

Smnσ=1
lsγ=2 =

−1
|kmn||qls|

[
k(n)

y

( lπ
ax

)
σ

γ=2
ml σ

γ=1
ns − k(m)

x

( sπ

ay

)
σ

γ=1
ml σ

γ=2
ns

]
, (A-6)

Smnσ=2
lsγ=1 =

1
|kmn||qls|

[
k(m)

x

( sπ

ay

)
σ

γ=2
ml σ

γ=1
ns − k(n)

y

( lπ
ax

)
σ

γ=1
ml σ

γ=2
ns

]
, (A-7)

Smnσ=2
lsγ=2 =

1
|kmn||qls|

[
k(m)

x

( lπ
ax

)
σ

γ=2
ml σ

γ=1
ns + k(n)

y

( sπ

ay

)
σ

γ=1
ml σ

γ=2
ns

]
, (A-8)

where σ
γ
ml (σγ

ns) denotes the 1D overlapping integral for polarization γ, evaluated at a =
ax, d = dx and km = k(m)

x (a = ay, d = dy and kn = k(n)
y ).
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B. Circular hole waveguide modes and

overlapping integrals

This appendix is devoted to present the general expressions for the waveguide modes

sustained by circular holes. Additionally, analytical formulae for the overlapping inte-

grals between these modes and Bloch’s waves are presented. Whereas waveguide modes

of rectangular holes are labelled with three indexes, in the case of circular apertures,

four indexes are required. Index γ labels the mode polarization, having γ = 1 (γ = 2)

for TE (TM) modes. Indexes l and s, together with the fourth index, t, characterize the

transverse wave vector associated with the waveguide mode. Index t also indicates the

mode orientation. It distinguishes those modes having a zero azimuthal component of

the electric field along the aperture diameter defined by θ = 0, π (horizontal modes),

from those having a zero radial component of the electric field along the same diameter

(vertical modes).

The dependence of the circular hole waveguide modes, |ls, t, γ〉, on the spatial coordi-

nates (r, θ) is given by [38, 94]:

• for horizontal TE modes

〈r|ls, t = 1, γ = 1〉 = gls

[
la

γ′
lsr

Jl

(
γ′

lsr
a

)
cos(lθ)ur − J′l

(
γ′

lsr
a

)
sin(lθ)uθ

]
, (B-1)

• for horizontal TM modes

〈r|ls, t = 1, γ = 2〉 = hls

[
J′l
(γlsr

a

)
cos(lθ)ur − la

γlsr
Jl

(γlsr
a

)
sin(lθ)uθ

]
, (B-2)

• for vertical TE modes

〈r|ls, t = 2, γ = 1〉 = gls

[
la

γ′
lsr

Jl

(
γ′

lsr
a

)
sin(lθ)ur + J′l

(
γ′

lsr
a

)
cos(lθ)uθ

]
, (B-3)

• for vertical TM modes

〈r|ls, t = 2, γ = 2〉 = hls

[
J′l
(γlsr

a

)
sin(lθ)ur +

la
γlsr

Jl

(γlsr
a

)
cos(lθ)uθ

]
, (B-4)
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where a is the aperture radius, and ur and uθ are the radial and azimuthal unit vectors,

respectively. Jl is the Bessel function of lth order and J′l , its derivative. The constants

γls and γ′
ls are the sth-zero of Jl and J′l , respectively [95]. The longitudinal wave vector

associated with |ls, t, γ〉 is qlst=1
z =

√
k2

0 − (γ′
ls/a)2 (for horizontal modes) and qlst=2

z =√
k2

0 − (γls/a)2 (for vertical modes).

Note that in Eqs. (B-1)-(B-4) we have introduced the normalization factors

gls =

√
2 − δl0

π

γ′
ls

a Jl(γ′
ls)
√

γ′2
ls − l2

, (B-5)

hls =

√
2 − δl0

π

1
a Jl−1(γls)

, (B-6)

so that the waveguide modes fulfill the orthonormality relation

〈l′s′, t′, γ′|ls, t, γ〉 =
∫

dr〈l′s′, t′, γ′|r〉〈r|ls, t, γ〉 = δll′δss′δtt′δγγ′ . (B-7)

The overlapping integrals between circular waveguide modes and Bloch’s waves are

defined as

Slstγ
mnσ = 〈kmn, σ|ls, t, γ〉 =

∫
dr〈kmn, σ|r〉〈r|ls, t, γ〉. (B-8)

Analytical expressions for these integrals are as follows [175]

Sls,t=1,γ=1
mnσ=1 =

√
2 − δl0

π

(−i)l−1 k0a cos(lθmn) J′l (|kmn|a)√
γ′2

ls − l2 [1 − (|kmn|a/γ′
ls)

2]
, (B-9)

Sls,t=2,γ=1
mnσ=1 = − tan(lθmn) Sls,t=1,γ=1

mnσ=1 , (B-10)

Sls,t=1,γ=1
mnσ=2 =

√
2 − δl0

π

(−i)l−1 lk0 sin(lθmn) Jl(|kmn|a)
|kmn|

√
γ′2

ls − l2
, (B-11)

Sls,t=2,γ=1
mnσ=2 = cot(lθmn) Sls,t=1,γ=1

mnσ=2 , (B-12)

Sls,t,γ=2
mnσ=1 = 0, (B-13)

Sls,t=1,γ=2
mnσ=2 =

√
2 − δl0

π

(−i)l−1 k0|kmn| cos(lθmn) Jl(|kmn|a)
|kmn|2 − (γls/a)2 , (B-14)

Sls,t=2,γ=2
mnσ=2 = tan(lθmn) Sls,t=1,γ=2

mnσ=2 , (B-15)

where angle θmn satisfies tan(θmn) = k(n)
y /k(m)

x .
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