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ABSTRACT

ACOUSTICAL WAVE-PHENOMENA: ENHANCED TRANSMISSION,

GUIDING, ATTENUATION AND FOCUSING

Supervisor: Prof. F. J. Garcia-Vidal

English

This thesis deals with a theoretical study on the interaction of air-borne sound with

metallic structures. The discovery of the phenomenon of extraordinary optical trans-

mission through a two-dimensional array of subwavelength holes in a metallic film

has opened a new line of research within optics, whereupon the acoustical analogy

is being employed from first principles. The structures under study are described

and modelled by means of a mode matching technique, and assumed to fulfil a per-

fect rigid body approximation, which is a valid approach for steel or brass plates

under acoustic load. In this framework we present transmission analysis for vari-

ous periodic and finite configurations that are in good agreement with experiments

found in the literature. Guiding and focusing of sound with an axial guide is being

taken under investigation: a sound-hard wire decorated with milled rings, is exam-

ined for its sound confining capabilities. It is shown how acoustic surface waves can

be engineered with their propagation properties controlled entirely by geometrical

means. These highly localized acoustic surface waves give rise to strong acoustical

field confinement along the wire, and what is believed to be a promising feature of

these low-loss propagation properties, is the ability to tune sensing and screening

applications with good transducer coupling.

Metamaterials are functional composites, gaining their wave properties from geo-

metrical parameters. The theoretical formalism developed has been employed to

address the capability of a holey metamaterial to act as a high resolution imaging
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device for sub-diffraction limited objects, applicable for medical and industrial ultra-

sound instruments. An effective medium approach such as a full modal expansion,

predict imaging for complex objects 50 times smaller than the operating wavelength,

that additionally has been observed by means of measurements. Sound attenuation

for noise free environments has been developed by a double-fishnet structure. This

structure which consist of two adjacent holey plates, has been described by a modi-

fied single plate formalism, in which a negative effective bulk modulus is found. This

resonance which can be tailored by, e.g., the plate separation exhibits broadband

sound blockage with weak dispersion.
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Español

Esta disertación doctoral aborda un estudio teórico sobre la interacción del sonido

con estructuras metálicas. El descubrimiento de la transmisión extraordinaria de

luz a través de un array bidimensional de agujeros con dimensiones inferiores a la

longitud de onda en una lámina metálica inició una nueva ĺınea de investigación en

óptica, la cual se extendió desde el principio a fenómenos acústicos. Las estructuras

estudiadas son descritas y modeladas mediante la técnica de expansión modal con

la aproximación de un cuerpo ŕıgido perfecto, aproximación que es válida para acero

o plata en interacción con ondas acústicas. En este orden de ideas se presenta

un análisis de transmisión para diferentes configuraciones de estructuras periódicas

finitas que está en buena correlación con los resultados experimentales encontrados

en la literatura. El guiado y enfoque de sonido con una gúıa axial es objeto de

investigación: una gúıa o alambre ŕıgido estructurado con anillos son estudiados

para conocer su capacidad de confinamiento del sonido. Se muestra como ondas

acústicas superficiales con sus propiedades de propagación pueden ser controladas por

los parámetros geométricos del medio. La alta localizabilidad de las ondas acústicas

superficiales permiten un gran incremento del confinamiento del campo acústico a

lo largo del alambre. Esta promete ser una caracteŕıstica de baja pérdida en las

propiedades de transmisión y ofrece la posibilidad de ajustar las aplicaciones de

detección y selección con un buen acoplamiento.

Los metamateriales son estructuras funcionales que permiten optimizar las propi-

edades ondulatorias a partir del ajuste de los parámetros geométricos del sistema.

El formalismo teórico desarrollado ha sido usado en el estudio de la capacidad de

un metamaterial agujereado para actuar como un dispositivo de alta resolución de

obtención de imágenes de objetos limitados por difracción. Un medio efectivo aprox-

imado por la técnica de expansión modal predice imágenes para objetos de formas

complejos de tamaños 50 veces más pequeños que la longitud de onda utilizada,

que adicionalmente, se ha observado por medio de mediciones experimentales. La
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atenuación de sonido para espacios libres de ruido ha sido desarrollada por una es-

tructura double-fishnet. Esta estructura que consiste de dos láminas agujereadas

adyacentes ha sido descrita modificando el formalismo para una sola lámina, en la

cual un módulo de compresibilidad negativo efectivo es encontrado. Esta resonancia,

la cual puede ser modificada por, un ejemplo: la separación de las placas, produce

bloqueo de sonido por ensanchamiento de banda con una dispersión débil.
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This is a list of the acronyms used in the text:

• ADF Acoustic double-fishnet

• ASW Acoustic surface wave

• DNG Double negative

• EAT Extraordinary acoustical transmission

• EM Electromagnetic

• EMA Effective medium approach
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• MHz Megahertz
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• MNG Mu negative
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• PRB Perfect rigid body

• SNG Single negative
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Chapter 1

Introduction

One might think about the fight between Goliath against David from the old tes-

tament, irrespective of the outcome of this battle, when comparing the size of the

implication and impact, modern optical research compared to its acoustical counter-

part has created. The modern optical fields in question are ranging from photonic

crystals, nanoplasmonic devices and general metamaterials for exotic properties of

light. To this, the study on physical acoustics, has always been the follower, striving

to find novel analogies based on e.g. phononic crystals, subwavelength guides and

locally resonant structures. One might ask, why there is such a huge gap in the in-

terest between those fields, bearing in mind that Lord Rayleigh, who was interested

in both acoustics and the study of light, published his first works on sound [1]. In

the following we will try to answer this question, and also highlight the background

and motivation regarding the study on novel acoustical wave phenomena, that has

been the objective for this doctoral thesis.
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1.1 Background

The field of acoustics is broadly subdivided into different branches, such as acous-

tical engineering (architectural, enviromental, transduction, etc.), biological acous-

tics (speech communication, psychological acoustics and physiological acoustics) and

physical acoustics. Physical acoustics also contains several subcategories such as

aeroacoustics, nonlinear acoustics or under water sound, but the more fundamen-

tal aspects regarding quantum mechanical and optical analogies, is still a young

member of the big acoustical family. Phononic crystals and locally resonant struc-

tures, which can exhibit novel effects like creating forbidden frequency regions of

sound propagation or negative refraction, are fields devoted to the main objectives

on physical acoustics inspired and motivated by optical analogies: sound focusing,

imaging and shielding [2, 3]. Shielding sound is of paramount importance, when it

comes to environmental design and architecture work for halls, offices, train stations

and highways as disturbing ambient noise is wished to be kept at a minimum. This

is where acousticians envision the importance of the role of periodic structures with

huge attenuation bands. Acoustics in medicine, for the detection and imaging of

early stage tumours by means of ultrasound scanning, is driving the research regard-

ing the advantages and capabilities on focusing and negative refraction, associated

to novel structure properties. HIFU (high intensity focused ultrasound) which is

a high-intensity focused ultrasound medical device to heat and destroy pathogenic

tissue rapidly, is another candidate which could obtain further improvements by,

e.g., a quasi unlimited size of the sound spot, gained by the properties of an excotic

material [4]. This could also easily be applied to ultrasound non-destructive testing

applications, for powerplants and tanks in the search for fine material fatigue such

as cracks [5, 6].

Nanophotonics today, is driven by enormous and rapid developments in telecom-

munication technology, computers and interconnects. A rather new, or correctly

2



said: renewed theme in the field of nonanophotonics, provides new challenges and

possible routes to improve the named concepts and creating new novel material phe-

nomena, Surface Plasmon Nanophotonics. Surface plasmon polaritons (SPPs) are

of interest to a wide spectrum of scientists, ranging from physicists, chemists and

materials scientists to biologists. A renewed interest into this field stems from recent

advances, which allow metals to be structured and characterized on the nanometer

scale. It is so far believed that the study of SPPs has the potential to revolutionize

the telecommunications industry by providing low-power, high-speed interference-

free devices such as electro-optic and all-optical switches on a chip. Data storage,

microscopy, solar cells and sensors for detecting biologically interesting molecules

are just a few other concepts, acquiring advantages from the guiding and focusing

schemes, associated to SPPs [7–9].

In the following we shall give a brief review on the fundamentals regarding SPPs

and highlight two themes, which will be devoted to the acoustical analogy: Extraor-

dinary optical transmission and guiding of SPPs. Surface plasmons, or generally

speaking, surface electromagnetic (EM) waves were seriously taking under exami-

nation in 1899 by A. Sommerfeld who studied the problem of axial currents along

a straight wire where the solutions of Maxwells equations decayed off with growing

distance from the wire [10]. Only eight years later, theoretically the so-called Zen-

neck surface waves were discovered, after J. Zenneck, in connection with Marconi’s

trans-oceanic radio waves [11]. Localized SPPs are found on rough surfaces and en-

gineered nanostructures as we will see below. Nano particles as one example, which

can be embedded into glass have tunable plasmon resonances, determined by the

shape and size. One famous example, is Lycurgus Cup as can be seen in Fig. 1.1.

This ancient plasmonic structure supports the oscillation of free electrons in those

metallic nanoparticles, embedded inside the glass of the structure. With the right

shape and size of the metallic particles, the localized SPPs resonance determines the

degree of the colouration of the cup [12]. In a less classical, but physically at least

3



Figure 1.1: Lycurgus Cup from the British Museum, which is made out of ruby glass.
When views in e.g. daylight, it appears green, but when light is shone into the cup
and transmitted through, it appears to be red.

equally important context, in 1902 Wood measured the appearance of ”anomalous”

intensity minima, when white light was shone on the surface of a groove grating,

backed with a mirror [13]. Physical interpretation was initiated by Lord Rayleigh

[14], and further refined by Fano [15], but based on work about the electron energy

losses in thin metal film, in 1957 Ritchie showed that plasmon modes can exist near

the surface of metals [16]. However, a complete explanation of the phenomenon re-

garding the light interaction with a groove grating, was given in 1968, when Otto

[17] and in the same year Kretchmann and Raether [18] reported on the excitation

of surface plasmons.

In 1989, almost a decade before publication, Ebbesen and coworkers discovered an

extraordinary large optical transmission efficiency through a square periodic lattice

of holes in a thin metallic film, see Fig. 1.2. The holes where much smaller than
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Figure 1.2: Experimental zero-order power transmittance, at normal incidence for a
square array of holes in a freestanding Ag film. Taken from: L. Martin-Moreno et
al. Phys. Rev. Lett., 86, 1114, 2001.

the wavelength of the incident light, though at certain wavelengths, the transmission

could even exceed unity, when normalized to the geometrical fraction on the sur-

face occupied by the holes [19]. According to classic diffraction theory [20, 21], the

enhanced transparency, dubbed ”extraordinary optical transmission” (EOT) would

be of magnitudes higher as previously predicted. For one individual subwavelength

hole in a screen of zero thickness, the transmission would rapidly drop off at a rate

(r/λ)4 above cutoff, but in the particular periodic configuration by Ebbesen, it was

shown that this constraint was overcome, implying that even the light impinging on

the metal between the holes would be transmitted through the film. Although there
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has been a great deal of debate and controversy behind the mechanism of EOT, it is

now widely accepted and supported by a wide variety of experimental observations

and theoretical predictions, that a resonant excitation of SPPs on and through the

structure, gives rise to the observation of enhanced transmission. In the process

of exploring the actors, responsible for the EOT, a vast amount of work has been

dedicated to understand this phenomena of light transmission through slit arrays,

holey perfect electric conductors (PEC) and isolated apertures among others. For

an extensive progress review, describing both theoretical and experimental aspects

of this subject, one is to address the following report [22]. In particular, the dis-

covery of EOT, spectrally below the optical regime at MHz and THz frequencies

where bound surface modes in the form of plasmons only are located weak, led to

the consideration of the sustainability of artificially SPPs in PEC materials [23–27].

By perforating the surface of a good conducting metal with an array of subwave-

length holes, it is possible to produce a designer top-layer which effectively allows

the field to penetrate by means of evanescent fields, associated with the lowest-order

guided modes, below cutoff. This theoretical prediction was recently confirmed in

the microwave regime, underlining the concept of designer or spoof SPPs [28, 29].

Morover, spoof SPPs has been extended to other geometries such as a cylindrical

structure, where it also was found that these artificially, man-made surface mode

could be used to guide EM radiation, much in the same way as conventional SPPs

[30]. To this theme, we can count plasmonic waveguides such as metallic strips [31],

metal-insulator-metal guides [32], nanowires [33], nanoparticle arrays [34] such as

channel and wedge guides[35, 36], all concepts driven by the goal to merge pho-

tonics and electronics at nanoscale dimensions [37]. For some of those structures,

the term ”plasmonic metamaterial” is considered, as they gain their properties from

their topological buildup. E.g., the attributes of spoof SPPs such as the degree of

field confinement is controlled by geometrical parameters, hence by texturing metal-

lic systems, the properties are gained from the structure rather than their chemical

6



composition.

Tailoring man-made optical properties in order to obtain astonishing phenomena

such as artificial magnetism, plasmas, backward travelling waves, negative refrac-

tion and perfect lensing, can all be summarized in the context of metamaterials.

Here follows a brief review on this theme, because artificial man-made acoustical

structures is another objective within this thesis. It is difficult, precisely to say,

when those materials first saw the day of light. It is clear, that for example H.

Lamb, firstly reported on vibrational motion in bars giving rise to displacements of

negative group velocity [38]. A vast amount of papers from the Russian electrical

engineering community, already in the middle of the last century, had the knowledge

on the consequences regarding left-handed material (LHM) with both negative per-

mittivity ε and permeability µ [39]. Victor Veselago, published in 1967 his seminal

work on the hypothesis that a material with a negative refractive index could exist

without violating any of the laws of physics. Veselago predicted that this remarkable

material would exhibit a wide variety of new optical phenomena, from reversed geo-

metrical optics to reversed Doppler shifts [40]. At that time, extensive studies were

already in progress on artificial dielectrics regarding beam shaping elements in lens

antenna applications [41]. Later Kock introduced several experimental models for

artificial dielectric lenses, that constituted spherical arrays [42]. Cohn took this con-

cept one step further by introducing a strip array as a delay medium, which could be

described as transmission line low pass filters to control the refraction index [43, 44].

But the definite breakthrough came in 1962 by Rotman, who came up with the fist

prescription on tailoring an artificial plasmon, out of a so-called rodded media [45].

It was already known from a textbook in the 50’s, that the split-ring could act as an

artificial magnetic particle [46]. An extended version of this structure, came about

the late 70’s and early 80’s in the form of a slotted tube resonator and a high Q

resonator respectively [47, 48]. It was however in the late 90’s, when Pendry revived
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those electric and magnetic concepts from theoretical first principles [49, 50], Vese-

lago’s prediction became true by the experimental verification on negative refraction

measured by Smith et al. This milestone discovery was the birth of left-handed ma-

terials (LHMs) at the beginning of the new century [51, 52]. Those LHMs were a

Figure 1.3: Planar structure composed of nonmagnetic conductive resonant ele-
ments, for magnetic metamaterial response at THz frequencies. (Inset) Ion-beam
microscopy image of the fundamental structure. Taken from: T. J. Yen et al. Sci-
ence, 303, 1494, 2004.

composition of a wire-medium array and split ring resonators (SRRs). Simultaneous

with the measured negative index of refraction Pendry envisioned that a LHM slab

could constitute a perfect lens, such that not only travelling waves associated with

an object but all the evanescent waves containing all fine near-field details could be

retained in an image [53]. Since this moment, EM metamaterials has been a field

of intense interest, where a huge amount of scientific outcome was produced like
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THz artificial magnetism (Fig. 1.3) [54], the so-called fishnet structure for negative

refraction [55] and electro-static optical negative refraction [56], etc.

The topics ”extraordinary acoustical transmission” (EAT), acoustic metamaterial

and acoustical phenomenon associated to surface waves are new and flourishing

themes in the context of physical acoustics. Up to date, since the discovery of EAT

for sound traversing through small apertures such as slits or holes, a large amount

of progress has further examined the concept both from theoretical and experimen-

tal points of view [57]. However already in 2005, acoustic resonant transmission

through subwavelength spaced sphere-arrays has been analysed [58]. Also a rather

mathematical treatment of the problem regarding sound transmission through cir-

cular holes was presented [59]. In the next chapter a complete theoretical survey on

this topic will be given, followed up by a conclusion where we highlight the progress

made so far, and compare to our models where it is possible.

Metamaterials, particularly acoustics are still in the stage of infancy. However, as

this broad field is quite a few years older than EAT, we intend to start out with a

brief review on this topic. Acoustic metamaterials are being explored theoretically,

but there has been little headway on the experimental front. In the same year, when

Smith et al. demonstrated that the composition of magnetic resonators with a wire

media would exhibit negative refraction, Z. Liu et al. published the first work ever

on acoustic metamaterials [3]. By coating heavy spheres with soft silicon rubber and

encasing the coated spheres in epoxy, an elastic inertial metamaterial was created

with an effective negative mass-density. Fig. 1.4 illustrates this concept, which easily

can be characterized as a mass-spring system, where the core is the mass and the

rubber acts as a spring. Excited at the natural frequency of the resonator, the core

oscillates strongly out of phase with the driving force, giving rise to transmission

dips, due to a negative real part in the effective mass density. Other variations, such

as an array of rubber spheres relying on Mie resonances, or the composition of two
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Figure 1.4: Cross section of a coated lead sphere that forms the basic structure of a
8×8 sonic crystal. Taken from: Z. Liu et al. Science, 289, 1734, 2000.

face-centred arrays of fluidic and elastic resonators, have shown to be metamateri-

als, yielding a negative effective mass-density and bulk modulus [60, 61]. Another

sonic metamaterial structure is the 1D array of Helmholtz resonators, known for the

capability to act as a stopband filter [62, 63]. Fang et al. showed in 2006 that when

this resonator is tuned to a frequency where the airy motion in the neck, in corre-

spondence with the compressibility in the main cavity, is moving out of phase with

the excited sonic compression and rarefaction, a negative bulk modulus is the cause.

As of this single-negativity, acoustic waves of antiparellel group- and phasevelocity

is conveyed.

Basic research has and will motivate the study of novel wave phenomena regarding

acoustics and optics. But certainly the technological progresses for telecommunica-

tion, computers and data storage, such as medical and biological use make a clear

statement on the dominance regarding the leading character of optics, compared

to acoustical investigations. However the ability to focus, guide and in general to

manipulate the natural properties of acoustic waves remains a subject of growing

interest [64–66]. In the following section we therefore wish to motivate the reader
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on the prominence regarding physical acoustics. Able to control sound at a sub-

wavelength scale is the driving force for improvements and further developments for

acoustical scanning, spectroscopy, medical ultrasound instrumentation, and imaging.

1.2 Motivation

As we have declared above, surface phenomena in nanophotonics and physical acous-

tics play an important role in modern studies related to metamaterials, enhanced

transmission or field localization and guiding. The growth of the field of plasmonics

is clearly reflected in the scientific literature. In the upper histogram of Fig. 1.5

we have graphed the annual number of publications, containing the phrase ”sur-

face plasmon” in the title or the abstract. The exponential growth is marked with

a few temporal milestone achievements and discoveries, which we have announced

in the latter section. The comparison with sound waves is an unambiguous inter-

pretation of stepping into somebody’s large footsteps, as the scientific outcome on

”acoustic surface waves” (ASW) only is a tiny fraction of the plasmonic forerunner.

Nevertheless, through half a century, the study on ASWs and plasmonics partially

walked hand in hand, but already in this progress, acousticians have shown their

independence, making the research on sound far more than a study of analogies.

This is clearly demonstrated by the early emergence of commercialized SAW-devices

in the 60s for telecommunication and filter components, 25 years before the first

commercialized SPP bio-sensor (Fig. 1.5) [67, 68]. The degree of flexibility and ap-

plicability regarding ASWs was reported in 1996, where a group of experimentalists

studied the interaction of 1D ballistic electrons with electrostatic waves induced by

ASWs [69]. Thus it is fair to say, despite of the enormous need for optical devices in

computers, DVD players and interconnects which clearly boost the scientific interest

on nanoplasmonics, there is still a lot of room to study the effects and the prop-

erties associated with ASWs and acoustical metamaterials. Air-borne sound does
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Figure 1.5: The growth of the fields, regarding surface waves for sound and light are
compared by the number of scientific articles published in the years indicated. The
search phrases illustrated, have been used in the ISI Web of Knowledge.

not polarize, and can resonantly interact with solid materials. Hence despite some

similarities, intrinsic differences is giving rise to colourful behaviour of perforated or

structured sonic systems.

1.3 Problem Statements

The research theme, defined by the latter review on nanoplasmonic achievements

and their acoustical counterpart is clear. At first, a theoretical analysis is devoted
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to the acoustical analogy of the EOT. By means of mathematical modelling analy-

sis, sound waves are studied which are traversing through apertures in 1D and 2D

that are smaller compared to the wavelength of incident sound. Second: a new

waveguiding scheme is investigated, which is a study regarding the guiding and con-

finement of ASWs along the grooves, milled into a sound-hard wire. Third: an

acoustical metamaterial based on a holey steel block is demonstrated to act as a

quasi-perfect near-field imaging device, capable to capture ultrasonic objects by all

its sub-diffraction limited component. Fourth: we are designing the acoustical equiv-

alence of a double-fishnet structure, known in the context of negative refraction for

EM metamaterials. However in its acoustical case, we predict that this system can

act as an all-angle attenuator for sound waves, due to an effective negative bulk

modulus.

For more details, we present the organisation of the thesis:

Chapter 2

In this initial part of the thesis, the basic linearised Eulers equations comprising

small acoustical perturbation and a complete elastic equation of motion are derived.

As a solution for a simple wave equation comprising the motion of air-borne sound,

we employ the mode matching technique, which is decomposing a scattered-based

problem, into the individual modal regions. By this we show how a metal plate

perforated by an infinite array of slits can be modelled by this modal expansion

technique and be integrated into a linear system of equations. Similarly for an array

of holes, or individually isolated apertures such as a slit or a hole, we apply this

modal expansion technique and perform detailed transmission studies for all cases.

We are clarifying the responsible mechanism for an enhanced transmission, both for

the periodic and the finite cases by means of linear algebra which results in disper-

sion relations, pressure field plots and effective medium approaches (long wavelength

limit). We are concluding all findings and compare these results with the phenomena
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associated to EOT.

Chapter 3

This 3rd chapter is devoted to the study of confining ASWs along a soundhard wire,

that are supported by milling rings into it. This analogy of the spoof SPPs along

a PEC wire, demonstrates the capability of the mode matching technique, also to

function well for cylindrical geometries as the wire. From this technique we obtain

a dispersion relation that is entirely controlled by the geometrical parameters con-

stituting a corrugated wire, capable to support the propagation of surface waves - a

Metawire. With this dispersion relation and pressure field plots in the unit cell, we

give a clear account on the degree of the controllability of the designer ASWs, sup-

ported by the metawire. Based on these results, we analyse a modification leading to

a corrugated cone and show how this new geometry can serve as a device for superfo-

cusing sound beyond the diffraction limit. Also here we are concluding this chapter

by a quantified comparison with the bands associated to slow light along a PEC wire.

Chapter 4

A brief highlight on EM and acoustic metamaterials is presented and we give a tu-

torial explanation on the basic principles regarding single and double negativity for

engineered sonic materials. A basic holey structure is being taken under investi-

gation, and we make a first-principle theoretical analysis to elucidate its properties

for robust imaging. By means of both slit- and hole arrays, acting as holey meta-

materials, we show how a deep subwavelength sonic object can be recovered by all

its near-field component at an image plane. In the same context we are seeking to

declare the resolution limit, with which an image can be resolved by the use of this

mentioned system. This theoretical prediction is verified by experimental measure-

ments, which concludes the investigation on sonic imaging for this chapter.
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Chapter 5

In this chapter we start out with a modal expansion on the acoustical equivalence

of a double-fishnet structure, where it clearly throughout this formalism is demon-

strated that this structure can be treated as stack of two hole arrays. From the linear

problem we are seeking symmetric and asymmetric solutions, which will form the

basis to create understanding on the mechanism involved for sound interacting with

the metallic structure and the gap. At the same time, we predict how the resonances

involved also can be interpreted as a Fano-type resonance, which yields a negative

effective bulk modulus. The properties of the single-negativity, responsible for the

complete suppression of sound transmission, are investigated in such a way that the

angle-dependence of incidence sound is given by means of a dispersion relation.

Chapter 6

The main results in this thesis are summarized and a overall conclusion is drawn

herefrom.
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Chapter 2

Enhanced acoustical transmission

and basics

As already outlined in the introductory part of this thesis, a decade of intense work

devoted to the EOT, which has sparked considerable fundamental but also techno-

logical interest, has become a milestone theme within the field of optics. As of this

great implication, it is truly surprising that the acoustical analogy to this topic, first

would see the light of day ten years later. In this chapter, we will go through the very

fundamental aspects of modelling acoustic sound waves penetrating through small

apertures compared to the wavelength of incident sound and by this demonstrating

how the acoustical diffraction limit can be efficiently beaten. As this chapter pro-

vides first-principles theory of physical acoustics, it also serves as a tutorial backbone

for the subsequent chapters, containing other objectives, though with equal funda-

mental character. In what follows, we are introducing the so-called mode-matching

technique which is a flexible modelling tool, suitable to gather analytical insight into

the physics involved. This technique can be used to solve a variety of problems such

as the Schrödinger equation, Maxwell’s equations and the linearised Euler’s equa-

tions (LEEs) as will be shown here. To this, for all kind of geometrical structures

presented, we do a convergence study in order to present full accurate solutions.
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2.1 Air-borne sound

In this section we take a look into the derivation of the acoustical wave equation

that will form the very basis of the entire scope within this thesis. Linear acoustics

comprises small pressure fluctuations, that form a travelling wave of low intensity.

Consider an invicid (lossless) fluid (liquid or gas) that is at rest. To connect the

motion of the fluid with its compression or expansion, a relationship between the

particle velocity υ and the mass density ρ is to be deduced. Regarding the forces,

one has to apply Newton’s second law and relating the sum of the forces acting on

an element of fluid to its acceleration or rate of change of momentum. These two

constituents are the foundations to describe acoustic waves of small disturbances in

the absence of viscosity (constant entropy), that are gathered within the LEEs:

∂ρ

∂t
+ ∇ · (ρυ) = 0,

∂υ

∂t
+ (υ ·∇)υ = −∇p

ρ
. (2.1)

In the Eqs. (2.1), energy terms are disregarded and will not be part due to the

absence of thermal gradients. For the pressure p, velocity υ and density ρ, one can

write: p = p0 + p′, υ = υ0 + υ′, and ρ = ρ0 + ρ′ where the terms p0, υ0 and ρ0

denote the background pressure, velocity (υ0 = 0) and density in an undisturbed

medium, respectively. The primed quantities p′, υ′ and ρ′ describe the variation in

the corresponding magnitudes due to the presence of a low-amplitude acoustic field

in the medium. If one now substitutes those quantities into Eqs. (2.1) and only

linear terms in the primed quantities are taken into account while all higher-order

terms are neglected, one obtains two simple equations:

∇υ′ − iω

c2
0ρ0

p′ = 0, ∇p′ − iωρ0υ
′ = 0, (2.2)

that after straightforward algebra yields a simple wave-equation for linear sound

propagation in fluids. Here, use has been made of monochromatic radiation and

the isentropic relation p′ = ( ∂p
∂ρ0

)sρ
′ = c2ρ′ upon asuming adiabatic and reversible

conditions. For more details regarding this derivation one should refer to [70, 71].
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2.2 Structure-borne sound

Air-borne or Fluid-borne sound as thoroughly has been characterised in the latter

section, describes wave motion of scalar pressure fluctuations, which in its fundamen-

tal view is a longitudinal wave, propagating parallel to the axis of the displacement

of adjacent fluid elements. Generally what is known about structure-borne sound

(or elastic waves), is that the description of wave motion is to be treated as a vec-

tor, comprising longitudinal and transversal displacements of infinitesimal structure

segments, in relation to the propagation direction. The wave motion of a non-

piezoelectric, isotropic elastic material is governed by the general lossless equation

of motion:

ρ
∂2ui

∂t2
=

∂σij

∂xj

(2.3)

with solid material mass density ρ, the stress σij and strain εij tensors, comprising

Cartesian components i,j = x,y,z, given as follows:

σij = λδijεkk + 2µεij , εij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (2.4)

λ, µ and ui are the modulus of incompressibility (first Lame coefficient), modulus

of rigidity (second Lame coefficient) and the i-th component of the displacement u

respectively. This given, one obtains the complete elastic wave equation comprising

longitudinal (compressional) and transversal (shearing) motion which for the sake of

simplicity, as in Eq. (2.2), is given in vector notation:

ρ
∂2u

∂t2
= (λ + 2µ)∇(∇ · u)− µ∇×∇× u. (2.5)

Thereto it can now be assumed that the field is purely transversal, thus applying the

curl (∇× u) on the displacement vector in Eq. (2.5), all longitudinal terms vanish,

which yields a wave equation

∂2ut

∂t2
=

µ

ρ
∇2ut (2.6)

with phase velocity ct =
√

µ
ρ

and transverse displacement vector ut [72].
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2.3 Mode matching technique

The mode matching technique or the modal expansion (ME) formalism is a very

general method for solving linear differential equations describing physical systems

of very different nature. It is a very useful tool in current research in a broad range

of fields such as acoustics, quantum mechanics or electromagnetics [73, 74]. In this

section, we present a theoretical formalism for solving the above given equations in

complex structures based on this technique. Special emphasis is given to the fluid

part in section 2.1 as has been elucidated in the introductory part. Again, a great

interest lies in the control of fluid-borne sound for, e.g., medical use and also the

setups for experiments are greatly eased compared to the study of elastic waves. The

study of acoustic transmission throuch subwavelength apertures, is in its simple form

accomplished through an even and smooths surface (wall), which significantly eases

the modelling by means of modal expansions. Taking the most general structure into

Figure 2.1: Schematics of a periodic array of slits, made out of a perfect rigid body,
impenetrable for air-borne sound waves impinging on the structure.

account as Fig. 2.1 depicts, reduces the problem into a mode matching procedure con-

taining three interfaces. The ME technique is based on the decomposition of sound-

or elastic waves into eigenmodes and planewaves of the LEEs or equation of motion,

within the various regions comprising the complex structure under study. Therefore,
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by imposing the appropriate continuity conditions at the region boundaries (inter-

faces), the problem can be solved in all the space. Through out this chapter we will

examine various structures of various dimensions. Initially, we start looking at the

basic slit array arrangement, Fig. 2.1, as the understanding of this easily transfers

to hole arrays and other geometries. A good assumption studying air-borne sound

radiation on rigid materials such as concrete, steel or brass, is the perfect rigid body

approximation (PRB). When air-borne sound is impinging on a thick steel plate for

example, the wave will entirely be reflected. In other words, in the field of environ-

mental, technical, and building acoustics, the PRB approximation has throughout

the years shown to be a valid approach, treating the acoustics statically, such that

the externally applied energy is vanishing into the rigid body [75, 76]. Let us make

this clear with the given example of a slit array. Through out this work we are

describing the waves as plane waves with wave vector k traversing a given medium.

Before initiating the example, we need to define an acoustical index of refraction, in

order to define an appropriate wave number for a given medium. Following the basic

prescription from optics [77], easily transferable to acoustics [60] with an index of

refraction n = c0/cp which is nothing but
√

K0/ρ0

√
ρp/Kp, with c, K, ρ representing

the phase velocity (thermodynamic speed of sound), the bulk modulus and density

respectively, where the zero and p indices refers to a reference medium (such as air)

and phase (any arbitrary medium) respectively. Consequently it is convenient to

rewrite n =
√

ρr/Kr into relative terms, which gives a unity refraction index for air.

Following Fig. 2.1, we start deducing a wave description in region I. In this partic-

ular periodic case, we expand the wave into Bloch states by means of a reciprocal

lattice vector. Note, as of translational invariance along the y-axis of the structure,

it is sufficient to regard the sagittal (xz) plane. Also, only the z-component, v′z,

of the velocity vector will be taking into account, because v′z is employed for the

matching technique and in order to simplify the notations, we choose to reject the

primes in p′ and v′z as given in Eqs. (2.2), though it is clear that acoustical quantities
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are considered. The acoustical field associated with the incident and the resulting

reflected wave, (z < 0), represented as a sum of plane-waves weighted with their

corresponding reflection coefficients Rγ, is:

|pI (z)〉 =Y I
k0

z
|k0

x〉eik0
zz +

∞∑
γ=−∞

RγY
I
kγ

z
|kγ

x〉e−ikγ
z z

|vI
z (z)〉 =|k0

x〉eik0
zz −

∞∑
γ=−∞

Rγ|kγ
x〉e−ikγ

z z.

(2.7)

Here the free space plane waves 〈x|kγ
x〉 = eik

γ
xx√
Λ

, incident wave vector k0 = (k0
x, k

0
z)

and the scatterer components kγ = (kγ
x,−kγ

z ) containing discrete diffraction order γ

in the range γ = −∞, ..0..,∞ comprising in-plane scattering where kγ
x = k0

x + 2π
Λ

γ

and kγ
z =

√
(nIk0)2 − (kγ

x)2 with 2π
Λ

γ representing the reciprocal lattice vector in

the primitive unit-cell of constant Λ. When employing the PRB approach, the same

scattering properties are obtained in different frequency regimes by scaling all the

geometrical parameters with the same factor. Due to that, in our calculations, we

will use Λ as the unit length defining the structure. Yk is the so called admittance

that governs the relationship between pressure and the velocity, derived from the

momentum equation in Eqs. (2.2) which for the reflected wave in particular is nothing

but Y I
kγ

z
= c0ρ

I
p

k0

kγ
z
. With λ = 2π

k0
we define the angle of incidence with respect to the

normal of the surface as φ, so with no loss of generality, kγ
z = k0

√
n2

I − (sinφ + γ λ
Λ
)2.

If ηγ = sinφ + γ λ
Λ

we reach to the final simplifications of kγ
z = k0

√
n2

I − η2
γ and

henceforth Y I
kγ

z
=

c0ρI
p√

n2
I−η2

γ

.

Region II (0 ≤ z ≤ h) can be modelled as cavities with perfect rigid walls. Within

this PRB-approximation no sonic energy is penetrating into the material, which is

valid for a broad range of frequencies for e.g. steel, brass or concrete. Thus the

boundary conditions in the apertures are as follows: ∂p
∂n

= 0 at x = ±a
2
, which is

nothing but a vanishing normal component of the particle velocity vx with respect

to the adjacent faces within the slit in an unit cell. This statement complies with

vz to be zero at top and bottom interfaces corresponding to z = 0 and z = h. The
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normalized modes of the cavity waveguide are given as 〈x|m〉 =
√

2−δ0m

a
cos qm

x

(
x+ a

2

)

where the mth slit waveguide mode is in the range (m = 0, 1, 2..,∞) and qm
x = mπ

a
.

The entire eigenvalue expression for the field inside the slit, is the following:

|pII (z)〉 =
∑
m

Y II
qm
z

(
Ameiqm

z z + Bme−iqm
z z

)|m〉

|vII
z (z)〉 =

∑
m

(
Ameiqm

z z −Bme−iqm
z z

)|m〉,
(2.8)

with wave vector and admittance as qm
z =

√
(nIIk0)2 − (mπ

a
)2, Y II

qm
z

= c0ρ
II
p

k0

qm
z

=
c0ρII

p√
n2

II−α2
m

respectively while αm = mλ
2a

. Am and Bm are the expanded wave amplitudes

that are to be solved for in the matching procedure.

In the lowest region (III) (z > h) the acoustic waves emerge and the fields, as in

Eqs. (2.7), are expanded out in linear diffracted Bloch waves with Tγ being the

transmission coefficient:

|pIII (z)〉 =
∞∑

γ=−∞
Y III

kγ
z

Tγ|kγ
x〉eikγ

z (z−h)

|vIII
z (z)〉 =

∞∑
γ=−∞

Tγ|kγ
x〉eikγ

z (z−h).

(2.9)

Clearly Eqs. (2.9) is a solution for waves travelling only in one direction, towards

increasing values for z. Before the mode matching procedure on air-borne sound

through a slit array continues, it will now become clear, how Eqs. (2.7-2.9) can be

exercised for an equivalent study, regarding elastic waves in solids, when transmis-

sion properties are sought through an array of subwavelength plates. To illustrate

this, it is convenient regarding Fig. 2.1 simply by interchanging the fluid regions

with a solid material and vice versa. Now we assume that the elastic wave is purely

transversal with a displacement (0, uy, 0) along the y-axis, that is, the elastic wave is

shear horizontally (SH) polarized and is described by Eq. (2.6). Furthermore, it is

assumed that no body forces are acting on the free surfaces, hence for an incoming

SH-wave (propagating in the xz-plane and displacing orthogonal to this plane), shear-

stresses will vanish on all free faces: ∂uy

∂x
= σxy = 0 regarding the plates (combs)
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and ∂uy

∂z
= σzy = 0 depicting vanishing displacement divergence at the adjacent half-

space planes (z = 0, h) that are separated by the plates. The transverse vibration

will thus be incident to the free surface and subsequently been guided trough the

plates. When applying the mode matching technique, uy and σzy are to be applied

and arranged similar as Eqs. (2.7-2.9) as these terms are continuous at all interfaces.

As one now may observe is that the formalism constituting either fluid-borne or SH

waves, will remain equivalent, hence the resulting physical behaviour are of similar

nature.

Going back to the fluid case, the matching conditions yield a linear system of equa-

tions for acoustic waves in liquids or gasses. At all interfaces the matching conditions

are applied on the pressure p while being projected over cavity modes 〈m′|, such as

on the fluid particle velocity vz that is projected over plane waves 〈kγ′
x |. It follows

from this, that all linear expansion coefficients in Eqs. (2.7-2.9) can be extracted,

when one first imposes continuity in pressure p at the openings and the endings

of the slits and secondly does so regarding the velocity vz though along the entire

unit-cell at the interfaces z = 0, h. Following this sequential scheme, one creates a

systematic top-down (from region I to III) wave mode coupling approach that with

given attributes (functions), owns the ability to describe the entire acoustical prob-

lem under study and yields a quantitative field representation through out all space.

Let us put this into equations. At the interface (z = 0) between region I and II) the

pressure and velocity continuity equations read:

Y I
k0

z
|k0

x〉+
∞∑

γ=−∞
RγY

I
kγ

z
|kγ

x〉 =
∑
m

Y II
qm
z

(
Am + Bm

)|m〉

|k0
x〉 −

∞∑
γ=−∞

Rγ|kγ
x〉 =

∑
m

(
Am −Bm

)|m〉,
(2.10)

which is nothing but the matching of Eqs. (2.7) with Eqs. (2.8). Again, the first

mode matched equation in Eq. (2.10) representing the pressure p is solely continu-

ous over the slit entrance while the second term in Eqs. (2.10) for the velocity vz

constitutes steadiness through out the entire interface z = 0. This being stated and

23



employed on Eqs. (2.10), leads to the following expressions:

Y I
k0

z
S0m′ +

∞∑
γ=−∞

RγY
I
kγ

z
Sγm′ =Y II

qm
z

(
Am + Bm

)
δmm′

δ0γ′ − Rγ′ =
∑
m

(
Am −Bm

)
S∗γ′m.

(2.11)

It has possibly been observed that the waveguide modes such as the plane waves, are

defined on a orthogonal basis: 〈m|m′〉 =
∫ 〈m|x〉〈x|m′〉dx = δmm′ and 〈kγ

x|kγ′
x 〉 =

∫ 〈kγ
x|x〉〈x|kγ′

x 〉dx = δγγ′ respectively. Hence, whilst imposing continuity, to an effi-

cient extend, Eqs. (2.11) are significantly simplified where the following definition

has been set: Sγm = 〈kγ
x|qm

x 〉 =
∫ 〈kγ

x|x〉〈x|qm
x 〉dx which is an integral, defining the

modal overlap between slit cavity modes qm
x and the free space plane waves kγ

x (see

appendix A). Out from Eqs. 2.11 we immediately see that the reflection coefficient

takes the following expression:

Rγ′ = δ0γ′ −
∑
m

(
Am −Bm

)
S∗γ′m , (2.12)

hence when solved for this function in Eqs. (2.11), we gather those terms into one

simple system:

2Y I
k0

z
S0m′ =

∑

m′

∞∑
γ=−∞

Y I
kγ

z
Sγm′S∗γm

(
Am′ −Bm′

)
+ Y II

qm
z

(
Am + Bm

)
δmm′ . (2.13)

In a similar manner continuity is preserved at the wave emerging interface (z = h),

between region (II and III) with pressure and velocity:

∑
m

Y II
qm
z

(
Ameiqm

z h + Bme−iqm
z h

)|m〉 =
∞∑

γ=−∞
Y III

kγ
z

Tγ|kγ
x〉

∑
m

(
Ameiqm

z h −Bme−iqm
z h

)|m〉 =
∞∑

γ=−∞
Tγ|kγ

x〉.
(2.14)

By this imposed steadiness at that particular interface, the pressure p is projected

over cavity modes 〈m′| and the velocity vz over plane waves 〈kγ′
x | just as in the latter
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case:

Y II
qm
z

(
Ameiqm

z h + Bme−iqm
z h

)
δmm′ =

∞∑
γ=−∞

Y III
kγ

z
TγSγm′

∑
m

(
Ameiqm

z h −Bme−iqm
z h

)
S∗γ′m =Tγ′ .

(2.15)

To this extend, as the 2nd part in Eqs. (2.15) reveals, a transmission coefficient of

the form

Tγ′ =
∑
m

(
Ameiqm

z h −Bme−iqm
z h

)
S∗γ′m (2.16)

is evident. Here with Eq. (2.16) substituted into Eqs. (2.15); all what remains is an

entire mode deduction at z = h that is nothing but:

∑

m′

∞∑
γ=−∞

Y III
kγ

z
Sγm′S∗γm

(
Am′eiqm′

z h −Bm′e−iqm′
z h

)
= Y II

qm
z

(
Ameiqm

z h + Bme−iqm
z h

)
δmm′ .

(2.17)

Before gathering Eq. (2.13) and Eq. (2.17) into a final system of equations, we

will define two quantities that are serving as a further reduction, in order to obtain

a high degree of analytical insight into the problem, which are the modal velocity

amplitudes at input (unprimed) and at the output (primed) side:

vm = Am −Bm

v′m = −(
Ameiqm

z h −Bme−iqm
z h

)
.

(2.18)

Substituting those two modal definitions into the continuity systems at the wave

incidence, Eq. (2.13), and wave emerging side, Eq. (2.17), a final compact linear

system of equations is unravelled:

(Gmm − εm)vm +
∑

m′ 6=m

Gmm′vm′ −GV
mv′m = I0

m

(Gmm − εm)v′m +
∑

m′ 6=m

Gmm′v′m′ −GV
mvm = 0

. (2.19)

This linear system of equations is the very foundation of all the structures described

within the framework of this thesis. With no loss of generality, as can be seen in
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the subsequent chapters this modal expansion technique will serve as the tool to

pursuit physical insight in the transmission study of sound being funnelled through

subwavelength apertures. If this system is solved for the unknown modal velocities

vm and v′m an entire field mapping can be obtained, comprising far-field and near-field

distributions. Moreover, the energy flux through the structure can be described by

the acoustical analogy of the EM Poynting vector which is nothing but the acoustical

intensity:

Isound =

∫
Re〈x|p〉〈x|vz〉dx. (2.20)

Weather the transmittance is sought in the near-field (through the hole) or in the

far-field, will in the absence of viscous losses and vibrational energy absorption (PRB-

approximation) be irrelevant. In other words, as a fraction of the acoustical intensity

Eq. (2.20) at the holes entrance and emission side, we get:

Tnear =
1

Yk0
z

Re
( ∑

m

Y II
qm
z

(|Am|2 − |Bm|2)
)

=
1

Yk0
z

Im
( ∑

m

GV
mvmv′∗m

)
. (2.21)

This equation was restated with the definitions in Eq. (2.18), for more details see

appendix A. Eq. (2.21) is consequently equal in the far-field as no acoustic energy

experiences attenuation, hence:

Tfar =
1

Yk0
z

Re
( ∞∑

γ=−∞
Y III

kγ
z
|Tγ)|2

)
=

1

Yk0
z

Im
( ∑

m,m′
Gmm′vmv′∗m′

)
. (2.22)

The mathematical functions within Eqs. (2.19) will be elucidated in the following

section, so far we solely want to explain those functions in a qualitative picture:

In the inhomogeneous set of linear equations in Eq. (2.19), representing the side

of sonic irradiation I0
m, components of acoustic self-radiation Gmm for the m − th

cavitymode, the mutual sound interaction function Gmm′ between mode m and mode

m′ via diffracted orders and the interface coupler GV
m at the m− th mode such as the

bidirectional field propagation function εm are found. For the wave emerging side of

the structure, an equivalent, though homogeneous system is assembled.

26



2.4 Transmission through a single slit

As has already been detailed in the introductory part of this thesis, stimulated by

the EOT phenomena observed in 2D arrays of subwavelength holes, a renewed in-

terest in the EM properties of subwavelength arrays of slits perforated in metallic

films has been initialized. Studying slit arrays would ease the understanding of EOT

through holes, but it was also a natural transition to follow, to expect that high

transmission also would appear for those structures. Slit arrays have thoroughly

been analyzed theoretically, where the two types of transmission resonances where

predicted: coupled SPPs resonances and slit waveguide modes [78]. Experimental

verification of the existence of these transmission resonances has been reported in

the microwave regime [79]. In order to give a clear physical explanation of the origin

of the extraordinary transmission peak from a metallic slit grating, Takakura [80]

analyzed the interaction of TM-polarized waves with a single subwavelength metal-

lic slit. The results show, for a thick enough conducting plate, a series of resonant

tranmission peaks with growing wavelength appear [23, 81]. Conclusively the exci-

tation of those standing wave modes (Fabry-Perot (FP) resonances) are responsible

for those transmission peaks in a single isolated slit, but among other mechanisms,

also for slit arrays.

In connection with sound absorbing panels and room insulation, transmission of

sound through arrays of variously shaped apertures but also isolated holes and slits

has already been of interest in the past [82–86]. The models presented were based

on lumped parameters containing aperture flow and radiation impedances, giving

rise to rather complex expressions which were not in favour for the physical insight.

Fig. 2.2 illustrates a single isolated subwavelength slit that is irradiated by sound,

which forms the subject for this section. In here we not only want to emphasize the

resonant modes which, as we will see later, give rise to enhanced transmission for

sound, but we wish to illustrate what unique features this structure provides. The

isolated slit from Fig. 2.2 again is subdivided into the 3 regions of wave expansions.
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Figure 2.2: Schematics of a single slit, made out of a perfect rigid body, impenetrable
for air-borne sound waves impinging on the structure.

When modal expansions are employed, we reach to a similar system of equations

as presented in the latter section 2.3, though with the important attribute of being

devoted to a non-periodic (finite) structure - a single isolated scatterer:

(Gslit − ε)v −GV v′ = I0, (Gslit − ε)v′ −GV v = 0. (2.23)

As we consider a finite structure (Λx →∞), the discrete diffraction modes need to be

restated into a continuous spectrum in kx. As a consequence of this, the components

in Eqs. (2.23) are being formulated under the fundamental slit waveguide mode

approximation m = 0 at normal incidence (k0
x = 0):

I0 = 2i (2.24)

GV =
1

sin k0h
(2.25)

ε =
1

tan k0h
(2.26)

for nI = nII = nIII ,

Gslit = 〈m = 0|G̃|m′ = 0〉 (2.27)

with operator G̃:

G̃ =
i

λ

∫ ∞

−∞

|kx〉〈kx|√
k2

0 − k2
x

dkx. (2.28)
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As we are mainly interested in subwavelength apertures, we consider that only the

fundamental propagating slit-eigenmode is excited. This mode converges very fast

in the ME for a periodic case, see section 2.6. Eqs. (2.24-2.26) are very simple

functions that straightforward can be implemented. Eq. (2.27) on the other hand

can either be solved semi-numerically by rewriting it to the given form:

Gslit =
iaxk0

2π

∫ ∞

−∞

sinc2(kxax

2
)√

k2
0 − k2

x

dkx, (2.29)

or restating it into a Greens function on a position basis (ax → a):

Gslit → Gx,x′ = 〈x|G̃|x′〉 =
iπ

λ

∫ a/2

−a/2

∫ a/2

−a/2

H
(1)
0 (k0|x− x′|)dxdx′ (2.30)

where H
(1)
0 is the zero-order Hankel function of the first kind. This function in turn

can be further simplified for small or very large arguments, regarding the wavenumber

and the slit width ka. Fig. 2.3 illustrates the transmission spectrum along with the

Figure 2.3: Transmittance spectrum for a single slit and the locations of the non-
trivial solutions for a structure of thickness h = 5 mm and slit width a =0.02h

non-trivial solutions as of the vanishing determinant in Eqs. (2.23). The geometries
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which are given in the figure caption are chosen in order to justify the assumption

of an inviscid fluid and to present a broad range of resonances. Indeed Fig. 2.3

reveals a broad distribution of discrete resonances which is linked to the growing

normalized-to-area transmittance. E.g., for the peak at the highest wavelength a

significant amount of sound is squeezed through the slit, as the transmitted intensity

is about 35 times larger than the one impinging directly at the slit opening. The

spectrum depicting non-trivial solutions, |Gslit− ε| − |GV | = 0, has been normalized

with sink0h, which indicates the influence of diffraction, marking the variance of the

actual solution to an exact FP resonance. This is the origin of the transmission

peaks at around sin k0h = 0, λ = 2h
1
, 2h

2
, 2h

3
...2h

m
). This slight variance can be

overcome within the long wavelength approximation, in other words when we choose

an extremely small slit such that λ À a. The proof of that statement is hidden in

the determinant when |v| = |v′| which makes room for a further reformulation of the

Eqs. (2.23) into the following resonant condition:

tank0h =
2Re(Gslit)

|Gslit|2 − 1
. (2.31)

In the limit of extremely small apertures (Gslit → 0), Eq. (2.31) predicts the ap-

pearance of transmission peaks close to the condition sin k0h = 0 which we have

already seen from Fig. 2.3. It is even possible to extract some analytical expres-

sions for the normalized-to-area transmittance at resonance (Tres) for the isolated

single slit. By incorporating the resonant condition, Eq. (2.31), into the equation

Tslit = 1
a
Im

(
GV vv′∗

)
normalized to the slit width, it is found that:

Tres =
|I0|2

4Im(Gslit)
. (2.32)

As mentioned before and demonstrated in Eq. (2.31), we can isolate the FP reso-

nances when we spectrally are located in the long wavelength regime compared to

the size of the aperture. We can unambiguously demonstrate that for the extreme

conditon (Gslit → 0), though restricting ourselves to a realistic case such that λ À a,

propagating waves k0 ≥ kx within the system dominate the event and the overlap
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function is nothing but Gslit ≈ iaπ
λ

which to the end, simplifies Eq. (2.32) into:

T slit
res =

λ

πa
. (2.33)

This expression is an accurate estimation for the linear growth in the transmittance

for sound funnelled through narrow slits, which is a very interesting analytical result,

as it implies an growth in T slit
res as the resonant wavelength is increased. In the EM

case, there is no broad range of cavity transmission resonances for subwavelength

holes, due to the existence of a cut-off wavelength. However, this is not the case for

a single slit and p-polarized light that is similar to the current findings. Fig. 2.4 serves

Figure 2.4: Transmittance spectra for single slits of three different geometries as
given in the figure.

as a demonstration for the linear growth of the transmittance with the wavelength,

but also validates the exact analytical geometry-dependent prediction, given in Eq.

(2.33). In that respect we are examining the sound transmission through a plate of

constant thickness (h = 5mm), but with different slit widths as indicated in Fig. 2.4.

Our interest is devoted to spectral regimes of wavelengths being larger than a. For

three different sets of slit-width a = (0.2, 0.1, 0.05)h a growing transmittance with
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wavelength for all cases is to be observed. Here Eq. (2.33) has been employed with

the appropriate values for the slit width a, giving rise to a line that exactly matches

the transmittance peaks for all wavelength. What might seem counter-intuitive but

evident, is the increased slope with smaller values for a. The FP modes, sink0h = 0,

which dominate the transmission spectra are better matched (see Fig. 2.4) the smaller

the slits are, which is not surprising as that particular resonant condition easily is

obtained for vanishing diffraction coupling (Gslit → 0). This condition is achieved

when the aperture is very small, and explains the shift towards the exact resonant

locations λ = 2h, h and 2
3
h. In relation to this, Fig. 2.5 surprises us only very little as

Figure 2.5: Modulus of the complex pressure field plotted for a single isolated slit,
corresponding to λ = 2h. (Red: Max, Blue: Min).

we now have understood the resonant condition of an isolated single slit, that is due

to the excitation of a standing wave mode within the slit. In here we have chosen to

illustrate to lowest mode for the smallest aperture (a = 0.05h) from Fig. 2.4. To this

end, we can hereby confirm on the similarity in single subwavelength slits drilled into

PEC for the study of EM waves, compared to our acoustical case. It is also clear

that this isolated aperture, forms a solid foundation in order to study the periodic

arrangements of slits, as one of the main mechanisms (FP mode) for enhancing the

very intensity of sound funnelled through these narrow periodic openings, is not

governed by the periodicity contained.
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2.5 Transmission through a single hole

This section deals with the second geometry for sound transmission studies. In 2004

A. Degiron et al. [87] presented an experimental study regarding the influence of hole

shape on the optical transmission properties of a single subwavelength hole. Here

it was demonstrated that transmission through a rectangular hole presents strong

polarization dependencies and higher transmittance than square or circular hole with

the same area. It was also shown that an isolated rectangular hole would support

transmission resonances in the subwavelength regime. One year later Garcia-Vidal

et al. [88] theoretically predicted that one of these resonances in a PEC appeared

near the cutoff wavelength and that all discrete transmittance peaks were controlled

entirely by the geometries such as the side of the hole. Additionally with an dielectric

filling inside the aperture, the transmittance can be further tuned and increased [89].

Fig. 2.6 shows the diagram of a single rectangular hole of sides ax and ay perforated

Figure 2.6: Schematics of a single isolated hole, made out of an perfect rigid body,
impenetrable for air-borne sound waves impinging on the structure.

on a perfect rigid steel plate of thickness h, which is being irradiated by sound

under normal incidence, exactly as in the preceding section. Continuity obviously

also prevails when a holey structure is examined, in short we can conclude that the

formalism derived in previous sections, easily applies to the present case. The overlap
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between the incident sound field and the fundamental waveguide mode is written as:

Ghole =
iaxayk0

(2π)2

∫ ∞

−∞

∫ ∞

−∞

sinc2(kxax

2
)sinc2(kyay

2
)√

k2
0 − k2

x − k2
y

dkxdky, (2.34)

which is very similar to the 1D case, see Eq. (2.29). First, we analyse the case of a

square hole of side a = 1.06mm and thickness h = 2.0mm (Geometries from a recent

experiment [90]), which presents the same area as the circular holes forming the

2D array studied in [90]. In the inset of Fig. 2.7, a contour-plot of the normalized-

to-area transmittance (normalized to the acoustic energy flux impinging directly

at the hole opening) for a normally incident plane wave is shown as a function of

wavelength and h. A set of resonances emerge in the transmission spectrum whose

peak wavelengths depend almost linearly with h, suggesting a Fabry-Perot type

origin. Although the existence of these resonances were reported many years ago for

circular [91] and rectangular [92] holes, little attention has been paid to analyse in

detail their physical origin. The lower panel of Fig. 2.7 illustrates the predictability

of those resonances by means of the determinant, but as the hole is only slightly

smaller than the wavelength, we find a discrepancy between the exact location for

FP modes (dashed vertical lines) and the actual resonant transmission peaks.

In the following we are going into the physics involved, by choosing geometries similar

to the ones for a isolated slits, presented in Fig. 2.4 but for quadratic holes (ax = ay).

We have calculated the spectral transmittance curves which can be observed in

Fig. 2.8. Also in this figure, when comparing to the previous evaluation in Fig. 2.4,

we see that the normalized transmittance grows with wavelength. Interestingly,

it seems that all peaks for the chosen values of ax, ay, coincides in their spectral

locations with the transmittance peaks for the isolated slits. Mathematically we

have already proven this indirectly, by deploying the resonant condition Eq. (2.31).

Analogous to the slit, in the long wavelength limit (λ À ax, ay) for very small holes,

the overlap function Ghole → 0 which in turn isolates the FP condition in Eq. (2.31).

Consequently, the FP mode only depends on the metal thickness, which explains
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Figure 2.7: Transmittance spectrum for a single hole and the locations of the non-
trivial solutions for a structure of thickness h = 2 mm and a square hole of size
a =1.06mm

the agreement in the spectral peak locations when comparing Fig. 2.4 and Fig. 2.8.

Note here, for the case with the smallest holes, ax = ay = 0.05h, we observe a

precise matching of λFP = 2h
m

which also holds true for the slit. However, a distinct

difference has to be borne in mind, which is the quadratic nature of the overlap

between diffracted waves and the fundamental hole mode. Because propagating

waves k0 ≥ kx, kx within the system are dominant, the overlapping function reads:

Ghole ≈ 2iaxayπ

λ2 . This namely, with the condition Tres = |I0|2/4Im(Ghole) is giving

35



Figure 2.8: Transmittance spectra for single holes of three different geometries as
given in the figure.

rise to a quadratic growth in the transmittance with respect to the wavelength:

T hole
res =

λ2

2πaxay

. (2.35)

In Fig. 2.8 where we have drawn the curves for continuous wavelength in Eq. (2.35)

a good match with the peaks is evident for all three examples. In all cases this

quadratic growth is clearly visibly, underlining the explicit difference between holes

and slits with simple analytical expressions.

2.6 Transmission through a slit array

In this section we apply the theory derived to study the transmission properties on a

simple structure, such as the initially proposed slit array. As has been mentioned in

section 2.4, extensive work on sound transmission through periodic arrays of aper-

tures has been elaborated in connection with sound sealing [85, 93]. In the pursuit of

understanding the acoustical analogy of the EOT a quickly growing community has
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emerged, dealing with theoretical but also experimental aspects on periodic struc-

tures. Slit arrays as the schematics in Fig. 2.1 depicts, have been fabricated out of

solid steel or brass with typical geometries in the mm range. The designated PRB

approximation along with the disregard of viscous losses has, as reported in several

experimental works such as [90, 94], demonstrated to be a valid approximation in

the high kHz to low MHz regime, when the structure is immersed in air or water.

This fact also applies for the two dimensional structure which will be highlighted in

a subsequent section. In these mentioned experiments, sound transmission proper-

Figure 2.9: Convergence study with a normalized-to-unit cell transmittance spec-
trum for a slit array. The slit width a = 0.3Λ whereas the slit array thickness
h = 1.4Λ. The upper panel is for different number of diffraction orders at the funda-
mental waveguide mode (m = 0). Lower panel: Fixed number of diffraction orders
(γ = 0) for different waveguide modes. The wavelength is scaled with the period Λ
of the slit array.

ties solely controlled by geometrical parameters have been observed as we will see in
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the following. Fig. 2.9 illustrates a convergence study on the transmission of sound

through a subwavelength periodic slit array. Before getting into the details, the

terms in Eq. (2.19) are highlighted:

I0
m = 2iY I

k0
z
S0m (2.36)

GV
m =

Y II
qm
z

sin qm
z h

(2.37)

εm =
Y II

qm
z

tan qm
z h

(2.38)

Gmm′ = i

∞∑
γ=−∞

Y
I/III

kγ
z

Sγm′S∗γm. (2.39)

Eqs. (2.36) in the inhomogeneous term of Eqs. (2.19) represents a function of sonic

irradiation which basically is the overlap of the incident wave with the slit waveg-

uide mode m. Eqs. (2.37,2.38) are related to wave motion within the slit by the

waveguide eigenmode m which can be deduced from the system of equations, hence

GV
m is coupling the incident to the emerging field which pretty much is explained

by the fact that this simple trigonometric function links the modal fields vm and v′m

between each other. On the other hand, Eq. (2.38) describes the bidirectional wave

motion within the slits, as this function both governs coupling between the input

and the output sides in the positive z-direction but also in the negative direction.

Finally, as it has already been mentioned before, the overlap function Gmm′ at either

z = 0 or z = h (refer to the admittance in Eq. (2.39) with corresponding index)

reflects the radiation that the waveguide mode m is emitting into modes m′ whilst

being coupled to diffracted order γ. Having control over the entire system, the modal

fields can be solved, followed by the evaluation of the amplitudes Am, Bm which are

further deduced in appendix A. Note that so far no further simplifications have been

applied within this formalism, generally speaking; each individual layer properties
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regarding the mass density and speed of sound are preserved, hence e.g. an gas/fluid

filling or backing incorporated within the slit array is possible.

Accurate simulation of the current problem is a crucial theme, hence to that aim

we highlight the dependence of both the number of waveguide modes and diffrac-

tion orders. Fig. 2.9 clearly shows that the specular mode (γ = 0), although not

being convergent, already carries the characteristics peaks, that are found in the

convergent case, (γ = 5). Remarkably by inspecting the lower panel in that figure,

it becomes distinct that fields inside subwavelength apertures, to a quantitative and

qualitative degree becomes convergent when only the fundamental waveguide mode,

m = 0, is taken into account. This fact builds the very foundation on simplifying the

problem by several means and providing analytical insight into the problem, which

will be highlighted next. First, as of the absence of losses and the resonant interac-

tion with the solid structure, all dimensions are scalable, hence, we have normalized

all geometries to the period. Fig. 2.9 renders the appearance of a sharp drop in

the transmission, exactly when the wavelength approaches the period λ ∼ Λ. This

feature (minima) is known as the Wood-Rayleigh anomaly which comes about when

the diffraction order become grazing, in other words, when the diffracted waves are

tangential to any kind of holey surface or groove grating consisting of periodic inden-

tations. This appears when a diffraction order (±1, 0) becomes evanescent (kz = 0).

The admittance in Eq. (2.39) has a singularity at exactly this location making Gmm′

diverge at this Wood-Rayleigh anomaly (section 2.7 for more details). This mini-

mum is accompanied by a strong peak arising slightly above the period (λ ∼ Λ),

which is connected to the excitation of surface modes. How this and all the other

resonant peaks seen in Fig. 2.9 are explained with mathematical words, becomes

transparent if we apply the knowledge gained from the convergence study, into Eqs.

(2.19). In the following we shall derive an expression that governs the type of wave

the present 1D system can sustain. As already mentioned, the simplest structure

which comes the closest to a slit array is nothing but a groove grating which carries
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the same type of resonances like the present structure. Structured PEC surfaces

are known to support the existence of the so-called spoof surface plasmon polaritons

(SPPs) or designer plasmons [28, 29]. Kelders et al. have both experimentally and

theoretically shown that a 1D array of grooves that are drilled into a PRB made out

of steel, supports the formations of surface waves for sound. Although the surface of

a perfect rigid body presents no surface modes, when it is perforated with a periodic

array of indentations, surface modes are built up. This finding has been reported by

Kelders and co-workers [95, 96]. If the plate is drilled with a 1D array of slits, these
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Figure 2.10: Convergence study with a dispersion relation plot for a groove grating.
The slit width a = 0.3Λ whereas the slit array thickness h = 1.4Λ. For a fixed number
of diffraction orders convergence is sought for waveguide modes up to m = 5.

acoustic surface modes are always strongly coupled via the waveguide modes in the

slits. The result is a mode which is guided along the plate and decays outside it,

i.e. an acoustic guided mode, or in simple terms, an ASW. The theoretical formal-

ism previously described can be used to calculate the dispersion relation (frequency
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versus kx) of these acoustic guided modes. The formalism with Eqs. (2.19) can

straightforwardly be applied to groove gratings by rejecting the homogeneous term

as of no wave emerging interface, and cancelling the terms responsible for the exter-

nal irradiation I0
m as only bound surface states are sought, such as GV

m that can’t

provide interface coupling to the output side due to the absence of perforations:

(Gmm − εm)vm +
∑

m′ 6=m

Gmm′vm′ = 0. (2.40)

Within the first Brillouin zone, Fig. 2.10 illustrates the convergent surface bands

that lie in the evanescent (kx > k0) regime of the dispersion relation. Again the

fundamental waveguide mode is a very good approximation, though the specular

mode (γ = 0) seems only to have good accuracy in the nearest vicinity of the

sound line (k0 = kx) while for lower wavelength, only a qualitative but certainly

physical meaningful picture is provided. Therefore it seems, that a groove grating

in its simplest approximation, may tell us what physical features are carried in the

transmission study for an array of slits provided that:

λ > Λ À a (2.41)

is fulfilled. Within this inequality, we can further reduce both Eq. (2.12) and Eq.

(2.40) with m = γ = 0 into:

R0 =
1 + ik0

kz
S2

00tank0h

1− ik0

kz
S2

00tank0h
(2.42)

and

G− ε = 0 (2.43)

respectively (G00 → G), with the overlap for very narrow slits (Eq. (2.41)), S2
00 ≈ a

Λ
.

Whether the divergence in Eq. (2.42) is sought, or some simple algebraic manipula-

tion is employed on Eq. (2.43), both procedures place us to the same approximated

dispersion relation for bound surface states, kz = i
√

k2
x − k2

0:

kx = k0

√
1 +

a2

Λ2
tan2k0h , (2.44)
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being the m = γ = 0 band in Fig. 2.10. This expression for the geometry in-

duced surface modes (for cylindrical structures see Chapter 3) plays a key-role in

understanding the resonant transmission peaks that can be observed in Fig. 2.9. To

illustrate why we concentrated on a groove grating, let us come back to the slit array

case and finally simplify the system of equations in Eqs. (2.19) into (m = 0):

(G− ε)v −GV v′ = I0

(G− ε)v′ −GV v = 0
. (2.45)

In the case of subwavelength slits where we seek bound modes, the system of Eqs.

(2.45) is now driven by an evanescent wave of momentum kx larger than k0. In this

particular case where diffraction effects are neglected, G in (2.45) is a real magnitude,

G = a
Λ

k0√
k2

x−k2
0

, and the denominator can be exactly zero at the condition:

√
k2

x − k2
0

k0

=
a

Λ

sin k0h

cos k0h± 1
(2.46)

where the sign (+) must be taken when sin k0h > 0 and sign (−) when sin k0h < 0.

Eq. (2.46) gives the dispersion relation of the acoustic guided modes for a 1D periodic

array of slits in the effective medium limit (λ >> Λ, a). Introducing some new

geometries as illustrated in the upper panel of Fig. 2.11, we see the same kind of

shape in the transmittance spectra when comparing to Fig. 2.9. When the overall

plate thickness h of the slit array is increased, apart from the peak close to the period

that is associated to the bound surface modes, we observe an increase in the number

of wide banded peak, fulfilling the FP condition (sin k0h = 0, λ = 2h
1
, 2h

2
, 2h

3
...2h

m
),

which basically is due to an acoustical excitation of standing waves within each slits.

In Fig. 2.11 we show the dispersion relation from Eq. (2.46) (white lines in the right

part of the panel) for the geometrical parameters of the structure analyzed with

h = 0.9Λ. Two regimes are clearly distinguishable: a linear part close to the sound

line (ω = ckx) and flat parts that are associated with the FP cavity resonances

(sin k0h = 0). The important point to realize is that if λ < 2Λ, these guided
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Figure 2.11: Normalized-to-unit-cell transmittance spectra for a normal incident
plane wave impinging on an array of slits with geometries as illustrated. Lower
panel illustrates a transmittance and an acoustic guided mode dispersion relation
for the structure of thickness h = 0.9Λ, obtained with Eq. (2.46).

modes become leaky and can be excited by an impinging propagating plane wave.

The connection between these leaky guided modes and the transmittance peaks is

highlighted in the same figure. In the left part of this panel transmittance versus

wavenumber and kx within the sound cone is rendered (solved including diffraction).

It is clear that the location of transmittance peaks can be extracted by just folding

the guided modes bands inside the sound cone. We have checked when comparing the

band diagrams for groove gratings and slit arrays, that they are very similar. There

are slight discrepancies in the flat part of the curves, illustrating different binding
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characteristics but in both cases, within the long wavelength limit approximation,

Eqs. (2.41), both cases yield remarkable insight into the physics involved despite

of the absence of diffraction effects which involves the possibility for Bragg folding.

The bound surface states or guided modes as has been highlighted here are not truly

surface modes as the two surfaces of the plate are always connected via a propagating

wave. This fact provokes that acoustic guided modes always hybridize strongly with

the FP resonances associated with slit cavities. The flatness of the curves linked

to FP modes, also illustrates the angle independence of that particular mode. In

other words, unlike the resonance closely located to the period, when varying the

angle of incidence φ for sound impinging on the structure, enhanced transmission

linked to those standing wave modes, prevails. In order to confirm the reasoning on

the resonant nature regarding the enhanced acoustical transmission through slits,

we have conducted pressure field computation for three different spectral locations,

corresponding to the peaks seen in the upper panel of Fig. 2.12, with geometries tuned

to exhibit those three features. From the three lowest panels, the hybrid nature

of ASWs and FP standing waves is unambiguous observable. The time averaged

acoustic pressure |p| mapped within the unit cell of the slit-array at a wavelength

λ = 2.5Λ illustrates the distinct occurrence of a high pressure concentration of lowest

order m = 1 solely inside the slit, which is the first Fabry-Perot resonance excited,

exhibiting one node at z = h
2
. When moving to lower wavelengths towards the

period, the number of nodes and antinodes increases (m = 2, 3) corresponding to

λ = 1.3Λ, λ ≈ 1.0Λ respectively. At a wavelength close to the period of the slit

array λ ≈ Λ, one observes an increasing confinement along the structure input and

ouput surfaces, which clearly indicated the correspondence to ASW coupling.
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Figure 2.12: Normalized-to-unit-cell transmittance spectra for a structure with ge-
ometries given in the figure. The lower panels plot the modulus of the pressure fields
inside the unit-cell of the structure, calculated at the transmission peaks located at
λ ∼ 1.0Λ, λ = 1.3Λ and λ = 2.5Λ. (Red: Max, Blue: Min).

2.7 Transmission through a hole array

In this section we wish to awake the readers attention on the 2D analogy of the pre-

vious study: sound transmission through subwavelength hole arrays. As has already

been hinted at throughout the latter section, the very fundamental physics is not

differing significantly from the 1D case. From fundamental theoretical acoustics, it

is known that with, e.g., rectangular waveguides, unlike for EM waves the funda-

mental cavity mode is always propagative. Recall waveguides for optical systems in
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transmission lines, fibers and more, weather the guides are rectangular or cylindrical

in shape, the lateral dimensions of the waveguides define the wavelength at which

light can no longer propagate through the aperture. This wavelength is known as

the cutoff wavelength λc. When the incident wavelength λ > λc the transmission is

exponentially small, characterizing the non-propagating regime [77]. Within those

constraints we wish to demonstrate the acoustical analogy of the EOT through an

array of subwavelength holes and by this show that transmission resonances prevails

in the absence of a cutoff. In fact the acoustic transmission study through holes is

to a great extend similar to the slit array case that was highlighted in the previ-

ous section and discussed in several works [90, 97, 98]. Those findings did not only

demonstrate that sound always propagate inside holes, but Estrada et al. showed

how diverse the problem is from EOT when elastic plate motions are excited.

Let us initially start to indicate how the same formalism derived previously can be

extended to 2D perfect rigid hole arrays. If again, the structure is split up into

Figure 2.13: Schematics of a periodic array of holes, made out of a perfect rigid
body, impenetrable for air-borne sound waves impinging on the structure.

the wave incident, hole, and wave emerging part as illustrated in Fig. 2.13, in the

following it is displayed how the formalism with only minor modifications prevails.
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In Region I the pressure field p is expressed in terms of real space Bloch waves:

〈r|||kβ
||〉 =

eikβ
||r||

√
ΛxΛy

, (2.47)

with r|| = (x, y) and the parallel momentum associated with Bloch mode β is

expressed as (kβ
||)

2 = (kγn
|| )2 = (kn

x)2 + (kγ
y )2 with discrete diffraction orders n

and γ (n, γ = −∞, ..0..,∞) comprising in-plane scattering where kn
x = k0

x + 2π
Λx

n,

kγ
y = k0

y + 2π
Λy

γ, hence the z-component of the wave vector is nothing but:

kβ
z =

√
(nIk0)2 − (kβ

||)
2. (2.48)

Already here we see that wave interaction taking place in In Region I , is not differing

much from the slit array case, hence Eqs. (2.7) is slightly modified into the following:

|pI (z)〉 =Y I
k0

z
|k0
||〉eik0

zz +
∞∑

β=−∞
RβY I

kβ
z
|kβ
||〉e−ikβ

z z

|vI
z (z)〉 =|k0

||〉eik0
zz −

∞∑

β=−∞
Rβ|kβ

||〉e−ikβ
z z.

(2.49)

Note also that now the orthogonal Bloch wave basis within the unit cell Λx × Λy is

written as:

〈kβ
|||kβ′

|| 〉 =

∫
〈kγn
|| |r||〉〈r|||kγ′n′

|| 〉dr|| = δγγ′δnn′ . (2.50)

In what follows we demonstrate that the waveguide modes within a subwavelength

hole aperture, for the acoustical case significantly is different when comparing to the

optical case. As has already been mentioned before, the presence of a cutoff frequency

is manifested by the dominant fundamental waveguide mode as it is the least strongly

decaying wave surrounded by PEC interfaces, hence for TE (transverse electric)

polarized modes it becomes qz =
√

εhk2
0 − π2/a2, with εh being the permitivity

within the hole and the cutoff wavelength λc = 2
√

εha. Acoustical eigenmodes

within a general cavity consisting of perfect rigid walls can be expressed with the

following spatial eigenmodes comprising parallel momenta:

〈r|||α〉 =

√
(2− δ0m)(2− δ0l)

axay

cos qm
x

(
x +

ax

2

)
cos ql

y

(
y +

ay

2

)
, (2.51)
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where (qα
||)

2 = (qml
|| )2 = (qm

x )2 +(ql
y)

2 = π2(m2

a2
x

+ l2

a2
y
) and as a results of this, the wave

vector parallel oriented to the holes reads qα
z =

√
(nIIk0)2 − (qα

||)
2. Here it is clear

that the fundamental waveguide mode in the absence of losses never experiences

attenuation; the wave is always propagative. The pressure and the z-component of

the velocity within a hole, therefore reads as follows:

|pII (z)〉 =
∑

α

Y II
qα
z

(
Aαeiqα

z z + Bαe−iqα
z z

)|α〉

|vII
z (z)〉 =

∑
α

(
Aαeiqα

z z −Bαe−iqα
z z

)|α〉,
(2.52)

now with the basis function:

〈α|α′〉 =

∫
〈qml
|| |r||〉〈r|||qm′l′

|| 〉dr|| = δmm′δll′ . (2.53)

Apart from the modified wave vector and admittance, the field in the wave emerging

side of region III remains equally as stated in Eqs. (2.9):

|pIII (z)〉 =
∞∑

β=−∞
Y III

kβ
z

Tβ|kβ
||〉eikβ

z (z−h)

|vIII
z (z)〉 =

∞∑

β=−∞
Tβ|kβ

||〉eikβ
z (z−h).

(2.54)

Now as all fields are expressed throughout all space, the modal expansion technique

can be applied appropriately just in a similar way as has been employed in the 1D

case. Continuity of the pressures is preserved through the holes, whereas the velocity

is continuous through out the 2D unit cell. After projecting the modes all terms and

set of equations are gathered into an equivalent system of equations, differing only

slightly from Eqs. (2.19):

(Gαα − εα)vα +
∑

α′ 6=α

Gαα′vα′ −GV
α v′α = I0

α

(Gαα − εα)v′α +
∑

α′ 6=α

Gαα′v
′
α′ −GV

α vα = 0
. (2.55)

48



With the new overlap integral Sβα = 〈kβ
|||qα

||〉 =
∫ 〈kβ

|||r||〉〈r|||qα
||〉dr||, the 2D con-

stituents from Eqs. (2.55) are:

I0
α = 2iY I

k0
z
S0α′ (2.56)

GV
α =

Y II
qα
z

sin qα
z h

(2.57)

εα =
Y II

qα
z

tan qα
z h

(2.58)

Gαα′ = i

∞∑

β=−∞
Y

I/III

kβ
z

Sβα′S
∗
βα. (2.59)

The overlap integrals can be found in the appendix A and as in the 1D case, all

expansion coefficients such as Rβ and Tβ and the modal fields vα, v′α can be obtained

when solving the system of Eqs. (2.55), describing sound being funnelled through

a hole array. Before a phenomenological study is initiated, it would be convenient

to strive for a simplified model, in other words, checking for a precise convergence

given by the fundamental mode approximation. Fig. 2.14 shows transmittance spec-

tra of sound penetrating a hole array which have converged. In here it is shown that

only a few waveguide modes and diffraction orders are sufficient in order to obtain

good accuracy. In this particular case of certain chosen geometries, we see that the

fundamental waveguide mode, even though not accurate, already carries all physical

important properties that one would expect from the knowledge gained from the

slit array study. In this sense, qualitative one observes a similar spectra, but let us

define this one precise. We now choose a set of geometries that are leading to a valid

and precise approximation by means of the fundamental hole waveguide mode (long

wavelength limit) and demonstrate by this how to explore the resonant attributes

that are giving rise to transmission peaks. As the FP type resonance (λ = 2h
m

)

plays a crucial role in transferring sound efficiently through structures consisting
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Figure 2.14: Convergence study of normalized-to-unit cell transmittance spectra for
a hole array. The hole square width ax = ay = 0.2Λ whereas the thickness h = 0.75Λ.
The upper panel represents different number of diffraction order at the fundamental
waveguide mode α = 0 (m, l = 0, 0). Lower panel: Fixed number of diffraction
orders β = 5 (γ, n = 5, 5) for different waveguide modes.

of subwavelength holes, we know that the thickness of the structure determines the

tuneability with ASWs and consequently the transmittance itself. When reformulat-

ing the system of Eqs. (2.55) into the long wavelength limit by taking into account

only the fundamental waveguide mode (α = 0):

(G− ε)v −GV v′ = I0, (G− ε)v′ −GV v = 0, (2.60)

these two equations of two unknowns can be employed to find the non-trivial solu-

tions, by taking the determinant of the matrix (non-indexed functions means α = 0).
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Figure 2.15: Transmittance spectra for an array of holes and the locations of the
non-trivial solutions for a structure of thickness h = 1.15Λ and a square hole of size
ax = ay = 0.15Λ

This leads to the following expression |G − ε| − |GV | = 0 which determines all lo-

cations giving rise to an enhanced acoustical transmission. Now we immediately

see how this condition when being fulfilled, determines the acoustical transparency

at resonance making the modal velocities |v| = |v′| equal. In order to normalize

the determinant we have scaled it with sink0h as illustrated in Fig. 2.15. In this

context, at a wavelength matching the period λ = Λ we see the first similarity

to the 1D counterpart, the slit array. The Wood-Rayleigh anomaly, which sets in

when the diffracted waves are tangential to the holey surface due to diffraction or-

der (±1, 0) becoming evanescent (kz = 0), is understood with Eq. (2.59) which has

a divergence due to the singularity of the admittance, that clearly can be seen in

Fig. 2.15, marked with a magenta vertical dotted line. The determinant is fulfilled

at all intersecting locations between the functions |G − ε| and |GV |. Care has just

to be taken with the normalization with sink0h, giving rise to another non-resonant
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root. The blue vertical dotted line, is at a wavelength slightly larger than the pe-

riod and stems from the excitation of ASWs, whereas the other features, marked

with green lines, underpins the standing wave excitation of order m = 1 and m = 2

at locations λFP = 2h and λFP = h respectively. Intuitively one can hereby see,

Figure 2.16: Spectral transmittance contour for an array of holes as a function of
the metal thickness, for a structure with square holes of size ax = ay = 0.15Λ. The
vertical white dashed line, corresponds to one example shown in Fig. 2.15.

in the absence of a cutoff within the holes, transmission of sound through a hole

array is in a distinct way reminiscent to the slit array case. Through this cur-

rent study, but also for the slit array case, we have seen how the variation of the

plate thickess h can tune the resonances of the holey structures, more precisely,

the hybrid nature of FP and ASW modes. Fig. 2.16 shows a transmission contour

(red: max, blue: min) plot where the thickness is varied over the entire frequency
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Figure 2.17: Pressure field maps (z = h)

for a hole array with the geometries spec-

ified in Fig. 2.15, plotted at the transmis-

sion peaks, spectrally located at: a) λ =

1.05Λ, b) λ ' 1.35Λ and b) λ = 2.70Λ.

spectrum. At this figure, a white line

is drawn, which is resembling the exam-

ple that has been depicted in Fig. 2.15,

clearly the minimum that is accompanied

by a transmission maximum close to the

period of the structure, and the two FP

resonances are following this line. Note

that the appearance of the peak associ-

ated with the excitation of ASWs is very

sensitive to the thickness, because when

concentrating at the location of the white

line, and slightly varying (±) the thick-

ness h, it is to be observed that the peak

either merges with an even or odd FP

mode. This sensitivity demonstrates the

complex interplay between the FP reso-

nances and the resonant features appear-

ing close to λ ∼ Λ in hole arrays. Fur-

ther increasing the thickness by many pe-

riods, clearly the growth in the number of

resonances appears. In the following we

wish to verify the resonance mechanism

involved by means of pressure field plots

|p| in the xy-plane. Fig. 2.17 hightligts

three pressure maps corresponding to the

full transmission peaks, with the geome-

tries as in Fig. 2.15, for all cases evaluated

at the wave emerging interface, z = h (the white dotted squares, corresponds to the
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quadratic drilled holes a = ax = ay). As the figure captions declares, following from

the top till the bottom, panel (a) corresponds to the pressure field for a wavelength

close to the period, whereas panel (b) and panel (c) illustrate pressure mappings at

the 2nd and the 1st FP mode respectively. Recalling Fig. 2.12 from section 2.6, it

was displayed how the hybridization of ASW (or guided modes) and FP modes took

place, by means of observing the field distribution in the sagittal (xz) plane. It was

clear, that the closer the wavelength approaches the period, the higher the degree

of hybridization. In other words, around λ ≈ Λ, the coupling of pure ASWs and

higher ordered standing waves within the slit is evident, whereas this coupling be-

comes weaker when moving away from that wavelengths. By several means, it has so

far been stated that the acoustical transmission phenomena through slit arrays own

similar properties as sound being funnelled through hole arrays. Clearly we showed

how the sensitivity of the narrow peaked resonance of wavelength around the period

(λ ≈ Λ = Λx = Λy), can be controlled by the thickness that in turn dominates

the standing wave modes inside the holes. In a similar way as was presented in the

previous section, we could illustrate a dispersion relation, but as of great similarities

in the resonance mechanisms, we demonstrate those features by the pressure field

mapping in the xy-plane. Below the holes in all three cases, we see a high inten-

sity of sound, confirming that within the holes, FP resonances are excited. It has

been checked, whether slit or hole arrays are under study, in the saggital plane the

field always exhibits an integer number of nodes (FP order). Conclusively, out of

Fig. 2.17a, it now becomes evident that either for slit or hole arrays, the excitation

of surface modes (panel (a) clearly depicts high pressure concentration between the

holes at the perfect rigid surface, whereas the other panels illustrate a high field

localization within the apertures only) plays and intrinsic role in squeezing sound

efficiently through holes that are much smaller compared to the wavelength.
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2.8 Transmission through a single slit surrounded

by corrugations

In this section we present another analogy from the field of optics and demonstrate

how the diffraction of sound in all directions when it emerges from a subwavelength

aperture can be controlled. In 2002, 4 years after the seminal work by Ebbesen and

co-authors, new routes for controlling the flow of EM waves were placed in the spot

light [99]. According to standard diffraction theory, apertures such as slits, much

smaller than the wavelength of light transmit very poorly and diffract light in all di-

rections uniformly. These two properties, transmission and diffraction are considered

fundamental constraints in manipulating light on a very small scale for technological

purposes. It has been shown that the pattering of the wave impinging and emerging

interfaces by a finite periodic set of shallow grooves yields an enhancement of the

transmission, but more importantly, the diffracted radiation could be compressed

into a narrow beam. In other words, light could be channelled in a well defined di-

rection as a collimated beam. This has both been demonstrated for a 3D structure,

the so-called bull’s eye, but also for a single slit surrounded by shallow corrugations

[100–102]. Fig. 2.18 is the structure under the present examination devoted to the

Figure 2.18: Schematics of a single slit surrounded by finite corrugations, made out
of a perfect rigid body, impenetrable for air-borne sound waves impinging on the
structure.

55



study of collimation and enhanced transmission of sound waves. This structure is

basically a modification of Fig. 2.2 as apart from the present single isolated slit,

furthermore the PRB is textured by indentations at the upper and the lower inter-

face. In order to study the sound phenomena theoretically, to a great extend, we

can deploy the theory derived in section 2.4, but here we need to introduce some

modifications, accounting for the rectangular groove cavity modes and their spatial

phase. Also in this example, we will neglect higher order waveguide modes within

the slit (and cavities), due to the small size compared to the wavelength. The wave

impinging and emerging side remains unaffected but region II containing indenta-

tions σ or σ′ is split up into the input, central and output sub-region. This is now

being presented in the following way with m = 0 and the same fluid in all layers:

The cavity mode at the input side reads:

|pin(z)〉 =
∑

σ

(
Aσe

ik0z + Bσe
−ik0z

)|0〉

|vin
z (z)〉 =

∑
σ

(
Aσe

ik0z −Bσe
−ik0z

)|0〉
(2.61)

if |x − xσ| < a
2

otherwise zero where xσ = σΛ is the phase, depicting the discrete

groove locations. The only location where sound can propagate through the entire

structure is within the central slit, which is when σ = 0:

|pcentr(z)〉 =
(
A0e

ik0z + B0e
−ik0z

)|0〉
|vcentr

z (z)〉 =
(
A0e

ik0z −B0e
−ik0z

)|0〉,
(2.62)

and subsequently emerge over the output rectangular grooves:

|pout(z)〉 =
∑

σ

(
Cσe

ik0(z−h) + Dσe
−ik0(z−h)

)|0〉

|vout
z (z)〉 =

∑
σ

(
Cσe

ik0(z−h) −Dσe
−ik0(z−h)

)|0〉.
(2.63)

At this stage we will not go through all the details of the matching procedure of the

modes, as it would not differ much from the latter case. We would end up with a

set of linear continuity equations, projecting the fundamental cavity mode in groove
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σ over diffraction orders to the fundamental cavity mode inside groove σ′. In order

to gather the entire continuity representation into a linear system of equations, we

need to set some basic definitions at first place. To do so one has to incorporate the

phase of the structure (see Eq. (A.8) from appendix A), in order to distinguish the

modal field above the slit or above the grooves.

∗For σ 6= 0, at the grooves:

At the bottom of the groove (hg = hin) at the impinging side, the velocity vin

vanishes due to the perfect rigid wall that the pressure field encounters, hence with

ψin = e2ik0hin the wave amplitudes read:

Bσ = ψinAσ. (2.64)

This statement is very useful in order to write down the identities for the modal field

at the input side:

vσ = Aσ −Bσ

εinvσ = Aσ + Bσ.
(2.65)

Similar we can unravel expressions for the modal velocity at the emerging side with

ψout = e−2ik0hout inside the groove (hg = hout):

Dσ = ψoutCσ (2.66)

From this we also deduce the definitions for the modal velocity field at the output

side:

v′σ = Cσ −Dσ

εoutv
′
σ = Cσ + Dσ.

(2.67)

εin and εout are equivalent to the bouncing back and forth of acoustic wave motion

inside grooves placed either at the input or output side respectively, as described,

e.g., in Eq. (2.26).
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∗For σ = 0, at the slit:

The central slit is reminiscent to the conventional case where we impose continuity

through an aperture. At that spatial location we match the groove cavity with the

slit waveguide modes and together with the definitions:

v0 = A0 −B0

v′0 = D0 − C0,
(2.68)

we hereby illustrate that the central slit, unlike for σ 6= 0, couples the incident to

the emerging field that is occurring via the interface coupling function GV :

A0 + B0 = ε0v0 + GV v′0

D0 − C0 = ε0v
′
0 + GV v0.

(2.69)

With all those terms defined in Eqs. (2.65-2.69) we can conclude the modal expansion

by gathering all terms into the following system:

(Gσσ − εin)vσ +
∑

σ′ 6=σ

Gσσ′vσ′ − δσ0G
V v′0 = I0

σ

(Gσσ − εout)v
′
σ +

∑

σ′ 6=σ

Gσσ′v
′
σ′ − δσ0G

V v0 = 0
, (2.70)

with:

GV =
1

sin k0h
(2.71)

εin =
1

tan k0hin

(2.72)

εout =
1

tan k0hout

(2.73)

ε0 =
1

tan k0h
. (2.74)

The irradiation term I0
σ and the overlap functions Gσσ′ are similar to the ones de-

rived in the previous section, now just containing a phase with regards to indentation
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σ (see appendix A). We start out with analysing the influence of having surface

corrugations at the input-, output or both input/output-sides of the plate, on the

transmittance T (λ). In all cases we are going to restrict the calculations to normal

incident radiation on an infinite plate consisting of a finite number of grooves with

period Λ. For all cases, we have compared all transmittance calculations to the one

of a plate without corrugations at both sides, which is nothing but the structure

presented in section 2.4. Initially though, we like to underline how to tune the reso-

nances supported by the slit surrounded by indentations. Fig. 2.19 shows results of

Figure 2.19: Normalized-to-area transmittance contour for the optimization of a
single single slit surrounded by corrugations. Normalized to the period Λ, the slit
and groove width is a = 0.08Λ, with optimized overall plate thickness h = 0.37Λ
and groove depth hg = 0.17Λ. (Red: Max, Blue: Min).

a kind of self-consistent optimization, when the depth of the shallow indentations hg

and the overall plate thickness h are varied. Fig. 2.19 are basically narrow windows

of the optimised case, but in the following we are going to highlight the three main

mechanisms to tune the structure. For a full graphically representation one should

refer to [101] for the optical analogy where the optimum is based on the same algo-

rithm.
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∗Slit waveguide modes, λ ≈ 2h:

The first component is governed by the thickness of the structure and has been

derived in section 2.4, which is the excitation of FP resonances in the isolated slit.

Later we will see that the introduction of indentations at the output side of the plate

does not affect these FP modes significantly.

∗Groove cavity modes, λ ≈ 4hg:

In order to boost sound through the central slit (σ = 0) mediated by the surface

corrugations, obviously v0 in Eq. (2.70) must be large, which is provided with large

vσ. For large values of vσ we can write : (Gσσ−εin) = 0 which in the long wavelength

limit λ À a is given for cosk0hg that is nothing but λ = 4hg

2n+1
where n is an integer.

∗In-phase radiation, λ ≈ Λ:

This is the well known resonance attributed to the excitation of surface modes of

wavelength close to the period. At that particular wavelength, all sound emitted

from the groove σ over groove σ′ reaches the central slit in phase. In section 2.6

we have examined the support of surface states by indentation on metallic plates in

great detail.

Fig. 2.19 clearly highlights the optimum value in the nearest vicinity of the pe-

riod (λ ≈ Λ), but in a later example we will demonstrate the interplay of all the

three resonant components. Fig. 2.20 illustrates the transmittance spectra through

a plate of thickness h = 0.37Λ, groove depth hg = hin = hout = 0.17Λ and slit width

a = 0.08Λ that is derived from Fig. 2.19. If the incident side of the plate, symmet-

rically around the central slit, is corrugated by a finite number of grooves, a strong

enhancement can be seen in T (λ) in the lower left panel of Fig. 2.20. We have cho-

sen to compare the transmittance through one slit in a non-corrugated plate (black

curve), with plates having three different numbers of pattering, N input
α = 5, 10 and 20
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Figure 2.20: Influence on the transmittance spectra dependent on the location and
numbers of surface corrugations with the geometries as specified in the caption of
Fig. 2.19. The curves of colour black, red, green and blue, corresponds to (0, 5, 10,
20)-numbers of indentations respectively.

(red, green and blue respectively). Before discussing further what can be observed

in that figure, little contribution to the total transmittance T (λ), when corrugating

the wave emerging side only is given for N output
α = 5, 10 and 20, seen in the upper

right panel. The two peaks that almost are unaffected by pattering the output side

are located about λ1 ≈ 0, 5Λ and λ2 ≈ 1, 0Λ. These peaks are associated to the ex-

citation of slit-cavity modes of the FP type, which occurs at λFP ≈ 2h
m

for m = 1, 2.

N input
α varying between 5, 10 and 20 gives rise to increasing T (λ) when the number

of grooves is raised. At a wavelength equal the period Λ one finds a transmittance
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minimum for all cases which is the Woods anomaly. This minimum is accompanied

with a strong peak arising slightly above the period (λ ≈ Λ) which is connected to

the excitations of ASWs due to the periodicity of the structure. Fig. 2.21 shows the

Figure 2.21: Near-field pressure on a plate with a single slit surrounded by corruga-
tions. The geometries are the same given in the caption of Fig. 2.19 and the field is
calculated for λ = 1.05Λ.

fingerprints of those surface mode as time averaged pressure in the near-field, in the

presence of both input and output indentations. For the case with N input
α = 20, T (λ)

is enhanced by a factor of 130, and with regards to N input
α = N output

α = 20 in the lower

right panel of Fig. 2.20, this factor even reaches a value of 140. It though has to be

announced, that the role of the output corrugations in combinations with grooves

at the input side as well, does not change the transmittance spectrum significantly.

However, apart from the fact that T (λ) generally is unchanged by virtue of addition-

ally structuring the output side, the property to influence the angular distribution

of sound and creating a collimated beam is highlighted in the following. The upper

panel in Fig. 2.22 illustrates a transmittance spectra containing all resonant features

mentioned before. Here two wide-banded FP modes located approximately around

λ = 2h ≈ 1.7Λ and λ = h ≈ 0.8Λ which surround the narrow sharp transmittance

peak close to the period are seen. Interestingly we also see the correspondence to

groove cavity modes λ ≈ 4hg which for this particular example is located at λ ≈ 0.8Λ,

at the second FP peak. With respect to the output corrugations, it will now become

clear, how they are affecting the formation of the beam, when the acoustic wave is
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Figure 2.22: Transmittance diagram for a plate of thickness h = 0.7Λ, groove depths
hg = 0.2Λ and slit width a = 0.08Λ. In this particular case the period Λ of the
system is 5 mm, giving rise to three resonances (λ1 = 4.01, λ2 = 5.56 and λ3 = 8.50
mm) to which we have calculated a pressure far-field map.

emerging the output side of the structure. For these three resonant peaks we have, as

illustrated in Fig. 2.22, performed a pressurefield mapping in the far-field. All field

plots clearly illustrate the presence of an enhanced acoustical transmission by virtue

of a strong (absolute) pressurefield confinement, at the slit, towards the output side

of the structure. At λ ≈ 5.5 mm though, an ASW is also excited at the output side

of the structure, this then is scattered away by the grooves, and interferes construc-

tively with the wave at the slit, giving rise to elongated focal spot in the far-field, as

has been illustrated in the lower central panel of Fig. 2.22. In order to create this

type of directional far-field beaming in an off-axis fashion, a simple aperiodicity is
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Figure 2.23: Off-axis pressure field mapping of sound through a structure with
same geometry as in Fig. 2.22, though with unequal groove distances: Λ(σ > 0) =
1.11Λ(σ < 0).

introduced in the groove spacing. Considering a corrugated plate, with the geome-

tries as depicted in Fig. 2.22. The discrete groove locations, as specified formerly,

are σ > 0 for grooves located to the RHS of the central slit (σ = 0) and σ < 0

representing the LHS, all placed at the structures input and output side, simulta-

neously. The main difference in the geometries compared to the one in Fig. 2.22,

are the periods: Λ(σ < 0) = Λ(σ = 0) and Λ(σ > 0) = 1.11Λ(σ < 0). For this

new structure comprising two different periodicities, as expected, one obtains two

Wood anomalies where these minimas are followed up with two transmission peaks,

deducing the excitation of ASWs of wavelengths λ close to these periods. As a con-

sequence of this anisotropic surface pattering, the collimated beam is inclined to the

side of larger period Λ(σ > 0) = 1.11Λ(σ < 0), as one may observe in Fig. 2.23, for

λ = 5.77 mm.

For a single slit within a perfect rigid plate, we have demonstrated how acoustic

waves efficiently can be transferred through this aperture. It has been shown that

the main mechanism giving rise to an enhanced transmission, is governed by to right

choice of geometrical parameters which allows the coupling to FP resonances. In
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particular by flanking the transmission with surface corrugations and allowing the

coupling with ASWs, we have shown that by means of pressure field mappings one

can associate far-field sound beaming with this resonant attribute. Moreover, it is

also possible to control the spatial location of an elongated focal spot in an off-axis

orientation, by texturing the surface corrugations with different periods at the LHS

and the RHS of the central slit.

2.9 Direct comparison to the optical counterpart

A complete landscape of the acoustic transmission properties of subwavelength aper-

tures has been presented throughout this chapter. We have studied the emergence of

FP resonances in single apertures and when these apertures are places in a periodic

fashion, a new type of transmission resonance appears in the spectrum. It has been

demonstrated that this resonance stems from the excitation of an acoustic guided

wave that runs along the plate, which strongly hybridizes with the FP resonances

associated with waveguide modes in single apertures. Hopefully the readers mind

has not got confused when swapping between the terms of acoustic guided modes

and the excitation of ASWs. In the field of optics it is clear and unambiguous.

Despite of controverse explanations, denials and false interpretations regarding the

identification of the origin of EOT in its first years [103], it is clear that surface

plasmons play a key role in transferring light efficiently from the input side of a

metal film (consisting of slits or holes) to the output region [104]. To the best of

our knowledge, the idea of corrugating an interface to create a fluid-borne ASW

was first proposed [95] and verified experimentally [96] by Kelders and co-workers in

connection with ultrasonic surface waves in porous media. In this study regarding

groove gratings, the kind of waves supported by this structure were identified as

ASWs even though they rather are reminiscent to the spoof nature of these waves

as of impenetrable structures, which is widely used in optics (spoof SPPs [28]). The

65



Figure 2.24: Tabular representation of the similarities between EOT and EAT

existence of geometry-induced EM spoof surface modes in 2D hole arrays perforated

on PEC films, is the origin of the EOT phenomenon in metals at the THz or mi-

crowave regimes. These EM modes have similarities with guided modes which we

have discussed for acoustic waves. However, there is a fundamental difference: in

the acoustic case, these modes are not truly surface modes as the two surfaces of

the plate, always are connected via a propagating wave. Nevertheless, those acous-

tic guided modes, hybridized with the FP resonances associated with the hole or

slit cavities, are the true mechanism for boosting sound transmission trough tiny

apertures. A summarizing table is illustrated in Fig. 2.24 highlighting the intrinsic

equivalences and differences between EOT and EAT.

2.10 Summary and future work

This chapter of the thesis dealt with a theoretical transmission study on sound

passing through subwavelength apertures, both in the finite and infinite case. With

a ME technique, in the long wavelength limit we have been able to gather analytical

insight into all structures in both 1D and 2D, and henceforth provided exact results

on the fundamental ingredients, playing a key role of transferring sound efficiently

through a perfect rigid hole array. Since the emergence of this topic, a vast amount of
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theoretical and experimental work has been employed to gain further insight into the

system, where modifications and other physical events have been the theme of study.

Extraordinary transmission of sound has been experimentally observed for a periodic

array of slits and circular holes in rigid plates made out of both steel and brass

[90, 94]. Other variations such as the acoustic bull’s eye structure or the compound

array of hole structures have been analyzed to present 3D collimation and FP peak

splitting respectively [105, 106]. In all cases the apertures analysed have been only

a few mm wide and resulted in excellent agreement between theory and experiment,

for lossless assumptions. This means that despite of small holes, drag forces inside

the apertures due to fluid viscosity which significantly would lower the transmittance

efficiency, do not play a crucial role. However, Estrada et al. have examined EAT

for sound-soft plates (Al) immersed in water, giving rise to elastic wave coupling to

the structure and providing rich phenomenological properties, different to the optical

counterpart [97, 98].

All together it could be interesting to funnel acoustic waves through even smaller

apertures in the µm range, and by this studying the importance of viscous losses

in the MHz regime. Filling the holes with an fluid inclusion different from the

background or imposing an fluid flow to the system, would be new foundations in

order to tune the bands and locations for enhanced sound transmission. Finally it

could be very important for metamaterial studies to introduce an effective medium

theory, in order to understand the fluid nature of a vibrating perforated screen

together with the retrieval of an effective mass density.
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Chapter 3

Confining acoustic surface waves

along a wire

The propagation of sound waves through a hollow tube remains a classical example

of a very first demonstration regarding acoustic waveguides and their mathematical

solutions, which basically can be found in any textbook [75]. Technically there

is no question that the tube, for guiding and absorbing sound is found in many

areas such as the automotive field, ultrasonic NDT, music instruments, probing for

detecting vibrations and medical surgery and treatment. Certainly we will keep all

technicalities far away from our view, but one has to bear the implications in mind on

how to control sound by a tube or rod. Thus briefly, we are going through some basic

schemes that enable efficient sound guiding, which will be presented in the following.

In this present chapter, again we have to distinguish between elastic (structure-borne

sound) and acoustic (fluid-borne sound) waves. As of the complexity of elastic waves

(the wave is decomposed into a longitudinal and transversal displacement), a broad

variety of different guiding techniques exists. Elastic waves in a isotropic elastic rod

can ideally propagate either purely as a longitudinal, dilatationally displaced wave

or in a shearing manner. Typical modes existing in both homogeneous plates or rods

are the flexural or ”bending” waves, where the bending is manifested in a 4th order
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spatial derivative. Also the so-called torsional modes or ”screwing waves” that are

displacing in the angular direction and propagating along the axis, are a well known

member in the broad family of elastic waves in a tube or rod. The concept of ”slow

waves” which we will present later for a corrugated wire, is already a main theme

regarding both torsional waves and flexural modes. Usually they are supported by

the presence of a cladding layer or a hole within the rod forming a hollow tube.

Cladded or layered rods are the circular versions of the layered guides supporting

the propagation of Love-waves, whereas the hollow rod, analogous to the non-circular

version constituting an air gap between two finite elastic slabs, is giving rise to gap

surface modes of the Stoneley-Scholte type. For more informations regarding all

those type of waves, the tutorial review by R. N. Thurston is an excellent starting

point [107].

Acoustic waves through tubes need no introduction in terms of guiding sound. It is

not clear when they where initially studied but in the ”theory on sound” by Lord

Rayleigh this theme was taking seriously under investigation, maybe for the first

time [108, 109]. In this chapter we present a new type of waveguide not only able

to guide sound within the subwavelength frequency regime, but also to slow down

the group velocity to a still standing wave. Within the concept of phononic crystals

it is not a new idea to reduce the speed of sound, but as those type of crystals are

Bragg-scattering based, the phenomena obtained by those structures would truly be

limited in their capabilities for sub-diffraction limited sizing [2].

3.1 Theoretical description of a corrugated metawire

In this section we present a theoretical formalism devoted to analyze the propagation

of acoustic surface waves (ASW) along cylindrical wires. A perfectly rigid cylindrical

wire does not support the propagation of ASWs. However, as we have discussed in

section 2.6 from Chapter 2, it is known that when a flat interface between two
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fluids is periodically corrugated, ASWs are supported [95, 96], which is also the

case for an equivalent solid-solid interface with shear-horizontal waves, see [110].

Our aim is to study these geometrically-induced ASW in a cylindrical geometry.

Sound wave propagation along corrugated wires have been studied before [111–116].

However, our motivation is to demonstrate the capabilities of these ASWs for acoustic

wave focusing and slowing. Consider an acoustical perfect rigid (∂np = 0) cylinder

of radius Ro into which periodically rings are grooved, just as the schematics in

Fig. 3.1 is illustrating. The rings, that are separated with constant Λ, have the

Figure 3.1: Schematic view of the acoustic metawire analyzed. The rings of width a
and depth h = Ro −Ri are arranged into a 1D lattice of constant Λ. The outer and
the inner radius are denoted as Ro and Ri respectively.

depth h = Ro − Ri and width a. Since the structure is considered to be perfectly

rigid, Λ is chosen to be the unit length of the structure. Initially, we are interested

in calculating the dispersion relation (kz(ω)) of the geometrically-induced ASWs

propagating along the corrugated wire. To simplify the problem, we will assume that

the pressure field does not have azimuthal (φ) dependence. How can this corrugated

structure support the propagation of surface states? Obviously we know that this

type of geometry is inducing ASWs for a planar structure, and in the following it will

be demonstrated, that one basically can fold a planar structure into a cylinder, and

obtain a likewise picture. With the knowledge acquired from the previous chapter,

we can decompose all wave interactions into their subregions, which for this current

case, divides the structure, as given in Fig. 3.1, into a cylindrical halfspace of wave

irradiation that is region I, and a domain of periodic cavities located in region II. As

a possible solution for the Helmholtz equation in region I, a Sommerfeld type wave
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is sought [10], composed of a discrete set of Bloch waves:

pI (r, z) =
∞∑

n=−∞
CnK0(qnr)σn(z) (3.1)

here σn(z) = eikz,nz/
√

Λ and the expansion coefficients are Cn. The radial depen-

dence is governed by the zero-order modified Neumann function K0. The wavevector

component in the r-direction is qn =
√

k2
z,n − k2

0 with kz,n = kz + n2π
Λ

and k0 = 2π
λ

where the integer n represents the diffraction orders. Our main interest is devoted

to regimes where kz > k0, in which the pressure pI decays exponentially with r as

r → ∞. In this case, the geometrically-induced ASW are truly bound. As no pres-

sure field can penetrate into the sound-hard wire (steel or brass), the only non-zero

field distribution in region II wire occurs within the radial grooves:

pII (r, z) =
∞∑

m=0

Am[J0(βmr)− α(m)N0(βmr)]ψm(z) (3.2)

where α(m) = J1(βmRi)/N1(βmRi) and βm =
√

k2
0 − (mπ/a)2 which represents the

wavevector inside the ring. The pressure field inside the grooves is expanded in

terms of the ring waveguide modes m, in which the z-dependence is controlled by

the function

ψm(z) =

√
2− δ0m

a
cos

mπ

a

(
z +

a

2

)
, (3.3)

equivalent to 〈x|m〉 from Eq. (2.8) in the previous chapter, and the radial dependence

is dictated by the zero-order/first-order Bessel and Neumann functions J0,J1,N0 and

N1, respectively. If we take the radial component in the gradient of the pressure

from Eq. (3.2), we obtain the particle velocity vr that must vanish at every face

of the milled wire as of a PRB approximation. The function α(m) is satisfying

this condition at the very bottom of the corrugated rings. The matching procedure

of the acoustic field at the single interface (r = Ro) is performed similarly to Eq.

(2.40) from section 2.6 governing a groove grating. Continuity of the acoustic field at

that interface is imposed where the pressure is continuous only at the ring opening,

whereas the radial component of the velocity vr must be continuous along that
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entire interface. As we seek surface eigenstates, we can employ the same matching

procedure as we did with Eq. (2.40), there we just need to cancel the wave irradiation

term and account for cylindrial structures. In order words, the pressure continuity is

projected over ring waveguide modes while the radial velocity component is projected

over periodic Bloch states, which is giving rise to:

∞∑
n=−∞

CnK0(qnR)Snm′ =A′
m[J0(βm′R)− α(m′)N0(βm′R)]δmm′

CnqnK1(qnR) =
∑
m

Amβm[J1(βmR)− α(m)N1(βmR)]S∗nm,

(3.4)

the mode matched pressure and velocity respectively. Here it becomes clear, when

the spatial derivative in Eqs. (3.1,3.2) is taken with respect to the radius in order to

obtain vr in regions I/II, a reordering of the Bessel and Neumann function in Eqs.

(3.4) is the cause. The overlap function Snm is given as:

S0n =

√
a

Λ
sinc

kz,na

2
. (3.5)

As we did in the previous chapter, also here it is convenient to define a ring modal

velocity of the following kind:

vm = Am

(
J1(βmR)− α(m)N1(βmR)

)
, (3.6)

and with no loss of generality, with this definition comprising the mth ring mode for

the radial velocity field, we again can gather an entire linear set of acoustic continuity

equations, and express them as a homogeneous system:

(Gmm − εm)vm +
∑

m′ 6=m

Gmm′vm′ = 0 . (3.7)

With Eq. (3.7) we can generalize the mode matching technique and confirm its

suitability even for this current cylindrical case. The description of εm accounting

for the bidirectional wave motion in an aperture applies also to the radial bouncing

process of sound within the ring:

εm =
1

βm

J0(βmR)− α(m)N0(βmR)

J1(βmR)− α(m)N1(βmR)
, (3.8)
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which is governed by the mth mode. Gmm′ given below with Eq. (3.9), takes into

account the sonic radiation emitted by waveguide mode m into free-space Bloch

waves and collected by mode m′, with overlapping integral Snm = 〈qn|βm〉, which

provides the acoustical coupling between the nth Bloch wave and the mth waveguide

mode:

Gmm′ =
∞∑

n=−∞

1

qn

K0(qnR)

K1(qnR)
Snm′S∗nm. (3.9)

To this end, a set of linear equations for the expansion coefficients, Am, has been

built up, where the dispersion relation for the ASWs can be extracted by just looking

at the zeroes of the determinant of the corresponding matrix. Before we get into

the details, we are starting out with a mandatory convergence study and thus apply

appropriate geometries for a metawire with a = 0.5Λ, Ro = 1.5Λ and h = 0.5Λ.

Fig. 3.2 illustrates a good convergence with the fundamental ring waveguide mode

Figure 3.2: Convergence study with a dispersion relation plot for a metawire. The
ring width a = 0.5Λ whereas the ring depth h = 0.5Λ. For a fixed high number of
diffraction order convergence is sought for waveguide modes upto m = 3.

and already now gives us a clue on the ASWs that can be excited on a corrugated
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sound-hard wire. For very narrow subwavelength (λ >> a) rings that are milled

into a steel or brass wire, the fundamental mode approximation (m = 0) holds very

precise and hereby makes room for further reduction in Eq. (3.7), which yields an

azimuthally independent dispersion relation for ASWs sustained by the metawire:

∞∑
n=−∞

β0

qn

K0(qnRo)

K1(qnRo)
|S0n|2 =

J0(β0Ro)N1(β0Ri)− J1(β0Ri)N0(β0Ro)

J1(β0Ro)N1(β0Ri)− J1(β0Ri)N1(β0Ro)
. (3.10)

At low frequencies (λ > Λ À a) which is the long wavelength limit specified for

groove grating with Eq. (2.41) in section 2.6, we can approach that planar structure

for wires much thicker and rings much shallower than the array period (Ro, Ri >>

Λ). Under this condition we can obtain an analytical expression for the induced

ASW dispersion relation by introducing the asymptotic expansions of the different

Bessel and Neumann functions involved in Eq. (3.10), that are: J0(x) = N1(x) ≈√
2

πx
cos(x − π

4
) and J1(x) = N0(x) ≈

√
2

πx
sin(x − π

4
). This dispersion relation is

simply the one we know from groove gratings Eq. (2.44) and directly applicable to

the metawire

kx = k0

√
1 +

a2

Λ2
tan2k0h , (3.11)

which immediately suggests the identification of axially excited FP modes. As in the

planar case, the key parameter governing the surface mode confinement is the depth

of the rings h, as we will see clearly with an example in the next section. Interestingly,

those ASWs resemble the limiting values for SPPs in a flat metal surface approaching

ωs = ωp/
√

2 where ωp is the plasma frequency of the metal. The limiting value in Eq.

(3.11) is approached for infinite parallel momentum which is given when tan →∞,

that yields an ASW frequency for a metawire ωASW = πc/2h, again controlled by

the ring depth.
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Figure 3.3: Dispersion relation for infinite structures with a = 0.5Λ, Ro = 1.5Λ
and several values of h as indicated. The bands are obtained from the analytical
dispersion relation from Eq. (3.10). The intersections of the dash-dotted line with
the ASW bands, will be used to illustrate the degree of field confinement as a function
of the ring depths, shown in Fig. 3.4.

3.2 Geometrically tunable surface states

Fig. 3.3 displays kz(ω) for acoustic metawires with fixed a = 0.5Λ and Ro = 1.5Λ,

but for different values of h. For very shallow grooves (h = 0.3Λ), a corrugated

wire has weak sound guiding properties as kz(ω) runs very close to the sound line

(kz = ω/c0). However, as the ring depth h becomes more and more pronounced, the

tailored ASWs waves are getting more localized as the increase in the propagation

constant (kz À k0) gives rise to a large value for qn ≈
√

k2
z − k2

0. Note that this

increasing confinement is accompanied by a strong reduction in the group velocity

c = ∂ω
∂kz

towards a flat dispersion relation kz(ω). As we have hinted on in the

previous section, the ASW guided along the wire has a hybrid nature of partially

being supported due to excited ring cavity modes, and the periodicity induced surface

states. From Eq. (3.11) it is clear, that a bare (h = 0) sound-hard wire only provides
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pure sound radiation and no bound modes are supported, kz = k0 and ωASW →∞.

Contrary to this, the analytical expression in Eq. (3.11) enables us to explore the

deviation of the ASW bands in relation to the sound line when the groove depth

h is increased, which is lowering the the asymptotic behaviour of the curves as

seen in Fig. 3.3 and also is predicted by ωASW (h). The increase in confinement is

Figure 3.4: Pressure field (|p|) within one unit cell (rz-plane) for metawires of various
depths h at fixed frequency (Λ/λ = 0.23), which corresponds to the intersections of
the dash-dotted line with the ASW bands presented in Fig. 3.3.

visualized by virtue of the pressure field plots shown in Fig. 3.4, which show the

pressure field amplitudes (evaluated at Λ/λ = 0.23, corresponding to the dot-dashed

horizontal line in Fig. 3.3) for different ring depths. Unambiguously, when we follow

the intersection of the bands with dot-dashed line, we are moving towards decreasing

group velocity and increasing ring depths. In other words, as we clearly can see in

Fig. 3.4, the larger h is, the higher the pressure field concentration in the bottom

of the rings becomes, which collectively as of an infinite length is giving rise to an

enhanced sound guiding profile.
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Figure 3.5: Numerical (FE) pressure field-mapping |p| of a truncated metawire (40Λ)
for three different wavenumbers k0. Geometries are as in Fig. 3.3 with ring depth
h = 0.5Λ.

In order to illustrate the confining properties that are connected to the excitation of

ASWs, finite element (FE) (COMSOL Multiphysics) simulations have been employed

for a metawire of finite length, L = 40Λ, with the parameters corresponding to

Fig. 3.3 for h = 0.5Λ. Depending on the wavelength of the impinging acoustic wave,

sound can be guided along the corrugated wire or being radiated away (similar to

phononic crystals [2]). This is exposed in Fig. 3.5 for three different wavelengths.

For k0 = 0.252π
Λ

, which is in the nearest vicinity of the sound line, only poor field

confinement to the wire is expected, but as one tends to higher frequencies (k0 =

0.302π
Λ

) a strong acoustic wave localization can be observed. Note that when the

ASW reaches the end of the metawire, this surface wave is scattered and yields a

strong sound radiation at the wire tip. For the last case with k0 = 0.352π
Λ

, the gap of

the ASW band is reached and the incident pressure field is being radiated away at

the entrance of the wire, as no ASWs are supported at that wavelength. To this end,

we can readily confirm that the analytical prediction for the dispersion relations,

given in Eq. (3.10) based on the fundamental ring waveguide mode m = 0, is a

precise mean for understanding sound propagation along a corrugated wire, which
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is in good agreement to results obtained with FE techniques.

3.3 Applying the slowing effect for superfocusing

sound

Apart from the possibility of subwavelength field confinement of sound by taking

advantage of the strong localization associated with the ASWs, in this section we

propose two schemes for focusing sound at the end of a corrugated wire and/or

stopping sound of different frequencies at different places along the rod. The basic

structure able to support these two phenomena is a corrugated wire in which the

depth of the grooves, adiabatically (i.e., back-reflection and scattering are negligible)

along the wire is increased (see top panel of Fig. 3.6). If the gradual increase of h

Figure 3.6: Schematic of a metawire with adiabatic reduction of Ri and incident
wave packet.Lower panel shows the normalized c versus h calculated with the mode
matching technique for k0 = 0.152π

Λ
, 0.1752π

Λ
, 0.22π

Λ
and 0.252π

Λ
with a/Λ = 0.2 and

Ro = 2Λ.
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is chosen such that the depth of the grooves at the final end leads to an asymptote

frequency ω4, then an incident acoustic wave of that particular frequency will be

focused at the tip of the corrugated wire. Moreover, if now the incident acoustic

wave is not monochromatic but contains several frequencies above ω4, each of these

frequencies will be stopped at different places along the wire. This is due to the

univocal relation between h and the frequency of the ASW band edge, as demon-

strated in Fig. 3.3. The slow sound phenomenon is illustrated in the lower panel of

Fig. 3.6, in which the evolution of the group velocity, c, as a function of h for four

different frequencies is displayed. For calculating these four curves we have consid-

ered infinitely periodic corrugated wires with uniform h. It is then envisaged that,

in a finite wire presenting a gradual and adiabatic increase of h, the wave component

associated with each frequency will be stopped at the spatial location (h) in which

c → 0 for that particular frequency. The same concept can be extended to conical

2
300

0
.k

Figure 3.7: Numerical (FE) pressure field-mapping |p| of a corrugated cone with 40
periods at a wavenumber k0 = 0.302π

Λ
. Geometries are as in Fig. 3.3 with ring depth

h = 0.5Λ, though with a decreased outer radius of factor 10 when comparing the
base with the tip.

sound-hard corrugated structures, where both Ro and Ri are adiabatically reduced.

If we apply the same geometries as in Fig. 3.3 for h = 0.5Λ being constant, though

with a 10 fold reduction in the outer radius at the tip (compared to the base of the

cone), we will experience a gradual slowing down of the acoustical energy along the

cone, giving rise to a high field concentration at the tip, see Fig. 3.7. Even though
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the structure is conical and provides gradual sound confinement along the axis, as a

consequence of the adiabatic reduction that does not make the cone more disperse

compared to a homogeneous corrugated metawire, we can relate the wave motion to

the dispersion relation in Fig. 3.3. As can be seen, a frequency has been chosen that

provides strong excitation of ASWs where deep subwavelength confinement to the

tip (Ri = λ
30

) takes place.

3.4 Confining light along a corrugated perfect con-

ducting wire

In this chapter we presented a theoretical study on the acoustic wave propagation

along a periodically corrugated perfect rigid wire surrounded by fluid. It was shown

how ASWs can be engineered with their propagating properties controlled by ge-

ometrical means. These highly localized ASWs give rise to strong acoustical field

confinement along the wire, whereas the slowing down of sound decelerate the group

velocity down to zero. What is believed to be a promising feature of these low-loss

propagation properties, is the ability to tune sensing and screening applications with

good transducer coupling. In the optical analogy regarding the guidance of spoof

SPPs along PEC wire, from [30] it is known that the dispersion relation for the

geometrically-induced SPPs within the fundamental mode approximation, takes the

following form:

∞∑
n=−∞

β0

qn

K1(qnRo)

K0(qnRo)
|S0n|2 =

J1(β0Ro)N0(β0Ri)− J0(β0Ri)N1(β0Ro)

J0(β0Ro)N0(β0Ri)− J0(β0Ri)N0(β0Ro)
. (3.12)

This is a very interesting result, as due to the difference in the boundary conditions

(either perfectly rigid or conducting for geometry-induced ASWs or SPPs, respec-

tively), the dispersion relations for the surface waves in the electromagnetic and

acoustic cases are quite similar but not identical. Remarkably, this is not the case in

1D-structures (periodic array of 1D grooves in a flat interface) where the dispersion

80



relation of the surface waves is given by kz = k0

√
1 + a2

Λ2 tan2 k0h within the long

wavelength limit provided Ro, Ri À Λ as we have seen before. One may therefore

Figure 3.8: Direct comparison of spoof SPPs and ASWs along a metawire of same
geometries. The unitlength of the structure, Λ, must be identical for sound and light
without violating any of the assumptions taken.

be tempted to ask, even though for low frequencies at large radii, the dispersion

relations for ASWs and spoof plasmons along a corrugated wire are equivalent (if

the wires can be scaled to a similar size, regarding sound and light), what the dif-

ference between Eq. (3.10) and Eq. (3.12) might be. We are trying to explain

that by a direct comparison of the band diagrams for light and sound structures of

same geometrical parameters, as illustrated in Fig. 3.8. Here it is clear, that this

mathematical curiosity implies more than only a swapping of zeroes and ones in the

corresponding expressions for the dispersion relations, Eq. (3.10, 3.12). Moreover,

it is evident that the spoof SPPs sustained by a corrugated wire seem to experience

better field confinement compared to the acoustical counterpart due to the flatter
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curve and a consequently lower group velocity. In that instant, we have checked,

that the long wavelength limit is approached when we choose very subwavelength

geometries and large radii, and the two different dispersion relations for sound and

light coincide.

3.5 Conclusion and further directions

The prospect of engineering an acoustic surface wave along a corrugated wire opens

up a possibility to confine and slow down sound. Moreover, by gradual energy con-

centration, super-focusing in the sub-millimeter range could be achieved and the

possibility to create an axial-guide with tunable frequency passbands is facilitated.

With minor technical extensions, acoustical scanning, spectroscopy, medical ultra-

sound instrumentation and imaging could obtain good field resolution.

An experimental realization of a metawire would not be a difficult task. Milling rings

into a steel or brass rod with a diameter of a few mm, is easily accomplished in a

metal workshop. The acoustic source could be realized out of a piezoceramic shell

of hollow cylindrical shape [117], attached to the base of the wire. The azimuthal

dependence of ASWs on a helically grooved metawire would be a very interest modi-

fication to study. Introducing helical indentations could give the possibility to create

a new type of polarization of air-borne sound, which also could be accomplished by

an elastic excitation of torsional waves. Generally speaking, the tunability of the

geometry induced ASW by means of elastic waves (flexural or longitudinal) would

form another interesting topic.
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Chapter 4

A holey structured metamaterial

for acoustic deep subwavelength

imaging

In the quest of a perfect acoustic imaging device able to capture a subwavelength

object, one must admit that only little contribution has been accomplished [2, 118]

when comparing to the huge impact, Pendry’s perfect lens for EM waves has aroused

[53]. In the introductory part of this thesis, we have reviewed a few concepts that in

the last decade have been employed in order to achieve this goal to resolve a sonic

”picture” by all its near-field components. To this we certainly shall count phononic

crystal structures made out of periodic elastic or acoustic scatterers. Those struc-

tures unveiled the existence of a negative refraction pass band, above the complete

band gap in a 3D crystal, making the sound bend the wrong way and giving rise

to a focusing phenomenon. All effects that are associated with phononic crystals

are governed by Bragg scattering, limiting the size of the focus to about half of the

lattice constant, unable to overcome the diffraction limit and to recover all near-field

components of a scattered source [119, 120]. On the contrary, metamaterials which

are structures containing exotic properties gained by geometrical arrangements of
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subwavelength features rather than their chemical composition is the answer for

achieving super focusing. It was since the introduction of the local resonant struc-

tures by Liu et al. [3], where rubber coated bead crystals exhibit attenuation bands

due to the negative dynamical mass density of the spherical composition embedded

in an epoxy background, acoustic metamaterials were born. This concept was further

advanced by the theoretical prediction from Li and Chan in 2004 [60], who modelled

an array of soft rubber beads embedded in a fluid in order to study the implications

of Mie-scattering processes. They found that the symmetric monopolar and the

asymmetric dipolar resonances of the oscillating subwavelength spheres give rise to

an effective negative bulk modulus and mass density, respectively. At the degener-

ated band where those two modes overlap, the authors discovered a narrow band of

negative refraction. Unfortunately, this work was not able to drag any experimental

verifications behind, the reason is the difficult realization of a low filling fraction

crystal which would distort the very effect to be demonstrated, when, e.g., the beads

would be attached into a matrix array. In this chapter, we wish to demonstrate a

simple perforated structure that is capable to reproduce a full 3D deep subwave-

length image in the near-field side of the metamaterial. We are going through very

simple analytical derivations, and demonstrate that when FP modes of order m are

excited, image transfer (canalization), 50 times smaller than the wavelength and

beyond is possible, which coincides very precise with experimental observations.

4.1 Theoretical development

The concept of a perfect imaging device, using a slab of an artificially engineered

metamaterial, has been one of the main discoveries within the field of optics through-

out the last years. It was proven that a thin slab with a negative refractive index

yields a lens with unlimited resolution, solely constricted by the inherent metallic

losses. The challenge thus remained to engineer a metamaterial with the desired
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optical property, which probably still is the most difficult task today. In the elec-

trostatic limit, near-field superlensing has been obtained with a thin silver slab, due

to the fact that every good metallic conductor has an electric response dictated by

a Drude function with a plasma frequency, below which the electric permittivity is

negative [121]. Other examples of metamaterials for subwavelength imaging are lay-

ered metal-dielectric structures [122–124], metallic wire media [125–127] and holey

films [128]. As already outlined in the previous pages, little compared to the huge

impact on EM imaging has been accomplished for sound waves. Acoustic meta-

materials broaden the range of material responses found in nature, which can be a

useful guide in obtaining perfect acoustical lensing, as no natural media provides

exotic properties such as negativity. Those materials provide a major step toward

an effective-medium description, as the spatial periodic modulation of impedances

is much smaller than the wavelength. Yet to the best of our knowledge, there has

been very limited investigation in this direction.

At first, we derive the expression for a surface mode running along the interface

between two half-spaces, and deduce its applicability for an acoustic superlens, anal-

ogous to Pendry’s perfect lens for sub-diffraction limited acoustic imaging [129]. The

condition for the existence of an ASW propagating at the interface between semi-

infinite fluids, is very similar to the equation governing the presence of a surface

electromagnetic mode running at the interface between two dielectric media:

kI
z

ρI
+

qII
z

ρII
= 0 , (4.1)

where kI
z and qII

z are the inverse of the decay lengths of the ASW in media I and

II, respectively, and ρI and ρII are the corresponding mass densities. Note that the

mass density plays the same role as the dielectric constant in the EM case. It is

clear that if the two media have positive mass densities, there is no ASW running

at the I-II interface. The necessary condition for a bound state to exist at the in-

terface, requires that both z wavevector components have positive imaginary parts,

85



which implies that the mass density of the acoustic metamaterial should be nega-

tive, ρII < 0. One way to obtain perfect lensing is by means of negative refraction,

where a metamaterial whose effective material properties - mass density and bulk

modulus, are simultaneously negative and perfectly matched, impedance wise, to the

surrounding medium. Fig. 4.1 illustrates the very meaning of having either the effec-

Figure 4.1: Concept of negativity in acoustics. Here the kinematics of a fluid element
is demonstrated for both positive and negative effective values in the mass density
and bulk modulus.

tive acoustic density or the bulk modulus negative. The blue shaded box represents a

fluid element at rest, and light-red under infinitesimal displacement. Negative mass

density implies that the average acceleration of a fluid segment is opposite to the

driving force, whereas a negative bulk modulus in a fluid element occurs, when it

is expanding when the applied dynamical pressure is acting positively on it. In the

pressure static limit we neglect radiative effects decoupling velocity static contribu-

tions, which is a feasible approach when the thickness of the metamaterial is smaller

than the acoustical wavelength [129]. This enables us to eliminate the dependence

on the bulk modulus, where only the mass density is relevant for pressure fields. The
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overall transmission across a material slab after a multiple scattering event reads:

T (k||, h) =
tt′eiqII

z h

1− rr′e2iqII
z h

, (4.2)

with coefficients:

r =

kI
z

ρI − qII
z

ρII

kI
z

ρI + qII
z

ρII

, r′ = −r, t = 1 + r, t′ = 1 + r′. (4.3)

Here it can now be worked out, that the overall transmission Eq. (4.2) will experi-

ence exponential growth for evanescent pressure fields, which is accomplished by the

excitation of ASWs ( Eq. (4.1) is fulfilled) on both surfaces of the lens.

As we have mentioned, acoustic metamaterials for lensing purposes are very difficult

to achieve. From the literature, the only prediction on negative refraction for the

focusing of sound below the diffraction limit, has so far only been presented in con-

nection with Mie scattering of rubber spheres [60, 130]. In what follows, we are going

to introduce a new three dimensional acoustic metamaterial that is easy to fabricate

and is able to serve as a quasi-perfect imaging device for subwavelength objects in

the near-field, much in the same way as the perfect lens proposed by Pendry [53] and

endoscopes [128] do for optical imaging. Fig. 4.2 shows the basic structure, which

consists of a rigid steel block (impenetrable for sound waves) of thickness h, perfo-

rated with square holes of side a forming a periodic array with lattice parameter Λ.

The capability of this structure to resolve all spatial information of an acoustic image

is best explained by an effective medium approach. It can be shown that, in the limit

in which the transmission process is dominated by the fundamental waveguide mode

inside the holes (λ > Λ À a), the transmission coefficient for an acoustic plane wave

of parallel momentum (kβ
||)

2 = (kγn
|| )2 = (kn

x)2 +(kγ
y )2 with the use of Eq. (2.16) from

section 2.3 and rewritten into a 2D problem, is given as follows (v′0 → v′):

Tβ = −v′S∗β0. (4.4)
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Figure 4.2: Schematics of a holey block, made out of a perfect rigid body, impene-
trable for air-borne sound waves impinging on the structure.

This equation can entirely be generalized with the expressions, Eq. (A.12), contained

in the system of equations:

Tβ = − I0GV

(G− ε)2 − (GV )2
S∗β0. (4.5)

Substituting the corresponding wave interaction functions, that can be found in

section 2.7 now with same hole-filling fluid as in the surroundings, into Eq. (4.5),

yields

Tβ =
4k0

k0
z
S00S

∗
β0

eiq0
zh(G− i)2 − e−iq0

zh(G + i)2
. (4.6)

If we impose Sβ0S
∗
β0 = |Sβ0|2 into Eq. (4.6) it further simplifies into:

Tβ =
4k0

k0
z
|Sβ0|2eiq0

zh

e2iq0
zh(i k0

kβ
z
|Sβ0|2 − i)2 − (i k0

kβ
z
|Sβ0|2 + i)2

, (4.7)

and if we now neglect diffraction for very subwavelength geometries given as a =

ax = ay such as Λ = Λx = Λy we can rewrite Eq. (4.7) into a zero-order transmission

coefficient:

T0 =
4k0

k0
z
| a
Λ
|2eiq0

zh

(k0

k0
z
| a
Λ
|2 + 1)2 − e2iq0

zh(k0

k0
z
| a
Λ
|2 − 1)2

. (4.8)
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Eq. (4.8) resembles a very general expression for the transmission coefficient due to

multiple scattering events, similar to the one expressed with Eq. (4.2). The question

may now arise, whether the holey structure is able to serve as an perfect acoustic

lens that amplifies an evanescent wave containing near-field components of a deep

subwavelength object. For a holey block, however, q0
z is fixed by the fundamental

waveguide mode q0
z = k0 and will never obtain the appearance of q0

z =
√

k2
0 − k2

||,

which is essential for the amplification process. We can thus conclude that perfect

sonic lensing, with a holey structure (giving rise to T0 = exp(qzh) for all k||) cannot

be realized. However, if a FP resonance of order m is excited, q0
zh = mπ, and

substituded into Eq. (4.8), we have:

T0 =
4k0

k0
z

a2

Λ2 (−1)m

(k0

k0
z

a2

Λ2 + 1)2 − (k0

k0
z

a2

Λ2 − 1)2
, (4.9)

which is nothing but:

T0 = (−1)m for all parallel wavevector components k|| . (4.10)

Eq. (4.10) states that an incoming sound wave containing a broad range of spatial

subwavelength informations, such that k|| À k0, at a FP resonance λ = 2h
m

is perfectly

transmitted through a holey perfect rigid (steel, brass or ceramics) block, with all

its propagating and evanescent components. For the entire derivation of Eq. (4.10)

one should refer to appendix B. As a hole array acting as an acoustic waveguide

contains no cutoff wavelength, this structure suggest to be a broadband metama-

terial, able to capture a sub-diffraction limited object at m-frequency components.

Also the term, ”bulk metamaterial”, is not over-hyped, because FP modes are all-

angle resonances. Structures that can transfer an optical image by all its near-field

components without distortion have been accomplished by means of a wire-array, or

one-dimensional sandwich-structures and are widely known as endoscopes [122–127].

A similar approach than this present metamaterial has been fulfilled by means of slit

arrays for light [128]. As this present holey block serves as an entirely new imaging
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Figure 4.3: Upper panel shows the transmission spectrum together with the phase
difference (Im(v − v′)) for a hole-array metamaterial of thickness h = 13.5Λ and
square holes of size ax = ay = 0.4Λ. The inset depicts the angular sensitivity of
the FP resonances for various angles of incidence, whereas the lower panels plot the
Re(p) depth profile inside the aperture of one unit cell, for the first four Fabry-Perot
resonances.

device for sound waves, we remain with the term, holey metamaterial. Before we put

the imaging effect to the test, by means of numerical analysis, we are briefly going

to review some basic properties regarding FP resonances in a hole array structure.

The upper panel of Fig. 4.3 illustrates the transmission spectrum for a hole array,

with geometries given in the figure text. Already here it becomes evident, that this

thick chosen structure, contains a broad range of discrete (order m) FP resonances.

In the same image, we have plotted the difference of the input and output imaginary

modal velocities Im(v− v′), to study the phase change through the holey block. It is

clear, that a FP mode exhibits no phase change, at all transmission peaks, Im(v−v′)
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is exactly zero, which is reminiscent to DC (direct current) transmission lines of zero

phase. From Fig. 2.11 we know that the excitation of FP resonances, implies flat

bands in the dispersion relation diagram, which means that this type of resonance is

supported by all parallel wave vector components k||. We are demonstrating this for

the current thick holey block, with the inset of Fig. 4.3, that unambiguously shows

that the transmission peaks associated to standing wave formations within the holes,

can be excited from all angles. In other words, as the thick structure supports a broad

discrete range of standing wave resonances, to which we have calculated the real part

of the pressure as a function of space in one unit cell for x = y = 0 (see lower panel

in Fig. 4.3), one can hereby conclude that the holey block features bulk properties

in these transparent frequency regimes.

4.2 Subwavelength imaging by means of a slit ar-

ray and a hole array

For proof-of-principle purposes we introduce two different structures, starting out

with an infinite array of slits. We wish to use a slab of steel or brass of thickness h,

as a holey metamaterial to restore the amplitude of higher order Fourier components

and to focus the image. The slab can be considered as a perfect rigid body, into

which slits, of width a and periodicity Λ, are milled. One of the greatest obstacles

reported on Pendry’s perfect lens, are the losses. Even the smallest loss mechanism

in left-handed materials, that are described by imaginary quantities in the permit-

tivity (ε) and permeability (µ) are strongly affecting the perfect impedance matched

boundaries, which are significantly decremental for imaging purposes. In what fol-

lows, we are not introducing loss mechanisms, but rely on the fact, that in acoustical

hole array structures, FP resonances easily are built up for small apertures in the

mm range, predicted (in inviscid fluids) and observed in several works [90, 73, 97].

A point dipole, two spikes of amplitude Pin, width w = 10Λ and separation s = 15Λ
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is oscillating at frequency λ = 2h = 100Λ, the lowest order FP mode. On either

sides of the object plane, z1 away from the structure, waves are emitted in such a

way that energy in terms of propagating waves such as the near-field that exponen-

tially decays away, leave the source. As we now know, for high resolution images,

Figure 4.4: Spatial image plot (|P/Pin|) with the slit array metamaterial with the
following geometries: h = 50Λ, a = 0.5Λ at the first FP mode λ = 2h = 100Λ. The
object are two spikes of width w = 10Λ separated by s = 15Λ.

as of large values of k||, the field will not grow throughout the metamaterial, but

as of all-angle transparency and constant phase characteristics due to the coupling

to standing wave motions inside the holes, the acoustical object is rather channelled

through the structure, z2 from the wave emerging side of the holey plate, much like

an endoscope [125–127]. Fig. 4.4 depicts the discussed arrangement for z1 ≈ 0 at

different image planes z2. The two spikes together with the transmission coefficient

Eq. (4.4) are Fourier transformed in the frequency domain containing diffraction

components, whereupon the spatial informations are recovered at the image plane.
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The effective medium approach (EMA), that has been applied in order to derive the

unitary transmission, Eq. (4.10), makes the negligence of diffraction terms γ valid

only when T0 À Tγ for γ 6= 0 is justified. In the subwavelength regime satisfying

λ À w À Λ, it is obvious that the evanescent decay of all diffracted waves for

γ 6= 0 is dominated by the term π
Λ

from kγ
x = k0

x + 2π
Λ

γ along with the attenuating

wavenumber kγ
z = i

√
(kγ

x)2 − (k0)2. On the other hand, the specular transmission

with k0
x is governed by the width of the source π

w
, and together this means that

higher-order diffraction waves distort the acoustical image in the extreme near-field

zone, z2 ≈ 0, which only can be brought to perfection if diffraction can be ne-

glected completely. Those extreme near-field components die much faster out than

the specular transmitted wave, provided that w À Λ. In other words, if the distance

from the wave emerging interface to the image plane z2 is increased, the higher-

order diffracted waves will fade away, and no longer leave heavy image distortions.

Fig. 4.4 illustrates the normalized spatially distributed time averaged pressure field

maps |P/Pin|, along the output surface of the structure for various values of z2, from

which we can conclude, that the metamaterial posses two near-field zones; the first

in which the acoustical image is distorted by the presence of higher order diffracted

waves, z2 < Λ, and the other one, located in the region Λ < z2 < w, where sub-

wavelength resolution has prevailed in the image, and diffraction distortions has died

out. Clearly the slits, constituting the metamaterials can be seen for those curves

corresponding to an image plane at distance smaller than one period away from the

output surface, z2 < Λ. Even though these results hardly show perfect resolution in

terms of featured sharp edges, it is however evident that this holey acoustic metama-

terial enables deep subwavelength imaging of those two slits (spikes), at the near-field

of the structure. We have checked that at other higher-ordered FP resonances, the

perfect image arround, z2 ≈ Λ, is nicely recovered and is not much affected. Though

at the lowest mode, m = 1, imaging has been pushed to the highest limit, because

with the chosen spike width w the metamaterial provides super resolution, 10 times
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smaller than the wavelength, λ = 10w, able to overcome the diffraction limit five

times. The logical question that might appear is, to which extend one can go beyond

Figure 4.5: |P/Pin| at the image plane for a holey metamaterial with the geometries
as in Fig. 4.4. Here different images of sources containing varying spike widths are
plotted.

the diffraction limit. For metamaterials that acquire their properties from structural

and topological features, such as grooves, split ring resonantors (SRRs) or wires, the

ultimate resolution or degree in which exotic properties prevails, is the interatomic

spacing of those resonant features - the period [53]. Metamaterials consist of those

subwavelength structures that collectively, array-wise, respond to any external dis-

turbance of wavelength of the order or larger than the period, which should be in

agreement with the natural frequency of those ”atoms”. Therefore it is expected

that the width w of the current dipole or two-slit numerical experiment, should not

fall below the the size of the period Λ of the slit array. With the same frequency and

geometries from the previous example, see details in the caption of Fig. 4.4, we have

varied the value for w, such that the metamaterial acoustically would be irradiated
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by two spikes of constant separation s, but different width as can be seen in Fig. 4.5.

Clearly we have put the resolution characteristics of the metamaterial based lens to

the test. Down to a width of w = 4Λ the resolution of the image is still captured,

even though the intensity has shrunken approximately 25%. At a width of exactly

the interatomic spacing, which is the period Λ of the slit array, most of the details of

the subwavelength image is still recovered, even though the intensity has gone down

to one third. Decreasing the size further, most of the informations are lost, which

indicates that in spite of the intensity lowering for about w = Λ, the interatomic

spacing is the ultimate resolution limit for the slit array acting as a robust imaging

device.

If we now go back to the basic structure, presented in Fig. 4.2 we now wish to

demonstrate full 3D imaging of a deep subwavelength object. In that respect, we

will make use of the knowledge acquired from the previous discussions regarding slit

arrays, and the fact that 1D and 2D problems are similar in acoustics, in order to

provide the possibility to capture the image of a 3D subwavelength object, by all

its near-field components k||. The geometries of the holey steel block, acting as a

imaging device, is given in the caption of Fig. 4.6. For wavelengths λFP = 2h
m

, where

standing waves for all parallel wavevector components k|| are excited, we now wish

to demonstrate how one is able to channel a subwavelength object (two dots) to the

very image plane of the structure. We have checked that almost identical images

are obtained, for metamaterials either containing a thickness according to an integer

order of λ
2
, h(m) = mλ

2
, or being irradiated at a wavelength according to an integer

fraction of twice the thickness, λ(m) = 2h
m

for m = 1, 2, 3...... Fig. 4.6 illustrates a

particular case where m = 4 making the two dots 10 times smaller than the incoming

wavelength (λ = h
2

= 50Λ), even though we could have chosen the lowest-order FP

mode, making the object 40 times smaller compared to the wavelength. What we

observe is again reminiscent to the 1D case, in such a way that at exactly the output

surface (z = h), the acoustic image of the two square dots is heavily distorted by
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Figure 4.6: Near-field pressurefield |P (x, y)/Pin(x, y)| at different image planes, with
the geometries a and h of values Λ/2 and 100Λ respectively such as the wavelength
λ = 2h/m = 200Λ/m with m = 4. The source are square dots of size 5Λ times 5Λ
and center to center distance 7.5Λ

diffraction effects and the basic units of the metamaterial (i.e., the holes) are visible.

However, if now the image plane is moved further away (lower left panel in Fig. 4.6),

higher order diffracted modes have died off and a nearly perfect image of the two

subwavelength objects is obtained, as Eq. (4.10) predicts. At a distance 3Λ from

the output surface (lower right panel in Fig. 4.6), the subwavelength details of the

two dots start to disappear. Our numerical results confirm that a holey plate could

act as a near-field superlens for acoustic waves with deep subwavelength resolution

at a discrete set of resonant wavelengths. As an example, we could choose the unit

length Λ to be 2mm and quantify the working frequencies, in terms of a dispersion

relation as illustrated in Fig. 4.7. This chosen period for the hole array embedded

in, e.g., water, corresponds to a discrete set of acoustic bands, between 2-20 kHz
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Figure 4.7: Dispersion relation of the standing waves supported by a holey plate
embedded in water. In order to work in the KHz regime, the period Λ of the hole
array is choosen to be 2mm.

for m ranging from 1 to 6, as illustrated in Fig. 4.7. As the results are scalable by

just changing Λ, the operating frequency range of the imaging device can be tuned

at will. What the dispersion relation illustrates is nothing new, with the insight

acquired from the band diagrams analysis in Chapter 2, it is clear that due to struc-

tural periodicity, the bands below the light line can be Bragg-folded into regimes of

wave radiation, which means that an external sound field could excite those standing

waves of constant phase. This discrete range of flat FP pass bands, would provide

the possibility for a broad spectrum of excitations, where each branch m contains all

parallel momentum (e.g. in kx-space), constituting the image of highest resolution.
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4.3 Experimental verification

In order to verify the lensing properties of the proposes hole array, acting as a meta-

material, experimental observations have been conducted, in collaboration with the

team headed by Prof. Xiang Zhang, UC Berkelely, at the Lawrence Berkeley Lab-

oratory. The intention was to fabricate a structure, possessing a broad range of

resonance frequencies and to be able to break the diffraction limit by several means,

which in both cases would require the height h of the structure to be very large

compared to the period Λ. In order to perform lensing in the kHz regime, we have

chosen quadratic apertures, which should not fall below a = 0.5mm, for the sound

wave funnelled through the structure at resonance, not to be converted into heat

due to viscosity, which is common in narrow fluid tracts. Fig. 4.8 captures the ge-

Figure 4.8: Device to perform quasi-perfect acoustic imaging, with a,h being Λ/2,
h = 100Λ respectively and the period Λ is choosen to be 1.59 mm. The source are
square dots of size 5Λ x 5Λ and center to center distance 7.5Λ

ometrical parameter chosen. The thickness of the metamaterial, clearly dominates

the structure, and made the fabrication in terms of drilling an array of holes into a
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solid brass material block of thickness h = 159mm, rather difficult. To make such

a structure, 1600 (40x40) square brass alloy260 tubes were utilized as illustrated in

Fig. 4.8. The size of each hole a, lattice constant Λ and tube length h are 0.79,

1.58 and 158mm, respectively. All tubes are parallel clamped together within a 4

inch wide aluminium bushing. Super glue is filled between the tubes to prevent any

movement or vibration under acoustical load. The object are two subwavelength

quadratic dots, that are carved into a soundhard brass plate, which is put at the in-

put side of the device. At the front side of the object-plate, a 20mm diameter round

speaker driven by a Tektronix AFG3021B arbitrary-function generator is placed,

which sends out continuous sinusoidal waves. The object-plate together with the

mounted speaker, were attached directly and the wave incident side of the hole array

(z1 ≈ 0), while pressure field scanning was performed, on the wave emerging side, at

different distances z2. At this side, a 3mm diameter microphone is combined with a

three dimensional stepping scanning system to run zigzag routes. Collected signals

are amplified with 50dB output gain, then processed by a Tektronix TDS 2002B

digital storage oscilloscope and sent to a computer where data is controlled by soft-

ware (Labview). As mentioned, the source was driven to generate a monochromatic

wave, of wavelengths 200Λ
m

. The entire setup with its object and image plane, were

surrounded by sound absorbing foam, in order to block the interference of externally

sonic disturbances.

Those measurements where performed in the frequency range from 1-5 kHz, corre-

sponding the first four FP resonances in air. Before every field scan was initiated,

the transmission peaks through the hole array were spectrally measured, in order

to determine the exact frequency value, that would yield a transparent all-angle

mode. Fig. 4.9c illustrates the simulation of |P (x, y)| for the two subwavelength

dots at z = h, which is the exact output interface of the structure. This result is

simulated at the second FP mode, corresponding to a frequency of 2.18 kHz and

illustrates heavy near-field diffraction that is distorting the image. Fig. 4.9d and
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Figure 4.9: Experimental and theoretical results of two subwavelength dots captured
by the holey metamaterial surrounded by air. (a,b) The source are square dots of
size 5Λ times 5Λ and center to center distance 7.5Λ, the brass sample and calculation
respectively. (c) Calculation of |P (x, y)| at the imageplane z = h at a wavelength
λ = h corresponding to 2.18 kHz. (d) Calculation at z = h + Λ, λ = h. (e,f)
Measurements at z = h+Λ for λ = h (2.18 kHz) and λ = h/2 (4.36 kHz) respectively.

e, capture the subwavelength image at the same operating frequency which makes

the two dots 10 times smaller than the wavelength. At a distance Λ away from the

wave emerging side of the metamaterial, which is a distance 160.6 mm away from

the source, it can be concluded that the agreement between theory and experiment

is excellent. At the 4th order FP resonance corresponding to 4.36kHz, as depicted in

Fig. 4.9f, we demonstrate the flexibility of the device also being able to capture an

subwavelength object at another working frequency. With those observations, it is

hereby confirmed together with our theoretical prediction from Eq. (4.10), that the

aforesaid hole array can serve as a robust imaging device. Not only are the two dots

present as can be seen but also the intermediate stub, here basically illustrated as a
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shadow between the two objects, give an unambiguous clue on the imaging quality

one can obtain by this holey metamaterial. Again, whilst the results hardly show the

sharpest resolution, it is clear that the utilization of a perforated brass slab provides

an efficient mean to channel a subwavelength acoustic object to be resolved, into an

image plane. In the following, the limiting boundaries of the holey metamaterial,

Figure 4.10: Experimental and theoretical results of a subwavelength (λ/37) ”E”
captured by the holey metamaterial. (a,b) The letter to be imagined contains a
linewidth of 4.76 mm, the brass sample and calculation respectively. (c) Measure-
ment of |P (x, y)| at the imageplane z = h + Λ at a wavelength λ = h corresponding
to 2.18 kHz. (d) Calculation of the image with the same data as in (c).

are intended to be pushed in order to capture even finer subwavelength features. For

this purpose we have chosen a letter ”E” as a complex subwavelength 3D object,

carved into a brass plate as shown in Fig. 4.10a and calculated in Fig. 4.10b. We

have chosen a letter of linewidth 4.76 mm that is being irradiated by sound (m = 2

FP mode). The scanning output as shown in Fig. 4.10c clearly depicts a distin-

101



Figure 4.11: Experimental and theoretical results of a subwavelength (λ/50) ”E”
captured by the holey metamaterial. (a,b) The letter to be imagined contains a
linewidth of 3.18 mm, the brass sample and calculation respectively. (c,f) Measured
and simulated spatial surface |P (x, y)| and line |P (y)| plots at z = h + Λ for λ = h
(2.18 kHz). (d) Measurement as in (c) though at f =2.42 kHz. (e) Measurement as
in (c) though at z = h + 3Λ.

102



guishable shape of the letter, which agrees very well with the simulation, Fig. 4.10d.

The evanescent waves contained in this sonic object are carried through the holes,

and consequently make a significant contribution to the captured image with deep

subwavelength resolution. If we keep the operation frequency fix, we now strive to

go further beyond the diffraction limit by taking an ”E” of linewidth 3.18 mm. Ex-

periments and simulations in Fig. 4.11c and f are in very good agreement where the

line plots represented in those figures, highlight the three bars of the letter of width

λ/50. In addition we have conducted some control experiments, i. o. to study the

limits of the imaging capability of the holey metamaterial. Varying the operating

frequency (Fig. 4.11d) or moving the image plane further away (Fig. 4.11e) shows

a decreased lensing capability with an almost entire loss of resolution. The holey

structure now is detuned and monochromatically not excited as resonance. However,

by the right design concerning geometrical parameters or even hole-fillings, one can

extend the properties contained in the metamaterial at will.

4.4 Summary and outlook

Fig. 4.12 illustrates a comparison between the acoustic equivalence of Pendry’s per-

fect lens and the holey metamaterial which we have presented through out this

chapter. The perfect lens would give rise to an amplification of the near-field com-

ponents of an object, and transpose them on the order of half the lens thickness, into

the imageplane [129]. However, this type of acoustic perfect lens has so far not seen

the day of light, and still remains a difficult challenge to be faced for acoustic meta-

material designer. The imaging device which we have proposed, constitutes a bulk

metamaterial that can capture a subwavelength image for a broad range of discrete

frequencies, matched to the standing wave modes supported by the holey block. The

experiments shown are in very good agreement with the results that are calculated,

and in that sense, we have demonstrated deep subwavelength imaging of complex
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Figure 4.12: Pendry’s perfect lens for sound comprising a growth of an evanescent
wave versus a DC-like mode lens which we have detailed in this chapter.

structures 50 times smaller than the wavelength. Measurements did also highlight

the limits of the structure when it, e.g., was irradiated off-resonance or when the field

scan of the image was performed at a greater distance from the metamaterial. Apart

from its fundamental interest, the findings could be utilized for improving medical

ultrasonic imaging for scanning and diagnosis purposes, such as for non-destructive

detection of cracks in alloy materials, among others. However, there is still room for

improvements of the structure, that in particular is important when an image is to

be resolved in the far-field. Also realistic applications do rely on transient pulses,

rather than mono-frequency operation.
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Chapter 5

Broadband all-angle blockage of

sound by a double-fishnet

structure

The previous chapter, reporting on the imaging capabilities of structured materials,

already gave the reader a clue on how long-standing work on artificial magnetism and

plasmas has defined the role of EM-metamaterials as a forerunner and motivator,

regarding the study on tailoring the attributes of propagating sound. Even though

the range of EM material response found in nature only represents a small fraction

of that, which is theoretically possible, this limited range can be extended by the use

of artificially structured materials. In single negative (SNG) metamaterials, either

(but not simultaneously) the permittivity ε (epsilon negative (ENG) media) or the

permeability µ (mu negative (MNG) media) is negative. One prominent application

of those two concepts are the LHMs, which basically are double negative (DNG)

metamaterials. In the first experiment on negative refraction, R. A. Schelby et al.

[52] measured the refracted angle of a transmitted microwave beam through a DNG

prism that was made out of an array of metallic wires (ENG) and SRRs (MNG but
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also ENG [131]). In this chapter, we will solely concentrate on SNG media, conse-

quently a brief review on EM SNG media such as the progress made for the acoustical

counterpart will be given in the following. In the late 90s, John Pendry introduced

the concept to alter functions by changing a materials internal structure on a very

small scale, less than the wavelength of the impinging light. In that respect split-

ring resonators (SRRs), that are a pair of concentric annular or quadratic loops with

splits in them at opposite ends, were proposed. Those structures are intrinsically not

magnetic but can be tuned, effectively to exhibit artificial magnetism [50, 54]. Also

altering the level of the electrical response of metals by means of artificially manufac-

tured structures, has shown to be a valid mean in the world of metamaterials. SPPs

which are propagating on metallic surfaces in the visible and near UV range can be

tailored to propagate at much lower frequencies, such as in the GHz regime. Very

thin metallic wires, assembled into a periodic lattice, composing a micro-structure,

will support GHz plasmons bound to the surface, which can be controlled by the

local geometry [49]. In that respect, a plasma frequency can be tuned, below which

little light can be transmitted, due to single negativity as of being a ENG medium.

Optical but also radar absorbing man made materials, obviously motivated new in-

terest in the field of acoustics in order to design resonance based sonic attenuators.

To this degree, two milestone papers on SNG structures can be named that has

sparked significant interest and followers, both in terms theory and experimental

observations. Liu et al. designed the so-called locally resonant phononic crystals,

consisting of rubber coated lead spheres, and arranged into a 3D crytal [3]. The

ground breaking feature of this composite lies in the negative effective mass density

over certain frequency ranges, thus breaking the constraints, governed by the conven-

tional mass density law of sound propagation. The researchers found the existence of

two wide attenuation bands, centred around 0.4 and 1.3 kHz, which corresponds to

the spectrally measured transmission dips. In 2006, Fang et al. put the effective bulk

modulus to the test. Helmholtz resonators that have widely been used as bandstop
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filters due to the oscillation of air in the neck with the compressibility in the cavity,

which at resonance absorb all sound, have been tuned to act at a wavelength much

smaller than this structure [63, 75, 62]. In an array of those resonators, the authors

excited this structure at the right ultrasonic tone (32.5 KHz in water), giving rise to

full sound attenuation due to a resonant single negativity (real part of the effective

bulk modulus less than zero Re(1/κ < 0)).

In the following we design a metamaterial that is the acoustical analogue of the

double-fishnet structure recently analyzed in Optics. Two adjacent holey plates are

predicted to support a gap mode which is responsible of a forbidden band, charac-

terized by a negative effective bulk modulus. This acoustic metamaterial exhibits a

weak dispersion with parallel momentum so the regime of strong attenuation appears

for a broad range of angles of incident sound. Compared to those two highlighted

examples from the literature, we will show how the acoustic fishnet structure in its

simplest sense, can be manufactured by two adjacent hole arrays.

5.1 Modal expanding the acoustic double-fishnet

structure

Fig. 5.1 illustrates a schematic drawing of the acoustical version of the double fishnet

structure. Recent interest in LHM has sparked the desire to create efficient structures

such as the gap material and metallic wires composite: Double-fishnet structure. In

2005, Zhang an co-workers demonstrated negative refraction of light in the near-IR

regime [132] which later was extended to visible frequencies [133–135]. In the same

framework, detailed theoretical explanations in terms of lumped-parameter models

and full modal analysis were given [136, 137]. In the following we will derive the ME

for the structure given in Fig. 5.1, which is a perfect rigid structure (steel, brass or

concrete) that, e.g., is surrounded by air. We follow up with the theory employed in

section 2.7 from Chapter 2 upon modelling hole arrays, and start out with Region
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Figure 5.1: Schematics of an acoustic double-fishnet structure, made out of a perfect
rigid body, impenetrable for air-borne sound waves impinging on the structure.

I , the zone of sound irradiation:
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For a detailed explanation of the quantities and functions involved one should review

section 2.7. Region II again is represented as a sum over hole waveguide modes,

hence the pressure and velocites read:
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The two metallic plates are separated by an fluid gap of thickness hg wherein waves

freely can scatter. The wave running in the positive and negative direction along

the z-axis are weighted by a discrete set of diffraction amplitudes, Γ such as τ

respectively:
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(5.3)
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The in-plane diffracted waves inside the gap kβ
||, are spatially phase shifted along

the z-axis, of the order ϕa = h1
m, in relation to scattering taking place in Region I .

Region IV again comprise waveguide modes inside the lower hole array of thickness

h2
m, where pressure p(z) and the z-component of the velocity vz(z) are given as

|pIV (z)〉 =
∑

α

Y IV
qα
z

(
AIV

α eiqα
z (z−ϕb) + BIV

α e−iqα
z (z−ϕb)

)|α〉

|vIV
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AIV

α eiqα
z (z−ϕb) −BIV

α e−iqα
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)|α〉,
(5.4)

with ϕb = h1
m + hg. In the wave emerging region, we straightforwardly can write the

transmitted waves as a sum over Bloch-modes:

|pV (z)〉 =
∞∑

β=−∞
TβY V

kβ
z
|kβ
||〉eikβ

z (z−ϕc)

|vV
z (z)〉 =

∞∑
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Tβ|kβ

||〉eikβ
z (z−ϕc),

(5.5)

with phase constant ϕc = h1
m+hg+h2

m. In order simplify the modelling approach and

to gain physical insight into this problem, it is worth developing a minimal model

in which only the first eigenmode α = 0 inside the holes is introduced in the modal

expansion. This mode does not present cutoff and hence its propagation constant

coincides with the free space wavenumber, k0 = 2π/λ. We have checked that this

single mode approach is a very good approximation when λ > Λ À a. Also for this

system, at all interfaces as it has been extensively elaborated in Chapter 2, we impose

continuity of the appropriate fields while matching the modes at their respective

spatial locations. With the indices 1, wave coupling, bouncing and radiation is linked

to the hole array facing the incident radiation, whereas 2 relates to the structure at

wave emerging side. In the absence of a prime, the modal velocity v is represented

at the input side, either at plate 1 or 2, where the primed velocity v′ is devoted to
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the output side. Hence, the system of equations read as follows:

(G1 − ε1)v1 −GV
1 v′1 = I0

(Ψ + ε1)v
′
1 + Φv2 + GV

1 v1 = 0

(Ψ + ε2)v2 + Φv′1 + GV
2 v′2 = 0

(G2 − ε2)v
′
2 −GV

2 v2 = 0

, (5.6)

with the illumination term representing sound irradiation via the fundamental waveg-

uide mode

I0 = 2iY I
k0

z
S00, (5.7)

such as the interface coupling functions at a given hole array, 1 or 2
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The bidirectional bouncing back-and-forth terms with respect to the appropriate

hole arrays read:
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, (5.9)

whereas the coupling functions, linking diffracted waves to the waveguide modes are

nothing but:
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The scattering which is taking place inside the fluid gap, that is linking the entire

incident acoustic field to the wave emerging side, is governed by the two functions:

Ψ =
∞∑
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z
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and
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Eqs. (5.6) with the constituting functions Eqs. (5.7-5.12) unifies the entire wave

interaction process under the same umbrella, when sound in the long wavelength

limit is funnelled through a stack of two hole arrays. We could extend this concept

to fishnet structures of n layers as this only would imply an increased number of

interfaces that would be needed to be matched and add slight additional costs in

terms of computation. In order to conquer physical insight into this new acoustical

waveguide, we focus the study on two adjacent hole arrays, making it the simplest

version of a double-fishnet structure for sound waves. The unknown modal velocity

fields from the system of linear equations, Eqs. (5.6), have been defined in the

following way:

v1 = AII
0 −BII

0 (5.13)

v′1 = −(
AII

0 eiq0
zh1

m −BII
0 e−iq0

zh1
m
)

(5.14)
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0 −BIV

0 (5.15)

v′2 = −(
AIV

0 eiq0
zh2

m −BIV
0 e−iq0

zh2
m
)
. (5.16)

5.2 Transmission study

Single holey plates have been examined mainly in connection with the emergence of

the phenomenon of extraordinary wave transmission through subwavelength aper-

tures in acoustic systems, as we elaborated in Chapter 2. In that chapter we referred

to configurations employed in recent experiments containing plates made of steel,

brass (sound-hard materials) or aluminum (sound-soft), which were perforated with

holes forming a square lattice with periods in the range of 2 - 7 mm, supporting

transmission resonances that range from the kHz to the MHz frequency regimes

[94, 97]. In single holey plates, two resonant transmission mechanisms coexist. One
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is associated with the excitation of FP modes inside the holes whose spectral loca-

tions are then controlled by the thickness of the plate. The other mechanism relies

on the coupling between the incident sound wave and acoustic surface waves confined

at the horizontal surfaces of the plate (Chapter 2).

A sketch of an acoustic double-fishnet (ADF) structure is depicted in Fig. 5.1. Two

plates of equal thickness hm = h1
m = h2

m are perforated with a square array (period

Λ = Λx = Λy) of square holes of side a = ax = ay. These two holey plates are

separated by a thin layer of thickness hg filled with a fluid characterized by a sound

velocity cg and mass density ρg. As we have mentioned in section 5.1, in our calcu-

lations we assume that the surrounding medium is air (sound velocity, c0) and that

the plates are made of steel or brass in which the perfect rigid body approximation

is very accurate. Within this approach, the same scattering properties are obtained

in different frequency regimes by properly scaling all the geometrical parameters

with the same factor. Due to that, in our calculations, we will use Λ as the unit

length defining the structure. In Fig. 5.2 we render the normally-incident transmis-

Figure 5.2: Normalized-to-unit cell transmittance spectra as a function of λ and hm,
both in units of Λ. In the three panels, a = Λ/3.75 and three different values of
hg are studied: hg = Λ/1000, Λ/100 and Λ/10. The incident sound plane wave is
impinging at the normal direction.

sion spectra for three different values of the gap thickness, hg = Λ/1000, Λ/100 and

Λ/10. The side of the square holes is fixed at a = Λ/3.75 and the gap material is
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assumed to be air. In the three panels, the dependence of the transmittance with

wavelength and plates’ thickness, hm, is displayed. In the case of an extremely thin

gap layer (Fig. 5.2a), the transmission spectra almost resemble those corresponding

to holey plates of total thickness 2hm, see, e.g., Fig. 2.16 from Chapter 2 (though

with other geometries). In this case, FP resonant modes appear at wavelengths close

to λ = 4hm/m, with m an integer. In addition to these transmission resonances,

a new resonant feature leading to an anticrossing emerges at around λ = 2.45Λ.

An inspection of the pressure field distribution associated with this new resonance

reveals that this mode is strongly localized at the gap region. Importantly, this gap

mode seems to couple only with the odd FP modes (m = 1, 3, 5...). When hg is

increased, the coupling between the odd FP modes and the gap mode is enlarged

and the spectral locations of these hybridized modes tend to merge with those of the

even FP modes that remain almost unaltered as a function of hg. The coupling be-

tween the FP modes and the gap resonance as observed in Fig. 5.2 can be explained

by looking at the symmetry of the non-trivial solutions of the homogeneous version

of the system of Eqs. (5.6). In other words, in order to seek bound mode solutions

of definite symmetry, the system is now driven by an evanescent wave. The modal

solutions that display a symmetric (even) distribution correspond to v1 = −v′2 and

v′1 = −v2, which is in accordance to the definitions given previously. This yields the

following condition for a zero in the real part of the determinant:

(Re(G)− ε)(Ψ− Φ + ε) + (GV )2 = 0. (5.17)

All the magnitudes appearing in Eq. (5.17) are real quantities except G, whose

imaginary part measures the coupling of the waveguide mode inside the holes with

the radiative mode in Region I and V . In the limit of a very thin gap layer, hg → 0,

Ψ ≈ Φ (see Eq. (5.11) and Eq. (5.12)) and the resonant condition reads:

Re(G) = −1

ε
, (5.18)

113



which is independent of hg. As Re(G) scales as (a/Λ)2, in the limit of small holes

this condition reads 1/ε = 0, which is fulfilled for

λ =
2hm

l
=

4hm

m
(5.19)

with l integer. As expected, these resonant wavelengths correspond to the even

solutions for the FP modes of a holey plate of total thickness 2hm, explaining why

the even FP modes do not couple with the gap resonance, as observed in Fig. 5.2.

When searching for anti-symmetric (odd) solutions (v1 = v′2 and v′1 = v2), the

condition for a zero-determinant is now:

(Re(G)− ε)(Ψ + Φ + ε) + (GV )2 = 0, (5.20)

that can be rewritten as:

Re(G) = ε− (GV )2

Ψ + Φ + ε
. (5.21)

The important point to notice is that, in the limit hg → 0, Ψ+Φ ≈ 2Ψ is proportional

to 1/hg. Therefore, in most of the spectral range for very small gap separations hg,

Ψ + Φ → ∞. Physically, this means that there is no space available in the ultra-

thin gap layer to accommodate a change of sign in the pressure field. The resonant

condition for odd solutions reads:

Re(G) = ε, (5.22)

that is fulfilled when:

λ =
4hm

2l + 1
, (5.23)

l integer, for very small holes. This is exactly the condition for odd FP modes (2l+1)

of a holey plate of total thickness 2hm. However, in Eq. (5.21), there is an additional

resonant condition associated with a zero in the denominator, Ψ + Φ = −ε. This

corresponds to a solution in which v1 = v′2 = 0, i.e., and odd mode that is confined

at the gap region between the two holey plates. Importantly, as it can be worked out

within the minimal model, its spectral linewidth enlarges for increasing hg, this being
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responsible for the enhancement in the coupling between the gap and the odd FP

resonances when the holey pates separate. The interplay between this gap mode and

the odd FP modes leads to the complex behaviour of the transmittance observed

in Fig. 5.2. Furthermore, when the odd FP modes and the gap mode hybridize,

Figure 5.3: The evolution of the gap resonance at normal incidence, Ψ + Φ = 0, is
displayed as a function of the wavelength λ and the square aperture size a = ax = ay.

one obtains the condition (Ψ + Φ) = 0, which isolates the resonance supported by

the gap. This equation which we have plotted in Fig. 5.3 shows how the resonant

location of the gap mode, subtle can be tuned by the size of the holes.

5.3 Negative effective bulk modulus and its angu-

lar sensitivity

In the following we shall apply a retrieval technique, to determine the effective acous-

tical constitutive parameters for the designated structure. We have employed the
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method from D. R. Smith et al. and slightly modified for the use of sound waves

[138]. For a wave to exhibit full attenuation inside a material, the structure can

be made out of a SNG-metamaterial which gives rise to a imaginary propagation

constant. Passivity in the ADF requires positive imaginary constant in both the

effective mass density ρ such as the bulk modulus 1/κ. We have checked that for

this present structure the real part of the effective mass density is always positive,

making the structure, unlike for its EM counterpart, impossible for the emergence

of a negative refraction. This can be ascribed to the lack of cutoff for sound prop-

agation inside the holes, whereas the existence of a cutoff for EM waves leads to a

Drude behaviour for the electric permittivity [28].

In order to analyse the link between transmission resonances and the effective 1/κ,

we have fixed the plates’ thickness at hm = Λ/1.875, in this case, the spectral loca-

tion of the gap mode lies exactly within the m = 1 odd FP resonance (see Fig. 5.2a).

As in Fig. 5.2, three different values of hg are studied and rendered in Fig. 5.4:

hg = Λ/1000, Λ/100 and Λ/10. Regarding the effective ρ, as mentioned this mag-

nitude is always positive and does not present any resonant feature. However, for

a very thin gap layer, a region of negative 1/κ emerges and its location coincides

with the transmission dip originated by the weak coupling between the gap mode

and the first odd FP mode. The consequence of a negative compressibility in the

fluid element comprised by the unit cell (hole perforation plus gap), is the overall

expansion as a reaction to a positive external pressure (compression). This type of

negative response has been demonstrated in a recent experiment for a 1D structure

[62]. As hg is increased, the region of negative 1/κ is greatly enlarged as a result of a

stronger coupling between the two modes, which can be seen in Fig. 5.4c. Therefore,

our results suggest that in an ADF metamaterial the spectral linewidth of the at-

tenuation band can be easily tuned by varying the separation between the two holey

plates. In the spectral regimes of vanishing transmittance, as seen in Fig. 5.4, un-

ambiguously the suppression of sound radiation is caused by the fact that the ADF
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Figure 5.4: Normalized-to-unit-cell transmittance for normal incidence (black dotted
lines) and real effective bulk modulus, Re(1/κ), (blue curves) for an ADF structure
of square holes a = Λ/3.75 and gap separations hg = Λ/1000, Λ/100 and Λ/10,
respectively. In the three cases, the plates’ thickness is fixed at hm = Λ/1.875. The
green shaded area highlights the area of negative Re(1/κ).

structure constitutes a SNG metamaterial, devoted to the real part of the effective

bulk modulus being less than zero, Re( 1
κ
) < 0.

When thinking in possible applications of ADFs for sound blockage, the dispersion

of its attenuation band with the angle of incidence is valuable studying. Moreover,

this type of analysis is mandatory for measuring the validity of the effective medium

approach. First though, we choose to plot the transmittance dispersion relation that

maps all possible solutions on a contour for different parallel momenta, see Fig. 5.5.

It is important to notice that the wide band gap (black zone) between the first two
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Figure 5.5: Transmittance dispersion with respect to the parallel momentum con-
taining all solutions supported by the ADF structure. The geometrical parameters
are: a = Λ/3.75, hm = Λ/1.875 and hg = Λ/10, as in Fig. 5.4c.

lowest modes, does not stem from Bragg scattering. This flat dispersion-less zone

rather originates from a negative effective bulk modulus resonance, entrained in the

excitation of a gap mode. As shown in Fig. 5.6a, the width of the forbidden band, ∆

in wavelength units, is greatly enlarged for increasing hg as a result of a stronger cou-

pling between the modes as we explained above. With Fig. 5.6b we plot the evolution

of the spectral locations of the symmetric and asymmetric modes, along with the

region of negative 1/κ as a function of the angle of incidence, for the case depicted in

Fig. 5.4c (hm = Λ/1.875 and hg = Λ/10). The symmetric (even FP modes) disper-

sion band is calculated with Eq. (5.17) whereas the asymmetric ones (odd FP and

gap modes) originates from Eq. (5.20). As a difference with its optical counterpart

[137], all the resonant modes and, consequently, the region of negative bulk modulus

show very little dispersion with parallel momentum. The region of negative 1/κ is

maintained for angles of incidence as large as 80◦, although its bandwidth is reduced
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Figure 5.6: (a) Dependence of the wavelength width of the attenuation band, ∆,
with the gap thickness, hg, for normal incidence. (b) Dispersion with respect to the
parallel momentum of the symmetric (red curve, from Eq. (5.17)) and asymmetric
(blue lines, from Eq. (5.20)) modes and the region of negative Re( 1

κ
) < 0 (purple

area). The geometrical parameters are: a = Λ/3.75, hm = Λ/1.875 and hg = Λ/10,
as in Fig. 5.4c. Dotted lines show the dispersion of incoming plane waves for different
angles of incidence.

with respect to the normal incident case. This result validates the use of an effective

medium approach for describing the scattering properties of an ADF metamaterial.

From the practical point of view, our finding reinforces our claim that an ADF can

operate as a tunable acoustical device presenting a broadband, all angle attenuation

of sound. Importantly, the spectral location of this forbidden band and its linewidth

can be engineered by changing the period of the hole array and the thickness of the

gap layer placed between the two holey plates. In that same respect, the location

of the resonance can be tuned with an gap-filling fluid different from the one in the
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holes and the background.

5.4 Fano resonance interpretation

In the following section, we wish to introduce another interpretation of the resonance

mechanism involved, which is giving rise to the forbidden bands of complete sound

attenuation as we saw before. We will take a close look at an example, which

Figure 5.7: Transmittance and determinant spectra such as a Fano resonance in-
terpretation for an ADF structure of geometries: h2

m = h1
m = ax = ay = Λx/3 =

Λy/3 = Λ/3 such as hg = 0.07Λ. The blue vertical dash-dotted lines match all
allowed solutions.

corresponds to an ADF metamaterial of geometries h2
m = h1

m = ax = ay = Λx/3 =

Λy/3 = Λ/3 such as hg = 0.07Λ. In the upper panel of Fig. 5.7 we have mapped the

transmittance spectra in the presence (hg 6= 0) and the absence (hg = 0) of a gap.
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In here the logarithmic scale is chosen to demonstrate the opaque nature associated

to the transmission minima. From Eqs. (5.6), one easily can derive an analytical

expression for the determinant, which helps seeking for the non-trivial solutions

giving rise to full transmission, that agree very well as illustrated in the lower and

the upper panel of Fig. 5.7. We have seen (section 5.3) that the transmittance

dip is related to an exotic acoustical property embedded in the ADF structure,

which we have attributed to a single negativity, as of the real effective bulk modulus

having a value less than zero. In here, we want to obtain full understanding of the

transmission maxima that can be understood in a different way, compared to the

previous symmetry study. To this, we shall derive a minimal-model which basically

adds the contribution from the array of holes thArr and the plate separation (gap)

4gap to the overall transmittance: t = thArr + 4gap. The absolute value of this

transmission is of particular interest, which reads:

|t|2 = |thArr|2 + | 4gap |2 + 2Re(t∗hArr4gap). (5.24)

The decomposition of Eq. (5.24), allows to separate explicitly the resonant and

nonresonant parts of t. It is important to note that this expression closely resembles

a Fano-type formula, in which two different mechanisms (resonant and nonresonant

channels) interplay in the final transmission process. The nonresonant part can be

regarded as the first term in Eq. (5.24), which simply is the transmission data

originated from a hole array, hg = 0. The resonant channel in the Fano picture,

is provided by the second term, which is the resonant contribution of sound wave

encompassing the gap spacing between the hole arrays. The interference between

the resonant and nonresonant channel in the Fano approach, is explained by the

last term in Eq. (5.24). The contribution of those channels given with Eq. (5.24),

can clearly be seen in the middle panel of Fig. 5.7. The resonant and nonresonant

channels coincides very well with the transmission spectra for the ADF structure

and the hole array respectively. It is also very interesting to see how the interference

term, 2Re(t∗hArr4gap), changes its sign as in typical resonance phenomena, which
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in this particular case takes place at all transmission maxima in the spectrum for

the ADF structure. The narrower the transmission peak is, the faster the sign

change in the interaction term appears. Note also how the spectral location of

this interaction agrees with the non-trivial solution plotted in the lower panel of

Fig. 5.7 (blue vertical dash-dotted lines). Henceforth, it is interesting to notice

how the transmission process through ADF structures, either can be explained in

the framework of a Fano type resonance, but also in terms of studying the modal

velocity symmetry.

5.5 Conclusion and future work

Analytically and numerically we have presented a new acoustical device for efficient

sound blockage. The ADF structure, which can be fabricated out of two holey

steel or brass plates separated with a gap, can be tuned to give rise to a wide

band of low sound transmission, due to a resonant negative bulk modulus. We

have calculated how to determine the spectral location of the resonance dependent

on the hole size, and also shown how to tune the size of the bandgap for different

gap separations, hg. Moreover, in this context, by means of analytical formulas

we have predicted that externally irradiated sound can excite gap modes that are

responsible for the appearance of negative Re(1/κ). Different from Bragg-scattering

based crystals, the ADF metamaterial is a very thin composite that does not rely

on periodic material modulation. Therefore we expect that the use for applications

will be very important, in the design of novel acoustical devices for sound sealing

and attenuation in automotive and environmental developments.

It is well known that spoof SPPs, induced by holes pierced into a PEC, will support

the formation of bound modes, that are controlled by the cutoff inside those holes

[28]. Remarkably, this cutoff determines the electrical resonance of the double-fishnet

structure for EM waves [137]. Due to the absence of a cutoff frequency in holey
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acoustic structures as of no polarization in air-borne sound, we showed that the

acoustic analogy of the double-fishnet structure is a SNG metamaterial suitable

for the resonant blockage of sound. In other words, only the acoustic analogy of

the magnetic resonance prevails, when modes are excited in the intermediate gap,

separating the adjacent hole arrays. We foresee experiments to come soon because

both the device it self, and the measurement procedure will not differ much from what

have been employed to observe EAT [90, 97]. However, an important advancement of

the current ADF structure would be the introduction of another resonant mechanism

(coated sphere, membrane etc. [65]) for tuning the effective mass density to negative

values. Effectively combining those two resonances could give rise to a band of

negative refraction, with the possibility of perfect lensing, i.e., amplifying evanescent

waves.
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Chapter 6

Conclusion

English

This thesis has been concerned with a theoretical study on acoustic wave phenomena

in relation with structured metallic systems for enhanced transmission of sound,

shielding and imaging. The main focus has been on the development of a modal

expansion technique and the consequential analytical problem treatment, although

numerical results have also been presented and discussed. The thesis consists of

four parts, extraordinary transmission, guiding of sound along a wire, metamaterial

based imaging and sound blockage by means of an acoustic double-fishnet structure.

In the following an outline of the results obtained from the different parts will be

presented.

6.1 Summary

In the first part, study on the extraordinary acoustical transmission, we developed a

general model based on the mode matching technique for perforated systems. This

model is based on assuming that no wave energy is penetrating into the plates in

which apertures are carved, and that all fluids are inviscid, hence dissipative losses
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are disregarded. Firstly, we have taken finite structures under investigation and cal-

culated how sound is able to penetrate single isolated apertures such as slits and

holes. In both cases we find that the dominant geometrical parameter, which con-

trols the spectral locations of the resonances and consequently the locations of high

transmittance efficiency, is the thickness of the plate. However, the main difference

between those two configurations is the growing transmittance as a function of the

wavelength: for slits it is a linear dependence whereas holes contain a quadratic de-

pendence. Within the same formalism a modification has been introduced to account

for periodic slit and hole arrays. Apart from the resonance governed by the structure

thickness (Fabry-Perot) giving rise to full transmittance, a new resonance appears

that stems from the excitation of an acoustic guided wave running along the surface

of the plate. This acoustic surface wave hybridizes strongly with the Fabry-Perot

resonances in single apertures, and is tunable with the height and width of the per-

forations. We found that the comparison of 1D structures for sound and light (p -

polarized) is very similar, but that 2D structures differ significantly, which originates

in the absence of a cutoff for the fundamental cavity mode in sonic waveguides.

In the second part we studied the existence of acoustic bound modes by a corrugated

sound-hard wire. The advantage of the modal expansion technique used in the pre-

vious part is shown by its flexibility also to handle cylindrical structures, such as

the present wire. In that respect we have shown that within the long wavelength

limit, the surface states supported by the wire approach the same modes from a

groove grating, which also holds for spoof surface plasmons along a corrugated per-

fect conducting wire. The model created has also been used to study the geometrical

influence on the bands, in which we found that the pressure field confinement grows

with increasing ring depths. With FEM analysis, numerical calculations have been

conducted to study finite structures. The advantage of the slow modes (flat bands)

has lead to the design of a conical corrugated structure, by which subwavelength

focusing of sound is achieved.
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In the third part, acoustic deep subwavelength imaging, we developed an effective

medium approach by employing a multiple scattering formalism in the long wave-

length limit. We show that within the perfect rigid body assumption and at some

resonant frequencies, holey metal blocks make a robust imaging device. It is pre-

sented that the transmission coefficient for sound through those holey metamaterials

is unity for all parallel momenta. Unlike perfect lensing which amplifies evanescent

waves, a standing wave of constant phase within the metamaterial is built up that

can be excited from various angles of incident sound. In this respect, we show how

those DC (direct current) modes can transfer a complex 3D object with all its propa-

gating and evanescent (near-field) field components to an image plane, which makes

sonic scanning feasible beyond the diffraction limit. Our theoretical results are in

good agreement with experiments performed.

In the fourth part, blockage by means of an acoustic double-fishnet structure, we

have extended the single plate model to two adjacent holey perfect rigid plates. The

acoustic coupling between holes in the gap region is measured by simple trigonomet-

ric functions summed over diffraction orders, hence not adding additional demands in

terms of computation. We have shown that apart from the Fabry-Perot and acoustic

surface modes supported by a single plate, gap modes resonances emerge in the in-

termediate plate separation. By studying the symmetry of all resonances supported

by the structure, we obtained analytical insight into the problem, such that only odd

Fabry-Perot resonances couple to those gap modes, whereas the even Fabry-Perot

modes almost remain unaltered as a function of the gap width. Moreover, we have

found out that, due to the lack of cutoff for sound propagating inside holes, the

acoustic structure exhibits no negative refraction. Instead, our model has enabled

us to demonstrate that the current acoustic double-fishnet structure can operate as a

tunable device presenting a broadband, all angle blockage of sound due to a negative

effective bulk modulus, containing little dispersion with parallel momentum.
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Español

Esta disertación doctoral se ha enfocado sobre fenómenos acústicos ondulatorios, en

relación con sistemas metálicos estructurados y sus propiedades de intensificación de

la transmisión de sonido, opacidad y proyección de imágenes. El principal enfoque

es el desarrollo de una técnica de expansión modal y su consecuente tratamiento

anaĺıtico con resultados numéricos que han sido presentados y discutidos. Esta tesis

consiste de 4 partes: transmisión extraordinaria, guiado de ondas a lo largo de un

alambre ŕıgido, metamateriales para obtención de imágenes y bloqueo de sonido por

medio de una estructura acústica tipo double-fishnet. A continuación será presentado

un resumen de los resultados obtenidos.

En la primera parte, estudio sobre la transmisión extraordinaria de sonido, desar-

rollamos un modelo general basado en la técnica de expansión modal para sistemas

perforados. Este modelo se desarrolla bajo el supuesto de que no hay penetración de

enerǵıa de las ondas en la lámina sobre la cual se perforan los agujeros y que los flui-

dos son viscosos, por lo tanto las pérdidas por disipación no son consideradas dentro

del modelo. Primero hemos tomado estructuras que están bajo investigación y se

ha calculado como el sonido es capaz de penetrar por aperturas únicas aislada tales

como rendijas y agujeros. En ambos casos encontramos que el parámetro geométrico

dominante, el cual controla la localización espectral de las resonancias y consecuente-

mente la localización de la alta eficiencia de transmisión, es el grosor de la lámina.

Sin embargo, la diferencia entre estas dos configuraciones es el incremento de la

transmitancia como función de la longitud de onda: para la rendija es una depen-

dencia lineal mientras que para el agujero presenta una dependencia cuadrática. En

el mismo formalismo se ha introducido modificaciones para tomar en cuenta rendijas

periódicas y array de agujeros. Una parte de la resonancia (tipo Fabry-Perot) es gob-

ernada por el grosor de la estructura dando una transmisión completa, y surge una

nueva resonancia derivada de la excitación de una onda acústica guiada corriendo

a lo largo de la superficie de la lámina. Esta onda superficial acústica se hibridiza
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fuertemente con la resonancia Fabry-Perot en una única apertura, y está relacionada

con la altura y el ancho de la perforación. Nosotros encontramos que la comparación

de las estructuras unidimensionales 1D para sonido y luz (con polarización P) son

muy similares, pero las estructuras bidimensionales 2D difieren significativamente,

lo cual tiene su origen en la ausencia de cutoff para el modo de cavidad fundamental

en la gúıa de onda.

En la segunda parte estudiamos la existencia de modos acústicos ligados para una

gúıa de onda sonora consistente en un alambre ŕıgido. La ventaja de la técnica de

expansión modal usada en la parte anterior es mostrada aqúı dada su capacidad para

describir estructuras ciĺındricas tales como el alambre usado en esta disertación. Con

respecto a este, hemos demostrado que en el ĺımite de longitud de onda grande, los

estados superficiales soportados por el alambre se aproximan a los mismos modos

de una rejilla de ranuras, la cual también soporta plasmones superficiales inducidos

a lo largo de un alambre conductor perfecto corrugado. El modelo creado también

ha sido usado para estudiar la influencia geométrica sobre las bandas, en la cual

hemos encontrado que el campo de presión confinado crece con el incremento de la

profundidad de los anillos. Con un análisis FEM, se han realizado cálculos numéricos

para estudiar estructuras finitas. La ventaja de los modos suaves (bandas planas)

ha llevado al diseño de una estructura corrugada cónica, por medio de la cual se

consigue un enfoque de ondas acusticas sub-longitudes de onda.

En la tercera parte, en la proyección de imágenes acústicas en régimen sub-longitud

de onda, fue desarrollado un medio efectivo aproximado empleando un formalismo

de scattering múltiple en el ĺımite de longitud de onda. Nosotros mostramos que

asumiendo un cuerpo ŕıgido perfecto y en algunas frecuencias resonantes, bloques de

metales agujereados constituyen un robusto dispositivo de proyección de imágenes.

Se observa que el coeficiente de transmisión de sonido a través de estos metamate-

riales agujereados es unitario para todos los momentos paralelos. A diferencia de

la lente perfecta la cual amplifica ondas evanescentes, una onda estacionaria con
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fase constante en un metamaterial es construida tal que puede ser excitada desde

varios ángulos de incidencia del sonido. Al respecto, mostramos como estos modos

DC (corriente directa) pueden transferir objetos complejos tridimensionales 3D con

todas sus componentes propagantes y evanescentes de campo (campo cercano) para

una imagen plana, la cual hace posible exploración sónica más allá del ĺımite de

difracción. Nuestros resultados teóricos están en muy buen acuerdo con diseños ex-

perimentales.

En la cuarta parte, usando una estructura tipo double-fishnet, nosotros extendimos

el modelo para una lámina a dos láminas adyacentes agujereadas y perfectamente

ŕıgidas. El acople acústico entre agujeros en la región del gap es medido por fun-

ciones trigonométricas simples sumadas sobre los órdenes de difracción, por lo tanto

no adiciona complicaciones en términos de computo. Nosotros mostramos que aparte

de modos tipo Fabry-Perot y modos acústicos superficiales soportados por una sim-

ple lamina, modos gap resonantes emergen del lugar intermedio de separación de

las láminas. Estudiando la simetŕıa de todas las resonancias soportadas por la es-

tructura, obtuvimos conocimientos anaĺıticos acerca del problema, tales como que

solo resonancias tipo Fabry-Perot pares se acoplan a estos modas gap, mientras los

modos tipo Fabry-Perot impares prácticamente se mantienen inalterados como una

función de el ancho del gap. Más aun, nosotros encontramos que debido a la ausen-

cia de cutoff para sonido propagante dentro del agujero, la estructura acústica no

exhibe refracción negativa. En lugar de ello, nuestro modelo nos ha permitido de-

mostrar que la corriente acústica de la estructura double-fishnet puede operar como

un dispositivo ajustable presentando un ensanchamiento de banda, todos los ángulos

bloqueados debido a módulos negativos de compresibilidad tienen pequeña dispersión

con momento paralelo.
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Appendix A

In this appendix, extensive derivations devoted to Chapter 2 of the thesis are given.

These derivations are the overlapping integrals between Bloch waves and rectangular

hole and slit waveguide modes, such as the expansion coefficients and approximations

for the Greens functions.

A.1 Overlap functions for a slit array

For the slit array, the over lap function is defined in the following way:

Sγm = 〈kγ
x|qm

x 〉 =

∫
〈kγ

x|x〉〈x|qm
x , 〉dx (A.1)

where we shall introduce three solutions, related to the presence of all waveguide

modes m 6= 0, the fundamental mode approximation m = 0 and the one where

diffraction safely can be neglected together with the fundamental waveguide mode

m = γ = 0:

For m 6= 0:

Sγm =

√
2− δ0m

aΛ

∫ a
2
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2
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(A.2)
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For m = 0:

Sγ0 =

√
a

Λ
sinc

kγ
xa

2
. (A.3)

For m = γ = 0:

S00 =

√
a

Λ
. (A.4)

A.2 Overlap functions for a hole array

In here the overlap function for hole arrays are derived, which straightforwardly can

be written in terms of the slit overlaps from section A.1:

Sβα = 〈kβ
|||qα

||〉 =

∫
〈kβ
|||r||〉〈r|||qα

||〉dr|| (A.5)

where (kβ
||)

2 = (kγn
|| )2 = (kn

x)2 + (kγ
y )2 and (qα

||)
2 = (qml

|| )2 = (qm
x )2 + (ql

y)
2. Hence,

when applying Eq. (A.2) the two dimensional overlap reads:

Sβα = SγmSnl. (A.6)

E.g. for the fundamental mode approximation Eq. (A.6) is restated according to

the respective definitions in section A.1.

A.3 Overlap and Greens functions for isolated aper-

tures containing indentations

For the single slit surrounded by corrugations, the Greens function is similar to Eq.

(2.30) from section 2.4, though with the difference containing a phase with respect
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to the groove locations xσ = σΛ:

Gslit → Gx,x′ = 〈x|G̃|x′〉 =
iπ

λ

∫ xσ+a/2

xσ−a/2

∫ xσ′+a/2

xσ′−a/2

H
(1)
0 (k0|x− x′|)dxdx′. (A.7)

The overlap function in the Illumination term I0
σ, which is not a function of diffracted

waves, is nothing but:

S00 =

√
a

Λ
sinc

k0
xa

2
e−ik0

xxσ . (A.8)

A.4 Expansion coefficients

The expansion coefficients Am, Bm such as the modal fields vm, v′m can be stated into

the following expressions:

Am = − v′m + vmeiqm
z h

eiqm
z h − e−iqm

z h
(A.9)

Bm = −v′m + vme−iqm
z h

eiqm
z h − e−iqm

z h
(A.10)

v0 =
I0(G− ε)

(G− ε)2 − (GV )2
(A.11)

v′0 =
I0GV

(G− ε)2 − (GV )2
. (A.12)
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Appendix B

In this appendix we demonstrate the full derivation of the resonant unity-transmission,

for a hole array structure, acting as a imaging device.

B.1 Transmission coefficient for a holey metama-

terial

We begin to express the transmission coefficient for a hole array, with the use of Eq.

(2.16) from section 2.3 and rewrite it into a 2D problem:

Tβ =
(
A0e

iq0
zh −B0e

−iq0
zh

)
S∗β0. (B.1)

Eq. (B.1) can be simplified with the definition Eq. (2.18), the modal output velocity:

Tβ = −v′S∗β0, (B.2)

and entirely be generalized with the expressions, Eq. (A.12), contained in the system

of equations:

Tβ = − I0GV

(G− ε)2 − (GV )2
S∗β0. (B.3)

Substituting the corresponding functions yields

Tβ =
k0

k0
z

4

eiq0
zh − e−iq0

zh

S00S
∗
β0

(G− ε)2 − (GV )2
, (B.4)
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and after further straight forward algebra:

Tβ =
k0

k0
z

4

2i sinq0
zh

S00S
∗
β0

G2 + cos2q0
zh−1

sin2q0
zh

− 2G cosq0
zh

sinq0
zh

, (B.5)

and

Tβ =
4k0

k0
z
S00S

∗
β0

2iG2 sinq0
zh− 2i sinq0

zh− 4iG cosq0
zh

(B.6)

such as:

Tβ =
4k0

k0
z
S00S

∗
β0

G2(eiq0
zh − e−iq0

zh)− (eiq0
zh − e−iq0

zh)− 2iG(eiq0
zh + e−iq0

zh)
, (B.7)

Tβ =
4k0

k0
z
S00S

∗
β0

eiq0
zh(G− i)2 − e−iq0

zh(G + i)2
. (B.8)

If we impose Sβ0S
∗
β0 = |Sβ0|2 into Eq. (B.8) it further simplifies into:

Tβ =
4k0

k0
z
|Sβ0|2eiq0

zh

e2iq0
zh(i k0

kβ
z
|Sβ0|2 − i)2 − (i k0

kβ
z
|Sβ0|2 + i)2

, (B.9)

and if we now neglect diffraction for very subwavelength geometries given as a =

ax = ay such as Λ = Λx = Λy:

T0 =
4k0

k0
z
| a
Λ
|2eiq0

zh

(k0

k0
z
| a
Λ
|2 + 1)2 − e2iq0

zh(k0

k0
z
| a
Λ
|2 − 1)2

. (B.10)

Eq. (B.10) resembles a very general expression for the transmission coefficient due

to a multiple scattering event. If a Fabry Perot resonance of order m is introduced,

q0
zh = mπ, we have:

T0 =
4k0

k0
z

a2

Λ2 (−1)m

(k0

k0
z

a2

Λ2 + 1)2 − (k0

k0
z

a2

Λ2 − 1)2
, (B.11)

which is nothing but:

T0 = (−1)m (B.12)
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[78] J. A. Porto, F. J. Garćıa-Vidal, and J. B. Pendry. Phys. Rev. Lett., 83:2845,

1999.

[79] H. E. Went, A. P. Hibbins, J. R. Sambles, C. R. Lawrence, and A. P. Crick.

Appl. Phys. Lett., 77:2789, 2000.

[80] Y. Takakura. Phys. Rev. Lett., 86:5601, 2001.

[81] J. Bravo-Abad, L. Mart́ın-Moreno, and F. J. Garćıa-Vidal. Phys. Rev. E,
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