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Durante un segundo de lucidez tuve la certeza de que nos
habíamos vuelto locos. Pero a ese segundo de lucidez se

antepuso un supersegundo de superlucidez (si me permiten la
expresión) en donde pensé que aquella escena era el resultado

lógico de nuestras vidas absurdas.

Roberto Bolaño, Los Detectives Salvajes
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Abstract

English

This Thesis is devoted to various topics that lie at the frontier of the Plasmonics research
field. All of them are based on the remarkable properties featured by surface plasmons.
Surface plasmons are surface electromagnetic waves supported by metallic nanostruc-
tures that are capable of concentrating the electromagnetic fields at scales beyond the
diffraction limit.

First, we deal with the potentiality of propagating surface plasmons as a new route
for devising photonic circuits, where the subwavelength field confinement could lead to
more compact devices. For this purpose, we apply the theoretical framework of Transfor-
mation Optics to mold the flow of plasmons through the design of plasmonic elements.
We present a number of potential devices and perform a detailed analysis of their per-
formances.

Next, we consider the transfer of the properties featured by surface plasmons to lower
frequency regimes based on the concept of spoof plasmons. In particular, we demonstrate
the emergence of localized surface plasmon modes of geometrical origin in metallic parti-
cles whose surface is periodically textured at a subwavelenght scale. We study in detail a
novel magnetic mode appearing in such structures, which features subwavelength confine-
ment and has no analogue in conventional particle plasmonics. This magnetic localized
surface plasmon has been experimentally demonstrated, proving the predictive value of
our theory.

Next, we present a work framed within the area of plasmonic-based optical trapping,
where the field enhancement localized at metallic antennas is used to trap nanoscopic ob-
jects with subwavelength control. In particular, we propose a Brownian ratchet based on
an array of optical antennas. This device goes beyond conventional nano-optical trapping,
as it enables not only the trapping of dielectric or biological targets at subwavelength
volumes but also their directed transport over long distances.
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Abstract

Finally, we address the topic quantum emitters interacting with the electromagnetic
modes supported by flat plasmonic structures. The subwavelength confinement of the
fields enhances the interaction strength between photons and quantum emitters. By
means of an appropriate quantum formalism we treat the different regimes that emerge
in these systems. We show that an individual quantum emitter placed in the close vicin-
ity of metal/dielectric interfaces may undergo reversible dynamics. We also demonstrate
that the coupling between two distant emitters can be mediated by a plasmonic mode, in
particular, the surface plasmons propagating along graphene sheets and ribbons. In addi-
tion, we study the regime where an ensemble of quantum emitters coherently exchanges
energy with a surface plasmon propagating along a metal/dielectric interface.
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Castellano

Esta tesis está dedicada a cuatro temas que se encuentran en la frontera del campo de
investigación denominado Plasmónica. Los distintos temas que hemos considerado se
basan en las propiedades características de los plasmones de superficie. Los plasmones
de superficie son ondas electromagnéticas de superficie confinadas en nano-estructuras
metálicas, capaces de confinar el campo electromagnético a escalas nanométricas, más
allá del límite fundamental de la difracción.

En primer lugar, hemos considerado la potencialidad de los plasmones de superficie
para generar una nueva ruta hacia el diseño de circuitos fotónicos. Con este objetivo,
aplicamos el marco teórico de la Óptica de Transformación al diseño de elementos plas-
mónicos que controlen la propagación de plasmones de superficie en la interfaz entre un
metal y un dieléctrico. En concreto, presentamos una serie de dispositivos con distintas
funcionalidades, haciendo un análisis detallado de sus respectivos funcionamientos.

En segundo lugar, basándonos en el concepto de plasmones spoof, estudiamos la posi-
bilidad de transferir las propiedades características de los plasmones de superficie a
regímenes de frecuencia más bajos. En particular, demostramos la emergencia de un
plasmón superficial localizado de carácter magnético dipolar que no tiene analogía en
los plasmones localizados canónicos que aparecen a frecuencias más altas. Su origen es ge-
ométrico y aparece en partículas metálicas cuya superficie está corrugada periódicamente
a escalas menores que la longitud de onda relevante. Estudiamos este modo magnético
en detalle, viendo que presenta confinamiento a escalas menores que la longitud de onda.
Además, este modo magnético ha sido experimentalmente verificado, lo que prueba el
valor predictivo de nuestra teoría.

Por otra parte, presentamos una propuesta enmarcada en el campo del control de
objetos nanoscópicos mediante estructuras plasmónicas, que se basa en los altos campos
electromagnéticos localizados en antenas metálicas. Nuestra propuesta va más allá de
los dispositivos convencionales para atrapar partículas de tamaño nanoscópico, ya que
permite no sólo atrapar objetos sino también su transporte a lo largo de distancias largas
comparadas con su tamaño. En concreto, este concepto se puede aplicar al control de
partículas dieléctricas o incluso objetos biológicos.

Finalmente, estudiamos la interacción entre emisores cuánticos y los modos electro-
magnéticos presentes en estructuras plasmónicas. El confinamiento de los campos en
escalas menores que la longitud de onda incrementa el acoplo entre los emisores cuánti-
cos y los fotones. A través del formalismo cuántico apropiado, estudiamos los distintos
regímenes que aparecen en estos sistemas. Mostramos que un sólo emisor localizado en
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las cercanías de una superficie metálica puede experimentar una dinámica reversible.
También probamos que el acoplo entre dos emisores distantes puede mediarse a través
de un modo plasmónico, en particular, los plasmones de superficie que se propagan a
través de láminas y tiras de grafeno. Además, estudiamos el acoplo coherente de energía
entre una colección de emisores cuánticos y el plasmón que se propaga a través de una
superficie metálica.
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Chapter 1

General Introduction

This Thesis is devoted to four different topics that lie at the frontier of Plasmonics.
The research area of Plasmonics deals with the confinement of light at dimensions much
smaller than the wavelength of radiation, which allows to bring optics to the nanoscale.
This is possible owing to the remarkable properties featured by surface plasmons (SPs),
a collective excitation of the conduction electrons in a metal. An important aspect of
SPs is that, by confining the electromagnetic (EM) field at the nanoscale, they overcome
the diffraction limit, according to which the mode volumes of optical modes can not be
smaller than λ0/(2n), where λ0 is the wavelength of radiation and n is the refractive
index of the medium where light propagates [1]. This fact has given rise to an intense
and multidisciplinary scientific activity in the field during the last years. The prospects
of Plasmonics include a series of topics as diverse as surface-enhanced spectroscopy for
biosensing [2], novel devices and integrated circuits [3], near field microscopies [4] or solar
energy harvesting [5].

Throughout this Thesis we address four subjects that have attracted a great atten-
tion during the course of this research work. First, we apply the theoretical framework
of Transformation Optics for controlling the flow of SPs at metal surfaces, which en-
ables the development of novel photonic circuits. Next, we explore the emergence of
magnetic modes in metallic structures that are the analogues of plasmonic structures at
lower frequencies. Furthermore, we consider the optical trapping and manipulation of
nanoscopic objects provided by the greatly enhanced EM field close to plasmonic anten-
nas. Finally, we study light-matter interaction in nanoscale plasmonic systems, where the
sub-diffraction limited confinement of the EM fields enhances the interaction strength
between photons and emitters.

In the following we give brief introductions to the different areas of Plasmonics that

1



1. General Introduction

are covered in this Thesis. We start by introducing the properties of SPs in Section
1.1, first giving special attention to the SPs supported by metal structures and then
considering those propagating along graphene sheets. Next, in Section 1.2 we review the
recently developed fields of Transformation Optics and Metamaterials. In Section 1.3
we present the concept of spoof plasmons, that allows the transfer of all the exciting
prospects of Plasmonics from the optical regime to lower frequencies. A different branch
of Plasmonics is considered in Section 1.4, where we deal with the trapping of nano-
objects by means of metallic structures. Finally, in Section 1.5 we review the interest of
Plasmonics as a platform for light-matter interaction.

1.1 Surface Plasmons

Here we first present a brief summary on the main properties of SPs in metallic structures,
considering metal/dielectric interfaces and thin metal films as well as metal particles
of closed surfaces. Next, we introduce the topic of graphene plasmonics, in which the
material supporting SPs is a graphene sheet.

SPs arise from the interaction between EM fields and the conduction electrons in a
metal [6]. Conduction electrons can be driven by an EM field, which causes them to
collectively oscillate. These charge density oscillations can be sustained within the bulk
of a metal as well as confined at the interface between a metal and a dielectric medium,
in each case at a distinct resonance frequency. Spatially confined plasmon modes at
metal/dielectric interfaces, i.e., SPs, are the object of study of the field of Plasmonics.
The fact that SPs are collective excitations of photons and electrons gives rise to a
major characteristic: the subwavelength nature of SPs enables a strong localization and
enhancement of the EM fields in the vicinity of metal/dielectric interfaces.

As we will show below, two kinds of SPs exist, depending on the geometry of the in-
terface under consideration. First, flat metal surfaces support the propagation of surface
plasmon polaritons (SPPs), EM modes that propagate along the surface while featuring
a subwavelength confinement to it. Many research efforts have been devoted to the imple-
mentation of SPP-based photonics [7], as metal structures can be designed to efficiently
guide SPPs by, for instance, confining them in the transverse direction in one-dimensional
(1D) plasmonic waveguides [8, 9]. Moreover, SPPs offer a bridge between photonics and
electronics, opening up the possibility of achieving more compact devices [10]. On the
other hand, metal particles of dimensions smaller than the wavelength sustain confined
SP modes at optical frequencies, the so-called localized surface plasmons (LSPs).
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The existence of SPs (both SPPs and LSPs) is a characteristic feature of the EM
response of metals. The optical response can be characterized by means of the electric
permittivity, ε(ω). In the case of metals, ε(ω) depends strongly on the frequency of light.
The Drude theory, which considers a metal as a background of fixed core ions plus a free
electron gas, appropriately models the fact that conduction electrons are nearly free to
move within the bulk. Within this model the electric permittivity can be written as (see,
for instance, Ref. [11]),

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
, (1.1)

where ωp is the plasma frequency, γ is the damping constant of electrons and ε∞ is a high
frequency offset. The bulk plasma frequency is characteristic of each metal and reads as,

ωp =

√
ne2

meε0
, (1.2)

with n being the electron density, e and me the electron charge and effective mass, and
ε0 the vacuum permittivity. For most metals, ωp lies in the ultraviolet (UV) regime,
ωp ∼ 1016 Hz (or, equivalently, a few eV). The real and imaginary parts of the electric
permittivity for silver are plotted in Fig. 1.1 [panels (a) and (b), respectively]. The
Drude model (Eq. 1.1) with parameters ~ωp = 9 eV, ~γ = 0.07 eV and ε∞ = 4.6 [12] is
plotted as a solid black line, while the dashed lines correspond to two sets of experimental
data (Johnson and Christy [13] and Palik [14]). Below the plasma frequency, precisely for
ω < ωp/

√
ε∞, the real part of ε(ω) is negative, a fact that is well reproduced by the Drude

model [see inset in panel (a)], and its imaginary part takes a non-zero value, reflecting
the relaxation time of electrons in the lattice. On the other hand, the Drude model fails
to give an accurate description at frequencies ω & ωp/

√
ε∞, where the imaginary part of

ε(ω) increases. The reason for this is that this model neglects interband transitions. At
high frequencies, photons can promote bound electrons to the conduction band. These
transitions can be taken into account by adding Lorentz terms to Eq. 1.1, as follows

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
−

ω̃2
p

ω2 − ω2
0 + iγ0, ω

, (1.3)

with ω̃p, ω0 and γ0 being the plasma frequency, the oscillation frequency and the damping
characteristic of bound electrons, respectively. As shown in Fig. 1.1, the Drude-Lorentz
model (solid blue line) yields a more accurate modeling of ε(ω) at high frequencies. The
characteristics of the optical response of metals are responsible for the existence of SPs.

Let us first focus our attention on the propagating SP modes, i.e., SPPs. These are
bound EM modes that propagate along a metal/dielectric interface. They are p-polarized
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Figure 1.1: Optical response of Silver. Real (a) and imaginary (b) parts of the electric permit-
tivity, ε(ω), for silver in the optical regime. Two sets of experimental data are plotted (Johnson
and Christy [13] and Palik [14]) together with the Drude model, given by Eq. 1.1, and the
Drude-Lorentz model, by Eq. 1.3. Note that other noble metals, such as gold, feature similar
properties.

(magnetic field component lying in the plane of the interface) and their field intensity
decays evanescently in the direction perpendicular to the interface. A sketch of a SPP
propagating through the interface separating a metal and a dielectric (permittivities ε(ω)

and εd, respectively) is shown in Fig. 1.2 (a). SPPs are bound solutions of Maxwell’s
equations,

∇×∇× E(r, ω)− ω2

c2
ε(r, ω)E(r, ω) = 0 . (1.4)

At each side of the interface, j = 1 and j = 2, the electric field of p-polarized waves can
be written as,

Ej =

 Ej,x

0

Ej,z

 ei(kxx+kj,zz−ωt) , (1.5)

where kx is the wave vector component along the propagation direction and kz,j satisfies,

kj,z =
√
εj(ω)k2

0 − k2
x , (1.6)

with k0 = ω/c being the free space wavenumber. The dispersion relation of SPPs can be
derived by imposing the appropriate boundary conditions for the continuity of the EM
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Figure 1.2: SPPs propagating along a metal/dielectric (air) interface. (a) SPPs have a mixed
nature between light and charges. (b) Dispersion relation (energy versus parallel momentum) for
the EM modes supported by a silver/air interface. We take the Drude model for the permittivity
of Silver, with the same parameters as in Fig. 1.1, and plot two cases: a lossless (γ = 0, solid lines)
and a lossy metal (dashed line). The light line, given by ω = ckx, is also given. The SPP branch
lies below the light line and approaches the SP resonance frequency, ωsp = ωp/

√
ε∞ + 1. The

plasmon polariton branch sets off at the bulk plasmon resonance frequency, ωp/
√
ε∞, approaches

the light line from above as the frequency increases.

field at the interface, yielding

kx(ω) = k0

√
ε(ω)εd
ε(ω) + εd

, (1.7)

where we have made the substitution ε1(ω) = ε(ω) and ε2(ω) = εd. SPP modes propa-
gating along the interface have a real kx, with kx > k0, and imaginary kj,z, i.e., they are
evanescent modes.

The dispersion relation given by Eq. 1.7 is plotted in Fig. 1.2 (b) for a silver/air
interface. We take εd = 1 and the Drude model for silver (Eq. 1.1). According to Eq. 1.7,
and assuming a lossless metal, γ = 0, frequencies below ωsp = ωp/

√
ε∞ + 1 yield kx > k0,

i.e., the mode lies below the light line (ω = ckx, plotted as yellow line in the figure). This
is the SPP branch (see the red line). At low frequencies, ω � ωsp, |ε(ω)| � 1 and kx ≈ k0,
meaning that the SPP is poorly confined to the metal. As the frequency increases, |ε(ω)|
decreases and kx & k0, leading to an increase in the binding of the mode to the interface:
the confinement of the SPP in the perpendicular direction reaches subwavelength values.
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1. General Introduction

Finally, as the frequency approaches the SP resonance, ωsp, the parallel momentum kx

increases asymptotically. This asymptote is avoided when a lossy metal is considered
(γ 6= 0, dashed line). In this case, the SPP branch experiences a back-bending and joins
the plasmon polariton branch above the light line (blue line). When losses are taken
into account, the parallel wave vector of the SPP, kx, acquires an imaginary part that
imposes a finite propagation length for the SPP,

Lp =
1

Im(kx)
. (1.8)

As the frequency increases, SPPs become more confined and absorption in the metal
increases, thereby reducing the propagation length. Thus, there is a trade-off between
confinement and propagation [6]. In addition, the fact that for SPPs kx > k0 means
that they can not be excited directly with free space photons. Instead, the momentum
mismatch has to be overcome by, for instance, patterning a grating in the metal surface.
On the other hand, in the Otto [15] or Kretschmann [16] configurations the extra mo-
mentum is provided by another dielectric medium of refractive index n, that lowers the
light line to ω = ckx/n, thus crossing the SPP dispersion curve. Alternatively, near field
probes or quantum emitters, such as fluorescent molecules, can also be used to excite
SPPs when placed in the close proximity of the interface, as they couple to all available
parallel momenta.

In the above discussion we have implicitly assumed that the metal side of the interface
is a semi-infinite medium. This is not generally the case in experiments, where thin metal
films are usually employed. It is therefore interesting to consider the SPPs propagating
along dielectric/metal/dielectric systems (see Fig. 1.3) [17]. In this case, imposing the
boundary conditions leads to the following implicit equation for the dispersion relation
of the SPPs,

1 + r1,2r2,3e
2ik2,zh = 0 , (1.9)

where h is the thickness of the metal film and the subindices 1, 2, 3 refer to the upper
dielectric, the metal and the lower dielectric, respectively. In addition, rij are the Fresnel
coefficients for a single interface,

rij =
εi(ω)kj,z − εj(ω)ki,z
εi(ω)kj,z + εj(ω)ki,z

. (1.10)

Assuming a symmetric configuration, where both dielectrics have permittivities ε = 1,
the wave vectors perpendicular to the interfaces are k1,z =

√
k2

0 − k2
x in the dielectric
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Figure 1.3: SPPs propagating along a thin metal film. The plot shows the dispersion relation of
the LRSPP and SRSPP for metal films of thicknesses h = 5 nm and h = 50 nm. The dispersion
relation of a semi-infinite surface and the light line are also shown. The field distributions for
the two modes are sketched in the inset, showing how the SRSPP is tightly confined to the
film whereas the LRSPP is more delocalized. This justifies the fact that the LRSPP propagates
longer distances than the SRSPP.

medium (kz) and k2,z =
√
ε(ω)k2

0 − k2
x in the metal (kz,m). Equation 1.9 has the following

two solutions,

ε(ω)kz + kz,mtanh (kz,mh/2) = 0 , (1.11)

ε(ω)kz + kz,mcotanh (kz,mh/2) = 0 . (1.12)

Thus, thin metal films support the propagation of two modes, as shown in Fig. 1.3.
When compared to the dispersion relation of the semi-infinite surface considered above,
one of the modes lies closer to the light line while the other lies at higher wave vectors.
The first one, which is the solution of the first equation above, is the long range SPP
(LRSPP). This mode lies very close to the light line, thus being poorly confined to
the film. On the other hand, the mode retrieved from the second equation is the short
range SPP (SRSPP), which displays very large wave vectors, kx � k0. This means that
this mode is greatly confined to the metal film. Indeed, the confinement increases when
decreasing the thickness of the film (compare the lines for h = 5 nm and h = 50 nm).
Increasing the confinement implies increasing the losses, and the propagation length of
the SRSPPs is very short (hence the naming). Finally, for h & 200 nm, the LRSPP and
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1. General Introduction

SRSPP converge to the dispersion relation of the semi-infinite surface.
A different kind of SPs arises in metal particles with closed surfaces [18]. When light

impinges on a metallic particle of dimensions much smaller than the wavelength of
radiation, the electron gas in the metal gets polarized, with polarization charges localized
at the surface. As a consequence, a restoring force emerges and originates a plasmon
oscillation that is confined at the surface of the metal nanoparticle. This resonance is
the LSP [19], and, differently from SPPs, can be directly excited by light [see Fig. 1.4 (a)].
An insightful model for understanding the LSP resonance is that of a Rayleigh spherical
particle (dimensions � wavelength of the incident light). In the quasi-static limit, the
optical response of a subwavelength particle is determined by its polarizability [1],

α = 4πR3 εm(ω)− εd
εm(ω) + 2εd

, (1.13)

with R being the radius of the particle and εd being the electric permittivity of the
surrounding medium. From the above expression, it is clear that the polarizability is
resonant under the condition εm(ω) + 2εd = 0, which, for a lossless Drude model, results
in the following resonance frequency

ωLSP =
ωp√

ε∞ + 2εd
. (1.14)

The resonance in the polarizability implies an enhancement of the dipolar EM field gen-
erated by the metal particle. In general, the resonance frequency of LSPs is determined
by the shape, size and optical properties of the metal nanoparticle.

Metal nanoparticles supporting LSPs have enabled the development of optical anten-
nas. These are the nanoscale analogue of classical antennas working in the microwave and
radio frequency (RF) regimes. They are designed to “efficiently convert free-propagating
optical radiation to localized energy, and vice-versa” [20]. Thus, optical antennas enhance
the interaction between nanoscale objects and propagating EM fields. As depicted in Fig.
1.4 (b), a metal nanoparticle (or nanostructures of various geometries) plays the role of
the optical antenna [21–27], while the nanoscale object may be a quantum emitter or
absorber, such as a molecule or a quantum dot [28, 29]. The working principle of optical
antennas is possible owing to the large EM field enhancements confined to subwavelength
volumes generated by the dipolar LSPs supported by metal nanoparticles. Hence, the
finite permittivity of metals in the optical regime has a fundamental implication in the
design of optical antennas. As we have seen, LSPs resonances are strongly dependent on
the material. Therefore, classical antennas can not be simply scaled down to nanometer
sizes to work as optical antennas. The size, shape and EM properties need to be taken
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Figure 1.4: LSPs and optical antennas. (a) An EM field excites the LSP resonance in a metal
nanoparticle. (b) A metal nanostructure plays the role of an optical antenna, that enables the
interaction between a nanoscale emitter and radiation in free space. Reprinted from [20].

into account when designing optical antennas. For instance, a dipolar optical antenna
resonant at λ0/2, with λ0 being the free space wavelength, requires a nanorod of length
λeff/2, where λeff is the effective wavelength seen by the nanorod. For conventional metals,
λeff is usually a factor of 2 to 6 smaller than λ0, which yields a length for the nanorod
that is much smaller than λ0/2 [30]. Other than the fundamental interest of probing
plasmonic resonances [31], optical antennas are promising for a variety of applications
ranging from photodetection, light emission and sensing to nano-imaging [32].

Other than metals, graphene [33] also supports SPs. This atomic-thick layer of carbon
atoms arranged in a honeycomb lattice features unique optical [34] and optoelectronic
properties [35]. In particular, it absorbs πα0 ∼ 2.3% of visible light, with α0 = e2/(~c)
being the fine structure constant. Moreover, electrons in graphene display a linear dis-
persion relation, known as Dirac cone [see inset panel of Fig. 1.5 (a)], and have very
high mobilities. In addition, the conductivity of this two-dimensional (2D) material is
very sensitive to external fields, implying that the optoelectronic properties of graphene
are highly tunable. In particular, the conductivity, σ, depends on the frequency, the
temperature, T , and the chemical potential of the sheet, µ. The conductivity can be
written as the sum of intraband and interband contributions obtained in the random
phase approximation [36, 37],

σ = σintra + σinter, (1.15)

as follows,

σintra =
2ie2t

~π [Ω + iγ]
ln
[
2 cosh

(
1

2t

)]
, (1.16)

σinter =
e2t

4~

[
1

2
+

1

π
arctan

(
Ω− 2

2t

)
− i

2π
ln

(Ω + 2)2

(Ω− 2)2 + (2t)2

]
. (1.17)
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Figure 1.5: Graphene plasmonics. (a) Conductivity of a graphene sheet at T = 300 K and
µ = 0.2 eV. The real and imaginary parts of α/α0 = 2π~σ/e2are shown. At low frequencies,
the real part of the conductivity depends strongly on the electron’s scattering time: the solid
line corresponds to the maximum theoretical mobility of the carriers, m = 2 × 106 cm2/(V·s),
while the dashed line corresponds to a realistic value of the mobility, m = 2 × 105 cm2/(V·s).
(b) SPPs dispersion relation for T = 300 K, µ = 0.2 eV and the maximum theoretical mobility.
The inset shows the normalized SPP wave vector, Re[kx]/k0, and propagation length, Lp/λ0,
with λ0 = 2πc/ω. The solid and dashed curves show the propagation lenght for infinite and
finite scattering time, respectively.

Here, we have used a normalized frequency, Ω = ~ω/µ, and temperature t = kBT/µ. In
addition, we have introduced a damping term, γ = ~/(µτ), where τ = mµ/v2

F is the
carriers’ scattering time (m is the mobility and vF the Fermi velocity). The frequency
dependence of the conductivity is displayed in Fig. 1.5 (a) for T = 300 K and µ = 0.2 eV.
The quantity α ≡ 2πσ/c is plotted in units of α0. At low frequencies, ~ω/µ� 1, the main
contributions to the conductivity are intraband transitions, and at higher frequencies,
~ω/µ & 1, interband transitions dominate. Introducing a finite scattering time for the
electrons results in a larger real part of σ(ω) only at very low frequencies (compare solid
and dashed red lines), whereas at high frequencies losses depend mainly on temperature.
In the limit of very low temperature and very high mobilities, Re[σ(ω)]→ 0.

Similarly to metal surfaces, and despite being an atomically thick material, graphene
also supports the propagation of SPPs. Because of the already discussed electronic prop-
erties of graphene, it is a zero-gap semiconductor. Thereby, a finite chemical potential,
µ 6= 0, provides a conduction band for graphene, which enables the existence of SPPs.
Interestingly, µ can be controlled through, for instance, a gate voltage. These EM modes
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bound to a graphene sheet were first studied theoretically in Refs. [38–42]. In experi-
ments, graphene SPPs have been observed through infra-red (IR) spectroscopy [43] and
also imaged by means of near field probes [44, 45]. The properties of SPPs propagat-
ing along a graphene sheet are determined by its conductivity (Eqs. 1.16 and 1.17).
The SPP dispersion relation can be obtained by taking the zero-thickness limit in the
dispersion relation of thin metal films studied in the previous Subsection. Taking the
limit kz,mh � 1 in Eqs. 1.12 and 1.11, we see that only the SRSPP survives, and by
approximating cotanh(x) ≈ 1/x, we have

kx = k0

√
1− ic

εωh
= k0

√
1− 1

α2
, (1.18)

where we have made use of the relationship between the conductivity and the electric
permittivity of a 2D material, ε = 2πiσ/(ωh). Bound surface waves exist only below a
critical frequency, Im[σ(ω)] > 0, i.e., ~ω ≈ 2µ. This region is pointed at in Fig. 1.5 (a) by
the light grey background. Panel (b) displays the SPP dispersion relation at µ = 0.2 eV
and T = 300 K. This plot demonstrates that SPPs in graphene are tightly confined to
the sheet, as it can be also seen in the inset panel, where the normalized SPP momentum,
Re[kx]/k0 is plotted. The inset panel also shows that including a finite scattering time
results in lower SPP propagation lengths at low frequencies. Compared to metal surfaces,
graphene features SPPs of appreciable propagation length at lower frequencies, since
phonon excitation greatly reduces the propagation length close to optical frequencies.

The properties of SPPs in graphene have attracted great attention. The reason for this
is that it may be an alternative for many of the functionalities provided by noble-metal
SPPs, with the advantage of being tunable by controlling the chemical potential through,
for instance, a gate potential. In particular, the interaction between nanoemitters and
SPPs in graphene has been studied, showing a high degree of field confinement, as
well as EM energy enhancement, in the vicinity of the sheet [46, 47]. The fluorescence
quenching phenomenon in graphene, which takes place when an emitter is very close
to the graphene layer, has also been considered theoretically [48, 49] and very recently
observed in experiments [50].

1.2 Transformation Optics and Metamaterials

The control and manipulation of the EM fields constitutes a major aim for current
technology. The way light propagates in a given medium is determined by Fermat’s
principle, also known as the principle of shortest optical path. According to this principle,
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light follows the minimal optical path between two points, the optical path being the
integral of the background refractive index, n, along the light trajectory. It turns out that
for a spatially varying refractive index, n(r), the shortest optical path is not a straight
line, but a curved one. This is the origin of many optical phenomena, such as refraction
at an interface, where the refractive index changes abruptly, or the mirage effect in a
desert, where the refractive index of air continuously changes due to variations in its
density.

Fermat’s principle determines light propagation for a given spatial distribution of the
refractive index. Conversely, the recently developed field of Transformation Optics (TO)
solves the inverse problem: starting from a desired light path, TO provides a recipe
for the refractive index distribution needed for light to realize that specific trajectory.
This concept is indeed very general and offers us the capability to control light in any
desired fashion, opening up the possibility of novel optical effects and devices. TO has
emerged as a rapidly growing field thanks to the advent of metamaterials, a novel class of
materials whose design flexibility has enabled the experimental realization of proposals
raised by this theoretical framework.

Transformation Optics establishes a procedure that provides us with expressions for
the EM material parameters, dielectric permittivity and magnetic permeability, that
need to be implemented in order to obtain a medium where EM waves propagate along
desired trajectories [51, 52]. It is based on the mathematical equivalence between coor-
dinate transformations and EM material parameters. As Maxwell’s equations are form-
invariant under coordinate transformations, a distorted geometry in an empty space can
be interpreted as a medium in a Cartesian flat space [53]. Let us consider Maxwell’s
equations in an arbitrary space characterized by the coordinate system x′ = {x′, y′, z′}
and some general material properties (electric permittivity ε̂′ and magnetic permeability
µ̂′):

∇′ × E′ = −iωµ̂′H′ , (1.19)

∇′ ×H′ = iωε̂′E′ . (1.20)

This space, which can have any distorted geometry, will be referred to as virtual space.
If a transformation x = x(x′) is performed between this virtual space to a physical
space x = {x, y, z}, the form-invariance of Maxwell’s equations provides the following
equations in the new coordinate system [54]:

∇× E = −iωµ̂H , (1.21)

∇×H = iωε̂E . (1.22)
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Figure 1.6: Transformation media implement coordinate transformations. Assume that an
optical medium performs a coordinate transformation x = x(x′) from a straight Cartesian
space (a) to a space with a curved grid that excludes a circular region from it (b). When this
transformation medium is implemented in an experiment (c), it ensures that light follows the
curved trajectories. Since the transformation shrinks the hole in space (b) to a point in space
(a), where it is made invisible, the optical medium acts as an invisibility device. Adapted from
Ref. [54].

The EM properties in the transformed coordinate system, µ̂ and ε̂, can be expressed in
terms of the material parameters in the original space as:

ε̂ = ε̂′
ÂÂT

det Â
; µ̂ = µ̂′

ÂÂT

det Â
, (1.23)

where Â =
(
∂xi

∂xi′

)
is the Jacobian matrix of the transformation. The equations above

define a set of parameters that, when implemented in a medium, ensures that light
propagates following the same trajectories as in the original virtual space. In general,
these parameters are inhomogeneous anisotropic tensors.

One of the most remarkable devices designed by the TO procedure described above
is the invisibility cloak [51, 55]. The purpose of such a cloak is to hide from EM fields
a physical object that is placed within a circular region of radius a. The cylindrical
cloak is designed by taking a physical space that has a hole of radius a surrounded by
a compressed region of radius b and then making a transformation to an undistorted
space (virtual space). A sketch of both spaces is shown in Fig. 1.6: panel (a) presents
the virtual space, where light propagates in straight lines, while panel (b) renders the
physical space. A wave travelling in physical space will follow trajectories that surround
the hole so that it appears to have travelled in straight lines as it would in the virtual –
undistorted – space. The transformation that connects both spaces is:

r(r′) = b/(b− a)r′ + a . (1.24)
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This transformation squeezes all the rays in region r < b in virtual space to the shell
a < r < b in physical space. Since the region r < a lies out of the original space, any
object placed within this region will be concealed by the cloak. Based on Eq. 1.23, the
following set of EM parameters is retrieved from the transformation above (1.24):

εr = µr = (r − a)/r, εθ = µθ = r/(r − a), εz = µz = [b/(b− a)]2(r − a)/r . (1.25)

Finally, to realize the cloak these parameters need to be implemented in an optical
medium in real space within a shell a < r < b, as shown in Fig. 1.6 (c). This optical
medium will guide light around the circle r = a as if nothing was there.

The procedure we have described for the design of a cloak is a very general way to
devise optical elements with different functionalities. Other than invisibility cloaks, a
wide variety of optical effects and devices has been designed by means of TO. Exam-
ples include beam shifters, dividers and rotators [56–58], beam bends [59, 60], lossless
waveguide bends [61], field concentrators [62] as well as optical black holes [63]. However,
the experimental realization of such devices poses non-trivial technical challenges. The
electric permittivity and magnetic permeability derived with the TO formalism (see Eq.
1.23), are generally anisotropic and inhomogeneous, and often divergent, as in the case of
the invisibility cloak. Hence, such optical parameters need to be tailored to vary spatially
and independently throughout the material.

A new class of EM materials has offered a way to overcome the limitations of natu-
ral materials: metamaterials are artificial materials whose EM properties are given not
by their atomic or chemical composition but rather by their artificial structure [64–70].
By means of subwavelength constituents, that act as artificial "atoms" or "molecules"
which respond in a prescribed way to the EM fields, metamaterials can be designed to
have properties that do not occur in natural materials. Two structures are usually em-
ployed as basic constituents for metamaterials: metallic wires [71], depicted in Fig. 1.7
(a), and split-ring structures [72], shown in Fig. 1.7 (b). Both wires and rings support
resonances that yield different and tunable responses to EM fields. An arrangement of
such basic structures acts as an homogeneous medium for EM fields as long as their
sizes and spacing are much smaller than the wavelength of the EM waves. In the effec-
tive medium approximation, the collective response of the subwavelength constituents
effectively yields a wide range of values of the electric permittivity, ε̂, and the magnetic
permeability, µ̂. Then, a prescribed EM response can be obtained by an appropriate de-
sign of the metamaterial. For instance, while magnetism can only be found in nature at
low frequencies below the THz regime, negative index materials with simultaneously neg-
ative electric permittivity and magnetic permeability have been realized from the optical
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Figure 1.7: Metamaterials are artificially structured materials whose properties are determined
by their subwavelength constituents, such as wires and rings. (a) Metallic wires arranged in a 3D
lattice behave as an isotropic low frequency plasma [71]. (b) Split-ring resonators (left) display a
magnetic moment when a magnetic field induces currents along the metal rings [72]. Swiss rolls
(right) act similarly, being resonant at lower frequencies due to their higher capacitance [87].
A combination of such basic structures results in effective electric and magnetic responses. For
instance, a material with a negative index of refraction at microwave frequencies was realized
by means of copper split-ring resonators (c) arranged in a unit cell of 5 mm. (d) Experimental
demonstration of a silver superlens that focuses propagating and evanescent waves owing to its
negative index of refraction. (a-c) Reproduced from Ref. [64]. (c) Reprinted from Ref. [73] and
(d) from Ref. [79].

to the GHz ranges of the spectrum, see Fig. 1.7 (c) [73–78]. Other interests within the
metamaterials research field include the study of sub-diffraction limited imaging, see Fig.
1.7 (d) [79–81] and chirality [82, 83], three-dimensional (3D) metamaterials [84], active
metamaterials [85] or planar photonics applications by means of metasurfaces [86].

Since the first works on TO [51, 54, 55], many efforts have been devoted to the design
and fabrication of metamaterials [92] in order to enable the experimental realization
of TO-based optical devices. The first transformation medium demonstrated in an ex-
periment was an invisibility cloak in the microwave regime [88]. In the experiment, a
metamaterial based on split-ring resonators was fabricated to reproduce the set of EM
parameters given by Eq. 1.25 for cloaking a metallic cylinder to EM waves in the mi-
crowave regime [see Fig. 1.8 (a)]. Instead of implementing the full set of anisotropic
parameters, the cloak was designed for one polarization state, such that it is sufficient to
consider a reduced set of parameters: εz, µr and µθ, only µr being inhomogeneous. The
experiment showed that the metamaterial cloak significantly reduced the scattering from
a metallic cylinder [see Figs. 1.8 (b,c)]. However, the fact that the EM parameters needed
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Figure 1.8: Transformation optics for real. Experimental optical devices designed by means
of TO. (a) Cylindrical invisibility cloak working in the microwave regime [88]. The prescribed
material properties, plotted in the background, were realized by a means of a metamaterial made
up of split-ring resonators. Simulated (b) and experimental (c) field pattern when the cloak is
placed around a metallic cylinder (Reproduced from Ref. [88]). (d) Sketch of a broadband 2D
cloak working in the near IR. The transformation medium (cloak area marked as C1) was
fabricated by milling holes with different densities in silicon. (e) Scanning electron microscopy
image of the cloak. (d,e) Reprinted from Ref. [89]. (f) Schematic of a 3D cloak working in the
near IR, from Ref. [90]. (g) A macroscopic carpet cloak for visible light was realized with calcite,
an anisotropic material [91].

for the cloak are anisotropic and singular imply that, even in the reduced parameter set
approach, the fabricated metamaterial relies on resonant metallic structures. This is gen-
erally the case for TO-based metamaterials, which are highly lossy and operate over a
narrow bandwith. Moreover, the building blocks of metamaterials are much smaller than
the wavelength of operation, meaning that the unit cell size of a metamaterial working
in the visible range should be devised in the nanometer scale. These two factors impose
technical challenges on the experimental realization of broad-band TO-devices operating
at visible frequencies and with low loss. In the quest for broadband devices at optical fre-
quencies, an alternative approach within the TO framework to the cylindrical invisibility
cloak led to a rapid experimental progress. The ground-plane cloak is based on mapping
a curved ground-plane into a flat one [93] and yields non-singular material parameters.
The realization of such a cloak in the microwave regime by means of a non-resonant
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metamaterial [94] was followed by experiments showing broadband cloaking at near-IR
frequencies [89, 95], such as the one shown in Figs. 1.8 (d,e). More recently, the concept
of ground-plane cloaking has enabled a 3D broadband cloak at optical wavelengths [90],
see Fig. 1.8 (f), and even macroscopic cloaks in the visible regime [91, 96], see Fig. 1.8
(g).

Transformation Optics has also found applications in Plasmonics. Since the TO frame-
work solely relies on Maxwell’s equations and coordinate transformations, it is expected
to apply to all kinds of EM waves. In particular, TO has been applied to control the
flow of the SPPs propagating along a metal-dielectric interface in the context of SPP-
based photonics. An example of this approach is schematically depicted in Fig. 1.9 (a,b)
for the case of a plasmonic ground-plane cloak. Transformation Plasmonics has paved
the way for many different plasmonic functionalities at sub-wavelength scales, as shown
in Refs. [97–103]. Besides metals, graphene has also been proposed as a platform for
Transformation Plasmonics [104]. In this case, the inhomogeneous EM parameters de-
vised by Transformation Plasmonics are realized by taking advantage of the possibility of
tuning graphene’s conductivity by varying its chemical potential. The patterning of the
conductivity can then be provided in different ways, such as a bias voltage or chemical
doping. In Chapter 2, which is devoted to the topic of Transformation Plasmonics as
a means of controlling the propagation of SPPs at metal surfaces, we will present our
research work within the field [97, 105]. In particular, we first present the TO framework
as applied to Plasmonics, showing that the dielectric medium on top of the metal needs
to be patterned following the TO recipes. Next, we study the functionality of several
plasmonic elements and evaluate the possibility of employing conformal and quasiconfor-
mal coordinate transformations for retrieving devices with isotropic material parameters.
Additionally, we shortly review the experimental implementation of Transformation Plas-
monics.

At a different level, TO has also provided a framework for the design and study of
complex plasmonic nanostructures. The procedure is based on mapping the singular
geometry of a complex nanostructure into a simpler geometry where an analytical de-
scription is possible. This provides analytical expressions for the optical properties of
metallic nanostructures with sharp corners or touching points, which are well known
to efficiently harvest EM energy. This method was first employed to study the optical
response of 2D metal nanostructures [106, 107], followed by its application to 3D ge-
ometries such as touching nano-spheres [108] and nanocrescents [109], as shown in Fig.
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Figure 1.9: Applications of TO in Plasmonics. (a,b) As proposed in Refs. [97, 98], TO is
used to reduce scattering of propagating SPPs from a surface: scattering losses experienced by
SPP waves propagating along a dielectric-metal interface with a bump (a) are suppressed by
covering the bump with a cloak whose refractive index spatially varies from 0.8 (blue) to 1.4
(red). (c) TO has been applied to the study of the EM field enhancement and energy harvesting
in complex plasmonic nanostructures such as 3D nanocrescents. (a,b) Reproduced from Ref.
[103]. (c) Reprinted from Ref. [109]

1.9 (c). In addition, TO has also been used to obtain analytical expressions and a great
physical insight of non-locality on plasmonic nanostructures [110, 111] and even van der
Waals forces between spherical nanoparticles [112, 113].

1.3 Geometrically-induced Surface Plasmons

The huge enhancement of EM fields generated by SPPs relies on the subwavelength
confinement of the fields within the metal. For this reason, the field of Plasmonics is in
principle limited to the high frequency range of the spectrum (UV, optical frequencies
and near IR). At low frequencies (ω � ωp), metals have a very large conductivity and the
free electrons immediately respond to any EM perturbation, thereby shielding the metal
from the EM field [1]. At such low frequencies, metals are said to be perfect electrical
conductors (PECs). As a consequence, from the THz to the radio frequency (RF) regimes
metals do not support tightly bounded surface EM modes. Instead, only poorly confined
bound modes exist, such as the Zenneck [114] or Sommerfeld [115] waves, which extend
mostly in the dielectric.

The concept of “spoof” plasmons was developed to overcome the limitations of con-
ventional SPPs at low frequencies [116–118]. Spoof SPPs are surface EM modes with
subwavelength confinement that arise when texturing the surface of a PEC and whose
properties mimic those of conventional SPPs at optical frequencies. The main charac-
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1.3. Geometrically-induced Surface Plasmons

teristics of spoof SPPs can be understood by means of the simple model depicted in
Fig. 1.10 (a). It consists of a perfectly conducting 2D surface pierced by a periodic array
of grooves. The size, a, periodicity, d, and depth, h, of the grooves are all taken to be
much smaller than the free-space wavelength of the incident wave, i.e., a < d � λ0.
This way, the indentations act as subwavelength cavities that couple to each other and
provide the storage of EM energy at the surface needed to mimic optical SPPs. The
periodic arrangement of the grooves prevents the out-coupling to free space radiation
and thus enables the existence of a confined mode. Under the assumption that only the
lowest order waveguide mode is excited inside the groove, the dispersion relation of such
a confined mode can be written as [118]

kx = k0

√
1 +

(a
d

)
tan2(k0h) , (1.26)

where k0 = ω/c and kx is the modal wave vector in the propagation direction. The
dispersion relation given by the above equation is plotted in Fig. 1.10 (c). This dispersion
relation clearly resembles that of the canonical SPPs propagating along a flat metal
surface at optical frequencies (see Fig. 1.2). For this reason this geometrically induced
propagating mode is termed spoof SPP. At low frequencies the spoof SPP lies close to
the light line, thus being poorly confined. As the frequency increases the modal wave
vector increases and the spoof SPP acquires a subwavelength confinement in the vertical
direction. Finally, the dispersion relation approaches ω = πc/(2h) at kx = π/d, this is,
at the border of the first Brillouin zone. This cut-off arises from the periodicity and its
value, πc/(2h), is given by the frequency of a cavity waveguide mode propagating inside
the groove. From this simple model we see that the spoof SPP modes confined at highly
conducting surfaces textured with periodic corrugations have a hybrid nature, as they
feature characteristics of both surface and cavity modes.

A further step beyond this model can be taken by means of an effective medium
approach [117, 118]. Owing to the fact that all the geometrical dimensions considered
are subwavelength, a < d � λ0, a perforated PEC surface behaves as an effective
medium for EM fields. That is, the response of the system can be mapped to that of a
metamaterial with homogeneous but anisotropic EM properties. For instance, the array
of grooves considered in Fig. 1.10, can be mapped to an effective medium layer on top of
a perfectly conducting surface, as depicted in panel (b). The effective permittivity and
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Figure 1.10: Spoof SPPs propagating along a periodic array of grooves. (a) A 1D array of
grooves of width a, period d and depth h. (b) In the effective medium approach, the array of
grooves behaves as a layer with homogeneous but anisotropic EM properties, on top of a perfect
conductor. (c) Dispersion relation of the spoof SPPs supported by the structure shown in (a).
The geometrical parameters of the grooves are a/d = 0.2 and h/d = 1. The figure has been
adapted from Ref [118].

permeability tensors of the metamaterial layer are given by,

εx =
a

d
, εy = εz =∞ ; (1.27)

µx = 1 , µy = µz =
d

a
. (1.28)

It is clear from this picture that the dispersion relation of spoof SPPs can be tailored
by means of the geometrical parameters of the surface, which is a major advantage
of the spoof SPPs concept. The analogy between conventional and spoof SPPs can
be pushed forward by considering a surface pierced by a 2D array of holes [117, 118].
Different from the 1D arrays of grooves, where the first order cavity mode is always
propagating, the lowest order waveguide mode in 2D arrays of holes is evanescent for
λ > 2a, which imposes a cut-off frequency given by ω = πc/a. In this case the effective
medium parameters of the hole array read as,

εx = εy =
π2d2

8a2

(
1− π2c2

a2

)
, (1.29)

µx = µy =
8a2

π2d2
, (1.30)

εz = µz =∞ . (1.31)
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Interestingly, the electric permittivity, εx,y, takes the canonical Drude form with a plasma
frequency of

ωp =
πc

a
, (1.32)

that corresponds to the cut-off frequency of the hole. This shows that the optical response
of metals can be mimicked at any frequency regime by perforating a highly conducting
film. Thereby, structured surfaces with tunable geometrical parameters can spoof SPPs.
As a consequence, the concept of spoof SPPs enables the transfer of all the exciting
prospects of SPPs to low frequency regimes, such as the THz regime, where there is a
strong technological interest [119].

As we have seen above, spoof SPPs were first proposed for 2D structured flat surfaces
[117, 118]. This work was followed by subsequent experimental demonstrations in the
microwave [120, 121] and THz regimes [122, 123], as well as by upgrades of the original
theoretical model [124, 125]. In addition, its extension to 1D geometries, where the lat-
eral confinement opens up the possibility of designing waveguides, has been extensively
studied both in theoretical and experimental works. Theoretical considerations include
periodically corrugated wires [126], wedges [127], channels [128], periodic chains of domi-
noes [129] or metal-insulator-metal waveguides [130], as well as other proposals [131].
On the other hand, among the experimental realizations of waveguides for spoof SPPs
we find helically grooved wires [132] and the experimental verification of the so-called
domino plasmons [133]. In the THz and microwave regimes, where most works have
focused, spoof SPPs display deep subwavelength confinement as well as long enough
propagation lengths. Regarding higher frequencies, the concept of spoof SPPs has also
been applied for tailoring the guiding properties of corrugated metal waveguides working
at optical and telecom frequencies [134]. In addition, the concept of spoof SPPs has also
enabled the interesting prospect of propagation along curved surfaces. As theoretically
and experimentally demonstrated in Ref. [135], the so-called conformal surface plasmons,
a kind of spoof SPPs sustained by ultra-thin films, are able to propagate along arbitrarily
curved surfaces with very low propagation losses.

Finally, textured PEC particles of closed surfaces have been shown to support the lo-
calized version of spoof plasmons, with similar properties to LSPs in the optical regime
[136]. For this reason, these resonances have been termed spoof-LSPs. An infinitely long
PEC cylinder corrugated with a periodic array of grooves was studied in Ref. [136], where
the EM response of the textured cylinder, composed of high-order modes, was demon-
strated to be equivalent to that of a Drude cylinder in the optical regime. In addition,
this work also considered subwavelength particles, whose EM response is dominated by
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the electrical dipole mode. While in particle plasmonics the subwavelength regime is
accessible by downscaling the size of the structure, the resonance frequency of the spoof-
LSPs modes scales with size. As a consequence, a different strategy is needed to reach the
subwavelength regime in textured PEC particles. In particular, in Ref. [136] the subwave-
length regime was reached by introducing a dielectric material of large refractive index
within the grooves, thereby lowering the resonance frequency of the spoof-LSPs modes
and obtaining a dipolar response. These spoof-LSPs mimic all aspects of standard LSPs
in particle plasmonics. Therefore, thanks to this concept, all the phenomenology avail-
able at optical and near-IR frequencies for LSPs can be transferred to lower frequencies.
Chapter 3 explores the emergence of a novel magnetic spoof-LSP in these structures, in
contrast with the purely electrical dipole character of conventional LSPs. We consider
subwavelength PEC particles with periodically textured surfaces filled with a dielectric
material and, by means of numerical simulations as well as an analytical model, we show
that these structures support both magnetic as well as electric dipolar spoof-LSPs. Then,
we show that magnetic spoof-LSPs can also be supported by purely metallic structures
corrugated with very long grooves and we present the experimental verification of these
resonances.

1.4 Plasmonic-based optical trapping

The optical trapping and manipulation of submicron-size particles is a cornerstone in
biology and soft-condensed matter physics [137]. Conventional optical tweezers, based on
strongly focused laser beams, have been extensively used for this purpose [138, 139]. As
depicted in Fig. 1.11 (a), the field gradient in the converging beam gives rise to a force,
Fgrad, that attracts the particle towards the focal point, while radiation pressure gener-
ates a force, Fscat, that makes the particle move along the illumination axis. Remarkably,
a 3D trap for the particle can be obtained when the gradient forces dominate. While this
technique has allowed for the trapping submicron-size dielectric particles and biological
objects, it provides trapping sizes intrinsically limited by diffraction. Plasmonic nanos-
tructures have attracted significant interest as a promising system to solve this issue
[140]. The sub-diffraction limited energy concentration in plasmonic systems, such as
metal disks, optical antennas or metal tips [see Figs. 1.11 (b), (c) and (d), respectively] ,
can be exploited to create nano-optical traps capable of acting on nanometer-size objects
[141–145]. The early proposal in Ref. [143] predicted the trapping of dielectric particles at
the nanometer scale by means of a metal tip. Compared to conventional optical tweezers,
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Figure 1.11: Different optical trapping configurations. (a) Conventional optical tweezers make
use of a highly focused laser beam to trap small objects, such as colloidal particles or biological
objects. The fundamental limitation on the size of the trapped objects set by diffraction can be
overcome by means of plasmonic-based optical trapping. (b-d) The light confinement provided
by SPPs propagating along patterned metal surfaces (b), as well as by the SPs localized at
the subwavelength gap between two anntenas (c) or at the end of a metal tip (d), enables the
trapping of objects of size as small as a few tens nanometers. (e) The near field of a gold tip
of 5 nm radius displays a large field enhancement at the tip’s extreme. The circle marks the
position of a particle of 10 nm radius. (a-d) Reprinted from Ref. [146]. (e) Reprinted from Ref.
[143].

the trapping is in this case based on the high wave vectors characteristic of evanescent
waves and generated by the metal tip upon illumination, which provides light concentra-
tion beyond the diffraction limit. The huge field enhancement in a small region close to
the tip, see Fig. 1.11 (e), generates strong gradient forces capable of trapping nanometer
sized particles.

The first experimental demonstration of nano-optical trapping made use of patterned
gold surfaces to show the trapping of micro-colloidal particles [147, 148]. In the experi-
ment, an array of thin micrometer-sized gold disks placed on a glass substrate was covered
by a solution of dielectric beads (5µm size). The sample was then homogeneously illumi-
nated under the SPP excitation condition, as sketched in Fig. 1.12 (a). Illumination gives
rise to two forces: (i) a gradient force directed towards the gold pad and (ii) a scattering
force in the direction of the parallel wave vector [see Fig. 1.11 (b)]. In the experiment,
the scattering force guided the beads towards the gold disks while the gradient force,
confined to the disk size, enabled their trapping thanks to the enhancement provided by
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Figure 1.12: Plasmonic-based optical trapping. (a,b) In Ref. [147], a surface patterned with
gold micrometer-sized disks is illuminated at the appropriate wavelength, angle and polarization
for SPPs excitation. Each gold disk traps a dielectric bead of 5µm size. (c,d) A conventional
optical tweezer set up is assisted by plasmonic gap antennas to reduce the trapping volume
down to subwavelength scales. Dielectric beads of 200 nm size are trapped in the gap antenna
hot spot [150]. (e,f) In Ref. [151], a collection of gap antennas is illuminated by an unfocused
laser beam. In this work, the parallel trapping and alignment of living bacteria was reported.

the plasmonic structure. As the same authors resported in a previous work, a plasmonic
system can enhance optical forces by a factor of ∼ 40 [149]. As a consequence, trapping
of particles can be achieved for a reduced laser power, when compared to conventional
tweezers. Interestingly, due to the small size of the metal disks compared to the illumi-
nation spot, several pads can be simultaneously illuminated and the parallel trapping of
several beads can be achieved, as shown in Fig. 1.12 (b).

Further works have demonstrated the trapping of subwavelength objects by means of
plasmonic antennas. The first approach towards this goal used the configuration sketched
in Fig. 1.12 (c), where a conventional optical tweezer was assisted by gap antennas formed
by pairs of optical antennas separated by a subwavelength gap [150]. The ability of gap
antennas to concentrate light results in a trapping volume beyond the diffraction limit
when the patterned structure is illuminated by a focused a laser beam. Thereby, the
trapping of 200 nm dielectric beads with a 1064 nm laser field was demonstrated [see Fig.
1.12 (d)]. On the other hand, Ref. [151] reported the trapping of subwavelength particles
based solely on plasmonic gap antennas. By illuminating a collection of gap antennas
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under total internal refraction [see Fig. 1.12 (e)], the trapping of 200 nm polystere beads
was reported. In addition, this configuration was also applied to a biological sample of
living bacteria, which were effectively trapped. Interestingly, the elongated shape of the
bacteria also resulted in their orientation along the longest axis of the dipole antennas.
On the other hand, plasmonic gap antennas have also been used for trapping metal
nanopartices of sizes as small as 10 nm, whose large polarizability enhances the optical
forces [152].

As we have mentioned above, the plasmonic-based optical trapping has several advan-
tages for the controlled immobilization of objects close to a substrate. When compared
to conventional trapping schemes, plasmonic-based systems provide (i) a large field en-
hancement that allows for lower input powers and (ii) a sub-diffraction limited field
confinement that yields nanometer-size trapping volumes. However, this technique lacks
the ability to manipulate the trapped object in 3D. Such a prospect would be very inter-
esting for instance for the manipulation of single QEs, such as atoms, QDs or NV centers.
On the other hand, nano-optical trapping has potential applications in different research
areas, such as lab-on-a-chip devices entirely operated with light, where plasmonic trap-
ping could be used to immobilize cells [153], or microfluidic systems [154]. For both
lab-on-a-chip and microfluidics applications, the development of optical techniques able
not only to trap but also to provide a controlled manipulation of nanoscopic objects are
highly desirable. There are a number of reasons why optical nano-manipulation is sought
for in these fields: it can act in the single particle level, the infrastructure it requires is
off-chip, and it is generally compatible with biological samples. However, up to our knowl-
edge, any plasmonic antenna-based device lacks the functionality of object’s transport
over a long distance. Within this context, in Chapter 4 of this Thesis we present a pro-
posal for a plasmonic Brownian ratchet that transforms the localized trapping based on
optical antennas to enable a long distance drift of sub-micron beads [155]. This device
may find applications such as the nano-manipulation of colloidal and biological objects.

Chapter 4 is framed within the context of trapping and manipulating nanoscopic
particles. In particular, we present a proposal for driving dielectric nanometer-sized
beads in microfluidic channels. The system is based on creating a periodic set of optical
traps from an array of optical antennas with a specific geometry. Then, by externally
modulating the illumination, the Brownian ratchet mechanism originates a net flow of
particles into one direction. We start by detailing the design of this plasmonic Brownian
ratchet: we characterize the optical response of the metallic antennas and we calculate the
optical forces and trapping potential for a subwavelength dielectric bead. Next, through
simulations of the system dynamics, we demonstrate a statistical directed drift into one

25



1. General Introduction

direction in the bead’s Brownian motion.

1.5 Quantum Plasmonics

The capability of SPs of confining the EM field beyond the diffraction limit enables new
ways for the quantum control of light through the interplay between quantum emitters
(QEs) and SPs. Coherent interaction between QEs and photons is essential for quantum
information processing and quantum communication technologies, which are currently
being pursued [156]. A key ingredient for any quantum technology based on QEs and
photons is the enhancement of light-matter interaction. In the cavity Quantum Elec-
trodynamics (QED) approach this enhancement relies on confining photons inside a
high-finesse cavity [see Fig. 1.13 (a)], which increases the interaction time between light
and the emitter [157]. The emitter can be an atom (or a collection of them) [158], but
also other two-level systems, such as semiconductor quantum dots (QDs) [159], nitrogen-
vacancy centers in diamond (NV centers) [160] or superconducting quantum bits (qubits)
[161]. The cavities consist of lossless dielectric systems with large quality factors, Q, and
small mode volumes, V . Importantly, diffraction imposes a fundamental lower limit on
the mode volume, V ∼ (λ0/n)3, with λ0 being the free space wavelength and n the refrac-
tive index of the cavity. Although the high absorption in metals is still a critical issue to
overcome, Plasmonics provides a different route for the enhancement of QE-photon inter-
actions, allowing for system sizes beyond the diffraction limit. This approach is based on
positioning a QE within the hugely enhanced EM energy that is sub-diffraction confined
to plasmonic nanostructures, as shown in Fig. 1.13 (b). For this reason, the study of the
quantum properties of SPs and their potential as carriers of non-classical information has
recently attracted great attention. The field of Quantum Plasmonics specifically deals
with these issues [162].

In the last few years, SPs have been shown to preserve non-classical information, which
is essential if Plasmonics is to be used as a platform for quantum applications. Pioneering
work considered a pair of entangled photons generating a SPP propagating along a
metallic hole array which then transforms back to photons [163–165]. The quantum
state of the entangled photons, whereby two physically separated photons are linked
such that the quantum description of each of them requires knowledge of the other, was
shown to be transferred through the whole process. In addition, other manifestations of
the quantum properties of SPPs such as squeezed states [166] and wave particle duality
[167] have been demonstrated. These experiments proved that despite the mesoscopic
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Figure 1.13: Sketches comparing two approaches for enhancing light-matter interactions. (a)
Cavity QED system: a single emitter is embedded in a high finesse cavity that confines a single
EMmode. (b) The large confinement of the EM field in the vicinity of a plasmonic nanostructure
enhances the interaction between light and the emitter.

nature of SPPs, which involve the collective oscillation of ∼ 1010 electrons, SPP are
capable of transferring entanglement and other quantum properties.

A different aspect of Quantum Plasmonics deals with the properties of plasmonic
systems of very small sizes or with ultra-small gaps. Quantum size effects need to be
included in the electrodynamical description of metallic nanoparticles with dimensions of
the order of a few nanometers [168]. For such small sizes, the metal displays a discrete set
of electronic states, which yields a shift and a broadening of the LSP resonance [169, 170].
In addition, the optical response of metal nanoparticles separated by distances . 1 nm
is affected by the appearance of quantum tunneling, which has been theoretically [171]
as well as experimentally [172, 173] investigated.

Achieving an efficient coupling between single QEs and the SPs supported by metallic
nanostructures is one of the main goals of Quantum Plasmonics. A starting point for that
purpose is provided by the well studied emission properties of a single emitter placed next
to a metal surface [174–177]. The spontaneous decay rate of an excited state depends
not only on the properties of the emitter but also on those of the EM environment
[178]. This is the so-called Purcell effect, by which the lifetime of a QE is modified
by the available EM states. The intense field and high confinement provided by SPs
increase the local density of photonic states, thereby enhancing the radiative decay or,
equivalently, decreasing the emitter’s lifetime [179, 180]. The modification of the decay
rate of a QE by the SPPs supported by a metal surface is shown in Fig. 1.14 (a). Within
a close proximity to the surface the QE’s decay is further enhanced by the non-radiative
decay to very short-range lossy modes present in the metal. Such phenomenon is known
as fluorescence quenching and is responsible for the decrease in the QE’s lifetime at
very close distances between the emitter and the surface [see Fig. 1.14 (b)]. Therefore,
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Figure 1.14: Spontaneous decay of a QE close to a plasmonic nanostructure. (a) Fluorescence
lifetime of Eu3+ ions in the presence of (i) an optically thin silver mirror and (ii) an optically
thick one. (b) Excited-state lifetime of the ions as a function of their distance to the silver
optically thick film (solid line: theory, points: experiment). The oscillations at intermediate
distances and the quenching of the emission at very small separations are due to variations in
the local density of photonic states. (c) Fluorescence decay rate of a vertically oriented molecule
as a function of its distance to a silver nanoparticle. The red line depicts the theory while the
black dots stand for experimental measurements. Figures reprinted from: (a,b) Ref. [177], (c)
Ref. [28].

there is an optimal distance for coupling a QE to a SPP mode. These ideas are also
applicable to the LSPs supported by metal nanoparticles. The fluorescent enhancement
(and quenching) of single molecules in the presence of metallic nanoparticles has been
studied experimentally in Refs. [28, 29]. Figure 1.14 (c) summarizes the results of Ref.
[28], where the spontaneous decay of the molecule was demonstrated to be modified by
coupling to the LSPs modes supported by the nanoparticle.

An important advantage of using propagating SPPs to enhance the interaction between
light and single emitters is their broadband application. In particular, the fundamental
mode of plasmonic waveguides, such as a metal nanowires, occurs for a broad range of
frequencies. The coupling between a single QE to the SPPs propagating along metallic
nanowires has been demonstrated in several works [181–183]. In Ref. [182], the fluores-
cence enhancement of a single QD coupled to a single SPP mode of a silver nanowire was
successfully measured. A sketch of the emitter’s decay channels can be seen in Fig. 1.15
(a), while Fig. 1.15 (b) displays a fluorescence image of the sample. In addition, measure-
ments of the second order coherence function as a function of photon delay, g(2)(τ) [184],
were performed from the the light scattered at the end of the nanowire. Such measure-
ments proved that the SPPs exhibit antibunching, or in other words, that the photons
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Figure 1.15: Quantum properties of single QEs coupled to plasmonic waveguides. (a) Spon-
taneous decay of a QE coupled to a plasmonic nanowire. In the sketch, from Ref. [182], a QD
decays via radiative coupling to free space photons or SPP modes propagating through the
nanowire with rates Γrad and Γpl, respectively, or it non-radiatively couples to lossy modes in
the metal. (b) Second order cross-correlation as a function of the time delay between photon
coincidences, g(2)(τ), as measured in Ref. [182] (black line). The light emitted from a single
QD couples to a silver nanowire and is finally scattered at the end of the wire, where it is
collected and the photon cross-correlations are measured. (c) Proposal for a single photon tran-
sistor based on a QE coupled to a nanowire. Due to the efficient coupling between a single
optical emitter and the SPPs, the emitter can act as a nonlinear switch for incident photons
propagating along the wire. Figures reprinted from: (a-b) Ref. [182] and (c) Ref. [188].

emitted by the QD retain its single-photon character after being transferred through
the wire by the SPP mode. This means that plasmonic wires can provide single photon
sources, as has also been demonstrated in Ref. [185] using NV centers. On the other hand,
alternative plasmonic systems have been proposed to provide very large fluorescent en-
hancements, such as hybrid waveguides [186] or plasmonic resonators [187]. Moreover,
the efficient coupling between single emitters and the SPPs propagating along plasmonic
waveguides enables the realization of devices, such as a single photon transistor [188, 189]
[see Fig. 1.15 (c)].

In addition, SPPs have also been proposed as mediators of the interaction between
several emitters. The sub-diffraction limited confinement associated with SPPs can be
exploited not only to enhance the coupling between an individual QE and the photons in
a single SPP mode, but also to enhance the coupling between several QEs. For instance,
in Ref. [190] two emitters were connected by 1D plasmonic waveguides. After demon-
strating that the coupling of a single QE to the SPP mode propagating through different
waveguides (channels, wedges and wires) can be very large, plasmonic waveguides are
used to provide an interaction channel between two emitters. The plasmon-mediated
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coupling can be employed to efficiently couple the emitters at distances larger than the
wavelength, which enables the emergence of super- and subradiance collective states with
modified emission rates [191], as well as the phenomenon of resonance energy transfer.
This efficient long-range interaction, which would be impossible in free space or with
a dielectric fiber, was subsequently shown to produce entangled states of several QEs
[192–195]. In Ref. [192], plasmon-mediated entanglement between two QEs was studied
for the case of a plasmonic channel waveguide. Based on subwavelength light confine-
ment in a plasmonic waveguide, this work presented a feasible proposal for long-distance
entanglement of two qubits by using SPPs instead of photons. A large fraction of the
photons radiated by one QE is captured by the SPP mode propagating through the
waveguide and transferred to the second QE, thereby becoming entangled. Interestingly,
entanglement can be obtained for QEs at distances larger than the operating wavelength.

So far, all the systems we have considered feature a weak light-matter coupling strength.
When the interaction between light and the emitters is very strong and overcomes the
system losses, the coupled system may enter into the strong coupling (SC) regime. Differ-
ently from the weak coupling (WC) regime, where the effect of the EM field is to modify
the spontaneous decay rate of a QE through the already discussed Purcell effect, in the
SC regime there is a reversible energy exchange between the EM field and the QEs. In
order to achieve SC, such energy exchange needs to be faster than any other dissipation
or decoherence mechanism in the system. The system population then exhibits coherent
oscillations, which manifest themselves as a Rabi splitting in the energy levels. Within
this regime the system composed of the EM field and the QE has to be treated as a whole
and described by means of new eigenstates. The confinement and broadband character-
istics of SPs in metallic nanostructures are promising tools for achieving the SC regime
between QEs and EM fields. As we have mentioned already, the WC regime is interesting
on its own for Quantum Plasmonics for, e.g., efficient single photon generation [181], but
entering the SC regime is a major goal of the field.

While the SC regime for an individual QE coupled to a plasmonic system has been
theoretically predicted for the LSPs of metal nanoparticles [196–199] and for SPPs in
several metal nanostructures [200–203], it has not yet been experimentally demonstrated.
Nevertheless, the energy splitting characteristic of this regime has been observed in exper-
iments where ensembles of organic molecules interact with the SPP modes propagating
along a metal surface [204–206] or with SPPs supported by a metal surface drilled with a
periodic array of subwavelength holes [207] and subwavelength slit arrays [208]. Moreover,
organic molecules have also been used to achieve reversible switching of the ultrastrong
coupling regime when placed inside a cavity [209], as well as to engineer chemical reac-
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tions [210] or a material work function [211] when interacting with SPPs in hole arrays.
On the other hand, the SC regime between semiconductor QDs an SPPs has also been
considered, and the corresponding energy splittings characteristic of this regime have
also been shown [212–215]. The usual experimental configuration is sketched in Fig. 1.16
(a): an ensemble of QEs, embedded in a dielectric host, is placed on top of a metal
film. By means of a laser field, SPPs propagating along the film are excited under the
Kretschmann configuration [11]. After the interaction between the QEs and the SPPs
has taken place, the emitted light is measured through reflectivity from the metal film
(“detection 1” in the figure) or through luminescence from the QEs (“detection 2”). Panel
(c) shows typical experimental spectra (from Ref. [204]), where the reflectivity of the
system is plotted as a function of energy for different excitation angles. By sampling the
excitation angle, the whole SPP branch is probed as a function of the parallel k vector
and the coupled SPP-emiter system appear as dips in reflectivity. An example of such a
dispersion relation, from Ref. [214], is plotted in panel (b), displaying the characteristic
anticrossing between the QE energy level (around 2.2 eV in this case) and the SPP dis-
persion branch. In addition, the inset panel presents the evolution of the energy splitting
with the square root of the absorbance, showing that the coupling constant, g, increases
with the total number of QEs, N , following g ∝

√
N . This dependence is characteristic

of the many-emitters strong coupling regime [157]. More recently, the coherent energy
exchange between QEs and SPPs has been experimentally measured in the time domain
[216]. In this work, the coherent population dynamics of an ensemble of J-aggregates
interacting with an SPP propagating along a metal slit array have been measured in the
fs timescale for the first time.

Chapter 5 of this Thesis is devoted to the study of light-matter interaction in plas-
monic systems. In particular, we address the coupling between QEs and SPPs for several
configurations: (i) For an individual QE interacting with plasmonic structures we first re-
view the modified spontaneous decay of a QE placed in the vicinity of a metal/dielectric
interfaces and of a graphene sheet. Next, we revisit the problem of a QE decaying close
to a metal/dielectric interface and we go beyond the spontaneous decay description,
showing that that for very short distances to the metal surface, where quenching is ex-
pected, a QE of large dipole moment features reversibility in its dynamics. (ii) For two
QEs, we study how their interaction may be mediated by the SPPs propagating along
2D graphene sheets and 1D graphene ribbons, showing that graphene SPPs allow us to
control and tailor the interaction between the QEs at deep subwavelength scales and, at
the same time, at long interaction ranges [217]. (iii) Finally, we consider a collection of
QEs strongly coupled to a propagating SPP. In the context of the experimental works
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Figure 1.16: Experimental evidence of SC between a collection of QEs and propagating SPPs.
(a) Experimental configuration from Ref. [205]: a sample of rhodamine molecules embedded
in a dielectric host is placed on top of a silver film. Different detection methods are sketched.
“Detection 1” yields the reflectivity spectrum of the system and “detection 2” gives the energies
of the modes after undergoing scattering processes. (b) Characteristic energy splitting of the
strongly coupled modes between a collection of QDs interacts with a silver film, from Ref.
[214]. The energy level of the QDs, at ∼ 2.20 eV, experiences an avoided crossing with the
SPP dispersion branch (green line). (c) Reflectivity measurements from Ref. [204], showing the
interaction between an ensemble of J-aggregates (resonance energy ∼ 2.1 eV) and SPPs on a
silver film. The reflectivity is plotted as a function of the incident light energy for different
incident angles. The minima in these curves originate a dispersion relation equivalent to the
one shown in panel (b). (e) In Ref [212], the dynamics of J-aggregates on top of a silver
subwavelength slit array was measured. The experiments revealed coherent dynamics in a fs
timescale (e).

reporting energy splittings and time-domain oscillations for ensembles of QEs interacting
with the SPPs that propagate along a metal/dielectric interface, we develop a theoreti-
cal framework that is able to reproduce the reported phenomenology [218]. In addition,
we predict the conditions under which these systems may display quantum statistical
properties.
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Chapter 2

Moulding the flow of surface plasmons
using Transformation Optics

2.1 Introduction

In this chapter we study the application of Transformation Optics (TO) to plasmonics.
One of the main goals in plasmonics is to control the flow of light at a metal surface
by means of the SPPs that decorate a metal-dielectric interface. As we discussed in
the introduction (see Section 1.1), in the quest for creating photonic circuits based on
SPPs different waveguiding schemes have been tested during the last years [7–9]. Here
we present a different strategy to tackle this problem by showing how the TO framework
can be applied to efficiently mold the propagation of SPPs at a metal surface. The
TO formalism, which we introduced in Section 1.2, provides us with expressions for the
EM material parameters, dielectric permittivity, ε̂, and magnetic permeability, µ̂, that
need to be implemented in order to obtain a medium where EM waves propagate along
desired trajectories [51, 52]. This formalism is based on the form-invariance of Maxwell’s
equations under coordinate transformations. Hence, due to the universal character of
Maxwell equations, it is expected to be valid for any EM wave.

In order to design an optical device for propagating SPPs, the fact that these EM
modes are surface waves travelling along the interface between a dielectric and a metal
has to be taken into account. The expressions for the EM material parameters provided
by the TO formalism should, in principle, be implemented both in the dielectric and
the metal sides. This fact is a severe technical challenge, as TO generally prescribes
highly anisotropic and inhomogeneous ε̂ and µ̂. Moreover, since the SPP field extends
over a few tens of nanometers inside the metal, ε̂ and µ̂ should be manipulated at

33



2. Moulding the flow of surface plasmons using Transformation Optics

such length scales within the metal. However, as we demonstrated in Refs. [97, 105]
and Ref. [98] showed independently, manipulating the material properties inside the
metal part is not actually required: a simplified version in which only the EM properties
of the dielectric side are modified leads to very accurate functionalities. Two factors
determine whether this simplification is operative or not: the wavelength of the SPP
and the geometry of the device under consideration. The problem of the anisotropy
can be solved by choosing the appropriate coordinate transformations. When conformal
and quasiconformal mappings are considered, the resulting EM parameters are isotropic.
Therefore, plasmonic devices can be based on implementations of transformation media
based only on isotropic dielectrics, allowing the possibility of low-loss and broad-band
performances.

In this Chapter we consider the main features of TO as applied to SPPs and exemplify
the theory by means of different TO devices for SPPs. We verify the results by means
of finite element method (FEM) simulations [219]. The structure of the Chapter is as
follows. First, we apply the general methodology of TO in Section 2.2 to the case of
propagating SPPs. In particular, we study the functionality of four different potential
plasmonic devices (a cylindrical cloak, a parallel shifter, a right-angle bend and a lens) at
a range of wavelengths through the optical range of the spectrum. Second, we consider
realistic models based on conformal and quasiconformal mappings in Section 2.3. We
show that for these cases only isotropic refractive indexes need to be implemented and
we apply it to the parallel shifter, the right-angle bend, the lens, a ground-plane cloak for
SPPs and a plasmonic concentrator. Next, in Section 2.4 we review recent experimental
implementations leading to unique SPP functionalities at optical frequencies [99, 100].
Finally, Section 2.5 summarizes the main contributions of our work in this topic.

2.2 Transformation Plasmonics

2.2.1 Transformation Optics formalism as applied to

Plasmonics

As we introduced in Section 1.2, The TO framework provides tools for the design of EM
media with desired functionalities. It is based on the fact that Maxwell’s equations are
left invariant if a mapping is performed from an empty space with a distorted geometry
(virtual space) to a medium characterized by ε̂ and µ̂ placed in a flat space (physical
space). A 2D transformation x = x(x′) between the virtual system, x′ = {x′, y′}, and
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the physical system, x = {x, y}, such as the one shown in Fig. 1.6, is described by means
of its Jacobian matrix, Â =

(
∂xi/∂xi

′), where the index i = 1, 2. The empty-space
Maxwell’s equations in physical space can be interpreted as macroscopic equations for a
medium placed in virtual space and characterized by the EM parameters given by Eq.
1.23:

ε̂TO = ε0
ÂÂT

det Â
; µ̂TO = µ0

ÂÂT

det Â
. (2.1)

In this expression, the background EM parameters of the virtual space, ε̂′ and µ̂′ in Eq.
1.23, have been replaced by the free-space values ε0 and µ0 without loosing generality
and the optical medium parameters, ε̂ and µ̂ in Eq. 1.23, have been renamed as ε̂TO and
µ̂TO for the sake of clarity. In order to get more insight, it is convenient to relate the
Jacobian matrix of the coordinate transformation to its metric tensor Ĝ = (gij)

1. We
have:

Ĝ =
∂xk

∂xi
∂xk

∂xj
=
(
Â−1

)T
Â−1. (2.2)

This allows us to re-express ε̂TO and µ̂TO in terms of the inverse metric tensor, Ĝ−1 =

ÂÂT , of the transformation:

ε̂TO = ε0
√
gĜ−1; µ̂TO = µ0

√
gĜ−1, (2.3)

where g is the determinant of the metric, g = 1/(det Â)2. In general, the metric tensor of
any 2D coordinate transformation is a 2×2 symmetric matrix. Then, as it can be readily
seen from 2.3, ε̂TO and µ̂TO are generally anisotropic. Moreover, they are inhomogeneous
and vary throughout space according to the coordinate transformation.

Since TO relies on Maxwell’s equations, it applies to all kinds of EM waves and in
particular to SPPs. However, we need to bear in mind the fact that SPPs are surface
EM waves propagating along a metal/dielectric interface with a field distribution that is
evanescent in the direction perpendicular to the interface. Therefore, an infinite number
of 2D coordinate transformations should be performed, in principle, in planes parallel to
the metal-dielectric interface in order to operate over the whole plasmonic field. As the
SPP field extends into the dielectric and the metal, these 2D coordinate transformations
should be implemented at both sides of the interface. Due to the fact that the SPP decay
length in the metal (skin depth) is of a few tens of nanometers at optical wavelengths,
a manipulation of the metal properties would be needed at a nanometer scale. However,
a more feasible approach that consists of modifying the EM properties of the dielectric
side only indeed gives very accurate results, while control over the metal is not actually

1The metric tensor, Ĝ, is not to be confused with the Green’s tensor used in other Chapters, Ĝ(r, r, ω)
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required. To illustrate the direct application of TO to SPPs and the impact of manipu-
lating only the dielectric side, in the following Subsection we study the dependence of
the efficiency on the wavelength for four different TO devices for SPPs: a cylindrical
cloak, a parallel shifter, a right-angle bend and a lens.

2.2.2 Transformation Optics-based plasmonic devices

Cylindrical cloak for SPPs

As a first illustration of the methodology, we consider a 3D cylindrical cloak for SPPs
travelling along the interface between a metal characterized by permittivity εm and
vacuum. Figure 2.1 (a) shows a SPP that scatters off a metallic cylinder of radius a
placed on the surface. A cloak placed around the cylinder, see Fig. 2.1 (b), renders
the object invisible by suppressing any scattering from it. The effect of the cloak is
to smoothly guide the SPP wave around the cloak, as suggested by the power flow
streamlines rendered in panels (c) and (d).

As we introduced in Section 1.2, a 2D invisibility cloak was the first proposal of TO
applications [51, 55] as well as the first experimental realization [88]. The cloak design
is based on the coordinate transformation shown in Fig. 1.6, such that a wave travelling
in physical space will follow trajectories that surround the hole so that it appears to
have travelled in straight lines as it would in the virtual - undistorted - space. In order
to design a 3D invisibility cloak for SPPs we take a plane parallel to the metal surface
and make the 2D radial transformation r(r′) = b/(b−a)r′+a in the shell a < r < b (see
the geometry of the cloak in Fig. 2.1 (b)). In Cartesian coordinates, the transformation
reads:

x = r(r′)
x′

r′
; y = r(r′)

y′

r′
; z = z′. (2.4)

According to the TO equations 2.3, the EM parameters of the transformation medium
are the following:

ε̂TO/ε0 = µ̂TO/µ0 =

 εr
x2

r2 + εθ
y2

r2 (εr − εθ)xyr2 0

(εr − εθ)xyr2 εr
y2

r2 + εθ
x2

r2 0

0 0 εz

 , (2.5)

where εr, εθ and εz are given by Eq. 1.25. These parameters are highly anisotropic and
approach singular values at the inner radius of the cloak (εxx,εyy → +∞; εxy → −∞
and εz → 0). If we want to operate on a SPP, we need to cloak the field in the dielectric
and metal sides as illustrated in Fig. 2.1 (e). In the dielectric side, we implement the
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Figure 2.1: TO is used to cloak a cylinder to SPPs. (a) A SPP is propagating along an air-gold
interface and scatters on a metallic cylinder of radius a. The plasmonic field intensity, shown
schematically, decays exponentially away from the interface. (b) Scattering from the cylinder
is suppressed by placing a cloak of outer radius b around it. The optical parameters needed to
cloak the cylinder are calculated using TO and implemented in a cylindrical shell a < r < b of
height hd in the dielectric side and in a shell of height hm in the metal. (c, d) Power flow from
3D simulations at λ = 800 nm. The SPP experiences high scattering losses when it encounters
the bare cylinder (c) while the cloak guides the SPP wave suppressing the scattering losses. (e)
3D SPP-cloak. The scattered magnetic field, Hy, is plotted at the dielectric-metal interface for
a wavelength λ = 1.5 µm and a cloak radius a = 1.5 µm and height hd = 6 µm.

parameters, ε̂ = ε̂TO and µ̂ = µ̂TO, in a cylindrical shell of radii a and b with a height,
hd, larger than the vacuum decay length of the SPP. On the other hand, in the metal
side the EM tensors need to be modified following ε̂ = ε̂TO · εm and µ̂ = µ̂TO, in a
cylindrical shell of the same radii but with a height hm larger than the skin depth. If
we cloaked its entire field, an incident SPP would emerge at the other side as if it had
travelled through free space.

To study the effectiveness of this plasmonic device we have considered the transmit-
tance of SPPs through the cloak and its scattering properties. We have measured the
transmittance from one side of the cloak to the other as the ratio of the incident to the
transmitted power flow. In order to isolate the effect of the TO medium, losses have
been neglected throughout this analysis by setting the imaginary part of the metal di-
electric constant to zero. Since losses are absent, 100% transmittance means that the
whole plasmonic field is guided around the cylinder without any back-scattering. In the
simulations, a SPP at a wavelength between 600 and 1500 nm and travelling through a
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Figure 2.2: Transmittance study for a 3D cylindrical cloak for SPPs. (a) Transmittance (ratio
of the incident power flow to the transmitted power flow) through the cloak for SPPs at different
wavelengths. The blue and red lines show the case with and without placing a transformation
medium in the metal side respectively. The in-plane size of the cloak is scaled with the wave-
length as a = b/2 = 5/6λ. (e,f) Scattered Hy field at a wavelength λ = 1.5 µm and evaluated
at the metal surface, z = 0 (e), and at z = δ/4 = 625 nm (f), with δ being the vacuum decay
length of the SPP into the dielectric. (g,h) The same quantity is plotted at wavelength λ = 600

nm and evaluated at z = 0 (g) and at z = δ/4 = 70 nm (h).

gold-vacuum interface, impinges onto a cloak of size a = b/2 = 5/6λ. The height of the
cloak in the dielectric side, hd, is much larger than the vacuum decay length at a given
wavelength and is chosen for convergence. The height of the cloak in the metal side, hm,
is 50 nm high at all wavelengths since the skin depth of the SPP is very similar over the
wavelength range and amounts to 20− 30 nm. The transmittance spectrum is plotted in
Fig. 2.2 (a) for two cases: with and without introducing a metamaterial in the metal side
(blue and red lines respectively). The transmittance of the cloak in the ideal situation
(blue line) where TO parameters are implemented in the metal along with the dielectric
material is higher than 99% over the whole wavelength range. On the other hand, the
transmittance when the metal is leaved untouched (red line) increases from 97% at 600

nm to 99% at 1500 nm. As the wavelength increases, the blue and red curves lie closer.
The reason for this is that while the skin depth is approximately constant over the whole
spectrum (around 20-30 nm), the vacuum decay length increases with the wavelength,
varying from 250 nm for a SPP at 600 nm to 4 µm at 1500 nm. Thus, for shorter wave-
lengths, the part of the SPP energy carried within the metal is larger. However, although
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the effectiveness of the cloak is affected by the lack of cloaking the field that resides in
the metal, it is very good even at short wavelengths. Our results explain why a previous
experiment on SPP cloaking at λ = 500 nm in which the metamaterial was only placed
in the dielectric side was not completely successful [220].

The impact of manipulating only the dielectric side is illustrated in Fig. 2.2 (b-e)
for SPP cloaks operating at λ = 1.5 µm [panels (b) and (c)] and λ = 600 nm [panels
(d) and (e)]. In all cases, the prescribed ε̂TO and µ̂TO were implemented only in the
dielectric side, in a cylindrical shell surrounding a perfectly conducting cylinder, leaving
the metal as a continuous sheet. We present for each wavelength the y-component of the
scattered magnetic field evaluated at two planes parallel to the metal-dielectric interface,
one at z = 0 [panels (b) and (d)] and another at a height at which the SPP has decayed
to a quarter of its intensity at the interface [panels (c) and (e)]. At λ = 1.5 µm, the
scattered magnetic field is nearly zero out of the cloaking region and we can conclude
that the performance of the cloaking device for SPPs is excellent. However, for a SPP
at a wavelength of 600 nm, only partial cloaking for a SPP is achieved. The reason for
this is the geometry of the cylindrical cloak which, as opposed to the beam shifter, has
a discontinuity in the metal-dielectric interface. In this case, the behaviour of the cloak
is very sensitive to the field propagating inside the metal because it strongly scatters at
this discontinuity.

Finally, it is important to notice that a study of the scattering properties is needed
for a complete analysis of the invisibility cloak. By inspection of the scattered field
distribution we have seen that, when the TO recipe is not implemented in the metallic
side, around 20% of the field amplitude is scattered in the forward direction. As a
result, the wavefront of the SPP when passing through the simplified cloak is slightly
modified. In accordance to [221], phase distortions occur for the simplified cloak and
perfect cloaking is not achieved. Nevertheless, as demonstrated by our results, most of
the plasmonic field is guided around the cylinder. On the other hand, we have checked
the scattering properties of all the devices shown in this chapter. We have found that
these effects are only relevant in the case of the cylindrical cloak. For the sake of brevity,
we mention this fact here and not when discussing each device. Therefore, in the rest of
the chapther, we present the transmittance and the images of the EM field as criteria
for quantifying the performance of the SPP-devices.
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SPP beam shifter

Another potential plasmonic device is the parallel shifter, which acts on an incident beam
by translating it perpendicularly to its propagation direction. To design a 2D shifter, we
take a rectangular region sized d× l [see Fig. 2.3 (a)] and map a Cartesian grid to a grid
that is tilted at an angle φ [56]:

x = x′ ; y = y′ + a(x′ + d) ; z = z′, (2.6)

where a determines the tilt angle a = tanφ. The map of this transformation is illustrated
in Fig. 2.3 (b). In contrast to the transformation leading to the cylindrical cloak, Eq. 2.4,
the transformation given by Eq. 2.6 is discontinuous at the frontiers of physical space, a
feature that allows the transfer of the modification of the fields inside the TO medium
to the wave that exits it. Because the transformed boundary is a combination of rotation
and translations of the original boundary, the discontinuity does not cause reflections
at the limits of the TO medium [222]. Following the TO equations (Eq. 2.3) the EM
parameters of the transformation medium are:

ε̂TO/ε0 = µ̂TO/µ0 =

 1 a 0

a 1 + a2 0

0 0 1

 . (2.7)

A 3D SPP parallel shifter should, in principle, be composed of a slab in the dielectric
side sized d× l×hd with permitivitty ε̂TO and permeability µ̂TO along with a slab in the
metal film of dimensions d× l × hm and parameters ε̂ = ε̂TO · εm and µ̂ = µ̂TO. Again,
the height of the slabs at each side must be larger than the SPP decay length in that
medium. In this case, the TO medium parameters are anisotropic but homogeneous and
take non-singular values. A 3D view of simulation results for a SPP at λ = 1.5 µm going
through a beam shifter is presented in Fig. 2.3 (c) . The incident SPP, which displays
a gaussian profile, propagates in the x direction and impinges on the transformation
medium. Thus, it experiences a shift of φ = 45◦ perpendicular to its propagation, in the
y direction, and exits the shifter propagating along a direction parallel to the original
incident path. Details on the geometrical parameters can be found in the caption of Fig.
2.3. In this simulation, rectangular slabs with the prescribed ε̂ and µ̂ were introduced
in both the dielectric and metal sides. Note that the SPP wave fronts nicely follow the
vertical lines of the transformation map shown in panel (b), which illustrates a good
functionality of the device.

We have carried out simulations of this device at a range of optical wavelengths and
computed the transmittance through it. For a SPP-shifter operating at a wavelength λ
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Figure 2.3: Beam shifter: a SPP with a gaussian profile of width ∆ impinges on the device
and experiences a shift of φ = 45◦. (a) Basic geometry of the 2D case. (b) Coordinate map
of the transformation given by Eq. 2.6. (c) 3D view with power flow streamlines of a SPP at
λ = 1.5 µm propagating on an air-gold interface. The device has in-plane dimensions 2.5µm
×10µm and thickness hd = 6 µm and hm = 50 nm. The color map represents the normalized
magnetic field pattern.

the in-plane size of the device is given by l = 20/3λ and d = l/4, while the width of the
SPP gaussian profile is ∆ = l − 2ad. The blue and red spectra in Fig. 2.4 (a) show the
transmittance through the beam shifter with and without introducing a transformation
medium in the metal side, respectively. In the ideal situation (blue line), 100% of the
SPP power flow is shifted over the whole spectrum, whereas in the approximation (red
line) the transmission is lowered due to the fact that the fraction of the SPP energy that
is carried inside the metal is not shifted. For wavelengths larger than 900 nm the red
and blue lines differ by less than 1% because most of the SPP energy is carried outside
the metal. Panels (b) and (c) allow us to compare a cross-section of the 3D simulations
showing the behaviour of Hy at the metal surface (z = 0) for λ = 1500 nm when we
implement ε̂ and µ̂ in the dielectric and metal sides (b) or only in the dielectric side (c).
Notice that there is almost no difference between the field distributions in both cases.
On the other hand, at 800 nm the transmission is lowered to 98.5% when the metal is
leaved untouched and at 600 nm it amounts to 95.5%. Although the effectiveness of the
shifter at this wavelength is affected by the absence of a transformation medium in the
metal side, its functionality (a shift in the SPP beam) is still very good, as can be seen by
comparing panels (d) and (e). The reason for this weak wavelength dependence is clear.
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Figure 2.4: Performance of the SPP beam shifter for different wavelengths. (a) Transmittance
curve of the shifter for SPPs at different wavelengths. The blue and red lines show the case
with and without placing a transformation medium in the metal side, respectively. The TO
parameters are implemented in a slab sized d × l × hd in the dielectric side and, only for the
blue line, in a slab d× l×hm within the metal. The transmittance through the shift is measured
as the ratio of the power flow that impinges the entrance face within −∆/2 < y < ∆/2 to the
power flow that exits within 0 < y < ∆. (b) Cross-section of the 3D beam shifter presented
in Fig. 2.3 (c). Hy is evaluated at the metal surface, z = 0. For comparison, panel (c) shows
a SPP beam shifter where the slab with the prescribed ε̂ and µ̂ has been introduced only in
the dielectric side. Panels (d) and (e) render the operation of a beam shifter for a SPP at
λ = 600 nm. In this case the in-plane dimensions of the rectangular slabs are 1µm ×4µm and
the thicknesses are hd = 600 nm and hm = 50 nm. In panel (e), only the dielectric side is
manipulated.

The vacuum decay length of a SPP on a gold surface at 1.5 µm is 2.4 µm, much larger
than the skin depth (23 nm) so the EM fields within the metal carry 0.01% of the total
SPP energy, having practically no relevance compared to the EM fields in the dielectric.
However, at λ = 600 nm, the ratio between vacuum decay length of the SPP and skin
depth is reduced by a factor of 10 and the EM fields inside the metal are then relatively
more important for the propagation of the SPP. For this wavelength, 1% of the SPP
energy resides in the metal. Therefore, manipulation of the metal is not required since
the performance of the SPP shifter is very good when the TO parameters are introduced
in the dielectric side in the whole optical range.
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SPP bend

The next plasmonic element we consider here is a right-angle bend. This device rotates
the propagation direction of an incident SPP by π

2
, as shown in the inset of Fig. 2.5 (a).

We start by describing a 2D beam bend, which is designed by transforming a a squared
region of side b in a Cartesian grid into a polar grid of squared cross-section b× b [223].
In order to bend a beam that propagates in the x direction by π

2
, so that it exits the

device propagating in the y direction, the appropriate transformation is the following:

r = y′ ; φ =
π

2b
(b− x′) ; z = z′, (2.8)

with r = (x2 + y2)1/2 and φ = arctan(y/x). As in the last case, this transformation is
not continuous at the boundaries of the domain. The EM parameters retrieved from TO
are expressed in Cartesian coordinates following 2.5 with:

εr =
2b

πr
; εθ =

πr

2b
; εz =

2b

πr
. (2.9)

These tensors are singular at r = 0 ( εr, εz → +∞ and εθ → 0). In order to avoid the
divergence at r = 0 we limit the extreme values of the parameters by limiting the radius
to vary from an inner value r = a to the outer value r = b. Then the width of the bend
is ∆ = b − a and the curvature radius is ρ = (a + b)/2. According to our methodology,
to design an SPP right-angle bend we need to perform the coordinate transformation in
the cylindrical shell comprised between r = a, r = b, φ = 0 and φ = π

2
. Ideally, we would

need to implement the parameters ε̂TO and µ̂TO given by Eq. 2.5 and Eq. 2.9 within
the dielectric material up to a height of hd, while the metal optical properties should be
modified following the expressions ε̂ = ε̂TO · εm and µ̂ = µ̂TO in a region of height hm.

The performance of the SPP bend is studied in Fig. 2.5. Panel (a) shows the transmit-
tance spectra of this device for two different situations: with and without implementing
the TO parameters in the metal side (blue and red lines, respectively). The transmittance
through the bend is calculated from simulations where SPPs at wavelengths ranging from
600 to 1500 nm are launched into the entrance of a bend of curvature radius ρ = 5

2
λ.

The field distribution results from a simulation of an SPP at λ = 900 nm propagating in
the x direction and travelling through a right angle bend of radius ρ = 1.5 µm is shown
in Fig. 2.5 (b). The transmittance is obtained from measurements of the power flow at
the entrance and exit faces of the bend. The blue line in the transmittance curve corre-
sponds to the ideal case where the TO parameters are implemented both in the metal
and dielectric sides. The transmission is over 99% for all wavelengths. On the other hand,
the red line follows the transmittance through the bend when only the dielectric side is
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Figure 2.5: Simulation results for the SPP right-angle bend. (a) Transmission through the
bend for SPPs of gaussian profiles (width ∆) at different wavelengths. The blue and red lines
show the case with and without placing a transformation medium in the metal side, respectively.
The bend curvature radius is ρ = 5/2λ and the width is ∆ = 10/3λ. The inset panel shows
the geometry layout from a top view. (b) z-component of the electric field for a SPP at 900 nm
travelling through the bend without applying TO in the metal side.

modified. It is clearly seen that this is indeed a very good approximation, as the trans-
mission is always higher than 95%, approaching the same results as the ideal simulations
at large wavelengths. For wavelengths larger than 900 nm, the blue and red curves differ
by only 2% or less, meaning that by not structuring the metal side less than 2% of the
SPP powerflow will be lost. On the other hand, for short wavelengths (600-800 nm), the
transmittance of the approximate situation is around 4% lower than the transmittance
of the ideal blue curve, a value that corresponds to the fraction of the SPP energy that
is contained in the metal. Therefore, we have shown that in the approximate but more
feasible situation of structuring only the dielectric side, the performance of the SPP
bend is very good over the entire wavelength range considered. However, in some cases
the SPP wave fronts might suffer some distortions even though the transmittance is still
very high.

SPP lens

Finally, we consider a plasmonic lens capable of focusing an incident gaussian SPP of a
finite width. As described in Ref. [223], transforming a semi-circular region of radius a
into a rectangular region sized a × 2a leads to a 2D rectangular lens whose focal point
is located at the center of its exit face. A sketch of the geometry layout is shown in the
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inset panel of Fig. 2.6 (a). Assuming an incident wave from the left (−x direction), we
place the lens in the x− y plane in the region defined by −a ≤ x ≤ 0 and −a ≤ y ≤ a.
For such a geometry, the appropriate transformation is found to be:

x =
ax√
a2 − y2

; y = y′ ; z = z′. (2.10)

The TO procedure (Eq. 2.39 yield the following EM tensors in cartesian coordinates:

ε̂TO/ε0 = µ̂TO/µ0 =


x2y2a−1(a2−y2)−1+a√

a2−y2

xy

a
√
a2−y2

0

xy

a
√
a2−y2

√
a2−y2

a
0

0 0

√
a2−y2

a

 . (2.11)

These parameters are inhomogeneous and anisotropic and take singular values at the
boundaries of the device. As in the previous examples, the lens for SPPs consists of a
rectangular slab sized a× 2a× hd and placed on top of the metal film, with parameters
ε̂TO and µ̂TO. In principle, a rectangular slab of dimensions a× 2a×hm and parameters
ε̂TO · εm and µ̂TO should be implemented in the metal side.

We have carried out 3D simulations of a gaussian SPP width ∆ travelling through the
lens at a range of optical wavelengths, and we show the results in Fig. 2.6. After entering
the lens, the SPP is focused at the exit side of the device and continues to propagate
in cylindrical wavefronts. Panel (a) shows the transmittance through the device as a
function of the SPP wavelength for a quantitative analysis of the lens effectiveness in two
situations: when the TO parameters are or are not implemented in the metal side (blue
and red curves, respectively). In the ideal case where transformation media are placed in
the metal and dielectric sides, the transmittance is close to 100% at all wavelengths. On
the other hand, the red line shows that the approximation consisting of not modifying
the metal side is very good for wavelengths above 900 nm as in that wavelength range
the transmittance lies above 98%. For wavelengths below 900 nm the transmittance is
lowered up to an 8% compared to the ideal case because for shorter wavelengths there is
a higher fraction of the SPP energy contained in the metal. However, the field patterns
at these wavelengths (not shown here) reveal that the wave propagation and focusing
is still very good. Panel (b) shows a plot of the field for an SPP at 900 nm travelling
through the lens. While the SPP travels a distance of a = 2250 nm, its wavefronts are
smoothly focused on a spot of the order of its wavelength.
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Figure 2.6: Simulation results for a 3D SPP lens. A SPP exhibiting a gaussian profile of width
∆ and propagating in the x direction impinges on the lens, where it is focused to a width of the
order of the wavelength. (a) Transmittance spectra through the lens for two cases: with and
without placing a transformation medium in the metal side (blue and red lines respectively).
The transmittance is measured as the ratio of the power flow incident on the left to the power
flow that exits within a wavelength width. The in-plane size of the lens is a×2a, with a = 2.5λ,
while the width of the incident beam is ∆ = 3.75λ (see inset panel). (b) 3D view of the y-
component of the magnetic field of an SPP at 900 nm travelling through the lens. In this
simulation, the transformation medium was placed in the dielectric side only. Note that the
lines parallel at the exit face separated by 900 nm constitute an auxiliary element to measure
the transmittance and do not represent a physical boundary.

2.3 Conformal and quasiconformal mappings for

realistic models

2.3.1 Conformal and quasiconformal mappings

The coordinate transformations we have considered so far present some technical prob-
lems when it comes to practical realizations as they generally yield highly anisotropic
ε̂ and µ̂. However, if we choose an appropriate coordinate transformation by imposing
some mathematical requirements, isotropic EM parameters may be obtained. This means
that only isotropic dielectrics would be necessary to construct devices, reducing losses
and opening up the possibility of broad-band performances. In particular, conformal and
quasiconformal transformations give rise to isotropic material parameters, yielding eas-
ier implementations of transformation media based on isotropic dielectrics. Conformal
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mappings were first investigated within this context in Ref. [55], where an invisibility
device was designed by applying a transformation in the complex plane to Helmholtz’s
equation. This concept was also applied to design other isotropic devices, such as arbi-
trary waveguide bends within the limit of geometrical optics [224, 225] or directional
antennas, flat lenses and beam bends [222]. Regarding plasmonic systems, conformal
and quasiconfomal transformations have been employed to design light-harvesting [106]
devices and ground-plane cloaks [98].

In the following we will show how to derive the isotropic EM parameters that corre-
spond to a conformal transformation within the TO framework. Let us start by assuming
that the virtual and physical domains are contained in the complex planes z = x′ + iy′

and w = x+ iy, respectively. As we are dealing with SPPs, 2D waves extending into the
third dimension (the direction perpendicular to the metal-dielectric interface), we can
restrict our study to 2D transformations. A 2D coordinate transformation from virtual
to physical coordinates can then be described by means of a complex function:

w = f(z, z) = x(x′, y′) + iy(x′, y′). (2.12)

This transformation is said to be conformal if the function f(z) depends on z but not
on its conjugate z and is analytical, i.e. f ′(z) can be defined (see Appendix A.1 for
more details). Then, the Cauchy-Riemann equations are satisfied (∂x/∂x′ = ∂y/∂y′

and ∂x/∂y′ = −∂y/∂x′). Consequently, the metric tensor of a conformal transformation
reduces to a diagonal matrix:

Ĝ−1 = g11 · I2×2 where g11 = (g11)−1 =
∂2x

∂x′2
+
∂2x

∂y′2
. (2.13)

This means that the grid described by the transformation map w = f(z) is orthogonal,
i.e., the angles between coordinate lines are preserved after the mapping. According to
the TO rule (Eq. 2.3), we calculate the EM parameters of the transformation medium
that corresponds to a 2D conformal transformation:

ε̂TO/ε0 = µ̂TO/µ0 =
√
gĜ−1 =

 1 0 0

0 1 0

0 0
√
g

 . (2.14)

Now let us consider the case of an EM wave with the electric field polarized along the z-
axis and the magnetic field in the x-y plane. The propagation of this wave is determined
by the electric permittivity along the z-axis and the magnetic susceptibility tensor in
the x − y plane. According to the equation above, these are the following:

εz = ε0
√
g ; µ̂ = µ0I2×2. (2.15)
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This set of parameters is equivalent to an isotropic refractive index:

n =
√
εzµ = n0g

1/4, (2.16)

where n0 =
√
ε0µ0 is the background refractive index. If on the other hand, the EM

wave is polarized with the magnetic field along the z-axis, then ε = ε0, µz = µ0
√
g and

n =
√
εµz = n0g

1/4. Notice that, as shown in Appendix A.2, our approach leads to the
same result as the Optical Conformal Mapping technique based on Helmholtz’s equation
[55]. Therefore, for problems where the two polarizations can be treated separately, a 2D
conformal transformation leads to an isotropic transformation medium, with a refractive
index defined by Eq. 2.16. On the other hand, SPPs need to be considered separately as
their dispersion relation depends on the electric permittivity and the magnetic perme-
ability rather than on the refractive index. However, we will show in the following that
the propagation of an SPP in a medium with the exact diagonal anisotropic parameters
(Eq. 2.14) is very similar to that in a medium with the approximate isotropic refractive
index (Eq. 2.16) for a given conformal transformation.

Thus, conformal transformations lead to transformation media described by isotropic
refractive indices. However, an analytical conformal transformation is not known for ev-
ery desired functionality. In those cases, quasiconformal maps are useful for designing
TO media based on isotropic materials. They constitute a subset of coordinate transfor-
mations, w = f(z, z), that satisfy less requirements than conformal transformations. In
particular, they can depend on z and z (see Appendix A.3 for more details). In contrast
to conformal transformations, quasiconformal transformations map squares in the origi-
nal space to rectangles of constant aspect ratio in the transformed space. Since they are
generated numerically through the minimization of, for instance, the Modified-Liao or
Winslow functionals [226, 227], they are able to treat arbitrarily complex boundaries. A
quasiconformal map is the optimal map of minimum anisotropy for a given domain, a fact
that can be used to design isotropic transformation media. In Ref. [93], a quasiconformal
map for a ground-plane cloak was obtained by minimizing the Modified-Liao functional
with sliding boundary conditions. Applying this idea, several invisibility ground-plane
cloaks operating at optical [89, 95] and microwave [94] frequencies were fabricated out
of isotropic dielectric materials and a non-resonant metallic metamaterial, respectively.

In our work, we have made use of an approach to quasiconformal mapping generation
that does not need of functional minimizations [228, 229] . This method takes advantage
of the fact that the transformation functions, x′(x, y) and y′(x, y), that minimizeWinslow
functional, also solve Laplace’s equation:

∇2x′ = 0; ∇2y′ = 0, (2.17)
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where the Laplacian, taken in the physical space, is acting on the virtual coordinates.
Therefore, solving Laplace’s equation in physical domain subject to sliding boundary
conditions, ~n · ~∇x′i, leads to a quasiconformal map. Once the functions x′(x, y) and
y′(x, y) are obtained, the gradients of the transformation can be computed in order to
construct the inverse Jacobian matrix, Â−1 = ∂xi

′
/∂xi. By inverting it, the Jacobian

matrix needed for the TO procedure is obtained. Next, assuming that the anisotropy
of the quasiconformal mapping is negligible, we can approximate its metric tensor by
a diagonal matrix and define the transformation medium by means of Eq. 2.14. Again,
for problems where the polarization state of the EM wave is well defined an isotropic
refractive index can be defined following Eq. 2.16. In this way, a quasiconformal trans-
formation can be used to design an isotropic TO medium defined by the index profile
n = g1/4.

In the next subsection we present several examples of isotropic implementations of plas-
monic devices. We present an isotropic SPP shifter, an isotropic SPP lens, an isotropic
SPP bend and an isotropic SPP lens. We quantify the quality performance of these
devices and we compare them to their anisotropic counterparts shown in Section 2.2.
Finally, we also consider two different realizations of a SPP ground-plane cloak in 2D
and 3D.

2.3.2 Isotropic implementations of plasmonic devices

Isotropic implementation of an SPP shifter

As a first example of a plasmonic device based on isotropic dielectrics, let us consider
the design of an SPP parallel shifter using a quasiconformal mapping. As in the previous
examples, a TO device will be placed on top of the surface through which the SPP travels.
In order to design an isotropic shifter with the same functionality as the anisotropic
previously considered, we start by defining the geometry shown in Fig. 2.7 (b). The
transformation medium, whose top view is shown in gray, is divided into three regions:
an entrance for the SPP, of width l/2, at the left, the shifting region (at 45◦), of length d,
and an exit region at the right. Then, we solve Laplace’s equations within the gray region
with sliding boundary conditions ~n · ~∇x′ at the lower and upper boundaries and ~n · ~∇y′

at the left and right boundaries. The resulting quasiconformal map is plotted in Fig. 2.7
(c), where the grid corresponds to lines of x′(x, y) = constant and y′(x, y) = constant.
Following the method described above, we obtain an isotropic refractive index profile
that varies between 0 and 3.5 [color map in Fig. 2.7 (c)].
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Figure 2.7: Simulation results of an isotropic SPP parallel shifter. (a) Transmittance through
the shift for SPPs at different wavelengths. The blue line shows the transmission for a trans-
formation medium characterized by anisotropic parameters (same as in Fig. 2.3). The red line
corresponds to a parallel shifter characterized by an isotropic refractive index. In both cases,
the TO parameters are implemented in the dielectric side only. The geometry layout is shown
in the inset panel. (b) Quasiconformal map (grid) and refractive index profile (color map) of
the device. (c) Magnetic field, Hy, of an SPP at 600 nm travelling through the isotropic shifter
after implementing the index shown in panel b.

The transmittance curve in Fig. 2.7 (a) shows the results obtained from 3D simulations
of the isotropic SPP shifter. SPPs at different wavelengths (from 800 to 1500 nm) travel
along a gold-vacuum interface and impinge on the transformation medium placed on top
of the gold surface. As we have previously shown, a transformation medium in the metal
is not needed. The size of the device is the same as for the anisotropic shifter discussed
above. The purple line shows the transmittance through the shifter when the index profile
n(x, y) shown in panel (b) is implemented. The red line shows the transmittance of the
anisotropic shifter (from Fig. 2.3), allowing us to compare the efficiency of both devices.
While the red line takes transmission values above 98%, the blue line lies beneath, around
92%. The are two main reasons for this feature. First, the impedance mismatch at the
interfaces to free space causes losses. Second, the wave fronts of the SPP are distorted
in order to follow the vertical lines of the quasiconformal map shown in panel (c). This
feature can be seen in Fig. 2.7 (d), were an SPP at 600 nm is guided through an isotropic
beam shifter.
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Figure 2.8: Simulation results of an SPP bend characterized by an isotropic refractive index.
(a) Transmittance through the bend for SPPs at different wavelengths comparing the isotropic
and anisotropic bends. The blue line corresponds to the case of a transformation medium
characterized by anisotropic parameters (shown in Fig. 2.5). The red line shows the transmission
of a bend characterized by an isotropic refractive index (top view plotted in the inset panel).
In both cases, the TO parameters are implemented in the dielectric side only. The geometrical
parameters are the same as in Fig. 2.5. (b) Electric field, Ez, of an SPP at 1400 nm travelling
through the isotropic bend. Impedance mismatch occurs at the boundaries of the transformation
medium and reduces the transmittance of the device.

Isotropic implementation of an SPP right-angle bend

A beam bend of the same characteristics as that discussed in Section 2.2 can also be
realized with isotropic materials. By means of a conformal transformation, a more real-
istic optical device that bends the SPP propagation direction by a right-angle can be
designed. The anisotropic parameters 2.9, yielded by the transformation 2.8, are replaced
by an isotropic refractive index if a conformal transformation is made [222]:

n(r) =
2b

πr
. (2.18)

As illustrated in the inset of Fig. 2.8 (a), the transformation medium, characterized by
n(r), is a cylindrical shell, a < r < b, of height hd placed on top of the metal surface.
This refractive index smoothly decreases from 4.46 at r = a to 0.67 at r = b.

We have tested the functionality of the isotropic SPP bend by means of 3D simula-
tions. The curve in Fig. 2.8 (a) compares the transmittance through the SPP bend with
anisotropic parameters (red line) and isotropic index (purple line) over a wavelength
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range between 800 and 1500 nm. In both cases the transmission increases with the wave-
length due to the fact that the metal is leaved untouched and the energy carried by
the plasmonic field contained in the metal decreases with the wavelength. However, the
transmission through the isotropic bend is limited to 96% due to impedance mismatch
to free space. This feature, not present for the anisotropic case, arises when conformal
transformations are used. As shown in Fig. 2.8 (a), the refractive index abruptly changes
from n = 1 to n(r) at the interfaces along the entrance and exit faces of the bend. As a
consequence, the SPP suffers reflections that lower the transmission. Figure 2.8 (b) illus-
trates the performance of the bend for a gaussian SPP at 1400 nm. After impinging on
the device, close to 96% of the SPP is bent in a right angle and leaves the transformation
medium through the exit face to continue its propagation through the metal.

Isotropic implementation of an SPP Lens

In this section we discuss the realization of an SPP lens with isotropic materials. The
geometry and purpose of the device are the same as presented previously (see Section
2.2). An isotropic refractive index is obtained if, instead of the transformation given by
Eq. 2.10, a conformal transformation between a semicircle and a rectangle is performed.
In particular, we will make use of a Schwarz-Christoffel transformation as described in
Ref. [222]. The refractive index profile that results from this transformation smoothly
varies from 0 to 1.31 and is shown in Fig. 2.9 (b). To design the SPP lens a transformation
medium with a rectangular cross-section characterized by the index distribution nTO(x, y)

and height hd is placed on top of a metal film. The device is surrounded by vacuum
(n = 1).

Figure 2.9 shows the results obtained from 3D simulations of SPPs propagating
through the lens. The three transmittance curves in panel (a) compare the function-
ality of SPP lenses characterized by different EM parameters. The red line shows the
best performance as it represents the transmittance through a lens characterized by the
anisotropic and singular parameters given by Eq. 2.11 (see Fig. 2.6). The green and
purple lines correspond to lenses designed by means of a conformal transformation and
therefore are situated at lower transmittance values due to impedance mismatch to free
space. The green line accounts for the transmittance through a lens with diagonal pa-
rameters, ε̂TO and µ̂TO, that are obtained from the conformal transformation according
to Eq. 2.14. Only the third component of the tensors diagonal is different from 1, and it
varies smoothly from 0 to 1.72. The purple line corresponds to the isotropic refractive
index retrieved from the conformal transformation according to Eq. 2.16 and is shown in
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Figure 2.9: Results obtained from 3D simulations on SPPs propagating through a lens. (a)
Transmittance spectra through lenses characterized by different EM parameters. Red line:
anisotropic ε̂TO and µ̂TO (same as in Fig. 2.6). Green line: diagonal ε̂TO and µ̂TO result-
ing from a conformal transformation according to Eq. 2.14. Purple line: isotropic refractive
index resulting from the same conformal transformation. (b) Refractive index profile yield by
the conformal transformation. (c) Top-view of the y-component of the magnetic field. An SPP
travels through a lens characterized by the refractive index shown in b and is focused within a
width of the order of the wavelength.

panel (b). The two cases considered for the conformal transformation (diagonal ε̂TO and
µ̂TO and isotropic n) give close transmittance results in this example, similarly to the
SPP bend results above. Panel (c) shows the field pattern of an SPP travelling trough
the isotropic lens as its wavefronts are focused on the exit face.

SPP ground-plane cloak

The TO-based approach to the design of plasmonic devices can also be applied to mini-
mizing the scattering to the far-field of SPPs on irregular surfaces. Uneven surfaces result
in strong scattering that lead to radiation of the SPP into free-space, as illustrated in
Fig. 2.10 (a), where a SPP travelling along an air-gold interface encounters an obstacle.
Here we model the irregularities of the metal surface as a bump of length l and height
h0, and with a shape given by z(x) = h0 cos2

(
π
l
x
)
. We consider a SPP at a wavelength

of 700 nm, and a bump of length l = 2 µm and height h0 = 200 nm. For these param-
eters, about 15% the plasmonic energy is scattered by the bump. This scattering can
be supressed by means of a ground-plane cloak, whose main difference with the rest of
the TO-based devices that we have considered up to here is the geometry. A ground-
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Figure 2.10: The scattering from a bump on a metal surface can be suppressed by means of a
ground-plane cloak. (a) A SPP at 700 nm is scattered when it encounters a cos2-shaped bump
200 nm high and 2 µm long in an air-gold interface. The SPP propagates in the x direction
and the geometry is invariant in the y direction. (b) Scattering losses are suppressed when an
anisotropic cloak (2 µm × 2 µm) is placed on top of the bump. The grid lines correspond to
the coordinate map of the transfinite transformation used to derive the EM parameters of the
cloak. (c) The bump is cloaked for SPPs by means of an isotropic cloak. The lines show the
quasiconformal coordinate grid, that determine the refractive index profile used in the cloak
and depicted in (d). In (a), (b) and (c) the color map shows the SPP magnetic field profile, Hy.

plane cloak inherently needs to be placed on a metal surface, because it mimics a highly
reflective surface instead of an empty space. Taking advantage of the presence of this
metal-dielectric interface, we apply directly the TO recipe previously derived for a 2D
ground-plane cloak illuminated by a plane wave [93] to the case of SPP-illumination.
Depending on the transformation that we choose, the material parameters of the cloak
can be anisotropic or isotropic. Here we compare both cases.

The design of the anisotropic cloak involves transforming a rectangular region of a
Cartesian space sized l × h into a region of the same shape except that its bottom
boundary follows the shape of the bump. The simplest mapping that can be done between
these two spaces is a transfinite transformation:

x = x′, y = y′, z = z′ + h0

(
1− z′

h

)
cos2

(π
l
x′
)
. (2.19)

The transformed coordinate grid when l = 2 µm and h0 = 200 nm is depicted with gray
lines in Fig. 2.10 (b). When applying the TO procedure, this transformation leads to the

54



2.3. Conformal and quasiconformal mappings for realistic models

following material parameters:

ε̂TO = µ̂TO =
1

∆

 1 0 fxz

0 1 0

fxz 0 fzz,

 (2.20)

where ∆ = ∂z
∂z′

, fxz = ∂z
∂x′

and fzz = f 2
xz + ∆2. When a medium with the prescribed

anisotropic ε̂TO and µ̂TO is placed on top of the bump, a SPP smoothly travels through
it without any scattering. This is confirmed by the 2D simulation illustrated in Fig. 2.10
(b), where the magnetic field, Hy, of a SPP at 700 nm going through the cloak is shown.

On the other hand, the same functionality can be achieved by means of an isotropic
cloak. In order to design the isotropic ground-plane cloak, the transfinite transformation
has to be replaced by a quasiconformal one. In this case, the transformation medium
is sized h′ × l′. The quasiconformal map (shown in panel c) was generated by solving
Laplace’s equation with sliding boundary conditions ~n · ~∇x′ (at the lower and upper
boundaries) and ~n · ~∇y′ (at the left and right boundaries). The effect of a ground-plane
cloak is achieved by setting y′ = 0 at the lower boundary so that the bump is mapped
onto a flat surface. In contrast to the previous transformation, and as can be seen in
panel (c), the new coordinate grid (gray lines) preserves the right-angles. When the TO
procedure is followed, this fact results in an isotropic refractive index n(x, y) for the
cloak illustrated in panel (d). The index profile is smooth, ranging from 0.82 to 1.38,
and it recovers the background value n = 1 at the outer boundaries of the cloak. The
wave fronts of a SPP travelling through the cloak follow the transformed grid while it
smoothly goes through the bump without scattering, as illustrated for λ = 700 nm in
panel (c).

Using the same tools, a ground-plane cloak can also be devised for hiding a 3D bump
on a metal surface. Let us consider the bump shown in Fig. 2.11, which is described
by z = z′ + h0

(
1− z′

h

)
cos2

(
2π
l
x′
)

cos2
(

2π
l
y′
)
. As a proof of principle we present an

anisotropic 3D cloak, whose design involves a transfinite transformation analogous to
the 2D case. The transformation is in this case:

x = x′ , y = y′ , z = z′ + h0

(
1− z′

h

)
cos2

(
2π

l
x′
)

cos2

(
2π

l
y′
)
. (2.21)

According to the TO rules, the prescribed material parameters are the following:

ε̂TO = µ̂TO =
1

∆

 1 0 fxz

0 1 fyz

fxz fyz fzz

 , (2.22)
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Figure 2.11: (a) Power flow distribution (color map) and power flow lines of a 3D ground-plane
cloak placed over a 3D cos2-shaped gold bump of dimensions 1250 nm × 1250 nm × 200 nm.
(c) Power flow for the 3D gold scatterer without the cloak.

where ∆ = ∂z
∂z′

, fxz = ∂z
∂x′

, fyz = ∂z
∂y′

and fzz = f 2
xz + f 2

yz + ∆2. We present in Fig. 2.11
(a) a simulation that confirms the effectiveness of the 3D cloak for a SPP operating at
λ = 600 nm. The color map and the streamlines represent the density and the direction
of the power flow of the SPP, respectively. The SPP is guided around the bump and
continues travelling along the gold-vacuum interface. For comparison, Fig. 2.11 (b) shows
a SPP scattering from the gold bump when the cloak is not present. We see that the
fraction of the SPP that impinges directly into the bump is scattered upwards. As in
the 2D geometry, this radiation into free space is totally suppressed when the cloak is
present.

Proposal for a plasmonic concentrator

Finally, we present here a proposal for the experimental realization of a plasmonic field
concentrator. The purpose of this device is to enhance the EM energy density of incident
SPPs at a given area. The design of the concentrator is based on the implementation of
the refractive index profile, n(r), shown in Fig. 2.12 (a) in a circular region R1 < r < R2

surrounding a dielectric core of index nc. The index profile varies radially following
n(r) = nbR2/r, with nb being the background index, such that the index landscape is
continuous at the outer radius, r = R2. In order to ensure that it is also continuous at
the inner radius, this value has to be chosen as R1 = R2nb/nc. When this index profile
is implemented by means of dielectric materials on top of a metal surface, it acts as a
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Figure 2.12: A plasmonic concentrator is achieved by means of an effective medium. (a) The
index profile (left hand side) smoothly varies from nTiO2 at the center to n = 1 at the outer
edge. This profile is realized by drilling holes of constant radius in a dielectric disk (right hand
side), such that their density distribution reproduces the refractive index landscape. (b) Sample
fabricated by Prof. Quidant’s group at ICFO by focused ion beam milling of a TiO2 layer on
top of a gold surface. (c) Simulation results showing concentration for SPPs at λ = 1.5 µm. (d)
Performance of the effective medium approach. (a,b) Reproduced from Ref. [101].

lens for impinging SPPs, concentrating plasmonic energy in a focus at the inner radius.
In principle, the plasmonic concentrator can be sub-wavelength, the only factor limiting
this fact being fabrication issues.

In order to realize the index profile, n(r), we propose the patterning of a dielectric
material placed on top of the metal surface. This leads to an isotropic metamaterial
that effectively reproduces the index profile. To design the patterning we make use of an
effective medium approach. The schematic in Fig. 2.12 (a) represents a dielectric disk
drilled with holes such that the refractive index profile shown at the left hand side of the
panel is reproduced. For the effective medium we have considered a circular arrangement
of air holes in the dielectric material surrounding a core without holes (index nc). The
effective refractive index is given by:

n = f + (1− f)nc, (2.23)

where f is the filling fraction. Let r0 be the radius of the holes and dr and dθ the radial
and angular separations between holes, respectively. Then, the filling fraction reads as:

f =
πr2

0

rdrdθ
. (2.24)

Following this design, a sample was fabricated by the group of Professor Quidant at
ICFO. Focused ion beam was used to drill holes on a TiO2 layer on top of a gold surface,
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as shown in Fig. 2.12 (c). The size of the disk is R2 = 6 µm and the inner core of constant
index has a radius R1 = 3 µm, while the radius of the air holes is 105 nm. The core region
r < R1 has a refractive index n = 2.35 and holes of constant radius but varying density
collectively behave as an effective medium with a gradually varying refractive index up
to n = 1 at r = R2. Simulation results demonstrating plasmonic concentration of EM
energy at 1.5 µm can be seen in Fig. 2.12 (c) for an ideal device. On the other hand, Fig.
2.12 (d) shows the effect of realizing such a device by means of the effective medium.
As the simulation shows, although the presence of the structured dielectric introduces
scattering losses, plasmonic concentration is still achieved.

2.4 Experimental realization of plasmonic devices

The different examples presented in Sections 2.2 and 2.3 illustrate the power of Trans-
formation Plasmonics to fully control SPP flow and design complex functionalities that
would not be achievable otherwise. However, the experimental implementation of such
control is conditioned by the possibility to match the required material parameters. In
this Section, we briefly review recent experimental advances towards the realization of
complex SPP functionalities (see Ref. [101]). We first discuss the plasmonic broadband
carpet cloak realized in Ref. [99]. Next, we review the experimental realization of the
plasmonic Luneburg lens presented in Ref. [100].

We start by reviewing here a carpet cloak that mimics a Bragg reflector for SPPs
at visible frequencies [99]. With a design similar to the ground-plane cloak for SPPs
presented in Section 2.2 to suppress scattering from an uneven metallic surface, in this
experiment the cloak is placed as shown in Fig. 2.13 (a), such that SPPs are launched
along an air/gold interface towards a curved Bragg reflector covered by the cloak. The
effect of the cloak is then to mimic a flat Bragg reflector. In order to meet experimentally
the index profile needed for the cloak [similar to the one shown in Fig. 2.10 (d)], the cloak
was realized by structuring a flat gold surface with TiO2 protrusions. A curved Bragg
reflector consisting of 15 gold lines (section = 150 nm ×150 nm) periodically separated
by half of the SPP wavelength was also fabricated. A scanning electron microscopy image
of the sample can be seen in Fig. 2.13 (b). The refractive index profile was reproduced by
placing each of the TiO2 pillars at the nodes of a quasi-conformal grid. In the experiment,
SPPs at λ = 800 nm propagating along the gold/air interface were launched onto the
cloak as sketched in 2.13 (b) after excitation through a lithographically structured line
defect. The propagation of the SPP waves was measured by means of leakage radiation
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Figure 2.13: Experimental realization of a plasmonic broadband carpet cloak mimicking a
flat Bragg reflector [99]. (a) Sketch of the cloak, designed by a quasiconformal map. When the
device is placed in front of a curved Bragg mirror, incident SPPs are reflected as if the mirror
was flat. (b) Scanning electron microscopy image of the sample. TiO2 pillars on top of the gold
surface were employed to realize the spatial variation of the isotropic index profile given by the
quasiconformal map shown in (a). The Bragg mirror consists of gold lines fabricated on top of
the gold substrate and separated by half the SPP wavelength. (c) Leakage radiation microscopy
image showing the reflection of SPPs at λ = 800 nm on a bare curved Bragg mirror. (d) The
carpet cloak on the curved Bragg mirror generates SPP plane wave fronts, mimicking the effect
of a flat Bragg mirror. All the panels in this figure have been adapted from Ref. [99]

microscopy. Figure 2.13 (c) presents a leakage radiation image of SPPs at 800 nm im-
pinging on a bare curved mirror: the reflected wave front is curved due to reflection into
different directions of the SPPs depending on their relative angle to the normal of the
mirror. On the other hand, placing the fabricated cloak in front of the mirror results in
a plane wave front: SPPs are reflected as if they were impinging on a flat Bragg reflec-
tor. In addition, a broadband performance of the cloak was demonstrated in this work,
showing an efficient performance for SPPs of wavelengths ranging from 750 nm to 850
nm.

Finally, we present the design of a plasmonic Luneburg lens for SPPs propagating on
a metal surface, demonstrated experimentally together with a plasmonic Eaton lens in
Ref. [100]. A planar Lubeburg lens is a circle of radius R characterized by the following
refractive index:

n(r) =
√

2− (r/R)2, (2.25)

where r is the distance to the center of the lens. This index profile focuses an incident
SPP to a point in the perimeter of the lens on the opposite side of the circle. Following
the methodology introduced in this chapter, in order to desgin a plasmonic Luneburg
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Figure 2.14: A plasmonic Luneburg lens is used to focus an incident SPP. (a) Schematic of a
lens of radius R in top and side views. The transformation medium is a cylinder of radius R
with height larger than the SPP decay length in the dielectric side of the interface. (b) Full-wave
simulation of a lens for a SPP at 800 nm. The radius of the lens is R = 2.5 µm and its height is
3 µm. (c) Refractive index as a function of the distance to the center of the lens, r, for R = 2.5

µm. (d) Relation between the SPP mode index at 800 nm and the height of a PMMA layer
placed on a gold surface. (e) Sketch of a lens that consists of a PMMA disc on the gold surface
and height of the layer as a function of the distance to the center of the lens. (f) 3D simulation
of a PMMA layer shaped according to panel (e) acting as a Luneburg lens for SPPs at 800
nm. Both (b) and (f) show the SPP electric field, Ez. (g) In Ref. [100], the lens was realized
by 3D lithography of the PMMA on top of the gold layer and the SPP field was measured by
leakage radiation microscopy (h), revealing SPP focusing at λ = 800 nm. (g,h) Reprinted from
Ref. [100].
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lens, let us assume a metamaterial that reproduces the refractive index n(r) given above.
As sketched in Fig. 2.14 (a), the metamaterial is a cylinder of radius R placed on top of
a gold surface with a height that needs to be larger than the SPP vacuum decay length,
similar to the previous examples. Panel (b) demonstrates a plasmonic Luneburg lens of
radius R = 2.5 µm operating at λ = 800 nm when the spatial variation of the index
n(r) [shown in (c)] is implemented in the metamaterial region. The SPP electric field
and power flow lines obtained from 3D simulations show the focusing of SPPs travelling
along an air-gold interface at the perimeter of the lens.

This plasmonic element was experimentally demonstrated in Ref. [100] by means of a
strategy that involves the effective mode index of SPPs. Instead of spatially engineering
the optical properties of the dielectric, the height of a thin dielectric layer on top of the
metal is varied. The index profile 2.25 is reproduced by the effective mode index of the
SPP. The mode index for an air/PMMA/gold structure for SPPs at 800 nm is plotted
in Fig. 2.14 (d) as a function of the PMMA height, h. In a dielectric/dielectric/metal
structure with electric permittivities ε1, ε2 and ε3, respectively, SPPs at frequency ω =

ck0 propagate with an effective mode index neff = k/k0 determined by the parallel wave-
vector k. The SPP dispersion relation is given by:

tanh(k2ε2h) =
ε3kz,1kz,2 + ε1kz,2kz,3
ε1ε3k2

z,2/ε2 + ε2kz,1kz,3
, (2.26)

where
kz,i =

√
k2 − εik2

0, (i = 1, 2, 3). (2.27)

In the situation under study, ε1 = 1, ε2 = 2.19 and ε3 = εAu. For PMMA thicknesses
up to 250 nm, we see in panel (b) that the index varies between 1 and 1.5, a range
that is enough to reproduce the index required by the Luneburg lens. The plasmonic
device, sketched in panel (e), is designed by calculating the PMMA’s height at which
the SPP effective mode index satisfies Eq. 2.25. This results in a variation of the PMMA
height between 0 at the perimeter of the lens and 130 nm at the center. A numerical
simulation of a SPP propagating through this lens can be seen in fig. 2.14 (f). A PMMA
disk of 2.5 µm radius with a height modulated according to panel (e) was placed on
top of a gold surface. The SPP field is smoothly focused at the perimeter of the lens in
a subwavelength spot. This design of the plasmonic lens potentially allows for a broad
band performance, as it only involves dielectric materials with a very low dispersion.
In Ref. [100], the lens was realized by gradually varying the height of a PMMA disk
on top of a thin gold film [see Fig. 2.14 (g)]. The fabricated structure was optically
tested by combining fluorescence imaging and leakage radiation microscopy, successfully
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demonstrating SPP focusing in the near-IR range of the spectrum [see panel (h)].

2.5 Conclusions

In conclusion, we have demonstrated that the application of the concept of TO to Plas-
monics brings into the field unprecedented control over the flow of SPPs. Based on this
approach, we have presented the necessary tools to design feasible plasmonic devices.
When considering SPPs propagating on metal-dielectric interfaces, a direct application
of TO would imply a manipulation of the optical properties of both the metal and di-
electric materials. However, we have shown that modifying only the dielectric side leads
to almost perfect functionalities because most of the SPP energy is carried within the
dielectric medium at optical frequencies. Having proved this feature within a general
framework in which the EM parameters are anisotropic, we have then presented plas-
monic devices that can be made out of isotropic dielectric materials. Regarding practical
implementations, this fact yields low loss and broadband performances. Making use of
conformal and quasiconformal transformations, control over SPPs flow can be achieved
by placing a structured dielectric layer on top of the metal surface. In particular, we have
discussed different ways to reproduce the refractive index landscape in an experimental
realization of plasmonic TO-based devices: either dielectric pillars fabricated on a metal
surface or air holes drilled in a dielectric load, or by adjusting the effective refractive
index of the SPPs through controlling the height of a dielectric layer. However, a full
exploitation of Transformation Plasmonics at optical frequencies remains hindered by
current limitations in nanofabrication. We expect that the flexibility of our methodol-
ogy, together with an improvement in fabrication techniques, will ensure many different
theoretical proposals and experimental realizations of plasmonic devices based on TO.
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Chapter 3

Magnetic localized surface plasmons

3.1 Introduction

The existence of SPs propagating along metal/dielectric interfaces, SPPs, or localized
at metal particles, LSPs, is limited to the high frequency range of the spectrum. At low
frequencies, the surface EM waves supported by metal/dielectric interfaces are poorly
confined and extend mostly in the dielectric. However, as we reviewed in the Introduc-
tion Chapter (see Subsection 1.3), “spoof” plasmons are able to transfer the properties of
SPPs to low frequencies [117, 118]. These SPPs are geometrically-induced propagating
surface modes that arise when a highly conducting surface is periodically corrugated on
a subwavelength scale. Spoof SPPs were developed under the assumption of the metal
behaving as a PEC. This approximation takes the metal as a perfectly conducting mate-
rial where the EM field can not penetrate. Thus, the PEC approximation is appropriate
for low frequencies where the conductivity of metals is high. An important aspect of this
approximation is that it implies the scalability of the structures for different frequency
regimes.

Spoof SPPs have been studied, theoretically as well as experimentally, in 2D surfaces
[117, 118, 120–125] and in a variety of 1D waveguiding schemes [126–135]. Moreover,
the localized version of this concept, the spoof-LSPs, have also been shown to appear
for textured PEC particles of closed surfaces [136]. In this work, infinitely long subwave-
length PEC cylinders corrugated with a periodic array of grooves filled with a dielectric
material were studied. Such structures were shown to feature an electrical dipole re-
sponse, much in the same way as the LSPs supported by metal particles in the optical
regime. In this Chapter we explore the emergence of subwavelength magnetic resonances
in these textured PEC particles, which are the low-frequency analogues of the subwave-
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length nanoparticles studied at optical frequencies and therefore open up the possibility
of magnetic LSPs.

This Chapter is organized as follows. First, in Section 3.2, we consider metal cylinders
and disks corrugated with subwavelength grooves filled with a dielectric material. We
study the EM response of the 2D cylinders by means of numerical simulations, showing
that they support magnetic as well as electric dipole resonances, and that these are
quasi-degenerate. An analytical model, developed in Section 3.3, allows us to reproduce
the numerical findings and also to gain physical insight on the emergence of such EM
resonances. Next, in Section 3.4 we consider corrugated metallo-dielectric disks, where
the degeneracy between the electrical and magnetic modes is lifted and the magnetic
resonance generates a distinct feature in the spectrum. We also develop an anisotropic
metamaterial model to effectively reproduce the EM response of these structures, finding
fundamental differences with respect to metal and dielectric subwavelength particles. In
Section 3.5 we show that, interestingly, a magnetic resonance can also be obtained for
purely metallic structures corrugated with very long grooves. We present two structures
that show similar responses, but where the depth of the grooves has been increased in
a different way: structures corrugated with meander-shaped and spiral-shaped grooves.
Finally, in Section 3.6 we present an experimental demonstration of the magnetic LSPs,
based on an ultra-thin spiral structure working in the microwave regime.

3.2 Metallo-dielectric corrugated cylinders

In this Section we study the EM response of metal cylinders corrugated with dielectric-
filled subwavelength grooves (of radial and parallel walls). By inspecting the scattering
cross section (SCS) and numerical eigenmodes of such structures, we show that two
different modes contribute to the lowest frequency resonance appearing in the spectra.
These two modes are quasi-degenerate and, while one of them has an electrical dipole
character, the second one is a magnetic dipole.

We start by considering a basic 2D geometry that supports spoof-LSPs. It consists of
an infinitely long metallic cylinder of radius R corrugated with a periodic array (period
d = 2πR/N) of N grooves, of depth h = R − r and width a, see the sketch in Fig. 3.1
(a). The number of grooves and the radius of the cylinder are chosen to yield d � λ0,
with λ0 being the wavelength of the incident EM wave. The grooves are filled with a
dielectric material of refractive index ng. In this way, the resonant wavelengths, λres,
can be made much larger than the size of the object and we can operate in the very
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deep subwavelength regime, R� λres [136]. Here, we take the metal structures as PECs,
which allows for an analytical treatment and moreover is a very good approximation
at sufficiently low frequency (see Appendix B for more details). We study two different
cases: grooves of parallel walls [see the inset of Fig. 3.1 (a)] and radial grooves [see the
inset of Fig. 3.2 (a)]. Both cases display very similar EM resonances, as we detail below,
and both structures allow for an analytical treatment for their EM resonances, as we
will show in the next Section.

We analyze the EM response of corrugated PEC structures by means of the SCS, which
we numerically compute making use of FEM simulations [219]. In order to calculate the
SCS we consider (here and throughout the Chapter) an incoming TM-polarized plane
wave (magnetic field ~H pointing along the z direction) propagating along the x axis and
with wavenumber k0 = ω/c [see Fig. 3.1 (a)]. Under this illumination, we compute the
power scattered by the structure, Psc, as a surface integral,

Psc =

∫
δV

〈S〉 · n da , (3.1)

where δV is a surface enclosing the structure. In addition, S stands for the Poynting
vector, whose mean value reads as

〈S〉 =
1

2
Re {E×H∗} . (3.2)

The total SCS is obtained as Psc/P0, with P0 = cε0|E|2/2 being the incident power.
Finally, we normalize the SCS by the geometrical cross section of the structure, σgeom,
such that the normalized SCS, σ, reads as

σ =
Psc/P0

σgeom
. (3.3)

Notice that for the 2D structures considered in this Section, σgeom = 2R. In addition,
and since we consider PECs, the resonant wavelengths scale with R, which we take as
unit length. Hence, throughout the Chapter the frequency will be expressed in terms of
the dimensionless quantity k0R.

The SCS spectrum for a representative textured cylinder with grooves of parallel
walls and with parameters r = 0.4R, N = 40 and a/d = 0.3 is shown in Fig. 3.1 (a).
This spectrum closely resembles what is observed for very subwavelength metal particles
at optical frequencies. This analogy suggests that the first resonance peak is due to
the electrical dipole resonance while the high frequency narrow peak is associated with
the electrical quadrupole (see inset panel). On the other hand, a calculation of the
eigenmodes of the structure reveals that the first resonance peak has contributions of
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Figure 3.1: Spoof-LSPs supported by a cylinder corrugated with grooves of parallel walls. (a)
SCS for a structure with parameters: r = 0.4R, N = 40, a/d = 0.3 and grooves filled with a
material of refractive index ng = 8. The low energy peak (k0R = 0.33) reveals two resonances:
the electrical and magnetic dipoles, whose magnetic field amplitude (Hz) are plotted in panels
(c) and (d), respectively. The solid (dashed) vertical lines show the position of the electric
(magnetic) resonance according to the analytical model.

two different EM modes with very similar eigenfrequencies. One of them has an electrical
dipole character [see panel (b)] whereas the field pattern associated with the other one is
independent of the azimuthal angle, as corresponds to a magnetic dipole pointing along
the z-axis [see panel (c)].

Figure 3.2 considers a textured cylinder with the same parameters as that considered in
Fig. 3.1 but with radial grooves. Panel (a) displays the SCS while panels (b) and (c) show
the EM field patterns of the two eigenmodes that, similarly to the case discussed in Fig.
3.1, contribute to the first resonance peak. By comparing this figure to the case of grooves
of parallel walls, it is clear that the EM response of both structures is very similar. We
conclude that the only effect of the shape of the grooves is a small shift in the resonance
frequencies: while for rectangular grooves the resonance is at k0R ∼ 0.33, for radial
grooves k0R ∼ 0.39. Interestingly, we can see from these results that subwavelength PEC
structures textured with periodic grooves display two degenerate resonances, an electrical
dipole and a magnetic dipole. This behavior is at odds to what happens in standard
plasmonics. As we described in Section 1.1, the optical response of subwavelength metal
particles is dominated by the electrical dipole resonance. Indeed, for these particles the
magnetic dipole resonance is extremely weak and does not show up in the SCS. This
fact can be understood by comparing the electric and magnetic polarizabilities provided
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Figure 3.2: Spoof-LSPs supported by a cylinder corrugated with radial grooves filled with a
material of refractive index ng = 8. (a) SCS spectrum. (b,c) Field pattern (Hz) at the electric
and magnetic resonances. The structure has the same parameters as in Fig. 3.1. The solid
(dashed) vertical lines show the position of the electric (magnetic) resonance according to the
analytical model.

by Mie theory in the quasistatic limit [230],

αe = 4πR3 ε(ω)− 1

ε(ω) + 2
, (3.4)

αm = 4πR3 (k0R)2

30
[ε(ω)− 1] , (3.5)

where αe,m stand for the electric and magnetic polarizabilities, respectively, R is the
radius of the particle, assumed to be in free space, and ε(ω) its electric permittivity.
From the above expressions, we see that αm/αe ∼ (k0R)2, and hence for subwavelength
particles the magnetic response is much lower than the electric one.

3.3 Analytical results: Modal Expansion

Here we detail an analytical model that reproduces the EM response of the 2D corrugated
cylinders discussed in the previous Section. In order to deal with the EM response of
PEC cylinders corrugated with grooves, we make use of the Modal Expansion (ME)
technique. The ME is based on the matching of the EM modes outside the cylinder
(radial coordinate ρ > R) and inside the grooves (r < ρ < R) by means of the appropriate
boundary conditions at ρ = R. In the following we describe the ME technique, first for
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3. Magnetic localized surface plasmons

the structure with radial grooves, and then for the structure with grooves of parallel
walls. Next, we derive an analytical expression for the SCS for the case of radial grooves.

Let us first consider a PEC cylinder textured with subwavelength radial grooves. In
order to apply the ME technique to the EM response of this system, we take the unit
cell shown in Fig. 3.3 (a). Assuming a subwavelength particle (k0R � 1, k0d � 1), the
field inside the grooves can be approximated by the fundamental waveguide mode as

HI
z = AH

(1)
0 (k0ngρ) +BH

(2)
0 (k0ngρ), (3.6)

where A and B are constants and H(1),(2)
n = Jn ±Nn is the Hankel function of the first

(or second) kind and order n, with Jn and Nn being the Bessel functions of first and
second kind, respectively. In the outer region the field can be written as

HII
z =

∑
n

AnH
(1)
n (k0ρ)einφ. (3.7)

Accordingly, Eφ can be expressed from Hz in each region using Eφ = −i/(ωεε0)dHz/dρ.
The resonance condition for each mode is obtained by applying the boundary conditions
at ρ = R. This procedure yields the following transcendental equation:

S2
n

H
(1)
n (k0R)

H
(1)′
n (k0R)

f

g
= −ng , (3.8)

where f = J1(k0ngR)N1(k0ngr)− J1(k0ngr)N1(k0ngR) and g = J0(k0ngR)N1(k0ngr)−
J1(k0ngr)N0(k0ngR). In addition, H(1)′

n (k0R) ≡ dH
(1)
n (k0R)
d (k0R)

, and

Sn =

√
a

d
sinc

(na
2R

)
. (3.9)

The quantity Sn contains all the information about the unit cell, and, for subwavelength
texturing (a � R), its expression reduces to Sn ≈

√
a/d. The solution of Eq. 3.8 for a

given n yields the complex resonance frequency of the mode of order n. Physically, the
picture that emerges from our modelling is that of surface EM modes running around
the cylinder surface, with each resonance appearing when an integer number of modal
wavelengths fits into the perimeter. In the subwavelength limit, Eq. 3.8 predicts that the
mode for n = 0 (i.e., azimuthally-independent) is very close in frequencies to the mode
for n = 1, but with broader linewidth. The resonance frequencies of these two modes for
the textured PEC cylinder considered in Fig. 3.2 are marked as vertical lines in panel (a)
of that figure. As shown in the figure, the analytical result is in a very good agreement
with the numerical SCS and eigenmode calculations.

68



3.3. Analytical results: Modal Expansion

(a)

N
or

m
al

iz
ed

 S
C

S

16

12

10

6

4

0

k0R
0.380 0.384 0.388 0.392 0.396 0.400

14

8

2

(b)

σ
0

σ
1

σ
2

Numerical
Analytical

(c)

x

y

r R

ng

a d

Λ=2πR

1 2 3 4 N-1 N

x

y
y=R

y=0

h

d a

Figure 3.3: Modal Expansion technique and analytical SCS. (a,b) Unit cells used for the ME
technique for the case of a cylinder corrugated with radial grooves (a) and with grooves of
parallel walls (b). (c) SCS for a subwavelength PEC cylinder corrugated with radial grooves
(r = 0.4R, N = 40, a = 0.3d and ng = 8). The solid line shows the numerically-computed
SCS [same as in Fig. 3.2 (a)] while the red dashed line corresponds to the analytical SCS. The
contributions of the n = 0, n = 1 and n = 2 modes to the analytical SCS are also shown.

Let us now apply the ME technique to the case of a PEC cylinder textured with
subwavelength grooves of parallel walls. Given the rectangular shape of the grooves, in
this case we proceed as follows in order to write the field within them. First, we consider
an array of N grooves with parallel walls on a flat surface, as shown in Fig. 3.3 (b). Next,
we apply Born von Karman boundary conditions for a super-cell of length Λ = 2πR to
take account of the circular geometry. This procedure leads to the following field inside
the grooves:

HI
z = Aeik0ngy′

Λ
2π +Be−ik0ngy′

Λ
2π (3.10)

where A and B are constants, x′ = 2πx/Λ and y′ = 2πy/Λ are the renormalized coordi-
nates, and we have taken only the fundamental waveguide mode based on the assumption
that the texturing is subwavelength. On the other hand, in the outer region the fields
can be expanded in terms of the Hankel function of the first kind, H(1)

n :

HII
z =

∞∑
−∞

CnH
(1)
n

(
k0y

′ Λ

2π

)
einx

′
, (3.11)

the set Cn being constants. By applying the boundary conditions for each mode n we
arrive to the following transcendental equation for the complex resonance frequency of
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the EM mode with azimuthal number n:

S2
n

H
(1)
n (k0R)

H
(1)′
n (k0R)

tan (k0ngh) = −ng, (3.12)

where Sn is now given by

Sn =

√
a

d
sinc

(nπa
Nd

)
. (3.13)

As in the case of radial grooves, the resonance condition given by Eq. 3.12 is consistent
with a picture in which an EM mode runs around the cylinder surface and resonances
emerge when an integer number of modal wavelengths fit into the perimeter. The tangent
function in Eq. 3.12 accounts for the fact that a guided mode is traveling down the groove
(of depth h and refractive index ng), and bouncing at its bottom. Similarly to Eq. 3.8,
Eq. 3.12 also predicts that the modes for n = 0 and n = 1 are very close in frequencies
in the subwavelength limit, as shown by the vertical lines in Fig. 3.1 (a). Again, we
can see that, despite the few ingredients it includes, our simple modelling shows a very
good agreement with the numerical SCS. Furthermore, our modelling illustrates the
geometrical origin of the modes and justifies their naming: magnetic dipole LSP for the
n = 0 mode and electrical dipole LSP for the n = 1 mode.

Based on the analytical models for both radial and rectangular grooves, we can predict
the effect of the geometrical parameters of the groove, a/d and h. As suggested by the
modelling, LSP modes arise as geometrically-induced surface EM modes supported by
the periodic array of grooves. From Eqs. 3.8 and 3.12, we can state that the resonance
wavelength is mainly controlled by the depth of the grooves and the refractive index of
the dielectric filling, following λ ∼ 4ngh. On the other hand, the effect of the width of
the grooves, a/d, is to produce a small shift in the resonance wavelength. In particular,
and as we have also checked with numerical simulations, smaller values of a/d give larger
resonance frequencies.

Our analytical model can be also used to calculate the SCS of corrugated particles as
well as the relative contributions of each mode n to it. Here, we focus our interest on
the geometry with radial grooves, as the circular symmetry of this structure allows us
to write an analytical expression for the SCS based on the ME of the fields. Assuming
that the field within the grooves is given by only one waveguide mode and following Ref.
[136], we can write the normalized SCS as

σ =
2

k0R

∞∑
n=−∞

|an|2 , (3.14)
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where the coefficient an for each mode n is given by:

an = −in
a
d
Jn(k0R)f − ngJ ′n(k0R)g

a
d
H

(1)
n (k0R)f − ngH(1)′

n (k0R)g
. (3.15)

The SCS given by the above equations and for a subwavelength cylinder of the same
parameters as that shown in Fig. 3.2 is plotted in Fig. 3.3 together with the numerically
computed SCS: the two curves show a very good agreement. Moreover, the analytical
expression for the SCS allows us to separate the contribution of each mode, which can
be written as:

σ0 =
2

k0R
|a0|2 , σn = 2

2

k0R
|an|2 (n 6= 0) (3.16)

In the SCS plot we present the contributions of the n = 0, n = 1 and n = 2 modes
(σ0, σ1 and σ2, respectively). It is clear from this figure that the main contributions
to the SCS of 2D subwavelength cylinders come from the two lower order modes. The
magnetic and electric dipoles (n = 0 and n = 1) are very close in frequencies with the
magnetic resonance being broader, and both of them contribute to the low energy peak.
Thus, the analytical model confirms the findings obtained in the previous Section from
the numerical results. Notice that equivalent results are to be expected for the case of
rectangular grooves.

3.4 Metallo-dielectric corrugated disks

Here we study the 3D counterpart of the corrugated PEC cylinders studied in the pre-
vious Sections. Going from the infinitely long textured cylinder to a 3D corrugated disk
of finite thickness L has a fundamental consequence. Not only do the resonances shift
when the particle’s size is reduced, as usual in particle plasmonics, but also the magnetic
and electric LSP split in such a way that the former shifts to higher frequencies than
the latter. In the following we first discuss the SCS obtained for PEC disks corrugated
with dielectric-filled grooves of parallel walls. Then, we compare the EM resonances sup-
ported by these structures with the electric and magnetic dipole modes displayed by
subwalength dielectric particles. We focus on the different frequency ordering of the res-
onances and give a detailed explanation for this fact. Finally, we present a metamaterial
interpretation for the corrugated PEC structures.

The SCSs for two disks of different L are shown in Fig. 3.4 (a). The disks are corru-
gated with grooves of parallel walls filled with a dielectric material and with the same
parameters considered in Fig. 3.1. As in the 2D case, in the 3D FEM simulations we
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Figure 3.4: Magnetic LSPs in subwavelength PEC disks corrugated with grooves of parallel
walls and filled with a dielectric. Structures of finite thickness and with the same r, N , a/d and
ng as in Fig. 3.1 are considered. (a) SCS for corrugated disks of thickness L = R (solid red line)
and L = R/2 (dashed blue line). (b,c) Near field distribution of the electric (b) and magnetic
(c) dipole resonances for a disk of thickness L = R/2. The arrows show the electric field lines
and the color map shows the norm of the electric field in panel (b) and the magnetic field lines
and magnetic field, respectively, in (c).

have considered an incident wave polarized with the magnetic field pointing in the z
direction and propagating along the x axis, see Fig. 3.4. The SCS is calculated following
Eq. 3.3, where the geometrical normalization factor is in this case σgeom = 2RL. Two
distinct peaks can be seen in the SCS plot for disks of finite thickness (L = R in solid
red and L = R/2 in dashed blue). By looking at the field patterns at these resonances,
displayed in panels (b) and (c) for L = R/2 case, it is clear that the peak at a low
frequency corresponds to the electric LSP while the one at a higher frequency is the
magnetic LSP. This picture is reinforced by analyzing the vectorial plots also displayed
in those panels [E-field lines for the low frequency peak, (b), and H-field lines for the high
frequency peak, (c)]. In the first case (b), the arrows go from one end of the structure to
the other, as corresponds to an electrical dipole, whereas in panel (c) the arrows show
how the magnetic field is circulating around the disk, as in a magnetic dipole. Hence,
while subwavelength corrugated infinitely long cylinders present a magnetic LSP that is
very close in frequencies to the electric LSP, finite corrugated disks support a magnetic
LSP at a different frequency than the electric LSP.

It is known that purely dielectric particles of subwavelength sizes and large refractive
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Figure 3.5: Electric and magnetic dipole resonances in subwavelength dielectric particles. The
plot shows the SCS for: (i) a corrugated disk of L = R and with the same parameters as in Fig.
3.4 (solid red), (ii) a dielectric disk of the same size and ng = 8 (dashed blue), and (iii) a PEC
core of radius r with a dielectric shell of radius R and ng = 8 (short dashes, green).

index also display magnetic and electric dipole modes [231, 232]. It is therefore relevant
to compare the EM modes supported by corrugated metal cylinders with those emerging
in subwavelength dielectric particles in the same frequency range. Figure 3.5 compares
the calculated SCS for three different structures: (i) a PEC disk corrugated with grooves
filled with a dielectric material of index ng, as in Fig. 3.4, (ii) a dielectric disk of radius R
and refractive index given by ng, and (iii) a dielectric shell of width h surrounding a PEC
core of radius r. As opposed to the modes for the corrugated PEC disk, for dielectric
particles the magnetic dipole resonance lies at lower energies than the electric dipole
resonance, as well as for the core-shell structure. The physical origin of this opposite
frequency ordering for metallic and dielectric disks is related to the dissimilar shapes
of the corresponding electric field line patterns (see Section 3.8 for more details). This
distinct behavior implies that the corrugated PEC structure cannot be interpreted as
an effective isotropic dielectric medium. Rather than that, in the effective medium limit,
λ� R, the region with grooves can be mapped into a metamaterial with both anisotropic
permittivity and permeability tensors.

In the following we give a detailed account of the anisotropic metamaterial equivalence
for corrugated metal structures. Since the PEC particles we are concerned with in this
Chapter are corrugated at a subwavelength scale (d� λ0), the region with grooves can
be interpreted as an effective medium layer. Let us consider once again the case of radial
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Figure 3.6: Metamaterial approximation for corrugated PEC structures. In the effective
medium approximation corrugated PEC particles behave as an inhomogeneous and anisotropic
layer of thickness R − r wrapped around a PEC inner core. (a) and (b) depict the geometry
of the metamaterial models in 2D and 3D, respectively. (c) SCS for corrugated PEC cylinders
with radial grooves (r = 0.4R, N = 40, a = 0.8d and ng = 8) and disks (same parameters,
thickness L = R) together with the SCS in the effective medium approximation for both cases.

grooves, which as we showed in Sections 3.2 and 3.3, features the same EM resonances
as the case of rectangular grooves considered in this Section. Taking advantage of the
circular symmetry displayed by PEC particles corrugated with radial grooves, we obtain
the EM tensors of the effective medium under TM incidence by averaging 1/ε in the
azimuthal direction and by considering that the mode propagates with velocity c/ng in
the radial and vertical directions. In cylindrical coordinates they read:

εr =∞, εφ = n2
gd/a, εz =∞, (3.17)

µr = a/d, µφ = 1, µz = a/d. (3.18)

These permittivity and permeability tensors, ε̂ and µ̂, represent a metamaterial with
anisotropic and inhomogeneous EM properties. Note that an equivalent expression could
be derived to map the response of PEC particles corrugated with rectangular grooves.

We have tested the validity of this approach for infinitely long cylinders and for disks
of finite thickness by means of numerical simulations. The results are illustrated in Fig.
3.6. The geometries under consideration are depicted in panels (a) and (b): first, in
the 2D case it consists of a PEC core of radius r surrounded by a metamaterial shell
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3.5. Metallic corrugated cylinders and disks

of width R − r (a); second, in the 3D case we deal with a shell of width R − r and
thickness L surrounding the PEC core (b). The plot in panel (c) shows the computed
SCS. In the 2D case, the plot shows the SCS for the same subwavelength corrugated
cylinder considered in Fig. 3.2 (black solid line) together with the SCS obtained in
the metamaterial approximation (red dashed line). We can observe that the two lines
virtually coincide. Regarding the effective medium approximation for the 3D corrugated
disks of thickness L, we have assumed that the 3D permittivity and permeability tensors
can be approximated by the 2D ones (Eqs. 3.17 and 3.18) and we have implemented
them in a shell of width R− r and thickness L. In the figure, the SCS for the corrugated
PEC particle is shown as a blue solid line, while the effective medium approximation
corresponds to the dashed green line. In both cases the low energy peak corresponds to
the electric LSP while the high energy peak is the magnetic LSP (similar to the results
for rectangular grooves presented in Fig. 3.4). The agreement between the two lines
demonstrates the fact that the EM response of subwavelength corrugated PEC particles
can be understood as that of an anisotropic and inhomogeneous layer coating a PEC
core rather than as a isotropic dielectric shell surrounding a PEC particle.

3.5 Metallic corrugated cylinders and disks

In the previous Sections we showed that PEC structures corrugated with subwavelength
grooves filled with a dielectric material support magnetic spoof-LSPs. Although these
magnetic LSP modes (and those supported by dielectric particles) are very promising
in order to create dipolar magnetic resonances, they rely on the inclusion of a dielectric
material with a very high ng, which could limit their feasible implementation. Build-
ing up magnetic LSP modes supported by purely metallic structures would be more
convenient from the fabrication point of view. Our analytical model (see Section 3.3),
gives a clue on how to proceed. Equation 3.12, which applies to cylinders corrugated
with rectangular grooves, predicts that, in the subwavelength limit, the positions of the
complex resonance frequencies are mainly controlled by the product ng · h. Therefore,
an interesting design is to replace the grooves with h ≤ R and filled with a dielectric
material by very long empty grooves that posses an effective length much larger than
R. In order to achieve a depth h > R, the grooves of parallel walls need to be bended
and warped within the particle’s volume. Note that purely metallic structures displaying
magnetic resonances have been explored before both in the microwave and metamaterials
areas of research. Spiral structures of varied geometries have been traditionally used as
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Figure 3.7: Magnetic LSPs in PEC subwavelength structures without dielectric filling. (a) The
plot shows the SCS for an infinite cylinder (black line) and disks of thicknesses L = R (red
line) and L = R/2 (blue line), corrugated with four meanders and with parameters: N = 40,
a = 0.3d, ng = 1 and effective depth hm ≈ 6R. (b,c) Field pattern (Hz amplitude) for the
2D case at the dominant peak in the SCS, k0R = 0.268, showing the electric dipole (b) and
magnetic dipole modes (c), respectively.

frequency-independent antennas or for polarization control at low frequencies [233–235].
More recently, spiral-based metamaterials like Swiss-rolls [72] or one-spiral resonators
[236, 237] have been introduced in order to improve the magnetic response of split-ring
resonators [72].

Here we introduce two novel structures that exploit the basic idea of using very long
grooves: PEC cylinders or disks corrugated with meanders and with spiral grooves. In
principle, it is not clear whether the hypothesis that bent grooves behave like straight
larger ones is valid, due to possible internal reflections at the bends. However, our nu-
merical results confirm the validity of this approach. In Fig. 3.7 we present detailed
results on the LSP modes in PEC structures corrugated with meanders. The geometry
we are considering is sketched as an inset: a cylinder of radius R is textured with four
meander-shaped grooves of effective depth hm ≈ N(R − r)/4. The computed SCS for
such a structure is plotted as a black line for the 2D case. Similarly to the already dis-
cussed PEC cylinder with filled grooves, the SCS shows a dominant peak that reveals
electrical dipole and magnetic dipole field patterns, as shown in panels (b) and (c). A
rough estimation based on Eq. 3.12 (where h is substituted by hm) predicts spectral
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Figure 3.8: Deeply subwavelength magnetic LSP in a PEC subwavelength structure without
dielectric filling. The plot shows the SCS for an infinite cylinder corrugated with just one
meander and with the same parameters as considered in Fig. 3.7.

locations of these two dipolar modes at k0R = πR/(2hm) ≈ 0.262, very close to the
numerical value, 0.268. Moreover, 3D structures corrugated with meanders also behave
similar to PEC disks corrugated with filled grooves. In particular, the SCS for disks with
meanders (L = R in red and L = R/2 in blue), shows a shift in the resonant modes,
with the magnetic LSP spectrally located at higher frequencies than the electrical LSP.
In addition, our design allows us to create EM modes whose resonant wavelengths can
be made much larger than the size of the object. This is illustrated Figure 3.8, where
the normalized SCS of an infinite cylinder corrugated with only one very long meander
displays a resonance at a wavelength that is around 100 times larger than the radius.

A different way of achieving grooves of very long depth is based on a spiral geometry.
As the meander structure, it mimics the EM response of a corrugated cylinder with
shallow grooves and filled with a dielectric. The structure consists of a PEC cylinder
of radius R drilled with four spiral-shaped grooves that are wrapped around a small
PEC cylinder of radius r [see the geometry sketch in Fig. 3.9 (a)]. Each spiral groove
has width a and depth h = 5R, and two neighbouring arms are separated by a distance
d. The plot in panel (a) presents the computed SCS for 2D cylinders (black line), and
3D disks of thicknesses L = R (red line) and L = R/2 (blue line). As in the previously
discussed cases, the dominant peak in the 2D SCS shows two quasi-degenerate electric
and a magnetic LSPs (Hz for these modes is depicted in panels b and c). The 3D cases
present a shift of the resonances that takes the magnetic LSP mode to higher frequencies
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Figure 3.9: Particles corrugated with spiral-shaped grooves. (a) The plot shows the SCS for
the 2D case (black line) and disks of thicknesses L = R (red line) and L = R/2 (blue line),
with parameters: d = 0.159R, a = 0.33d, r = 0.063R, hm = 5R and ng = 1. All the parameters
are shown in the geometry sketch. (b,c) Field pattern for the two quasi-degenerate modes at
k0R = 0.3245 for an infinitely long spiral structure showing the electric and magnetic dipoles,
respectively. (d,e) Near-field distributions of a 3D PEC disk corrugated with spiral grooves at
the electric LSP resonant frequency (k0R = 0.32) on two plane cuts. The magnetic field, Hz is
plotted in the x− y plane at z = L/2 (d) and the electric field, Ez, is plotted at z = 1.25L (e).
(f,g) The same as panels (d,e) but for the magnetic LSP (k0R = 0.32): Hz at z = L/2 (f) and
Ez at z = 1.25L (g). The thickness of the disk in panels (d-g) is L = R/2.

than the electric LSP. Plots of the near-field distribution at both LSP modes for a 3D
disk corrugated with spiral-shaped grooves are also presented in the figure. Panels (d)
and (f) show the z component of the magnetic field, Hz, at a plane cut in the middle
of the disk (z = L/2) for the electric (d) and magnetic (f) LSPs. For both resonances,
the near field resembles that of the 2D case [see panels (b) and (c)], and the electric-
dipole and magnetic-dipole characters are clear. These characters are still clear for both
resonances when the electric field is plotted on top of the disk, in a plane at a distance
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3.5. Metallic corrugated cylinders and disks

0.25R from its the upper face. The pattern of Ez at z = 1.25L is shown for the electric
LSP and the magnetic LSP in panels (e) and (g), respectively. Finally, note that the
spiral structure presented in Fig. 3.9 is just a particular case of the general idea of the
emergence of magnetic spoof-LSPs in purely metallic structures corrugated with very
long grooves.

With the results presented in this Section, we have demonstrated that our hypothesis
behind the design of the meanders and spirals geometries is correct and magnetic LSP
modes can be supported by purely metallic structures. Additionally, the origin of these
EM resonances is purely geometrical and, hence, our design is not limited by material
properties. Indeed, and as we show in the following, spoof LSP modes are not limited to
PEC structures and hence very low frequencies. By considering realistic metal properties,
we have checked that these modes exist for a broad range of frequencies.

In order to illustrate the range of validity of the PEC approximation, we now present
calculations where the effect of both metal absorption and finite permittivity have been
taken into account. We model the metal as silver with a Drude permittivity with param-
eters, ωp = 1.37 × 1016 Hz, γ = 2.73 × 1013 Hz, as given in Ref. [238] (see Appendix B
for more details), and analyze the extinction cross section (ECS) for different frequency
regimes. The ECS is the sum of the scattering and absorption (ACS) cross sections. In
particular, here we consider the 2D meanders structure presented in Fig. 3.7 (a), with
the PEC replaced by silver. The simulation results for particles of radius R = 10 mm
(b), R = 1 mm (c), R = 100 µm (d), R = 10 µm (e) and R = 1 µm (f), with all the other
geometrical parameters scaled accordingly, are presented in Fig. 3.10. The structures
are resonant for ∼ 1 GHz, ∼ 10 GHz, ∼ 100 GHz, ∼ 1 THz and ∼ 10 THz, respec-
tively. Considering realistic metal properties results in three main effects. First, due to
its extremely narrow band, the quadrupole mode disappears from the spectrum when
metal absorption is included. Second, as the frequency increases, the resonance peak is
red-shifted with respect to the estimation given by the PEC approximation. This shift
is most noticeable for the case of R = 1 µm, for which the PEC approximation predicts
a resonance frequency of 12.8 THz, while the real metal simulation yields a resonance
at 9.5 THz. Third, absorption starts to dominate scattering: whereas in the GHz regime
the ECS is dominated by the scattering contribution, in the IR regime absorption is the
main contribution to the ECS. These results prove that, although the PEC approach
losses quantitative prediction power as the frequency increases, it is able to capture the
main ingredients of the resonance behaviour of corrugated metal particles for frequencies
ranging from the GHz to the THz and mid-IR regimes.

Moreover, we have also checked the effects of realistic metal properties on the results
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Figure 3.10: Effect of realistic permittivity in cylinders corrugated with meanders. (a) Nor-
malized SCS for a 2D PEC cylinder corrugated with meander-like grooves (same as in Fig. 3.7).
The radius of the cylinder is R = 10 mm. (b) Normalized SCS, ACS and ECS for a corrugated
cylinder made of silver and with radius R = 10 mm. The plot shows a very good agreement with
the PEC approximation in panel (a). (c-f) Effect of the realistic conductivity for corrugated
cylinders with radius R = 1 mm (c), R = 100 µm (d), R = 10 µm (e) and R = 1 µm (f). The
geometrical parameters in all cases are r = 0.4R, N = 40, a = 0.3d, ng = 1 and effective depth
hm ≈ 6R. The electric permittivity of silver is modeled with a Drude formula with parameters
given by Ref. [238] (see Fig. B.1 for a plot).
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(a) (b)

(c) (d)

Figure 3.11: Effect of realistic permittivity in disks corrugated with meanders. (a,b) Disks
of thickness L = R. (c,d) Disks of thickness L = R/2. Panels (a) and (c) show the SCS in
the PEC approximation as a reference. Panels (b) and (d) present the SCS, ACS and ECS for
corrugated silver particles in the GHz regime. In all cases the radius of the disk is R = 10 mm
and the other geometrical parameters are r = 0.4R, N = 40, a = 0.3d, ng = 1 and effective
depth hm ≈ 6R.

for the 3D disks presented in Fig. 3.7 (b). Corrugated disks of thickness L = R and
L = R/2 are studied in panels (a,b) and (c,d) of Fig. 3.11, respectively. In this case
we present results in the GHz regime, which corresponds to millimeter-sized structures.
Despite the inclusion of metal absorption losses, scattering dominates absorption for this
frequency range. From this figure it is clear that magnetic and electric spoof LSP modes
survive for real metals. With these results we have confirmed that, as expected, the PEC
approximation is very accurate for our structures at low frequencies.
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3.6 Experimental verification

In this Section we discuss the experimental verification of our results carried out by the
group of Professor Cui at Southeast University in China. In these experiments, ultra-thin
metallic spiral structures were used to provide experimental proof on the magnetic spoof-
LSPs. For practical reasons, the experiments were performed in the microwave regime
but, as we have shown, magnetic LSP modes can also be devised at higher frequencies
(THz up to mid-IR energies) by just a proper down scaling of the structure analyzed in
this experimental study. The fabricated structure consists of four metallic spiral arms
wrapped 1.5 turns around a small metallic disk of radius r such that the particle has
an outer radius R (see the geometry sketch in Fig. 3.12). Each strip has width w and
two neighboring arms are separated by a distance d. The textured copper disks (radius
R = 9.5 mm) have a thickness that is much smaller than the radius: L = 0.035 mm.
The whole ultra-thin structure is fabricated on top of a dielectric substrate using the
standard printed circuit board fabrication process. The substrate has a thickness ts = 0.8

mm and a dielectric permittivity εs = 3.5.

The measured near field spectrum for the ultra-thin spiral structure is presented in Fig.
3.12 (a) as a red solid line. The EM response of the structure is measured by means of a
transmitting antenna that is placed 3 mm away from one side of the sample to excite the
modes, and a receiving antenna that is located at the other side of the sample to detect
the resonance spectrum. In the plot, we can clearly observe two distinctive resonance
peaks at frequencies f = 1.1 GHz (k0R = 0.22) and f = 1.87 GHz (k0R = 0.37). To
reveal the physical nature of these two resonances, we have calculated the ECS spectrum
for the same structure (see black dashed line in the figure). It shows two resonances
whose spectral locations are in excellent agreement with the experimental results. In
this case, the ECS, has been calculated by means of full wave simulations [239] in which
both the metal absorption and the presence of a dielectric substrate are fully taken into
account. The simulated field patterns at the two resonances are plotted in panels (b)
and (c). Similarly to the behavior previously discussed for PEC disks corrugated with
meanders and spirals, these plots show that the first resonance is due to the electrical
LSP (b) while the second peak emerges from the magnetic LSP (c). In addition these
field patterns closely resemble those plotted in Fig. 3.9 [panels (e) and (g)] for the spiral
structures of thickness L = R/2 considered in the previous Section. The measured near
field distributions for the spiral structure are rendered in panels (d) and (e). The local z
component of the electric field for both the electric and magnetic dipole LSP resonances
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Figure 3.12: Resonance spectrum for subwavelength ultra-thin textured metallic disks. (a)
Experimental near field spectrum (|Ez| is measured) and calculated ECS spectrum. The inset
panels show a sketch of the structure, which is placed on top a dielectric of thickness ts = 0.8

mm and εs = 3.5. The parameters of the fabricated structure are: R = 9.5 mm, r = 0.6 mm,
d = 1.508 mm, a = 1.008 mm and L = 0.035 mm. (b,c) Calculated near-field distribution of
the Ez field component at the electric (b) and magnetic (c) LSPs in a x− y plane cut 1.5 mm
above the ultra-thin disk. In the color scale, red and blue indicate positive and negative values,
respectively. (d,e) Measured near field distribution of the LSP. The same quantities as in panels
(b,c) are plotted. A photograph of the sample is rendered in panel (d)

are shown in (d) and (e), respectively. By comparing panels (d) and (e) to the numerical
results shown in (b) and (c), we conclude that the agreement between the simulation
results and the experimental images is remarkable. For the electric LSP mode (d), we
notice that two equivalent electric currents propagate along two curved routes on the
metallic surface with opposite directions, resembling an electric dipole. On the other
hand, for the magnetic-dipole mode, we can see in (e) that the circulating Ez field
varies between negative and positive, which is analogous to the current generated by a
magnetic moment. Hence, these experimental results show that electric and magnetic
LSP resonances also exist for ultra-thin (L � R) metal films and, therefore, meander
and spiral structures can be used as building blocks in the design of 2D metamaterials
(i.e., metasurfaces) [86, 240].
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3.7 Conclusions

To summarize, in this Chapter we have developed the concept of magnetic localized sur-
face plasmons. The results presented here add the important ingredient of magnetism to
the field of particle plasmonics. We have first studied PEC particles corrugated with sub-
wavelength grooves filled with dielectrics. By means of numerical simulations as well as
an analytical model, we have shown that, unlike conventional subwavelength plasmonic
particles, the EM response of these corrugated structures consists of two quasi-degenerate
modes. We have discussed throughout the Chapter that one of the modes is an electri-
cal dipole LSP while the second one is a magnetic dipole LSP, and that they have a
geometrical origin. We have studied how for 3D structures the quasi-degeneracy is lifted
and the magnetic-LSP acquires a higher resonance frequency than the electrical-LSP.
The response of PEC structures corrugated with grooves can not be mapped to that of
isotropic dielectric materials, but rather to that of an anisotropic metamaterial.

In addition, we have shown that magnetic-LSP modes can also be supported by purely
metallic structures. Based on the analytical model, we have found an equivalence between
structures corrugated with shallow grooves filled with dielectrics and structures corru-
gated with long empty grooves. In this case, the EM resonances can be controlled by
means of only geometrical parameters, without requiring a dielectric material of high
refractive index. We have presented two different structures of this kind. In the first
one the deep grooves are achieved by bending them in a meander shape, while in the
second one a spiral shape is used for this purpose. Finally, we have presented an experi-
mental verification of our findings based on an ultra-thin spiral structure working in the
microwave regime.

3.8 Appendix: Frequency ordering of the modes

In this Appendix we present a detailed study on the origin of the different frequency
ordering of the EM dipole modes occurring in corrugated PEC structures and in sub-
wavelength dielectric particles. In particular, we present a physical argument based on
the variational formulation of EM that explains why the electric dipole mode of corru-
gated metallic disks has lower frequency than the magnetic dipole mode, whereas the
opposite frequency ordering is displayed for the modes of dielectric disks.

The precise magnitude of the eigenvalue associated to an eigenmode supported by
any of the structures considered in this Chapter is dictated by the spatial distribution
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of its corresponding electric field E. This fact can be best appreciated by means of
the variational formulation of electrodynamics. According to this formulation [241], the
lowest frequency eigenmode minimizes the following functional

U [E] =

∫
dr3 |∇ × E|2∫
dr3 ε(r)|E(r)|2

. (3.19)

Similarly, the next eigenmode minimizes the functional within the subspace orthogonal
to the first eigenmode. Moreover, the frequency ω corresponding to a given eigenmode
can be computed by evaluation of the functional at the field E corresponding to the
mode: (ω

c

)2

= U [E] . (3.20)

Importantly, the functional is directly related to the electric field curl, the latter being
linked to the geometry and curvature of the field lines. Thus, inspection of the field line
patterns of the eigenmodes, e.g. the presence or absence of vortices, provides a physical
clue to the magnitude and ordering of the corresponding eigenvalues.

Since we have already computed the eigenmodes of the different structures under
consideration with FEM calculations, it is straightforward to numerically evaluate Eq.
3.20 to determine the eigenvalues by means of the variational theorem. In order to
understand the different frequency ordering of the modes of 3D structures, our argument
starts by considering 2D cylinders. For the metallic corrugated structure presented in Fig.
3.1, the eigenvalues retrieved using Eq. 3.20 are consistent with those previously found.
The eigenvalues corresponding to the magnetic and electric modes, given in Table 3.1,
differ by less than 2 parts in 1000, confirming the quasi-degeneracy already discussed
throughout the Chapter for infinitely long corrugated cylinders. For a 2D dielectric
cylinder of the same radius and refractive index ng = 8, the eigenvalues determined with

Eigenvalues, k0R:

Corrugated PEC Dielectric
Mode Cylinder Disk Cylinder Disk

Magnetic-LSP 0.330 0.384 0.291 0.394
Electric-LSP 0.327 0.368 0.470 0.558

Table 3.1: Eigenvalues, k0R, of the magnetic and the electric modes for the corrugated PEC
and dielectric particles studied in Figs. 3.13 and 3.14. The eigenvalues are calculated using Eq.
3.20.
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Figure 3.13: The curl field for 2D structures: a dielectric cylinder and a subwavelength PEC
cylinder corrugated with grooves. The arrows represent the (Ex,Ey) components of the electric
field, while the color map represents the squared rotational of the electric field normalized to
the EM energy of the mode. Panels (a) and (b) render the rotational fields for the n=0 (a) and
n=1 (b) modes of a dielectric cylinder, while panels (c) and (d) correspond to the n=0 (c) and
n=1 (d) modes supported by a corrugated metallic cylinder.

the FEM calculation and via Eq. 3.20 are again consistent, and they present a different
behaviour than that for the corrugated metallic cylinder. Now the magnetic and electric
modes are not degenerate (see Table 3.1). Their frequency difference is large, the electric
mode having a frequency 60% higher than the magnetic one. As mentioned above, this
contrasting behaviour can be ascribed to the field line patterns of the various eigenmodes,
which are rendered in Fig. 3.13. The magnetic mode of the dielectric cylinder (panel
a) displays one vortex with azimuthal symmetry, whereas the electric mode (panel b)
presents two counter-rotating vortices with enhanced electric field curl which, according
to Eq. 3.20, rises its frequency value. This reasoning explains the frequency ordering
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Figure 3.14: The curl field for a 3D subwavelength PEC disk corrugated with grooves. The
figure shows the electric field lines [(Ex,Ey), arrows] and the normalized squared rotational of
the electric field (color map) for a 3D disk of L = R at two different cut planes parallel to the
disk lid: modes n = 0 (a) and n = 1 (b) at the middle of the disk and modes n = 0 (c) and
n = 1 (d) at a plane cut on top of the disk separated a distance 0.25L from it.

of the magnetic and electric dipole modes for a dielectric cylinder. On the other hand,
the corrugated metallic cylinder presents a very different electric field line geometry. In
this structure the presence of the grooves imposes a circulating pattern around the inner
metallic core for both the magnetic and electric modes (panels c and d). Although the
quasi-degeneracy in the metallic case cannot be understood from the qualitative aspect
of the field patterns alone, the full evaluation of the functional as well as the analytical
model presented in the presented in Section 3.3 predict precisely this behaviour.

When going from 2D corrugated metallic cylinders to 3D disks, it remains to be
explained why the quasi-degeneracy is lifted and why, as a difference to the dielectric
structures, the magnetic mode is the one which acquires a higher frequency. We have
first computed the eigenvalues for a corrugated metallic disk of thickness L = R by
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means of the variational theorem. The results, presented in Table 3.1, confirm that both
modes rise their frequencies as compared to the 2D case: the magnetic mode increases
its frequency a 22% from its 2D value and the electric mode frequency increases a 10%.
Notice that the evaluation of the functional requires an integration to all space (see Eq.
3.20) and that not all regions of space contribute equally to the integral. In fact, the
region comprising the inner part of the grooves is responsible for about 80% of the total
amount. Interestingly, if the functional is evaluated by integration only within this region,
the quasi-degeneracy is not lifted. This is a consequence of the fact that the field within
the grooves is almost the same for the 2D and 3D cases (compare Figs. 3.13 and 3.14).
Thereby, we expect that the reason behind the degeneracy lift when going from 2D to 3D
stems from the fields outside the disk. We have checked this by separating the integrals
in Eq. 3.20 in three contributions corresponding to: (i) the grooves, (ii) the regions above
and below the disk lids, and (iii) the rest. It turns out that region (ii) is the second in
importance when the functional is evaluated. On this basis we analyze the value of the
electric field curl for both the electric and magnetic modes in this region, i.e., in a plane
parallel to the disk lid and above it, as shown in Fig. 3.14 (c) and (d). The magnetic
mode displays a distinct vortex (panel c) which is absent for the electric mode (panel d).
Thus, according to Eq. 3.20, when the corresponding electric field curls are integrated on
top of the lids, the magnetic mode increases its frequency more than the electric mode.
Finally, the corresponding computation has been performed for dielectric structures and
the resulting eigenvalues are shown in Table 3.1. In a similar way to metallic structures,
the transition from 2D to 3D rises the frequencies of both modes, namely a 35% increase
for the magnetic dipole and a 20% for the electric dipole. However, as we have shown
above, the modes of dielectric cylinders are not degenerate but, instead, display a large
frequency difference, the electric one having a 60% higher frequency. As a consequence,
the blueshifts are now unable to revert the frequency ordering of the modes, and the
magnetic dipole remains the ground mode.
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Chapter 4

Plasmonic Brownian ratchet

4.1 Introduction

The plasmonic-based optical trapping and transport of nanoscopic objects finds many
applications in microfluidics and lab-on-a-chip systems [153]. As we introduced in Section
1.4, the extremely enhanced EM energy in plasmonic antennas enables the trapping of
Rayleigh dielectric particles and biological objects within subwavelength volumes [140].
In principle, plasmonic antennas are designed to generate highly localized gradient forces
for trapping the targeted objects into a single point fixed by the fabricated nanostruc-
ture [147–151]. The controlled transport and manipulation of these targets over long
distances is desirable for lab-on-a-chip applications and especially for on-chip sorting.
This long-distance transport has been shown for nanoscopic metal particles, whose large
polarizability greatly enhances the scattering forces that push the particles on flat sub-
strates along the illumination direction [242, 243]. In contrast, dielectric and biological
objects lack a large polarizability and different strategies need to be developed in order
to achieve a controlled transport of such objects.

Thermal noise induced by random collision of the liquid molecules [244], is usually
an obstacle for controlling particle flow at nanoscopic scales and is to be suppressed for
any particle manipulation technology. By taking advantage of these thermal fluctuations
instead suppressing them, here we address the issue of dielectric particle transport over
long distances in plasmonic structures. Although the second law of thermodynamics
states that temperature-governed fluctuating forces originate no net motion in the large
scale, by driving an anisotropic system out of thermodynamic equilibrium work can be
performed out of thermal noise. This is the working principle of the so-called Brownian
ratchets [245, 246].
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4. Plasmonic Brownian ratchet

The attention raised by Brownian ratchets spans over different fields [247]. For instance,
they have been of fundamental interest in biology because they play a role in biological
protein motors, as was experimentally investigated in Ref. [248] for an actomyosin motor.
Brownian ratchets have also attracted great interest as the basic working principle of
practical devices inspired in biological physics or motivated by biological applications.
The reason for this is that they enable a net transport of objects in the micro and nano-
scales, which can be used to pump nanoscale motors or to sort different kinds of particles.
The directed drift of Brownian particles has been reported for different systems, such
as for colloidal particles in the presence of asymmetric electrodes [249], for dielectric
particles in an optical ratchet [250], for DNA in electrochemical systems [251, 252],
for charged phospholipids in a 2D fluid bilayer embedded in an array of asymmetric
titanium dioxide barriers [253] or for colloidal particles in microfluidic systems [254].
While these experiments rely on a dynamical modulation of an external driving to take
the system out of equilibrium, Brownian ratchets based on non-conservative stationary
forces, where the system is taken out of equilibrium by time reversal symmetry breaking,
are also possible. In Ref. [255], a deterministic ratchet that makes use of non-conservative
optical forces in a specific arrangement of stationary optical lattices was theoretically
demonstrated. In addition, the quest for self-propelling microdevices has lead to the
experimental demonstration of a bacterial driven micro-motor, where the propelling force
generated by flagellar bacterial motors act as a non-conservative force [256]. Finally, and
at a different level, mesoscopic Brownian motors, such as organic electronic ratchets and
spin ratchets, have also been experimentally demonstrated, showing that they are great
candidates to power nanodevices and electronic circuits [257–261].

In this Chapter, we present a proof of principle demonstration of a light-driven nanoscale
Brownian ratchet based on plasmonic interactions. This plasmonic Brownian ratchet
makes use of plasmonic-based optical forces, which first enable the trapping of a sub-
wavelength dielectric bead and then drive it a long distance displacement in a single
device at room temperature. By means of an array of plasmonic structures with broken
spatial symmetry, we generate a set of anisotropic traps for dielectric beads. This trap-
ping potential is repeatedly excited by turning on and off a laser field, thus taking the
system out of equilibrium and yielding a directed drift of particles into one direction, as
sketched in Fig. 4.1. In addition, we demonstrate this mechanism by means of molecular
dynamics (MD) simulations, showing the rectified Brownian motion of a dielectric bead
in the absence of any external bias.

The Chapter is organized as follows. In Section 4.2 we characterize the plasmonic
system that will be the base for the Brownian ratchet. In order to study the properties
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Figure 4.1: Sketch of the ratchet mechanism: by periodically turning on and off a plasmonic-
based optical potential the Brownian diffusion of a dielectric particle is biased into one direction.
(a) A periodic set of anisotropic optical traps is generated by illuminating a periodic array
of plasmonic nanostructures with a laser field. The potential wells act as nanotweezers for
a dielectric bead. (b) When the illumination is off, the particles are free to diffuse over the
sample. (c) Due to the anisotropy in the potential, turning the illumination on again results in
an enhanced probability for the particle to move forwards. Thereby, the Brownian motion of
the particle is rectified into one direction.

of the nano-optical traps generated by the proposed plasmonic structure, we first discuss
the EM fields and optical forces in Subsection 4.2.1. In Subsection 4.2.2 we study the
trapping potential felt by a dielectric bead in the presence of the plasmonic system
and we discuss the geometrical parameters appropriate for the design of the Brownian
ratchet. Next, in Section 4.3, we simulate the dynamics of a subwavelength dielectric
bead in the plasmonic Brownian ratchet. First, in Subsection 4.3.1 we briefly review the
MD simulation technique, and in Subsection 4.3.2 we present the simulation results and
we discuss the relevant parameters that play a role in the dynamics.

4.2 Characterization of the plasmonic system

We start by describing the plasmonic system that is the base for the Brownian ratchet
proposed in this Chapter. It consists of an array of plasmonic nanostructures that is
designed to bias the Brownian motion of subwavelength dielectric beads. The design of
the plasmonic Brownian ratchet is based on (i) anisotropic trapping, generated by geo-
metrical asymmetry, and (ii) a periodic modulation in time of the interaction, achieved
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by switching the illumination on and off in periodic cycles. Hence, we need a 1D array
of anisotropic nano-optical traps in one direction.

To fulfill these requirements we propose the periodic array of plasmonic nanostructures
shown in Fig. 4.2. The unit cell, whose side view is shown in panel (b), is formed by a
collection of metallic dipole antennas (dielectric permittivity εm) of gradually varying
lengths and with deep subwavelength spacing 1. In our design, we have taken in particular
four optical dipole antennas. Each dipole antenna has a subwavelength gap d and is
separated from its nearest neighbour by g. The nanorods composing the dipole antennas
have width w, height h and varying lengths: L in one side of the group and

L0 = L− 3(w + g) tan(θ) (4.1)

in another. The angle θ, shown in panel (a), characterizes the asymmetry of the structure.
The array of nanostructures, with period Λ, lies on top of a glass substrate and is
immersed in water containing a solution of dielectric beads at room temperature. The
system is illuminated with a normally incident plane wave (intensity I0) with the electric
field polarized along the dipole antennas axis (Ex), as depicted in panel (b), such that the
near field within the gaps is efficiently enhanced and dielectric beads can be trapped in
the EM hot spots. For this purpose, the geometrical parameters (L = 225 nm, d = 40 nm,
w = 50 nm, g = 25 nm and h = 30 nm) are chosen to maximize the field enhancement at
an IR excitation wavelength of λ = 1500 nm. Finally, note that although more complex
structures could also be devised, the arrangement of optical antennas of different lengths
that we propose provides the required trapping and anisotropy, as we will see in the
following.

In this Section we characterize the trapping properties of the plasmonic system de-
scribed above. We first study the EM fields and optical forces generated by the plasmonic
system upon illumination in Subsection 4.2.1, detailing the calculation method and dis-
cussing the results. Next, in Subsection 4.2.2, we study the trapping potential derived
from the calculated optical forces and we discuss the appropriate geometrical parameters
for the ratchet device.

4.2.1 Plasmonic-based optical forces

In order to characterize the properties of the nanotweezers, we start by studying the
optical forces generated by the plasmonic system on a subwavelength dielectric bead. At
first, we focus on a single array element, i.e. the four dipole antennas that compose an

1Note that a similar nanostructure has been studied in Ref. [262]
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Figure 4.2: Plasmonic system that enables the Brownian ratchet device. (a) Top view of
the plasmonic system: a periodic array of plasmonic structures formed by four optical dipole
antennas. Each dipole antenna consists of two nanorods separated by a subwavelength gap d.
The length of the dipole antennas varies gradually, thereby generating a geometrical asymmetry
that is characterized by angle θ. (b) Side view of the periodic array unit cell: the plasmonic
structure is placed on top of a glass substrate and embedded in water. The width of the nanorods
is w and the separation between nearest neighbors is g. The system is placed in the x− y plane
such that the dipole antennas’ long axis lies along the x axis while the nanostructure’s symmetry
axis corresponds to the y axis. The illumination is a plane wave that is turned on and off in
periodic cycles.

unit cell. A dielectric bead in the presence of the plasmonic structure experiences a force
that enables its trapping. This force is completely determined by the system EM fields,
which are contained in the Maxwell stress tensor [1, 11],

T̂(r, t) =

[
ε0εEE + µ0µHH− 1

2
(ε0ε|E|2 + µ0µ|H|2)Î

]
, (4.2)

where ε and µ are the permittivity and permeability of the medium surrounding the
object. The integration of this tensor on an arbitrary surface δV that encloses the particle
yields the force exterted on it as follows,

F =

∫
δV

〈
T̂(r)

〉
· n(r) da , (4.3)

where n(r) is the normal to the integration surface and 〈...〉 stands for time average.
Under the dipole approximation, the above equation reduces to a simpler expression in
terms of the bead’s polarizability, α(ω) (as defined in Eq. 1.13), and the electric field
gradient, as follows

F =
Re [α(ω)]

4
∇E(r) . (4.4)

Although this approximation usually works very well for particles of sizes much smaller
than the wavelength (Rayleigh limit), we have checked that in this case the above equa-
tion fails to give an accurate value for the force at the EM hot spots. The reason for this
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4. Plasmonic Brownian ratchet

is that in these areas field variations occur in a scale that is comparable to the particle’s
size and the dipole approximation fails. Therefore, in oder to obtain the force field, we
employ the Maxwell stress tensor method and calculate the tensor T̂(r) for different
positions of the particle’s center, as we detail below.

As a first step to determine the optical forces acting on the bead we calculate the EM
fields generated by the plasmonic structure upon illumination. To calculate the fields
we make use of FEM simulations [219], that we briefly describe in the following. In the
simulations, the group of four dipole antennas lies on top of a glass substrate (refractive
index n1 = 1.46) and is immersed in water (n2 = 1.33), as shown in Fig. 4.2 (b). We
simulate the antennas as real metal structures, including absorption. We take them
as gold nanorods with permittivity εm(ω) as given by the Drude-Lorentz model with
parameters taken from Ref. [12]. In particular, εm = −103.6 + 8.8i at the illumination
wavelength. The plasmonic structure is illuminated by means of a plane wave under
normal incidence. The incident wave propagates in the z direction and is polarized along
the dipole antennas’ axis. Its electric field reads as

E0 = E0ux ·

{
e−ik0n1z + r12 e

ik0n1z z ≤ 0 ,

t12 e
−ik0n2z z > 0 ,

(4.5)

where k0 = 2π/λ, E0 is the amplitude and ux is the unit vector in the x direction. In
addition, r12 and t12 are the Fresnel coefficients for the glass/water interface, given by

r12 =
n2 − n1

n2 + n1

, t12 =
2n1

n2 + n1

. (4.6)

Finally, in order to avoid reflections at the frontiers of the simulation domain we employ
the appropriate boundary conditions, namely perfectly matched layers [219].

The simulated electric field is plotted in Fig. 4.3 for two different configurations of
the nanostructure with different symmetries. Panels (a) and (c) correspond to the case
where θ = 0◦ and show a top and a side view, respectively. In panel (a), the plot displays
a symmetric field pattern with respect to the x axis. The greatly enhanced electric field
at the dipole antennas’ gap [see panel (c)] act as a nanotweezer for dielectric beads. On
the other hand, panels (b) and (d) present the electric field for a structure with θ = 18◦.
In this case, the field pattern reveals that the EM field is greatly enhanced in a hot spot
located at the longest antenna’s gap. The presence of the neighbouring antennas, with
slightly different resonance frequencies due to their slightly different lengths, results in a
continuous and asymmetric field profile along the y direction. As we will see below, the
Brownian ratchet mechanism is ultimately based on this anisotropic field profile.
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Figure 4.3: EM fields generated by the plasmonic nanostructure composed of four dipole
antennas. Two nanostructures are compared: a symmetric geometry (a,c), θ = 0◦, and one with
an asymmetric geometry (b,d), θ = 18◦. In panels (a) and (b) the plot shows electric field
enhancement, |E|/E0, at a plane cut at z = 90 nm. The antennas lie on top of a water/glass
interface at z = 0 (see Fig. 4.2). Panels (c) and (d) render a side view at plane x = 0. The
illumination is a plane wave under normal incidence polarized along the dipole antennas’ axis.
The excitation wavelength is λ = 1500 nm. The geometrical parameters are: L = 225 nm,
d = 40 nm, w = 50 nm, g = 25 nm and h = 30 nm. L0 depends on the value of θ following Eq.
4.1: L0 = L in panels (a,c) and L0 = 150 nm in panels (b,d).

We now consider the forces experienced by a subwavelength dielectric bead in the pres-
ence of the plasmon-based nanotweezers. As we have already mentioned, the integration
of the Maxwell stress tensor, which is determined by the EM fields through Eq. 4.2, on
a surface δV enclosing the bead yields the optical forces acting on the bead. Here we
detail the calculation methods employed to derive the optical forces.

Our purpose is to calculate the force field as a bead that is placed above the plasmonic
nanostructure moves along its symmetry axis, i.e., the y axis. We consider a polystere
(PS) bead of refractive index n = 1.59 and radius σ = 50 nm. Its center is placed x = 0,
z = 90 nm, such that the lowest point of the bead is separated 10 nm from the plasmonic
nanostructure. The y position of the bead is varied to sample a grid,

yi = y0 + (i− 1)∆y , (4.7)

with ∆y = 10 nm and i = 1, ...N . For each position of the bead, yi, we run a FEM
simulation of the EM fields as explained above. Note that the simulations have to include
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4. Plasmonic Brownian ratchet

the PS bead in order to take into account the perturbation of the EM field produced by
its presence. In addition, we make use of an auxiliary boundary to perform the integral
of the Maxwell stress tensor in Eq. 4.3. In particular, we use a cube of side 104 nm and
centered at the bead’s center. Thereby, we can write the y component of the force from
Eq. 4.3 in terms of surface integrals on the box faces as

Fy(r) =

∫
S+x

〈
T̂yx(r, t)

〉
dydz −

∫
S−x

〈
T̂yx(r, t)

〉
dydz +

+

∫
S+y

〈
T̂yy(r, t)

〉
dxdz −

∫
S−y

〈
T̂yy(r, t)

〉
dxdz +

+

∫
S+z

〈
T̂yz(r, t)

〉
dxdy −

∫
S−z

〈
T̂yz(r, t)

〉
dxdy . (4.8)

Here, the symbol
∫
S±x,y,z

stands for the surface integration on the cube’s face that is
normal to the x, y or z axis, respectively, and whose normal vector n(r) points in the
positive direction of the axis for the “+” case and in the negative direction for the “−”.
Equivalently, similar expressions can be written for Fx and Fz. In the above equation,
T̂ij(r, t) are the different Cartesian components of the Maxwell stress tensor. From Eq.
4.2, we can explicitly write the time average of each of the tensor components as〈

T̂xx(r, t)
〉

=
1

2
Re
[
ε0ε(E

∗
xEx −

1

2
|E|2) + µ0µ(H∗xHx −

1

2
|H|2)

]
,〈

T̂xy(r, t)
〉

=
1

2
Re [ε0εE

∗
xEy + µ0µH

∗
xHy] ,〈

T̂xz(r, t)
〉

=
1

2
Re [ε0εE

∗
xEz + µ0µH

∗
xHz] ,〈

T̂yx(r, t)
〉

=
1

2
Re
[
ε0εE

∗
yEx + µ0µH

∗
yHx

]
,〈

T̂yy(r, t)
〉

=
1

2
Re
[
ε0ε(E

∗
yEy −

1

2
|E|2) + µ0µ(H∗yHy −

1

2
|H|2)

]
,〈

T̂yz(r, t)
〉

=
1

2
Re
[
ε0εE

∗
yEz + µ0µH

∗
yHz

]
,〈

T̂zx(r, t)
〉

=
1

2
Re [ε0εE

∗
zEx + µ0µH

∗
zHx] ,〈

T̂zy(r, t)
〉

=
1

2
Re [ε0εE

∗
zEy + µ0µH

∗
zHy] ,〈

T̂zz(r, t)
〉

=
1

2
Re
[
ε0ε(E

∗
zEz −

1

2
|E|2) + µ0µ(H∗zHz −

1

2
|H|2)

]
. (4.9)

In summary, by calculating the EM fields and Maxwell stress tensor for each position of
the bead, yi, and then integrating the tensor following Eq. 4.8 and equivalent expressions
for the x and z components of the force, we are able to obtain the force field.
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Figure 4.4: Optical forces experienced by a PS bead above the plasmonic nanostructure com-
posed of four dipole antennas. (a) Symmetric nanostructure, with θ = 0◦. (b) Asymmetric
nanostructure, with θ = 18◦. The dashed vertical lines point at the antennas boundaries as a
reference to compare with the field patterns in Fig. 4.3.

Figure 4.4 shows the force field calculated by the above described procedure for a PS
bead in the presence of the two plasmonic nanostructures considered in Fig. 4.3. The
forces are normalized to the thermal energy, kBT , with kB being Boltzmann’s constant
and T the temperature, and to the intensity of the incident EM wave, I0 = ncε0|E0|2/2.
In both cases, the force in the vertical direction, Fz, attracts the particle towards the
structure, while the force in the x direction is Fx � Fy,Fz. Accordingly to the already
discussed field pattern, the force field shown in panel (a) has inversion symmetry, as a
particle moving towards the right from the left end is attracted towards the hot spot in
the same way as a particle moving from the right end and towards the left. On the other
hand, the forces in panel (b) reflect the geometrical asymmetry of the nanostructure.
As it can be seen from the figure, Fy guides the particle towards the hot spot shown in
Fig. 4.3 (b), as it is positive for y values at the left of the hot spot, and negative when
the bead is at the right of the hot spot. However, in this case the force lacks inversion
symmetry. Finally, note that Fy is the relevant component of the force for the study of
the Brownian ratchet mechanism.
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Figure 4.5: Optical trapping potential experienced by a PS bead above the plasmonic nanos-
tructure. (a) The trapping potential is plotted for several values of the geometrical asymmetry
(parametrized by θ). The dashed vertical lines point to the antennas boundaries for reference.
(b) Evolution of the potential asymmetry parameter, α (upper panel), and depth of the poten-
tial well, ∆U (lower panel), as a function of θ. The geometrical parameters of the plasmonic
nanostructure are given in Fig. 4.3.

4.2.2 Trapping potential

Let us now study the trapping properties of the plasmon-based tweezers by means of
the optical potential, which can be determined from the EM forces discussed in the
previous Subsection. In particular, a line integration of the force yields the potential
energy needed to move the particle from infinity to a position r [11]:

U(r) =

∫ r

−∞
F(r′) · dr′ . (4.10)

Since we are interested in a bead that moves along nanostructure’s symmetry axis, we
can write the above equation as

U(y) =

∫ y

−∞
Fy(y

′) dy′ , (4.11)

where the force Fy is given by Eq. 4.8 and the integral runs over the grid positions of
the bead given by Eq. 4.7.

By means of this procedure, we have obtained the results displayed in Fig. 4.5. Panel
(a) shows the potential U(y) experienced by a PS bead in the presence of the plasmonic
structure for several values of the angle θ. The curves demonstrate that the asymmetric
geometry yields the anisotropy in the trapping potential. We have characterized the
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asymmetry of the potential by means of a parameter, α, sketched in Fig. 4.1 (a). This
parameter is defined as

α = 0.5− ymin

L
, (4.12)

where ymin is the position of the potential minimum and L = 8 × 10−7 m, with the
antennas centered as shown by the vertical dashed lines in the figure. Since the potential
is not periodic, we have chosen L such that U(−L/2) = U(L/2). The evolution of α with
θ is shown in the upper inset of panel (b), while the lower inset shows the evolution of the
potential depth, ∆U . The case θ = 0◦ corresponds to a symmetric structure, which leads
to a symmetric potential (α = 0.5). Increasing θ makes the potential more anisotropic
(α decreases) by moving the hot spot towards the longest antenna’s gap and, at the
same time, it increases the depth of the potential well. For θ ≈ 18◦ [corresponding U(y)

plotted as a yellow dashed line in panel (a)], α saturates at ≈ 0.36. The reason for this
is that for larger values of θ, the dipole antennas are too different in length and they
decouple to very different resonance frequencies. These results show that the plasmonic
structure with θ = 18◦ is convenient for the design of a plasmonic ratchet as it gives
a maximum anisotropy and values of the potential depth, ∆U ≈ kBTI0 [mW−1µm2], of
the order of the thermal energy for illumination intensities I0 ≈ 1 mW/µm2.

The design of a Brownian ratchet requires a periodic set of anisotropic traps. Hence,
we now consider a periodic arrangement of the plasmonic nanostructures, as sketched in
Fig. 4.2 (a). Figure 4.6 (a) shows the trapping potential calculated for a periodic array
for different values of the period, Λ. These curves stem from simulations of the plasmonic
nanostructure subjected to periodic boundary conditions in the y direction. The depth
of these potential wells is plotted in Fig. 4.6 (b) as a function of the period. As shown by
this figure, placing the plasmonic structures in a periodic array gives rise to a coupling
between them, yielding an oscillation of the potential depth with Λ. The potential depth
is maximum for Λ ≈ 1 µm, minimum for Λ ≈ 1.4 µm and approaches the ∆U value
that corresponds to the single structure when the period is large enough. This oscillation
with Λ is due to an interference effect in the far-field interaction between the plasmonic
nanostructures. For values of Λ ≥ 900 nm, the far-field coupling also results in two local
maxima in the shape of the potential U(y), as can be seen in panel (a). Such maxima
at the sides of the absolute minimum of the potential may prevent particle trapping,
which would reduce the effectiveness of a Brownian ratchet device. Therefore, a period
of Λ = 800 nm is appropriate for the design of a plasmonic ratchet [plotted dashed
yellow line in panel (a)], since it provides a deep optical trap without any local maxima.
In the following Section we study the dynamics of a dielectric bead in the presence of a
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Figure 4.6: Unit cell of the trapping potential generated by a periodic array of plasmonic
structures. Each structure is characterized by an asymmetry given by θ = 18◦ and geometrical
parameters as given in the caption of Fig. 4.3. (a) The anisotropic trapping potential is shown
for different values of the period, Λ. (b) Evolution of the potential depth with the array period.

periodic array of nano-optical traps.

4.3 Plasmonic Brownian ratchet dynamics

In this Section we study the dynamics of the system. In order to demonstrate the Brow-
nian ratchet operation, we have carried out MD simulations for a diffusive bead in the
presence of the plasmonic structure while the trapping is periodically turned on and off.
In the following we first briefly review the MD simulation technique in Subsection 4.3.1.
Next, in Subsection 4.3.2 we present the statistics of the simulation results, discussing
the parameters that play a role in the dynamics of the ratchet mechanism.

4.3.1 A brief review on the molecular dynamics simulation

technique

In the MD simulation technique, the classical equations motion of a given system are
integrated throughout time [263]. In our work we have carried out MD simulations of
a single particle, characterized by mass m, position r and momentum p. The particle
undergoes Brownian motion at temperature T and is subjected to the plasmonic poten-
tial. The system dynamics is obtained from the simulated trajectories, which are defined
from the resulting positions and momenta. The equations of motion of the particle can
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be written from Newton’s law as

mr̈ = f , (4.13)

where f represents all the forces exerted by the system on the particle. Alternatively, the
equations of motion can be cast as a set of two first order differential equations:

ṙ =
p

m
, (4.14)

ṗ = −∇rU = f , (4.15)

where U is the potential.
In order to simulate the Brownian dynamics of a single bead in the presence of the

optical potential at a constant temperature, T , we make use of the Langevin equation
[264] and write Eq. 4.13 as follows

mr̈ = F− γmṙ +
√

2αγmkBTR(t) . (4.16)

Here, F is the plasmonic force discussed in the previous Section, kB is Boltzman’s con-
stant and α is a dimensionality factor that takes the values α = 1, 2, 3 for 1D, 2D and
3D, respectively. The term γmṙ corresponds to the drag force of the bead in water. The
friction coefficient, γ, is given by

γ = 6πση/m , (4.17)

where η is the viscous coefficient of the medium and σ, is the radius of the particle. The
interplay between the diffusion constant of the particle,

D =
kBT

mγ
, (4.18)

and the magnitude of the external forces dominates the dynamics. By defining the time
needed for a particle to diffuse its own radius, τσ = σ2/D, two regimes can be distin-
guished. For small values of γ, i.e. γτσ � 1, the particle undergoes inertial dynamics,
dominated by the external forces. On the other hand, the diffusive or Brownian regime
takes place for γτσ � 1. Finally, the last term in Eq. 4.16 is the Langevin expression that
accounts for the Brownian motion of the particles in the fluid by means of a stochastic
force: R(t) is a delta-correlated Gaussian function with zero mean, i.e.,

〈R(t)〉 = 0 , (4.19)

〈R(t)R(t′)〉 = δ(t− t′) . (4.20)
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The Brownian dynamics of the system is then simulated by numerically solving Eq.
4.16. We do so by integrating the equations of motion 4.13-4.15 using finite differences
[263]. In particular, we make use of Leapfrog algorithm, which is based on a Taylor
expansion of the position, r, and velocity, v around time t as follows

v(t+ ∆t/2) = v(t−∆t/2) +
f(t)

m
∆t+O(∆t2) , (4.21)

r(t+ ∆t) = r(t) + v(t+ ∆t/2)∆t+O(∆t2) . (4.22)

Thereby, in each simulation step we evaluate the velocity at half-integer time steps,
t+∆t/2, and then use them to compute the position at time t+∆t. In addition, Brownian
motion is simulated by taking R as a random number from a gaussian distribution in
each step of the algorithm.

4.3.2 System dynamics

For a proof of concept design of the ratchet, we consider the asymmetric nanostructure
discussed in the previous Section, with θ = 18◦ and with the geometrical parameters
given in the caption of Fig. 4.3. We take an array of such a nanostructure with period
Λ = 800 nm, which yields the potential U(y) plotted as a yellow line in Fig. 4.6 (a).
To ensure a highly efficient trapping, we take an irradiance I0 = 75mW/µm2, although
this device also works for lower laser powers. As we are interested in the Brownian
ratchet mechanism, we consider the dynamics in 1D along the direction of optical traps,
i.e., the y direction. By doing so, we are assuming that the beads can only move along
the y direction, which could be done by, for instance, placing the structure in a thin
microfluidic channel. Thereby, Eq. 4.16 reduces to

mÿ = Fy − γmẏ +
√

2γmkBTR(t) , (4.23)

with Fy being the optical force calculated from Eq. 4.8. The friction coefficient, γ, is
obtained from Eq. 4.17 with η = 1× 10−3 kg/(ms) being water’s viscous coefficient and
σ = 50 nm the radius of the particle. The mass of particle is obtained from PS density,
ρ = 1050 kg/m3. With these parameters we have γτσ ∼ 106, ensuring that the dynamics
of the bead is diffusive. In addition, we assume a low density of particles in the water
solution, such that they are non-interacting. This allows us to simulate the dynamics of
the system by solving the above equation for a single particle for N realizations of the
system. In each realization, the initial conditions of the particle are random, such that
we explore the statistics of the system.
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Figure 4.7: Plasmonic Brownian ratchet dynamics for N = 4000 realizations of the system.
One PS bead is embedded in water at room temperature and subjected to the time-modulated
plasmonic potential. (a) Initial situation: The particle probability distribution is centered at the
trapping position of the nanotweezer (0 ≤ y ≤ Λ) after a time ton = 2×104τ0. (b) Final situation:
After 16 on-off cycles (toff = 8 ·103τ0), the probability for the particle to show a directed motion
in the forward direction is 40%. The gray line represents the plasmonic potential in arbitrary
units (∆U = 75kBT ).

Initially, the bead is placed within a unit cell (0 ≤ y ≤ Λ) of the anisotropic periodic
potential, with random position and velocity. During time ton, an external laser excites
the set of optical traps. Despite the anisotropy, there are no large-scale gradients in
the system and hence no statistical net motion of the particle is to be expected. When
ton is long enough, the bead falls into the potential minimum as ∆U � kBT . In our
calculations we have used ton = 2 × 104τ0, with

τ0 =

√
mσ2

kBT
= 5.7× 10−7 s , (4.24)

103



4. Plasmonic Brownian ratchet

which yields ton = 11 ms. Figure 4.7 (a) presents a histogram of N = 4000 realizations
of the particle’s position at a time t = ton showing a distribution around the potential
minimum.

During the ratchet operation, the system is driven out of equilibrium by a repeated
modulation of the potential in time. By assuming that the trapping potential is well
characterized by parameters α and ∆U , we can give some analytical predictions on the
dynamics of the system. When the potential is off, the particle is free to diffuse around
the potential minimum. Due to the spatial anisotropy, the characteristic time,

τF =
α2Λ2

2D
, (4.25)

needed for the particle to travel to the neighbouring unit cell in the forward direction
(distance αΛ), is shorter than the characteristic time,

τB =
(1− α)2Λ2

2D
, (4.26)

to travel backwards [distance (1 − α)Λ]. If the potential is switched off for a time toff
satisfying τB � toff � τF, the probability of the particle moving forward is enhanced
while that of moving backward is suppressed. Thus, after one cycle, trapping the particle
in the potential minimum located in the forward direction is more likely than in the
backward direction and repeating the cycle causes a directed drift of the particle for a
statistical ensemble. The probability of the bead moving forward in a single cycle, P ,
can be quantified. Let us assume that at t = ton the probability distribution is of the
form (see e.g. Ref. [250]),

P (y) =
1√
πβ2

e−(y−〈y〉)2/β2

, (4.27)

where β2 = 4Dtoff and the mean value of the distribution corresponds to the potential
minimum, 〈y〉 = (1−α)Λ, with the unit cell centered as shown in Fig. 4.7. Then, P can
be written as the probability of the particle being at y ≥ Λ,

P =

∫ ∞
Λ

P (y) =
1

2
erfc

(
αΛ

β

)
. (4.28)

Making use of Eq. 4.25 and the expression for β, we can write

P =
1

2
erfc

(√
τF

2toff

)
≈ 1

2
exp

(
− τF
toff

)
, (4.29)

where we have assumed toff � τF. We see from the above expression that toff is a relevant
parameter for the dynamics of the system, as it will determine wether the probability of
moving forward in each cycle is enhanced or supressed.
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4.3. Plasmonic Brownian ratchet dynamics

Net particle drift, PF − PB, for different values of toff:

toff/τ0 6× 103 8× 103 1× 104 1.5× 104

PF − PB 0.135 0.231 0.111 0.102

Table 4.1: Particle drift for different values of the time the laser is off: PF−PB after 16 on-off
cycles and N=1000 realizations is shown for different values of toff, showing that toff = 8 · 103τ0

maximizes the particle flux.

Let us now discuss the simulation results for a statistical ensemble of N realizations.
In order to characterize the dynamics for different values of toff, we start by defining the
probabilities of moving forward, PF = NF/N , and backward, PB = NB/N , (NF and NB

being the number of realizations where the particle is at y ≥ Λ and y ≤ 0, respectively).
Table 4.1 presents the MD simulation results for the particle’s net drift, PF − PB, for
different values of toff and after 16 on-off cycles, showing that toff = 8 · 103τ0 maximizes
the particle flux. The other values of toff considered, are either too small for allowing the
particle to diffuse to the forward unit cell, or too large and the probability of diffusing
backwards is enhanced together with that of diffusing forward. On the other hand, for
the parameters used in our calculations, we have τF ∼ 6 ms and τB ∼ 20 ms, while
the optimal value of toff is 4.5 ms. It can be seen that this value of toff does not satisfy
the condition τB � toff � τF, as we predicted with the simple analytical modeling. The
reason for this disagreement may come from the fact that the potential has a complex
shaped that is not accurately described by only two parameters, α and ∆U . Assuming
that α has a different effective value, the values of τF and τB would change too. The
condition τB � toff � τF would be satisfied for instance for α = 0.3, which yields τF ∼ 4

ms and τB ∼ 23 ms. Therefore, we take the value toff = 8 · 103τ0 and study the dynamics
of the system.

Figure 4.7 (b) shows a histogram of the particle’s positions after 16 on-off cycles with
toff = 8 · 103τ0. The total simulation time is then given by

t = 16ton + 15toff = 0.26 s, (4.30)

as we record the positions after the particles have been trapped again. In this calculation,
N = 4000 realizations of the system have been simulated, in order to show converged
statistical results. The histogram shows a statistical directed motion into the forward
direction, which demonstrates the Brownian ratchet mechanism. As shown in the figure,
and despite the fact that there are no temperature gradients or applied forces in the
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Figure 4.8: Evolution of the dynamics with the number of cycles. (a) Time evolution of the
probabilities for the particles to move forward (PF), backward (PB) or to remain in the initial
unit cell (P0). The simulation results at 1, 4, 12 and 16 on-off cycles are shown as circles. The
lines are a guide-to-the-eye. (b) Mean value of the bead’s position as a function of the number
of on-off cycles. The simulation results for 4, 8, 12 and 16 cycles are shown as red circles and
Eq. 4.31 is shown as a blue line. From this result we can estimate the number of cycles needed
for the bead’s mean position to reach, e.g. the fifth potential well in the forward direction as
n ∼ 102. The dashed gray lines show the positions of the potential minima.

large scale, the particle’s drift is biased into one direction through the combined action
of anisotropy and out-of-equilibrium dynamics. Notice that the probability distribution
around each trapping site is asymmetric, which may reflect the potential anisotropy. The
time evolution of the probabilities of moving forward and backwards, together with P0,
the probability of remaining in the initial unit cell, are shown in Fig. 4.8 (a). In the
plot we show with circles the probabilities after 4, 8, 12 and 16 on-off cycles, revealing
that PF increases with the number of on-off cycles up to 40% whereas PB saturates at
around 10% for 4 cycles. Due to the statistical origin of the ratchet, a large number of
repetitions is needed to observe directed motion.

In addition, from our results we can also predict the time evolution of the dynamics for
a large number of cycles. In particular, we consider the evolution of the mean particle
position, 〈y〉, with the number of cycles, n. The red circles in Fig. 4.8 (b) show 〈y〉
obtained from the simulation results for different values of n, displaying a linear increase
with the number of cycles. Hence, we can write 〈y〉 as a function of n in terms of the
distance to the neighbouring unit cell in the forward direction, αΛ, and the probability
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of moving forward in each cycle, P , given by Eq. 4.25. We have

〈y〉 = 〈y0〉+ nα′ΛP (4.31)

where 〈y0〉 is the mean initial position, 〈y0〉 = (1 − α)Λ. With the previously discussed
values, τF = 6 ms and toff = 4.5 ms, we have P = 0.13 and α′ is left as a fitting parameter.
The fit of the simulation results to Eq. 4.31 is shown as a blue line in the figure, with
α′ = 0.3, a value that is very close to the theoretical value, α = 0.36. Thereby we can
estimate the number of cycles needed for the the bead’s mean position to travel a certain
number of unit cells. For instance, we can predict that in ∼ 102 cycles, that is t = 1.6 s,
the bead’s mean position will reach the fifth potential well in the forward direction.

Finally, we discuss some issues related to the practical implementation of the plasmonic
ratchet. It should be noted that the performance of the device can be affected by thermal-
induced dynamics, as light coupling to LSPs in metallic particles leads to heat dissipation
into the surroundings [265]. These effects should be minimized in an experiment by (i)
reducing heat absorption in the metal by low illumination intensities, (ii) a careful design
of the plasmonic structure (for instance, a substrate with a high thermal conductivity
can work as a heat sink [266]) and (iii) considering thin fluidic cells [151]. This last point
has another advantage, as it prevents beads from escaping in the vertical direction when
the illumination is turned off.

4.4 Conclusions

To summarize, in this Chapter we have presented a proposal for transport of subwave-
length dielectric particles in a plasmonic system that takes advantage of random thermal
motion. This plasmonic Brownian ratchet only requires the periodic modulation in time
of the large field enhancement generated in asymmetric plasmonic structures upon illumi-
nation. Here we have studied a proof of principles device, based on an array of plasmonic
nanostructures composed of four dipole antennas of gradually varying lengths. We have
shown that the nano-optical traps supported by such plasmonic nanostructures enable
the trapping of a dielectric bead and we have characterized the optical trapping poten-
tial. In addition, by means of MD simulations, we have demonstrated the statistical
rectification of the Brownian motion of a sub-micrometer bead in the absence of an
external bias or a large scale temperature gradient. The use of plasmonic structures al-
lows to overcome the limitations of conventional techniques for light-based manipulation
of particles, permitting to control the flow of subwavelength particles. Moreover, the
proposed plasmonic brownian ratchet is a flexible device, as, for instance, the particle’s
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4. Plasmonic Brownian ratchet

propagation direction can be reversed by just tuning the wavelength. In particular, due
to the slightly different resonance frequency of the dipole antennas, the anisotropy of
the trapping potential can be reversed by exciting the shortest antenna instead of the
longest one.
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Chapter 5

Coupling between quantum emitters and
propagating surface plasmons

5.1 Introduction

This Chapter addresses the topic of light-matter coupling in plasmonic systems. As we
introduced in Section 1.5, one of the main goals of Quantum Plasmonics is to provide
an efficient and controlled coupling between QEs and SPPs. The sub-diffraction limited
confinement of the EM field provided by SPPs enables new routes for the control of the
interaction between QEs and photons. Plasmonic surface modes, through their small
mode volumes and large enhancements of the EM field, offer a different way to control
light-matter interaction, which has been extensively studied in the field of cavity QED
and is interesting both from a fundamental point of view and for applications in quantum
technologies [156].

As we have already reviewed, the coupling between light and QEs can be separated
into two different regimes depending on the interplay between the coupling strength and
the system losses. In the WC regime the QE undergoes an irreversible decay from the
excited to the ground state. The effect of the EM field is to modify the spontaneous
decay rate, or inversely the lifetime, of the QE via the Purcell effect [178]. On the
other hand, when the coupling strength overcomes all the dissipation mechanisms, the
QE-field system enters into the SC regime, where a reversible energy exchange takes
place. While the modification of the spontaneous decay rate of an individual QE close to
plasmonic systems has been demonstrated many times since the pioneering experiments
[174–177], the observation of the SC regime remains elusive. Only theoretical works have
considered the SC between QEs and LSPs in metal nanoparticles [196–199] or SPPs in
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5. Coupling between quantum emitters and propagating surface plasmons

plasmonic waveguides and surfaces [200–203]. On the other hand, the SC regime has
been observed in experiments where a collection of QEs interacts with the SPP modes
supported by different metallic nanostructures [204–215]. In this kind of systems, the
real-time observation of the coherent QE-SPP dynamics has also been reported [216]. In
this Chapter we study the coupling between QEs and the EM field in plasmonic systems
of different configurations: individual emitters in the vicinity of plasmonic structures,
two QEs coupled through a plasmonic mode and a collection of QEs strongly coupled to
a propagating SPP.

This Chapter is structured as follows. We start by reviewing the theoretical framework
necessary to study the coupling of a QE to the EM field in inhomogeneous environments
in Section 5.2. Next, in Section 5.3 we consider the particular case of an individual QE
coupled to plasmonic media. We first consider the modified spontaneous decay rate of the
emitter in the vicinity of different plasmonic structures (Subsection 5.3.1). In particular,
we consider a semi-infinite metal surface and a graphene sheet, paying particular atten-
tion to the coupling to the SPPs supported by those systems. Next, in Subsection 5.3.2,
we revisit the problem of an individual QE interacting with layered metallic structures
and we exactly solve for the dynamics of the system, showing that reversible dynam-
ics takes place under some conditions. In Section 5.4 we study the interaction between
two QEs mediated by SPPs, considering the particular case of the SPPs supported by
graphene sheets (Subsection 5.4.2) and ribbons (Subsection 5.4.3). Finally, in Section 5.5
we study the SC phenomenon between ensembles of QEs and propagating SPPs observed
in metal surfaces. For that purpose we develop a quantum framework that accounts for
the coherent coupling between QEs and SPPs and incorporates the presence of dissipa-
tion and dephasing (Subsections 5.5.1 and 5.5.2). In addition, the quantum framework
can deal with complex aspects such as saturation effects and quantum statistics, which
we present in Subsection 5.5.3.

5.2 A quantum emitter coupled to the

electromagnetic field

We begin by presenting the theoretical formalism that allows us to deal with the coupling
of QEs to the EM modes supported by the flat plasmonic nanostructures studied in this
Chapter. A proper treatment of a QE interacting with the EM field requires a QED
formalism in which both the emitter’s energy levels and the EM field are quantized. In
Subsection 5.2.1 we present the QED treatment of a QE that has discrete energy states
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5.2. A quantum emitter coupled to the electromagnetic field

and couples to the EM field by emitting (or absorbing) photons. We start by deriving the
Hamiltonian of the system. Next, we consider the case of an individual QE and present
a formalism to deal with the dynamics of the QE’s population. In the case of a weak
coupling strength between the QE and the EM field, we derive the spontaneous decay
rate of the QE. In addition, in Subsection 5.2.2 we briefly review the classical picture of a
dipole emitter radiating in inhomogeneous environments. We consider the modification
in the dipole’s rate of energy dissipation and we find that this quantity has the same
expression as the normalized spontaneous decay rate derived within the QED formalism.

5.2.1 Quantum formalism

Let us start by considering here the QED formalism that handles the QE-field coupled
system. In particular, we are interested in the interaction between QEs and the EM
modes supported by plasmonic structures. Such plasmonic media are characterized by
a frequency-dependent and spatially inhomogeneous, complex permittivity ε(r, ω). As
we described in Section 1.1, in the optical regime flat metal/dielectric interfaces (as
well as graphene sheets at lower frequencies) support the propagation of SPPs. While
at frequencies well below ωsp, the character of the SPPs is predominantly photon-like,
as the frequency increases the SPPs are more plasmon-like and ohmic losses in the
metal start to be important. This means that depending on the frequency regime under
consideration, the importance of absorption varies significantly. When SPPs are more
photon-like, losses in the metal can be treated perturbatively. On the other hand, at
higher frequencies absorption can even play a role in the QE-field interaction and losses
in the metal need to be appropriately handled. In the following, we first introduce a
canonical quantization scheme appropriate for systems where losses can be neglected or
introduced perturbatively. Next, we upgrade the formalism by means of a macroscopic
QED approach that is able to deal with QEs in the presence of dispersive and absorbing
media.

A quantum emitter interacting with the electromagnetic field in the
presence of non-absorbing media

The Hamiltonian that describes a QE coupled to the EM field in the absence of losses is
composed of three terms: the QE’s excitation Hamiltonian, the continuum of EM modes
and an interaction term. First, the QE’s term is needed. The QE is represented under the
two-level system approximation: it possesses two energy levels (ground, |g〉, and excited,
|e〉 , states) with an optically active transition between them at frequency ω0. Within
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5. Coupling between quantum emitters and propagating surface plasmons

this scheme, the Hamiltonian for the QE reads as

H0 = ~ω0σ
†σ . (5.1)

Here, σ = |g〉 〈e| and σ† = |e〉 〈g| describe the QE’s raising and lowering operators, respec-
tively, that satisfy fermionic anticommutating algebra, i.e.

[
σ, σ†

]
+

= 1. The two-level
system description assumes a large separation between the electronic energy levels of the
QE, with only one possible transition at the resonance frequency. While being usually a
good approximation for semiconductor QDs or NV centers, it is just a first approxima-
tion for complex organic molecules, where non-radiative decay channels associated with
vibro-rotational levels are important.

The second term corresponds to the quantized EM field in a lossless medium. The
canonical quantization procedure [267] involves an expansion over a set of normal modes
uk,λ(r, ω) labeled by the wave vector, k, and the polarization state, λ = 1, 2. By defining
the creation and annihilation operators of the EM field, a†k,λ and ak,λ, which satisfy
bosonic commutator relations,

[
ak,λ, a

†
k′,λ′
]

= δk,k′δλ,λ′ , we can write the electric field as
follows

E(r) =
∑
k,λ

[
uk,λ(r, ω)ak,λ + u∗k,λ(r, ω)a†k,λ

]
, (5.2)

where the normal modes evolve in time following uk,λ(r, t) = uk,λ(r, ω)e−iωt. In free-space,
a canonical basis is that of plane waves with wave vectors k quantized in a 3D box of
volume V = L3. For each wave vector, which satisfy the dispersion relation k2 = ω2

k/c
2,

there are two polarization states with unit vectors ûk,λ such that ûk,λ · ûk,λ′ = δλ,λ′ and
ûk,λ · k = 0. This yields

E(r) =
∑
k,λ

√
~ωk

2ε0V
ûk,λ

[
eikrak,λ + e−ikra†k,λ

]
. (5.3)

By means of operators a†k,λ and ak,λ, the free-energy Hamiltonian of the EM field can
be written as

HEM =
∑
k,λ

~ωka
†
k,λak,λ . (5.4)

Note that in the equation above the sum stands for∑
k,λ

=
V

(2π)3

∑
λ=1,2

∫
d3k . (5.5)

The interaction term in the dipole approximation can be written from HI = −µeg ·E,
where µeg = µ(σ + σ†) is the dipole moment operator with µ = 〈e|µeg|g〉 = 〈g|µeg|e〉.
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We have

HI =
∑
k,λ

~gk,λ
[(
σ + σ†

) (
eikrak,λ + e−ikra†k,λ

)]
, (5.6)

where gk,σ is the coupling constant. From Eq. 5.3 we can write

gk,λ =

√
ωk

2~ε0V
µ · ûk,λ . (5.7)

We see in expression 5.6 that there are two types of interaction processes: while the
terms aσ† and a†σ conserve the number of excitations, the terms a†σ† and aσ do not do
so. By writing HI in the interaction picture,

HI(t) =
∑
k,λ

~gk,λ
[(
σe−iω0t + σ†eiω0t

) (
ei(kr−ωkt)ak,λ + e−i(kr−ωkt)a†k,λ

)]
, (5.8)

the non-conserving processes can be identified as fast oscillating terms. The so-called
rotating wave approximation states that those terms can be neglected as long as |gk,σ| �
ω0 +ωk. Under this assumption, the Hamiltonian can finally be written as

H = ~ω0σ
†σ +

∑
k,λ

~ωka
†
k,λak,λ +

∑
k,λ

~gk,λ
[
σ†ak,λ + σa†k,λ

]
. (5.9)

The Hamiltonian above describes a QE interacting with a set of EM modes 1. This
formalism can deal with the dynamics of QEs coupled to the EM field. However, the
quantization procedure that we have made use of is limited to the case of non-absorbing
media.

A quantum emitter interacting with the electromagnetic field in the
presence of absorbing media

We now upgrade the QED framework in order to consider the interaction between QEs
and the EM field in the presence of dispersive and absorbing media. Including absorp-
tion in the quantum formalism requires a reconsideration of the quantization procedure
of the EM-field [268, 269]. Now we briefly review the macroscopic approach to QED in
absorbing media, a detailed account of which can be found in Ref. [270]. This approach
is based on the quantization of the macroscopic Maxwell’s equations through the con-
sideration of an overall system composed of the EM field and the medium, including its
dissipative part.

1Note that Hamiltonian 5.9 is usually referred to as Jaynes-Cummings model for the case of a single
EM mode
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Let us first consider the quantization of the EM field. In the presence of dispersing
and absorbing media of dielectric function ε(r, ω), the field Hamiltonian derived in the
above (Eq. 5.4) needs to be replaced by the following expression

HEM =

∫
d3r

∫ ∞
0

dω ~ω f †(r, ω) · f(r, ω), (5.10)

where we have introduced a continuum set of bosonic field operators, f(r, ω) and f †(r, ω).
These operators are associated with the elementary excitations of the field-matter com-
posed system. The electric field can be expressed in terms of the bosonic operators as

E(r, ω) = i

√
~
πε0

ω2

c2

∫
d3r′

√
Im [ε(r′, ω)]Ĝ(r, r′, ω) · f(r′, ω), (5.11)

with Ĝ(r, r, ω) being the Green’s function of the classical treatment of the field generated
by a dipole, which reads as

∇×∇× Ĝ(r, r0, ω)− ω2

c2
ε(r, ω)Ĝ(r, r0, ω) = Îδ(r− r0). (5.12)

The electric field operator is then given by E(r) = E(+)(r) + E(−)(r), with

E(+)(r) =

∫ ∞
0

dωE(r, ω). (5.13)

and E(−)(r) =
[
E(+)(r)

]†. Accordingly, the magnetic field satisfies an equivalent relation
between B(r) and B(r, ω), with B(r, ω) = (iω)−1∇× E(r, ω).

Next, in order to include the QE and its interaction with the EM field we follow the
standard procedure and consider the minimal coupling Hamiltonian where the QE (or
an ensemble of them) is considered to be composed of a collection of point charges qα
located at points rα and with momentum pα. The Hamiltonian reads as

H =

∫
d3r

∫ ∞
0

dω ~ω f †(r, ω) · f(r, ω) +
∑
α

1

2mα

[pα − qαA(rα)]2

+
1

2

∫
d3rρA(r)φA(r) +

∫
d3rρA(r)φ(r) . (5.14)

Here, the first term is the EM energy in the absence of any extra charges (Eq. 5.10),
while the rest of the terms account for the effect of such charges in the medium-assisted
QE-field interaction. The second term corresponds to the kinetic energy of the charges,
expressed by means of the vector potential, A(r). The third and fourth terms are, respec-
tively: their Coulomb energy (with ρA(r) and φA(r) being the charge density of particles
and the scalar Coulomb potential) and the interaction energy between the particles and
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the medium (with φ(r) being the field potential in the Coulomb gauge). Assuming a two-
level QE at position r0, with resonance frequency ω0 and described by operators {σ†, σ},
and that the already introduced electric-dipole and rotating wave approximations hold,
the minimal coupling Hamiltonian can be written as

H = ~ω0σ
†σ +

∫
d3r

∫ ∞
0

dω ~ω f †(r, ω) · f(r, ω)−
[
σ†µ · E(+)(r0) + σE(−)(r0) · µ

]
.

(5.15)
This equation represents a generalization of Hamiltonian 5.9 for the case of absorbing
media. As we have seen, the macroscopic QED approach provides an appropriate field
quantization scheme in the presence of losses and dispersion.

Dynamics of the quantum emitter’s population

The Hamiltonian given by Eq. 5.15 determines the population dynamics of a QE coupled
to the EM modes supported by an absorbing and dispersive medium, such as a plasmonic
environment, as we will see in the following. The population of the QE experiences
spontaneous emission, the process by which the QE’s population decays from an excited
state to the ground state through photon emission. In free space, the QE’s population
features an exponential decay characterized by a rate, γ0. When the emitter is surrounded
by a given environment, the EM modes available for the decay change, which determines
the dynamics of the QE’s population. If the system is in the WC regime, the QE decays
at a modified rate. On the other hand, if the system is in the SC regime, reversible
dynamics with a coherent energy transfer between the QE and the EM field takes place.

Let us start by considering a QE at position r0 that is initially in its excited state, while
there are no photons, i.e. state |e, 0r,ω〉 ≡ σ† |g〉 |0r,ω〉. Then, the QE can decay through
the spontaneous emission of a photon of frequency ω into a set of final states where the
QE is in the ground state and there is one photon, i.e. |g, 1r,ω〉 ≡ f †(r0, ω) |g〉 |0r,ω〉. In
the Schrödinger picture, a state of the system can be expressed as

|ψ(t)〉 = ce(t) |e, 0r,ω〉+

∫
d3r

∫ ∞
0

dω cr,ω(t) |g, 1r,ω〉 , (5.16)

where ce(t) gives the population of the QE’s excited state as nσ(t) = |ce(t)|2. The time
evolution of the system is determined by Schrödinger equation,

i~
d |ψ〉
dt

= H |ψ〉 , (5.17)

with H being the Hamiltonian given by Eq. 5.15. This formalism is known as the Wigner-
Weisskopf problem, see for instance Ref. [270], and yields the following set of differential
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equations

˙̃ce(t) = − 1√
πε0~

∫ ∞
0

dω
ω2

c2
·

·
∫

d3r
√

Im [ε(r, ω)]µ · Ĝ(r0, r, ω)c̃r,ω(t)e−i(ω−ω0)t, (5.18)

˙̃cr,ω(t) =
1√
πε0~

ω2

c2

√
Im [ε(r, ω)]Ĝ∗(r0, r, ω) · µ c̃e(t)ei(ω−ω0)t, (5.19)

where we have introduced two modified coefficients, c̃e(t) and c̃r,ω(t), that relate to the
ones in Eq. 5.16 via ce(t) = c̃e(t)e

−iω0t and cr,ω(t) = c̃r,ω(t)e−iωt. Formal integration of
Eq. 5.19 with the initial condition c̃r,ωλ(0) = 0 yields

c̃r,ω(t) =
1√
πε0~

ω2

c2

√
Im [ε(r, ω)]µ · Ĝ∗(r0, r, ω)

∫ t

0

dt′ c̃e(t′)ei(ω−ω0)t′ . (5.20)

Inserting the last expression into the equation for ˙̃ce(t) (5.18) leads to an integro-
differential equation for the modified excited state coefficient c̃e(t), which reads as

˙̃ce(t) = − 1

πε0~

∫ ∞
0

dω
ω2

c2

∫
d3r

ω2

c2
Im [ε(r, ω)]

×
[
µ ·
(
Ĝ(r0, r, ω) · Ĝ∗(r0, r, ω)

)
· µ
] ∫ t

0

dt′ e−i(ω−ω0)(t−t′)c̃e(t
′). (5.21)

Finally, making use of the relation

Im
{
Ĝ(r, r′, ω)

}
=

∫
dr′′

ω2

c2
Im [ε(r′′, ω)]

(
Ĝ(r, r′′, ω) · Ĝ∗(r′, r′′, ω)

)
, (5.22)

we arrive to the following integro-differential equation

˙̃ce(t) = −
∫ t

0

dt′K(t− t′)c̃e(t′), (5.23)

where the Kernel K(t− t′) is defined as

K(τ) =
|µ|2

πε0~

∫ ∞
0

dω
ω2

c2

[
nµ · Im

{
Ĝ(r0, r0, ω)

}
· nµ

]
e−i(ω−ω0)τ

=

∫ ∞
0

dωJ(ω)ei(ω0−ω)τ . (5.24)

In the last equality above, we have introduced the spectral density function, which reads
as

J(ω) =
|µ|2ω2

πε0~c2

[
nµ · Im

{
Ĝ(r0, r0, ω)

}
· nµ

]
, (5.25)

where nµ is the unit vector in the dipole moment direction, such that µ = |µ|nµ. Ex-
pressions 5.23 - 5.25 constitute an important set of equations as they allow for the
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5.2. A quantum emitter coupled to the electromagnetic field

calculation of the time-evolution of the coupled QE-field system through an integration
of the spectral function over the whole frequency range. These equations are exact, and
solving them leads to a proper treatment of the QED dynamics of coupled systems in-
dependently of the coupling strength as long as the rotating wave approximation holds
for Hamiltonian 5.15. In addition, they apply to QEs in the presence of an arbitrary
configuration of absorbing materials. All the information concerning the environment
is contained in the spectral density, which is fully determined by the classical Green’s
function of the problem.

Markov approximation

In the case of a weak coupling strength between the QE and the EM modes, the Wigner-
Weisskopf formalism can be further simplified. We start by assuming the spectral func-
tion to be smooth around the QE’s resonance frequency, ω0, i.e., dJ(ω)/dω � 1. This
is the so-called Markov approximation, which implies that the QE’s spontaneous decay
is a memoryless process. This means that the dominant contribution comes from t ≈ t′

and the integral in Eq. 5.23 can be taken up to ∞. Then, the Kernel function given by
Eq. 5.24 can be approximated to

K(τ) ≈ J(ω0)

∫ ∞
0

dω ei(ω0−ω)τ = J(ω0)πδ(τ) + i∆ω. (5.26)

Here, ∆ω = P.V.
∫∞

0
dωJ(ω)ei(ω0−ω)τ is the Lamb shift, which represents a small fre-

quency shift in the QE’s frequency that will be neglected here. Then, Eq. 5.23 reduces
to

˙̃ce(t) = −J(ω0)π

∫ ∞
0

dt′δ(t− t′)c̃e(t) = −Γ(ω0)

2
c̃e(t). (5.27)

where we have introduced the quantity Γ(ω) = 2πJ(ω). The above differential equation
has an analytical solution, c̃e(t) = c̃e(0)e−Γ(ω0)t/2, which implies an irreversible exponen-
tial decay of the QE’s excited state population:

nσ(t) = nσ(0)e−Γ(ω0)t, (5.28)

from which it is clear that Γ(ω0) is the spontaneous decay rate. Recalling expression 5.25
we can explicitly write Γ(ω) as

Γ(ω) =
2|µ|2ω2

ε0~c2

[
nµ · Im

{
Ĝ(r0, r0, ω)

}
· nµ

]
. (5.29)

An equivalent and particularly insightful way of writing the spontaneous decay rate (Eq.
5.29) is in terms of the local EM density of states, ρµ. This quantity can be written in
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5. Coupling between quantum emitters and propagating surface plasmons

terms of the Green’s function by making use of its normal mode expansion, as shown in
Appendix C. According to Eq. C.10, we have for ρµ:

ρµ(r0, ω) =
6ω

πc2

[
nµ · Im

{
Ĝ(r0, r0, ω)

}
· nµ

]
, (5.30)

which allows us to write
Γ(ω) =

πω

3~ε0
|µ|2ρµ(r0, ω). (5.31)

The EM density of states represents the ability of the structure surrounding the emitter
to support the EM mode into which the QE decays. In other words, the density of
states is determined by the materials and geometries that constitute the environment
for the QE, and it controls the spontaneous emission rate. Equation 5.29 constitutes
an important result as it implies that the spontaneous decay rate, rather than being
a radiative intrinsic property of atoms or molecules, is affected by the environment
surrounding the emitter. This fact is clear from the above equation, where the effect of
the environment is contained in the local density of states that relates to the classical
Green’s function through Eq. 5.30. The modification of the spontaneous emission rate is
known as Purcell effect, as he was the first to point out this phenomenon in the context
of a magnetic dipole in an electronic device [178].

Finally, the free-space spontaneous decay rate can be derived by particularizing the
above expression for Γ(ω), Eq. 5.29, for the vacuum Green’s function derived in Appendix
C (Eq. C.24),

Im
{
Ĝ0(r0, r0, ω)

}
=

ω

6πc
. (5.32)

Thereby we arrive to the intrinsic decay rate of a QE, which we term γ0 and reads as

γ0 =
|µ|2ω3

0

3πε0~c3
. (5.33)

This expression represents the relationship between a QE’s transition frequency and
dipole moment, and its radiative decay rate.

5.2.2 Green’s function formalism for a classical dipole coupled

to the electromagnetic field

We now consider the radiation properties of an emitter coupled to the EM field within a
classical framework. In particular, we follow Ref. [11] to calculate the energy dissipation
rate for an oscillating dipole, which has a very insightful expression in terms of the
Green’s function formalism. Let us consider an electric point dipole located at point
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5.2. A quantum emitter coupled to the electromagnetic field

r = r0 and with a harmonically oscillating dipole moment µ(t) = Re [µ exp (−iωt)],
where ω is the resonance frequency. The electric field generated by the dipole within a
medium characterized by the dielectric permittivity ε(r, ω) corresponds to the solution
of the wave equation

∇×∇× E(r)− ω2

c2
ε(r, ω)E(r) = iωµ0j(r) , (5.34)

with a current density j(r) = −iωµδ[r− r0], while the field H(r) satisfies

∇× ε(r, ω)−1∇×H(r)− ω2

c2
µ0H(r) = ∇ε(r, ω)−1j(r) , (5.35)

where we have assumed a non-magnetic medium. Equivalently, the EM fields at point r
generated by the arbitrarily oriented dipole placed at r0 can be written in terms of the
Green’s dyadic Ĝ(r, r0, ω) as

E(r) = ω2µ0Ĝ(r, r0, ω)µ(r0) , (5.36)

H(r) = −iω
[
∇× Ĝ(r, r0, ω)

]
µ(r0) , (5.37)

where the Green’s function satisfies the wave equation for a point source, given by ex-
pression 5.12.

As the dipole oscillates, it radiates energy into the surrounding medium. According
to Poynting’s theorem, the average power radiated by the dipole, P , has to be equal to
the rate of energy dissipation, dW/dt, which is given by

dW
dt

= −1

2

∫
V

Re{j∗ · E}dV, (5.38)

where V is the source volume. Introducing the dipole’s current density, we have for the
radiated power

P =
ω

2
Im{µ∗ · E(r0)}. (5.39)

By replacing the electric field in the above expression for the radiated power with the
Green’s function through Eq. 5.36, we obtain

P =
ω3|µ|2

2c2ε0ε

[
nµ · Im

{
Ĝ(r0, r0, ω)

}
· nµ

]
. (5.40)

This expression represents an important relation between the power radiated by a dipole
and the Green’s function of the system. It states that the radiated power depends on the
dipole’s moment orientation, its frequency of oscillation and the imaginary part of the
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Green’s function evaluated at the dipole’s location, r0. The above equation is a general
relation that applies not only to a dipole radiating in a homogeneous medium, such as free
space or a dielectric material, but also to a dipole within an inhomogeneous environment,
such as a cavity or a plasmonic structure. The characteristics of the environment are
contained in the Green’s function, that is specific to the problem.

When considering a dipole located in an inhomogeneous environment, it is convenient
to identify two contributions to the Green’s function: a free-space part and a scattered
part. The first term corresponds to the direct dipole field, whereas the second one repre-
sents the field that is scattered from the environment after its former generation by the
dipole. Hence, we can write the Green’s function as

Ĝ(r0, r0, ω) = Ĝ0(r0, r0, ω) + ĜS(r0, r0, ω), (5.41)

where Ĝ0 is the free space contribution and ĜS is the scattered part. The power dissi-
pated by a harmonically oscillating dipole in free space can be obtained from Eq. 5.40
by using the free space Green’s function (Eq. 5.32). We have

P0 =
ω4|µ|2

12πc3ε0ε
, (5.42)

which allows us to write the normalized rate of energy dissipation as

P

P0

= 1 +
6πc

ω

[
nµ · Im

{
ĜS(r0, r0, ω)

}
· nµ

]
. (5.43)

Therefore, the change in radiated power depends on the field emitted by the dipole that
is scattered by the environment and then arrives back to the dipole.

Finally, let us go back to the spontaneous decay rate of a QE derived within the QED
framework in the previous Subsection (Eq. 5.29). The decay rate normalized it to its free
space value, γ0, can be written as,

Γ

γ0

= 1 +
6πc

ω

[
nµ · Im

{
ĜS(r0, r0, ω)

}
· nµ

]
, (5.44)

where we have made use of the separation of the Green’s function in its free-space and
scattered contributions according to Eq. 5.41. Interestingly, we see from this expression
that the normalized spontaneous emission rate is equivalent to the normalized rate of
energy dissipation given by Eq. 5.43 and derived within the classical formalism. Hence,
we have

Γ

γ0

=
P

P0

, (5.45)
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and decay rate variations in inhomogeneous systems can be determined through a cal-
culation of the classical EM energy radiated by a dipole.

In the following, we study the coupling between QEs and the EM modes supported
by plasmonic structures in several configurations. First, in Section 5.3 we consider the
case of a single QE placed in front of flat plasmonic structures. Here, we first review
the WC regime, where the QE features an irreversible decay that can be understood
within the Markov approximation through Eq. 5.29. Next, we go beyond the Markov
approximation by exactly solving the dynamics of the QE’s population. The Wigner-
Weiskopf formalism (Eqs. 5.23 - 5.25) allows us to do so, and thereby to determine the
regions where reversible dynamics takes place. In Section 5.4 we consider the case of
two QEs coupled through a plasmonic mode. In particular, we show that the interaction
between two QEs can be efficiently mediated by the SPPs supported by graphene sheets
and ribbons. Finally, in Section 5.5 we develop a theoretical framework to treat the SC
regime between an ensemble of QEs and the SPPs propagating along flat metal/dielectric
interfaces.

5.3 Single quantum emitter coupled to plasmonic

media

In this Section we address the coupling of a single QE to flat plasmonic structures under
two different regimes. First, in Subsection 5.3.1 we work under the Markov approxima-
tion, where the QE’s population decays irreversibly. We review the modification of the
spontaneous decay rate, Γ/γ0, for QEs in the optical regime close to a metal/dielectric
interface as well as for QEs in the THz regime in the vicinity of a graphene sheet. For
both cases, we show that if the QE is placed at the appropriate distances to the plas-
monic medium, its spontaneous emission can be greatly enhanced due to coupling to
SPPs. Moreover, in the case of graphene, the coupling to SPPs can be tuned by means
of the chemical potential of the sheet. On the other hand, when the WC regime breaks
down, the decay of the QE is no longer exponential and it can not be described by a rate.
In this case, the dynamics of the coupled QE-plasmonic media system can be exactly
determined by means of the Wigner-Weisskopf formalism presented in the previous Sec-
tion. In Subsection 5.3.2 we solve Eq. 5.23 for a QE close to a metal/dielectric interface
and a thin metal film and we determine the conditions for which reversibility can be
found in the dynamics.
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5.3.1 Modification of the spontaneous decay rate

In this Subsection we apply Eq. 5.29 to study the modified spontaneous decay rate of
a QE in an inhomogeneous plasmonic environment. As we have already described in
the previous Section, for weak coupling strengths between the QE and the EM modes
supported by the plasmonic environment, an exponential decay of the QE’s population
is expected. Such a decay is characterized by a rate, Γ(ω), that can be written in terms
of the classical Green’s function of the system (see Eq. 5.29), which contains all the
information of the environment surrounding the QE. The modification of the decay rate
can also be understood in terms of the local density of states, a quantity that represents
the number of final states available for the spontaneous decay. Importantly, depending
on the properties of the surrounding media, the local density of states can be higher
or lower than that of free space [178]. In the first case, Γ/γ0 > 1 and the decay rate is
enhanced with respect to emission vacuum. The lifetime, τ = Γ−1, of the emitter, is then
reduced and the dipole decays faster. When there is a lower number of available states
than in free space, Γ/γ0 < 1 and there is an inhibition of the spontaneous emission, or,
in other words, the lifetime of the emitter is increased. Plasmonic nanostructures have
been shown to greatly enhance the spontaneous emission of an emitter due to the non
radiative coupling to SPPs, which provide a large density of states [179, 180].

Here we consider a QE in the presence of a plasmonic media with a planar interface
at z = 0. We study two different cases: (i) a semi-infinite metal surface of dielectric
permittivity ε(ω) [see Fig. 5.1(a)] and (ii) a graphene sheet of conductivity σ(ω) [see Fig.
5.1(b)]. According to Eq. 5.29, the QE’s spontaneous decay rate is fully determined by the
classical Green’s tensor of the system, Ĝ(r, r, ω), evaluated at the emitter’s frequency,
ω0, and at its location, r = r0, with r0 = (r‖, z). For the structures of interest here,
with a single interface, it is convenient to separate the Green’s function in a free-space
and a scattered part, following Eq. 5.41, an thereby arriving to Eq. 5.44. The scattered
Green’s function, ĜS(r0, r0, ω0), in this case is indeed the reflected Green’s function,
ĜR(r0, r0, ω0), and we can write

Γ

γ0

= 1 +
6πc

ω

[
nµ · Im

{
ĜR(r0, r0, ω0)

}
· nµ

]
. (5.46)

Hence, the change in the QE’s decay rate in the presence of a layered structure is
dictated by the field emitted by itself, reflected at the interface and arriving back at it.
The Green’s function can be written from a plane wave expansion of s and p-polarized
plane waves, as detailed in Appendix C. As any dipole moment may be considered as
a combination of a perpendicular (labeled as ⊥) and a parallel (‖) components, it is
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Figure 5.1: QE decaying close to two different plasmonic media: a metal surface and graphene.
(a) QE of resonance frequency ω0 and dipole moment µ at a distance z from a semi-infinite metal
region. The metal dielectric permittivity is ε(ω). (b) QE located in the vicinity of a graphene
sheet of conductivity σ(ω, µ, T ), with µ being the chemical potential and T the temperature.

sufficient to consider these two orientations. From the expressions for the Green’s dyadic
derived in Appendix C (Eqs. C.31 and C.32), we can write

Ĝ‖(r0, r0, ω0) =
i

8π

∫ ∞
0

dk‖
k‖
kz

[
1 + (kz/k0)2 +

(
rs(k‖) + (kz/k0)2rp(k‖)

)
e2ikzz

]
, (5.47)

Ĝ⊥(r0, r0, ω0) =
i

8πk2
o

∫ ∞
0

dk‖
k3
‖

kz

[
1− rp(k‖)e2ikzz

]
. (5.48)

where k0 = ω/c is the free-space wave number and k = (k||, kz) is the wave vector, with
k|| = |k||| and kz =

√
k2

0 − k2
||. In addition, rs(k‖) and rp(k‖) represent the reflection

coefficients for s and p polarizations. In both equations the free-space and reflected
contributions can be easily separated, and we have for the modified decay rates

Γ‖
γ0

= 1 +
3

4
Re
[∫ ∞

0

dq
q

qz

(
rs(q) + q2

zrp(q)
)
e2ik0qzz

]
, (5.49)

Γ⊥
γ0

= 1− 3

2
Re
[∫ ∞

0

dq
q3

qz
rp(q)e

2ik0qzz

]
, (5.50)

where we have introduced the normalized wave vectors: q = k‖/k0 and qz =
√

1− q2.
The two equations above determine the modified decay rate for a QE of dipole moment
parallel or perpendicular to a planar interface. They imply that a dipole moment oriented
perpendicular to the surface will couple only to the p modes supported by the layered
structure, since expression 5.50 involves only rp, while a dipole of any other orientation
will couple to s as well as p modes. In the following, we make use of these expressions
to study how the emission properties of a QE are modified by the presence of (i) a
semi-infinite metal region and (ii) a graphene sheet.
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Modified spontaneous decay rate of a QE close to a flat metal/dielectric
interface

Let us first consider a QE located at a distance z of a metal/vacuum interface, as sketched
in Fig. 5.1(a). The reflection coefficients are in this case determined by the wave vectors
in the direction perpendicular to the interface, qz =

√
1− q2 in the dielectric region of

the interface and qmz =
√
ε(ω)− q2 in the metal region, as

rp(q) =
qmz − ε(ω)qz
qmz + ε(ω)qz

, rs(q) =
qmz − qz
qmz + qz

. (5.51)

Writing the decay rate as in Eqs. 5.49 and 5.50 provides a deep physical insight into the
problem, as it allows us to examine where the radiation emitted by the QE is going, or,
in other words, into which channels the QE may decay and their relative importance.
The QE’s dipolar field contains modes of different wave vectors, q. Those modes with
q lying inside the light line, 0 < q < 1, represent coupling of the emitter to radiation,
whereas those modes with q > 1 correspond to energy transfer to the substrate through
the near field of the dipole. There are three decay channels to point out [179, 180]:

• Far field radiation: The region of wave vectors determined by 0 < q < 1 represents
the radiation of the QE into the far field. For these modes, qz =

√
1− q2 is real,

meaning that their character is propagating. The contribution of these modes to
the total decay can be expressed for the different orientations as

Γ
‖
Rad

γ0

= 1 +
3

4
Re
[∫ 1

0

dq
q

qz

(
rs(q) + q2

zrp(q)
)
e2ik0qzz

]
, (5.52)

Γ⊥Rad
γ0

= 1− 3

2
Re
[∫ 1

0

dq
q3

qz
rp(q)e

2ik0qzz

]
. (5.53)

• Coupling to SPPs that propagate along the metal/dielectric interface. They appear
as a pole in the reflection coefficient for p polarization, satisfying qz + ε(ω)qmz = 0.
Their dispersion relation, qspp =

√
ε/(1 + ε), lies outside the light line and as a

consequence SPPs are evanescent waves (imaginary qz) bound to the interface (see
Section 1.1). Due to their evanescent character, they can only be excited by the
near field of the QE, when it is in close proximity to the metal surface. The relative
weight of this channel can be calculated by evaluating the pole contribution to the
integrals in Eqs. 5.49 and 5.50 to obtain

Γ
‖
spp

γ0

=
3π

2
Re
[
−iq3

spp
ε(ω0)1/2

ε(ω0)2 − 1
e
−2k0qspp

z√
|ε(ω0)|

]
, (5.54)

Γ⊥spp
γ0

= 3πRe
[
q3
spp
|ε(ω0)|3/2

ε(ω0)2 − 1
e
−2k0qspp

z√
|ε(ω0)|

]
. (5.55)
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Figure 5.2: Normalized decay rate, Γ/γ0, for a QE close to a metal surface as a function of
the emitter’s distance to the surface, z. The QE’s resonance frequency is ~ω0 = 2eV and its
dipole moment is perpendicular to the metal/dielectric interface in (a) and parallel to it in
(b). The normalized total decay rate ΓTot/γ0 (black line) is plotted together with the partial
contributions: radiation to free space ΓRad/γ0 (red line), decay into SPPs Γspp/γ0 (blue line)
and decay into lossy channels ΓNon-Rad/γ0 (green line). The metal permittivity corresponds to
silver and is taken from Ref. [14].

• Coupling to other non radiative modes. The last decay channel, which has been
referred to as lossy surface waves [179], is relevant only for very small distances
since it relies on a broad feature appearing at very large wave vectors, q � 1.
The oscillating near field of the emitter induces excitations in the electronic charge
density, such as electron-hole pairs, that then decay through scattering within the
semi-infinite metal (impurities, phonons, surface potential...). The contribution of
this non radiative decay to the total decay rate can be calculated in the quasi-static
limit. For q � 1, we have qz ≈ iq and qmz ≈ iq and the decay rate simplifies to

Γ
‖
Non-Rad

γ0

=
3

16

1

(k0z)3
Im
(
ε(ω0)− 1

ε(ω0) + 1

)
, (5.56)

Γ⊥Non-Rad
γ0

=
3

8

1

(k0z)3
Im
(
ε(ω0)− 1

ε(ω0) + 1

)
. (5.57)

Hence, we can write the total decay rate of the QE as a sum of three contributions as

ΓTot = ΓRad + Γspp + ΓNon-Rad (5.58)

where the partial contributions of each channel (ΓRad, Γspp, ΓNon-Rad) are listed in Eqs.
5.52 to 5.57 for the perpendicular and parallel orientations the dipole moment. It is clear
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from this set of expressions that the different contributions have a specific dependence
on the distance between the QE and the metal surface, z. The modified total decay rate
together with the partial decays as a function z for a QE in the optical regime (resonance
frequency ~ω0 = 2 eV, or equivalently, λ = 633 nm) is presented in Fig. 5.2. Panel (a)
corresponds to a dipole moment oriented perpendicular to the surface and panel (b) to
the parallel orientation. In both panels and for large distances, radiation to free space is
the main contribution to the total decay, which shows an oscillatory behaviour with z due
to reflection from the interfaces. The non radiative decay to surface plasmons, with an
exponential decay, is relevant at intermediate distances. Finally, non radiative coupling
to losses in the metal always dominates at small distances, with a z−3 dependence.

Both panels of Fig. 5.2 show that the total decay rate, Γ/γ0, is largely enhanced as
the QE is brought closer to the metal surface. The near field of the dipole makes it
possible for the QE to couple to non radiative modes with high q vectors, which imply
large confinement of the EM field. While the so-called lossy surface waves also enhance
the decay of the QE at very small distances to the metal surface, coupling to SPPs is
of particular interest, since they enhance the decay at intermediate distances and, at
the same time, they propagate through the metal surface. This means that they can act
as a channel to mediate the energy transfer between several QEs, as we will see in the
following Section. It is convenient to define here the βspp factor as the fraction of the
emitted radiation that goes into SPPs:

βspp =
Γspp

ΓTot
. (5.59)

Figure 5.3 shows βspp as a function of z for a QE at ~ω0 = 2 eV, oriented perpendicular
to the surface (β⊥, black line) or parallel to it (β‖, blue line). An isotropic average of
orientations (βiso = 2β‖/3 + β⊥/3) is also presented (red line). In the plot, the perpen-
dicular dipole moment displays a region of great interest at intermediate distances 20

nm < z < 300 nm, where β⊥ is very close to 1, meaning that the total decay rate is
dominated by the coupling to SPPs. On the other hand, the coupling of the parallel
dipole moment to SPPs is lower. An average over all orientations, which is likely in an
experiment due to the difficulty in controlling the orientation of QEs, has an intermedi-
ate value βiso ≈ 0.3 over a broad distance range, 20 nm < z < 300 nm. This region of
large βspp is of particular interest in this Chapter and we will show in the following that
this feature is also found for graphene SPPs.
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Figure 5.3: Coupling to SPPs for a QE close to a silver surface as a function of the dis-
tance z: βspp represents the fraction of the emitted radiation that couples to the SPPs at the
metal/dielectric interface, Γspp/ΓTot. The QE’s resonance frequency is ~ω0 = 2 eV and its dipole
moment is oriented perpendicular to the interface for the black line and parallel to it for the
blue line, while the red line corresponds to an isotropic average of orientations.

Modified spontaneous decay rate of a QE close to a graphene sheet

Here we characterize the coupling to graphene SPPs for a QE at frequency ω0 decaying
in the vicinity of a free-standing 2D graphene sheet, as sketched in Fig. 5.1 (b). The
graphene sheet has a conductivity σ(ω), given by Eqs. 1.16 and 1.17. As detailed in
Section 1.1, this quantity depends on the chemical potential of the graphene sheet 2, µ,
the temperature, which we consider to be T = 300 K, and the carriers’ scattering time τ ,
for which we use a value taken from the theoretical predictions, τ = 6 ps [271]. Below a
critical frequency, ~ω ≈ 2µ, Im(σ) < 0 and the graphene sheet supports the propagation
of bound SPP modes.

According to Eq. 5.46, the total decay rate of a QE that is placed close to a graphene
sheet is given by the imaginary part of the Green’s function. Similarly to the case of
a metal surface, coupling to SPPs is larger for a QE with a dipole moment oriented
perpendicularly to the sheet. Hence, in the following we consider only this orientation
for the dipole moment and write the modified decay rate as given in Eq. 5.50,

Γ

γ0

= 1− 3

2
Re
[∫ ∞

0

dq
q3

qz
rp(q)e

2ik0qzz

]
. (5.60)

The reflection coefficient, rp(q), of the graphene layer is written in terms of the normalized

2Not to be confused with the dipole moment used in this chapter, µ.
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conductivity α = 2πσ/c as

rp(q) =
−αqz
αqz + 1

. (5.61)

Figure 5.4 (a) shows the total normalized decay rate (black line) for a QE of resonance
frequency in the THz regime (ν = 2.4 THz, ~ω0 = 1 meV) and for µ = 0.2 eV as
a function of the emitter-graphene distance z, normalized to the free-space wavelength
λ0 = 124 µm. The physical parameters µ and ω0 are chosen to provide a good compromise
in the trade-off between confinement and propagation length for the graphene SPPs, as
discussed in Section 1.1. Similarly to the case of a QE close to a metal surface, three
different regions can be identified in the plot according to the decay mechanisms:

• A radiative region at large distances (z � λ0/10 for the chosen parameters). If
the QE is far enough from the graphene sheet, the total decay rate follows ΓRad/γ0

(blue line), which corresponds to the integration of the radiative modes (0 < q < 1)
in Eq. 5.60.

• A region (λ0/10 < z < λ0/100) where the dominant decay channel is the coupling
to graphene SPPs. In this region, the total modified decay rate follows the partial
SPP decay, ΓG-SPP/γ0 (red line), that can be calculated from the pole contribution
to Eq. 5.60 as

ΓG-SPP

γ0

=
3π

2
Re
[
i
q2
p

α
e2ik0q

p
z z

]
, (5.62)

where qp =
√

1− α−2 and qpz = −α−1 are the normalized momentum components
of the SPP (see Eq. 1.18).

• A non radiative lossy region when the QE is very close to the sheet (z < λ0/100).

Importantly, and as the figure shows, the decay rate of the QE can be enhanced by
several orders of magnitude. Here we are interested in the plasmonic region, where the
graphene SPP contribution to the total decay rate yields enhancement values larger than
100 for the parameters we have chosen. It is interesting to note that the values reached
by ΓG-SPP/γ0 are much larger than for the metal surface considered previously. However,
enhancements similar to the ones obtained with graphene SPPs can also be obtained
for very thin metal films [272] when the thickness is much smaller than the skin depth,
which is challenging from the fabrication point of view, as opposed to the intrinsic 2D
character of graphene. For higher frequencies or smaller chemical potentials, even larger
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(a) (b)

z

Figure 5.4: Dependence with the distance for the decay of a QE in the presence of graphene.
(a) Normalized decay rate, Γ/γ0, for a QE at ν = 2.4 THz (free-space wavelength λ0 = 124 µm)
close to a graphene sheet at a chemical potential µ = 0.2 eV. The black line represents the total
decay rate, ΓTot/γ0, the red line stands for the contribution of radiation to free space, ΓRad/γ0,
and the blue line corresponds to the decay into SPPs, Γspp/γ0. (b) Tuning the coupling to SPPs,
βspp = Γspp/ΓTot, by means of the chemical potential, µ. The dipole moment is perpendicular
to the graphene sheet in all cases.

enhancements of the decay rate in the plasmonic region can be obtained in graphene;
for instance, Γ/γ0 ≈ 103 at λ0 = 64 µm for the same chemical potential.

The parameter that accounts for the efficiency of the coupling to SPPs, the β factor,
is in this case defined as the ratio of the emitter’s decay rate through graphene SPPs
to its total decay rate, βG-SPP = ΓG-SPP/ΓTot. Figure 5.4 (b) studies the possibility of
tuning βG-SPP with the chemical potential. Three values for µ are considered: µ = 0.2, 0.1

and 0.05 eV. For each value of µ there is a range of z’s where βG-SPP is close to 1, which
corresponds to the region where the decay rate is dominated by the plasmonic channel.
This means that the region of high βG-SPP can be dynamically tuned with the chemical
potential, which is in turn controlled by means of an electrostatic gating or a chemical
doping. In particular, when the chemical potential is decreased to 0.1 eV (green line)
and 0.05 eV (blue line), the SPP appears at larger q vectors, it is more confined to the
graphene sheet, and the range of distances where βG-SPP is high is narrower. Compared
to the metal/dielectric interface studied above, a graphene sheet gives very large decay
rates and β factors close to 1. This is due to the huge confinement and large values of
the SPP wave vectors resulting from the 2D character of graphene, which makes the
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coupling to SPPs very efficient. Comparing to thin metal layers, where, as discussed in
Section 1.1, the confinement can also be very large, the most important advantage of
graphene is the capability of tuning the coupling to SPPs by means of a gate potential.

5.3.2 Reversible dynamics for a quantum emitter interacting

with plasmonic media

Now we study the conditions for the breakdown of the Markov approximation and the
appearance of reversible dynamics for an individual QE placed in the close proximity of
plasmonic nanostructures. As we reviewed in the Section 1.5, experimental works where
a single QE interacts with a plasmonic system include the observation of fluorescent
enhancement and quenching in flat metal/dielectric interfaces [174–177, 179, 180] and
metal nanoparticles [28, 29], as well as the efficient single photon generation in metal
nanowires [181–183, 185–187]. All these works are examples of the WC regime, where
the QE’s population decays irreversibly to the plasmon mode. On the other hand, in
situations where the coupling strength between the QE and the EM environment is
sufficiently large to overcome dissipation and decoherence mechanisms, the QE and the
EM field coherently exchange energy. In the context of plasmonic nanostructures, the
SC regime has been studied in theoretical works considering a single QE interacting
with the LSPs supported by metallic structures of different geometries: cigar-shaped
nanoparticles [196], dimer nanoantennas [197] or spherical nanoparticles [198, 199]. In
addition, SC between a single QE and a SPP mode propagating along 1D plasmonic
waveguides [200, 201, 203] or 2D metal surfaces [202] has also been considered. Here we
study the case of an individual QE placed close to 2D flat metal/dielectric interfaces.
In particular, we consider a semi-infinite metal surface and a metal thin film, both
supporting the propagation of 2D SPPs. Differently from previous works in the same
system [202], where a perturbative method able to capture reversibility only up to lowest
order in the coupling was used, here we treat the dynamics of the QE exactly.

In order to study the dynamics of a QE’s population in the presence of the absorbing
metal structure, we make use of the macroscopic QED formalism presented in Section
5.2. In the following, we use that formalism to study the dynamics of a QE coupled to
the EM modes supported by a layered metallic structure. By analyzing the appearance
of oscillations in the QE’s population, we determine the conditions for the break down of
the WC regime and the observation of reversibility in the dynamics. In addition, under
some conditions we are able to map the full dynamics of the problem to a dissipative
Jaynes-Cummings model. Thereby we derive analytical expressions involving the key
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parameters that play a role in the onset of the reversible dynamics.
The system under study is sketched in Fig. 5.5 (a) as an inset panel. An individual

QE is placed on top a of a layered dielectric/metal/dielectric structure. The thickness
of the metal film is h and the dielectric permittivities of the media are εd/εm/εd. For
the dielectric media we take εd = 1 and as the metal we use silver, with a dieletric
funtion modeled by the Drude formula (Eq. 1.1) with the same parameters as those
used in Fig. 1.1 ( ~ωp = 9 eV, ~γp = 0.07 eV and ε∞ = 5.6). The QE is placed at point
r0 = (R, z0), where z0 is the distance between the emitter and the upper metal/dielectric
interface. The emitter is described within a two-level system approximation, {σ, σ†}, and
characterized by its transition frequency ω0 and dipole moment µ. We assume µ to
be oriented perpendicularly to the interface, but similar results could be obtained for
the parallel orientation. In addition, we use the free space spontaneous decay rate, γ0,
which relates to the dipole moment through Eq. 5.33, or the QE’s lifetime, τ0 = γ−1

0 , to
parametrize the strength of the coupling to the EM field.

We start by briefly reviewing the theoretical framework needed to appropriately treat
the interaction between the QE and the EM field in the presence of the plasmonic
structure. First, we use Hamiltonian 5.15, which was derived in the previous Section
within a macroscopic QED formalism and under the electric-dipole and rotating wave
approximations. The dynamics of the QE-EM field combined system can then be derived
by means of the already described Wigner-Weisskopf formalism. Assuming a state of
the form given by Eq. 5.16 and applying Schrodinger’s equation, the time evolution of
the QE’s excited state population,

nσ(t) = |ce(t)|2, (5.63)

is determined by Eq. 5.23 as

˙̃ce(t) = −
∫ t

0

dt′K(t− t′)c̃e(t′). (5.64)

The kernel of this integro-differential equation is defined by Eq. 5.24 as

K(τ) =

∫ ∞
0

dωJ(ω)ei(ω0−ω)τ ; J(ω) =
|µ|2ω2

πε0~c2

[
nµ · Im

{
Ĝ(r0, r0, ω)

}
· nµ

]
. (5.65)

The spectral density function, J(ω), contains all the information on both the QE-field
coupling and the density of EM modes and is fully determined by the classical Green’s
function of the problem.

The spectral density function for the system under study is plotted in Fig. 5.5. Panel
(a) displays J(ω) for a QE placed on top of a metal film of thickness h � √εdz0, such
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Figure 5.5: Spectral density function for a single QE near a layered metallic structure for
two different values of the metal film thickness, h. An individual QE interacts with a dielec-
tric/metal/dielectric structure, as sketched in the inset panel. (a) Spectral density for a QE
close to a thick metal film (h� √εdz0). Four different separations, z0, between the QE and the
upper metal/dielectric interface are plotted. (b) Same as in (a) but for a thin metal film (h = 5

nm). In both panels, the spectral density is normalized to the QE’s free space decay rate, γ0,
and we assume εd = 1.

that it can be considered a semi-infinite metal/dielectric interface. Different values of the
QE-interface distance, z0, are plotted, starting from z0 = 4 nm 3. As the figure shows, for
small separations the spectral density is strongly peaked at the SPPs cut-off frequency,

ωsp =
ωp√

εd + ε∞
, (5.66)

anticipating that the EM modes around this frequency will dominate the dynamics.
Notice however that, as we will show below, SPPs play a minor role in the process of
reversible dynamics and that the key actors are the EM modes responsible for quenching
of radiation. The same behaviour is observed for thin metal films (h = 5 nm), as shown
in panel (b) for z0 = 4 nm. As the QE-interface separation grows the height of the
peak decreases and its width increases making the spectral density smoother for the
case of a thick metal film. In contrast, for thin metal films in this intermediate regime,
the spectral density splits into two contributions corresponding to the short and long
range SPP modes of the thin film (see Section 1.1). The poor confinement of the LRSPP
mode makes its contribution pin at ωsp independently of z0 whereas the contribution of
the SRSPP mode shifts to lower frequencies as z0 increases. Finally, at large z0’s, the
spectral densities corresponding to both thick and thin metal films become very smooth
without signatures of resonant peaks.

3We have checked that for z0 ≥ 4 nm non local effects do not need to be considered (see Ref. [273]).
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Figure 5.6: Population dynamics of an individual QE near a metal surface. (a) Dynamics of
the excited state population for a QE in the optical regime, ~ω0 = 2 eV, placed at a distance
z0 = 5 nm from a metal surface. Different values for τ0 are considered, as specified in the legend.
The time-scale is normalized to the modified lifetime of the QE, τ = Γ(ω0)−1. Inset panel: zoom
to observe oscillations of small amplitude for two cases. (b) Same as in panel (a) but for a QE
of resonance frequency ~ω0 = 3 eV.

Now we focus our attention on the dynamics of the single QE when it is placed at
very short distances from the metal surface and quenching is expected [179, 180]. As
the behaviour of J(ω) for thick and thin metal films is very similar for this range of
distances, from now on we study the case of thick metal films without losing generality.
In order to study the dynamics beyond the perturbative regime, we solve numerically
Eq. 5.64 by using a grid-based method [274] without further approximations. Note here
that this is different from Ref. [202], where an approximate method was employed.

In Fig. 5.6 we plot the excited state population dynamics for a QE placed at a distance
z0 = 5 nm from the metal surface. For this distance, we see in Fig. 5.5 (a) that J(ω)

is strongly peaked at ω = ωsp. Each panel corresponds to a different value of the QE’s
resonance frequency, ω0. The timescale of both panels is normalized to the modified
lifetime of the emitters, τ = Γ(ω0)−1, such that they appear in the same scale. In panel
(a), we show the dynamics of a QE with a transition frequency lying in the optical
regime, ~ω0 = 2 eV, and for different values of the QE’s intrinsic lifetime, τ0. For τ0 = 4

ns (dotted blue line), the population of the QE decays exponentially. This corresponds
to the Markov regime, where the population features an irreversible decay (see Eq. 5.28)
at a rate Γ = 2πJ(ω0). Thus, by fully solving for the dynamics we recover in this case
the WC regime, where, as we have already explained, the spontaneous decay rate is
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solely determined by the value of J(ω) around ω0. For τ0 = 0.4 ns (dashed red line),
however, the QE dynamics exhibits a clear deviation from the exponential decay with
fast oscillations in the initial times (see inset). Finally, for the shortest τ0 considered,
0.04 ns (black solid line), the QE dynamics displays strong oscillations, before being
attenuated by the metal losses. The emergence of these oscillations as τ0 decreases, i.e.,
as the dipole moment increases, is a manifestation of the coherent exchange of energy
between the QE and the EM field excitations present at the metal surface. In panel (b),
we plot the same cases as in panel (a) but for a QE with a transition frequency closer
to the peak of the spectral density, ~ω0 = 3 eV. The dynamics exhibits, as in panel
(a), a transition from irreversible to reversible dynamics with decreasing τ0, but showing
oscillations of longer period and larger amplitude. The comparison between these two
panels proves that the detuning between the peak of the spectral density and the energy
of the emitter is also a very relevant parameter for determining the visibility of the
oscillations.

An important question to address is the possible experimental verication of the re-
versible dynamics predicted by our calculations. As shown in Fig. 5.6, the timescale to
observe experimentally these effects depends strongly on the intrinsic lifetime, τ0, of the
chosen QE. QEs with transition frequencies lying within the optical regime such as NV
centers, QDs and J-aggregates of organic molecules, feature intrinsic lifetimes around
∼ 10 µs [275], 1 ns [182] and 70 ps [276], respectively. As the figure shows, oscillations
in the population of QEs at ~ω0 = 2 eV would be best observed for τ0 = 40 ps. Even in
this case, the observation of oscillations would require sub-picosecond resolution.

So far, through the numerical integration of Eq. 5.64, we have explored the emergence
of reversibility in all ranges of relevant parameters: z0, ω0, τ0

4. The configurations that
favor reversible dynamics are: ω0’s closer to ωsp, the regions of very small separations and
the shortest τ0, this is, the largest dipole moments. Interestingly, in this spatial region
(z0 � ω0c/

√
εd), the main contribution to the spectral density does not come from the

SPP contribution (SPP pole). Instead, it stems from the EM modes having an even
larger parallel momentum than SPPs, i.e., EM modes that are even more evanescent
in the direction perpendicular to the metal surface than SPPs. By only considering
the contribution of these EM modes, and similarly to Eq. 5.57 for the decay rate, an
analytical formula for the spectral density can be obtained (k|| � ω0/c):

J(ω)

γ0

=
3

16π

1

(k0z0)3
Im
(
ε(ω0)− εd
ε(ω0) + εd

)
. (5.67)

4Note that we have explored regions of both small distances and ω0 close to ωsp that were not accessible
with the approximations used in previous works [202].
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We have checked numerically that this approximation for the spectral density gives
virtually the same results as those given by Eq. 5.67, provided that the distance of the
QE to the metal surface is very small. This formula for the spectral density is usually
known as quasistatic approximation and it has already been used in the literature to
analyze the strong modification of the QE’s lifetime in the presence of metal surfaces,
wires or nanoparticles [179–181, 273, 277]. However, up to our knowledge, it has never
used to analyze the emergence of reversible dynamics. Notice that, as we explained
in Subsection 5.3.1, the region of very short distances is generally thought to only yield
quenching and strong coherent effects are unexpected. In addition, by utilizing the Drude
expression for ε(ω), see Eq. 1.1, it is possible to write Eq. 5.67 in terms of ωp, γ and ωsp
as,

J(ω)

γ0

=
3

16π

1

(k0z0)3

2ω4
sp

ω2
p

γ ω

γ2ω2 + (ω2 − ω2
sp)

2
. (5.68)

Furthermore, J(ω) can be expanded close to the cut-off frequency, ω ∼ ωsp, as

J(ω)

γ0

≈ 3

16π

(
c

ω0z0

)3

ωp

(
ωsp
ωp

)3
γ/2

(γ/2)2 + (ω − ωsp)2
, (5.69)

which is a Lorentzian, JL(ω) =
g2
eff
π

γeff/2
(γeff/2)2+(ω−ωeff)2 , with parameters,

ωeff = ωsp , (5.70)

γeff = γ , (5.71)

g2
eff = γ0ωp

3

16

(
ωsp
ωp

)3(
c

ω0z0

)3

. (5.72)

The Lorentzian spectral shape of the spectral density in Eq. 5.69 allows us to integrate
the kernel in Eq. 5.65, yielding

K(τ) = g2
eff e
−γeff τ/2ei(ω−ωeff)τ . (5.73)

By using Laplace transform techniques, with K(s) = g2
eff/ [s+ γeff − i(ω − ωeff)], an ana-

lytical solution of the integro-differential equation given by expression 5.64 can be found
to be c̃e(s) = [s+K(s)]−1 [267]. The QE’s population is then proportional to eiRt, with
R being the Rabi frequency, which reads as

R =

√
g2
eff − [γeff + 2i(ω − ωeff)]2 /16. (5.74)

As a consequence, for very short QE-metal distances, the dynamical evolution of the
QE dictated by the general Hamiltonian turns out to be mathematically equivalent to
the solution of the following master equation

ρ̇ =
i

~
[ρ,Heff] +

γeff
2
La [ρ] , (5.75)
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with La [ρ] = 2aρa† − ρa†a− a†aρ being a Lindblad term [267] and Heff being

Heff = ~ω0σ
†σ + ~ωeffa

†a+ ~geff
[
aσ† + σa†

]
. (5.76)

The above master equation appears in the dissipative Jaynes-Cummings model [278],
which is the cornerstone of cavity QED physics. Equation 5.75 represents the mapping
of the dynamics of a QE coupled to the continuum of EM modes supported by a 2D
metal surface into a Jaynes-Cummings model. Hamiltonian Heff describes the coherent
evolution of the combined system: the QE and a pseudo-mode bosonic excitation of
energy ωeff = ωsp (represented by the a-operator), which accounts for all the EM modes
of the metal surface. The coherent coupling between the QE and this pseudo-mode is
given by geff through Eq. 5.72. The Lindblad term in Eq. 5.75 describes irreversible
mechanisms in the dynamics through the effective losses of the pseudomode, γeff, which
are solely determined by the metal properties, γ.

The physical picture that emerges from the mathematical equivalence between the ini-
tial hamiltonian and the mapping to the Jaynes-Cummings model can be extracted from
the quasistatic approximation. In this limit, the interference between the QE’s dipole
and its image results in a divergence of the reflected field, expressed in the resonance
condition εm(ω) + εd = 0, ultimately attenuated by the plasma losses. This resonance
can be seen as that supported by a dipole-image-induced effective cavity. The strongly
damped resonance interacts with the QE, being able to coherently exchange energy with
it. Note that in contrast to previous studies [200–202], we have identified that in this
case SPPs play no role in reversibility. This can be concluded mathematically as well
from the absence of SPP contribution in the spectral density of Eq. 5.67 that describes
the EM field when the QE is close to the surface.

Within the Jaynes-Cummings model, it is well-established that reversibility in the
dynamics appears when the coupling strength is stronger than losses (geff � γeff). Thus,
in Fig. 5.7 we render a (z0, τ0)-space diagram of the parameter geff/γeff to get a better
estimation of the optimal regions for observing reversibility 5. Shorter τ0’s and smaller
z0’s 6 increase reversibility as they increase geff. A different strategy, not explored in the
figure, consists of decreasing the effective losses, γeff = γ, that control the timescale where
the oscillations get attenuated. This can be done by, e.g., lowering the temperature of the
system. Finally, as we showed in the numerical results of Fig. 5.6, there is another relevant
magnitude for the characterization of reversible dynamics, namely, the amplitude of the
oscillations. Based on our analytical approach, we can extract an analytical formula for

5We have numerically checked that the pseudomode approximation holds for z0 .15 nm.
6Note that for z0 .4 nm non local corrections may affect the results.
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Figure 5.7: Strong and weak coupling regimes map for a QE near a metal surface. The contour
plot shows the real part of the ratio geff/γeff as a function of z0 and τ0 for QEs of energies ~ω0 = 2

eV (a) and ~ω0 = 3 eV (b). The coloured lines highlight the lines where the visibility of the
oscillations reaches 1%, 5% and 10% (red, black and green, respectively).

the visibility of the oscillations in the limit γeff ≈ 0,

V ≡ max[nσ]−min[nσ]

max[nσ] + min[nσ]
=

2g2
eff

2g2
eff + (ω − ωeff)2

. (5.77)

This expression shows that there are two ways for increasing V : (i) by decreasing the
effective detuning of the QE with the pseudo-mode as we showed in Figs. 5.6 (a,b); (ii)
by increasing the effective coupling, as done in Fig. 5.6 by decreasing τ0. In Fig. 5.7, we
have plotted the frontiers in the phase-space diagram where V = 1%; 5% and 10% in
red, black and green, respectively. As expected from Eq. 5.77, the higher the coupling
and/or the smaller the effective detuning between the modes, the better the visibility.

Moreover, the mapping of the physics to a cavity QED problem of Eq. 5.75 has also
important implications when thinking of incorporating new factors that could influence
the QE dynamics. For instance, the study of plasmon non-linear interaction can be done
by adding simply a non-linear term, Hnl = Ua(a

†a)2, in the coherent part of Eq. 5.75
whereas considering extra QE losses or pure dephasing can be done by including new
Lindblad terms, (γσ/2)Lσ[ρ] [218] and (γφ/2)Lσ†σ[ρ] [279], respectively. However, note
that the dynamics of the QE is dominated by the most evanescent EM modes of the
continuum, and that these provide the most relevant loss mechanism, as γ � γσ, γφ.
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5.4 Interaction between two quantum emitters

mediated by propagating surface plasmons

As we mentioned in Section 1.5, SPPs can act as mediators of the interaction between
several QEs. In Ref. [190], the subwavelength light confinement in plasmonic waveguides
was exploited to enhance the coupling between two distant QEs via the SPP modes prop-
agating along the waveguides. This plasmon-mediated interaction enables an efficient
coupling between the QEs at distances larger than the involved free-space wavelength,
which results in the emergence of collective super- and subradiant states with modified
emission rates [191]. In addition, this efficient long-range interaction mediated by SPPs
can be exploited even to obtain entanglement between two QEs [192].

Motivated by this background, in this Section we consider graphene as a plasmonic
media that is able to mediate the coupling between two QE. Compared to previous
studies, where the plasmon-mediated interaction between two QEs was considered for
SPPs in metal structures [190], the efficient and tunable coupling of an individual QE to
the SPP modes propagating in a graphene sheet makes this 2D material a very interesting
system for the controlled coupling between two QEs. As we have shown in Section 5.3.1,
a QE placed within the appropriate distance range from a graphene sheet couples very
efficiently to the SPP modes that propagate through the sheet due to the sub-diffraction
limited confinement associated with SPPs. Here we aim to enhance the coupling between
two QEs located near a graphene layer. In order to have graphene SPP modes with long
enough propagation lengths, we work in the THz regime.

This Section is organized as follows. First, in Subsection 5.4.1, we introduce the total
normalized decay factor, γ, which can be determined from the Green’s function of the
problem and characterizes the collective interaction of the two QEs. Next, in Subsection
5.4.2 we study the interaction between two QEs mediated by the SPPs of a 2D graphene
sheet. The presence of graphene SPPs leads to interesting phenomena, such as the super-
and subradiant regimes, where the radiation properties of several QEs are enhanced or
suppressed. We analyze the evolution of γ with the vertical distance between the QEs
and the sheet in a transmission configuration and with the in-plane distance between
the emitters in a reflection configuration, as well as its tunability by means of the chem-
ical potential. Finally, we consider the coupling of two QE in 1D graphene ribbons in
Subsection 5.4.3. We show that confinement in the 1D case leads to longer interaction
ranges between the QEs and we study how the coupling between the QEs is affected by
the presence of the ribbon’s edges.
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5.4.1 Interaction between two quantum emitters in

inhomogeneous environments

We start by briefly presenting an extension of the theoretical formalism described in
Section 5.2 to include several QEs. In order to treat the interaction among N QEs in the
presence of a plasmonic media, the Hamiltonian derived within the macroscopic QED
framework (Eq. 5.15) can be generalized as follows,

H =
N∑
i=1

~ωiσ†iσi +
∑
λ

∫
d3r

∫ ∞
0

dω ~ω f †λ(r, ω) · fλ(r, ω)

−
N∑
i=1

[
σ†iµi · E(+)(r0) + σiE

(−)(r0) · µi

]
. (5.78)

The above Hamiltonian, together with a master equation, determine the evolution of
the overall system (see Ref. [280]). Since we are interested in a regime in which the
EM modes supported by the plasmonic media act solely as mediators of the interaction
between the QEs, it is appropriate to work under the Markov approximation, i.e., under
the approximation that the coupling between the QEs and the EM field is weak. Thereby,
the spontaneous emission of each QE can be found to be determined by contributions
arising from all the QEs through the quantities [280],

Γij =
2ω2

π~ε0c2

[
µi · Im

{
Ĝ(ri, rj, ω)

}
· µj

]
, (5.79)

where the Green’s function Ĝ(ri, rj, ω) yields the field at point ri generated by the QE
at rj. Thus, the spontaneous decay of each QE has contributions arising from its own
local field (i = j) as well as from the rest of the QEs (i 6= j). In the above expression,
the term i = j yields to Γii = Γ, the spontaneous decay rate given by Eq. 5.29. On the
other hand, terms with i 6= j correspond to the contribution to the decay rate of the QE
at ri with frequency ωi and dipole moment µi due to the presence of a QE at rj and
with ωj and µj. Similarly to the expression for the spontaneous decay rate of a single
QE, the above equation states that the contribution to the decay rate of a QE due to the
presence of other QEs depends on the relative orientation of the QEs’ dipole moments,
their oscillation frequency and the imaginary part of the Green’s dyadic of the system,
which is proportional to the local density of states. Hence, the interaction between QEs
is affected by the properties of the environment surrounding them.

Let us now consider the case of two QEs. In order to study their interaction, we
introduce the normalized decay factor γ, which characterizes the collective emission of
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the system composed by the two QEs. This quantity is defined as the ratio of the total
decay rate of a system where the two QEs interact through a plasmonic media to the
decay rate of two uncoupled QEs though still in the presence of the media. Thus, it
accounts for the modification of the collective decay rate due to the presence of the
second QE, and reads as

γ =
Γ11 + Γ12 + Γ21 + Γ22

Γ11 + Γ22

. (5.80)

The value of γ distinguishes two regimes: When γ > 1 the interaction is enhanced due
to the presence of the plasmonic medium and the system is said to be superradiant.
Correspondingly, when γ < 1, there is an inhibition of the interaction between the
QEs and the system is subradiant. In the following we use factor γ to characterize the
interaction between two QEs close to a graphene layer. In particular, we study how the
collective interaction between the two emitters can be mediated by the SPPs modes
propagating along graphene layers and ribbons.

5.4.2 Interaction between two quantum emitters mediated by

SPPs in 2D graphene sheets

Here we study the interaction between two QEs mediated by the SPPs propagating along
a 2D graphene sheet. We consider two identical QEs (same resonance frequency, ω0 and
modulus of the dipole moment, |µ|) in the vicinity of a graphene sheet that lies in the
x− y plane. The position of each QE, i = 1, 2, is ri = (r‖,i, zi), and the in-plane distance
between both QEs is r = |r‖,1 − r‖,2|. Due to its 2D character, graphene allows for two
different configurations of the QEs: interaction in reflection (both QEs at the same side
of the graphene layer) or in transmission (QEs placed at opposite sides). To characterize
the interaction, we study the dependence of the factor γ as given by Eq. 5.80 with the
vertical distance from the sheet (z) and with the in-plane distance between the emitters
(r).

Let us first consider two QEs interacting through the graphene sheet placed at opposite
sides of the sheet, i.e., in the transmission configuration (see the diagram in Fig. 5.8). In
order to study the behaviour of their interaction with the distance to the sheet, we locate
the QEs at the same z (|z1| = |z2|) and at r = 0. We assume the dipole moments to be
of the same modulus, perpendicular to the sheet and antiparallel, µ1 = −µ2 = |µ|ûz.
The collective decay factor, reduces in this case to

γ = 1 +
ΓT12

Γ11

, (5.81)
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z

z

Figure 5.8: Super- (γ > 1) and subradiance (γ < 1) between two QEs mediated by a graphene
sheet when they interact in transmission through the sheet. γ is plotted as a function of the
normalized vertical distance of the QEs to the graphene sheet for three values of the chemical
potential, µ. The dipole moments are perpendicular to the sheet and antiparallel. The red
dashed line shows the vacuum interaction γvac.

where the decay rate related to the interaction between the QEs, ΓT12/γ0, is given by the
Green’s function in transmission (see Appendix C). Following Eq. C.34, we can write
Ĝp(r, z, ω0) in terms of the transmission coefficient, t(q). This procedure allows us to
write the normalized decay rate as

ΓT12

γ0

= −3

2
Re
[∫ ∞

0

dq
q3

qz
t(q)e2ik0qzz

]
, (5.82)

where the minus sign comes from the fact that the dipole moments are antiparallel. The
transmission coefficient of the graphene layer is t(q) = 1/(αqz + 1), with α = 2πσ/c.
The γ factor as a function of the normalized distance, z/λ0, and for three values of the
chemical potential µ = 0.2, 0.1, 0.05 eV, is plotted in Fig. 5.8 for the same parameters
used in the study of the decay rate and βG-SPP in Fig. 5.4. For comparison, the red
dashed line shows γ when the QEs are placed in free space and interact only through
radiative modes, labeled as γvac. For z � λ0, γvac = 0 because the opposite phase of
the dipole moments inhibits the radiation, and when z increases γvac oscillates around
1 with λ0. When the graphene sheet is present, the interaction between the emitters is
strongly modified at a subwavelength scale. In the limit of large z, in correspondence
with the distances where β ∼ 0 in Fig. 5.4 (b), the emitters couple via radiative modes
and γ approaches γvac. On the other hand, in the range of distances where the plasmonic
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coupling between the emitters starts to dominate, β 6= 0, γ deviates from γvac and the
system turns from subradiant to superradiant. For each value of µ (0.2, 0.1 and 0.05 eV),
the value of z/λ0 where β starts to grow from 0 to 1 is the onset of the separation between
γ and γvac. This means that superradiance is due to the interaction being mediated by
graphene SPPs. Thus, the superradiant regime, which is controlled by high coupling
to SPPs, can be tuned by means of the chemical potential. In the limit z � λ0, where
β = 0 and non-radiative channels dominate the decay of each QE, the interaction reaches
γ = 2, in contrast to the free-space value in this limit, γvac = 0. The reason why the
system turns from subradiant to superradiant when non-radiative modes dominate the
interaction is a phase shift provided by the graphene sheet. For z � λ0, the contribution
from modes outside the light line (qz = i|qz|) dominates the integrals for Γ11 (Eq. 5.50)
and ΓT12 (Eq. 5.82). While Γ11 is controlled by −Im [r(q)], ΓT12 is controlled by −Im [t(q)].
Since t = 1 + r, the imaginary part of r and t is the same and Γ11 = ΓT12, leading to
γ = 2 in Eq. 5.81.

Let us now study how the interaction evolves with the in-plane distance between the
QEs, r. We take two emitters interacting through the graphene sheet in the reflection
configuration, as sketched in Fig. 5.9. In this case we place both of them at the same dis-
tance z from the sheet, separated by r, and with dipole moments of the same magnitude,
parallel and pointing in the vertical direction, µ1 = µ2 = |µ|ûz. In order to determine
the γ factor, which in this case reads as

γ = 1 +
ΓR12

Γ11

, (5.83)

we need the interaction decay rate in reflection, ΓR12. As shown in Appendix C, this is a
sum over the free-space and reflected contributions with an in-plane dependence given
by the zeroth-order Bessel function, J0. From Eq. C.32 we have

ΓR12

γ0

=
3

2
Re
[∫ ∞

0

dq
q3

qz
J0(k0qr)

[
1− rp(q)e2ik0qzz

]]
. (5.84)

The γ factor as a function of the normalized distance, r/λ0 is plotted in Fig. 5.9 (a) at
ν = 2.4 THz and µ = 0.2 eV when the QEs are at three different separations to the sheet:
z1, z2, and z3. First, for z1 = 2 µm, we know from Fig. 5.4 that the coupling to SPPs
propagating along the graphene sheet is very efficient, β = 0.98, and Γ/γ0 ∼ 102. In this
situation, the interaction between the two QEs is mediated by SPPs, and, consequently,
the length scale of the interaction is controlled by the SPP modal wavelength, λp = λ0/qp,
which in this case is λp = λ0/3.5, as opposed to the free-space interaction, dominated by
λ0 (red dashed line). Note that both length scales, r/λ0 and r/λp, are shown in the figure.
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(a) (b)

z

r

Figure 5.9: Tuning super- and subradiance: γ factor as a function of the in-plane distance r
between two QEs in the reflection configuration for two different frequencies. (a) At ν = 2.4

THz, when the QEs are placed at z1 = 2 µm (β = 0.98, Γ/γ0 = 105), z2 = 15 µm (β = 0.55,
Γ/γ0 = 2) and z3 = 50 µm (β = 0.01, Γ/γ0 = 0.92). The free-space wavelength is λ0 = 124

µm, the plasmon wavelength λp = λ0/3.5 and the propagation length Lp = 14.9λp. The dashed
red line corresponds to the free-space interaction and the dashed blue line to Eq. 5.85 for high
β. (b) At ν = 7.4 THz, when the QEs are at z = 0.2 µm, with β = 0.98 and Γ11/γ0 = 2250.
The free-space wavelength is λ0 = 41 µm, the plasmon wavelength is λp = λ0/10 and the
propagation length is Lp = 20λp. The dashed red line shows the free-space γ and the blue line
the decay of the interaction.

When β ≈ 1, an analytical expression for γ can be obtained in the pole approximation:

γ = 1 + βJ0(k0qpr)e
−r/Lp , (5.85)

with qp being the SPP modal wave vector (Eq. 1.18) and Lp = λ0/[2πIm(qp)] being the
propagation length of the SPP, which is equal to 14.9λp in this case. As can be seen
in the plot, this analytical approximation (blue dashed line) coincides with the exact
calculation of γ (orange line). Since the propagation length is large enough, the decay
length of the interaction is then given by the Bessel function, that decays as

√
2/(πr).

This is a dimensionality factor, coming from the fact that the 3D interaction in free
space is confined to the 2D graphene sheet. When the distance to the graphene sheet is
increased, β decreases and γ deviates from the analytical expression. For z2 = 15 µm
the β factor is 0.55 and the shape of γ (green line) reflects the fact that the QE decays
both to SPPs and radiatively. Finally, when the distance to the sheet is large enough to
have β ≈ 0, such as z3 = 50 µm, the vacuum interaction is recovered (see black line).
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Therefore, our results show that a larger interaction length scale and a modification
of the super- and subradiant regimes can be achieved in a subwavelength scale for the
appropriate choice of parameters.

In addition, the tunability of graphene allows us to reach a regime where the interaction
between the two QEs can be controlled at very deep subwavelength scales. Although the
tuning can also be done via the chemical potential, µ, here we show a situation where the
tuning parameter is the frequency. When the two QEs interact in reflection [see Fig. 5.9
(b)] at 7.4 THz and µ = 0.2 eV, γ (black line) is very different from the one corresponding
to the free-space situation (red dashed line). Increasing the frequency while maintaining
the chemical potential results in a larger momentum for the SPP, qp, which leads to a
tighter confinement as well as a reduction in the propagation length. Thus, the interaction
varies in a λp = λ0/10 scale, as opposed to the free-space interaction, dominated by λ0.
The decay of the γ factor (blue line) is given by the square-root decay characteristic of
2D interactions for distances shorter than the propagation length, which in this case is
Lp = 1.85λ0 (19.2λp). For larger distances, losses start to dominate and the interaction
decays exponentially, according to Eq. 5.85.

5.4.3 Interaction between two quantum emitters mediated by

SPPs in 1D graphene ribbons

Further confining SPPs in 1D waveguides provides a platform for long distance interac-
tion between two QEs. Here we consider the coupling between two QEs mediated by the
SPPs propagating along 1D graphene ribbons. Compared to the SPPs propagating in
a 2D graphene sheet at the same frequency (keeping the same chemical potential, µ =

0.2 eV, and temperature, T = 300K), the ribbon-SPPs have a higher q vector, thereby
being more tightly confined to the graphene layer. On the other hand, while the coupling
of two QEs mediated by 2D graphene SPPs is dominated by the dimensionality factor,
e−r/Lp/

√
r (see Fig. 5.9), in the case of 1D graphene SPPs the coupling is expected to

decay as e−x/Lp . This feature enables long range interaction between the QEs provided
Lp is long enough. Indeed, when β ≈ 1, the following analytical expression can be written
for γ:

γ = 1 + βe−x/Lp . (5.86)

Let us consider a free-standing graphene ribbon of width ∆ at |y| < ∆/2, placed at
z = 0 with its axis along the x direction (see Fig. 5.10). We take ν = 2.4 THz and the
fundamental mode of a ribbon of width ∆ = 5 µm, that originates from the hybridization
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of two edge modes and has even parity of Ez with respect to the ribbon axis [281]. The
field profile of the fundamental mode, obtained by means of FEM calculations [219],
is shown for two situations, where the QE is placed at distances, z = 3.12 µm and
z = 12.4 µm, as shown in Fig. 5.10 (a,b). For a distance to the ribbon of 3.12 µm, i.e.
λ0/40, β ≈ 1, the SPP mode is excited with a very high efficiency and its field pattern
is clearly seen in panel (a). On the other hand, when the QE is not sufficiently close
to the ribbon, β � 1 and it couples mostly to radiation, as can be seen in panel (b)
for a QE at z = λ0/10 where the field snapshot virtually coincides with an spherical
wave. For the case with β ≈ 1, Fig. 5.10 (d) shows γ (blue line) for two QEs interacting
in reflection through the ribbon-SPP, as sketched in panel (c). Similar to the 2D SPP,
a subwavelength modification of the interaction can be achieved. However, since the
SPP propagating along the graphene ribbon is much more confined (λp = λ0/6.1), this
modification can be achieved in a shorter length scale. Moreover, propagation in 1D
allows for a longer interaction range, with an exponential decay given by a propagation
length Lp = 20λp. Our results demonstrate that graphene ribbons can be used to control
the length scale of the interaction between two QEs thanks to the efficient excitation of
SPPs.

Finally, we study the transition across the transverse dimension the ribbon, i.e., how
the coupling between the two QEs is affected by the presence of edges (see Fig. 5.11). For
this purpose, we consider the evolution of the interaction in the reflection configuration,
the same as in Fig. 5.10 (c), and also plot the evolution of γ(x) as a function of the
lateral distance from the center of the ribbon [see Fig. 5.11 (a)]. Note here that the
edge’s microscopic geometry (zigzag or armchair) is unimportant since the width of the
ribbons considered is larger than 20 nm [282]. As sketched in the inset panel, we displace
both QEs simultaneously and perpendicularly to the ribbon axis (along y), from the
ribbon’s center y = 0 and passing through the ribbon’s edge at y = ∆/2, up to y = 2∆.
As the figure shows, γ(x) evolves from reflecting a high coupling to SPPs at y = 0, to
following the free-space interaction at y = 2∆, i.e., β goes from ≈ 1 to ≈ 0 in a length
scale of the order of 2∆. Additionally, we also study the evolution of the interaction
between two QEs with opposite dipole moments in the transmission configuration for
two situations. We plot γ at x = 0 as a function of y in Fig. 5.11 (b). First, we displace
the QEs simultaneously such that both of them are at the same y [see sketch (1)]. At
y = 0, the emitters couple to the ribbon-SPP and the system is in a superradiant state
(red line), as opposed to the situation in free space, that is subradiant (inset panel, red
line). When the QEs are displaced from the ribbon’s center, but are still on top of the
ribbon, i.e. |y| < ∆/2, γ is only slightly modified. Once the QEs pass the ribbon’s edge,
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Figure 5.10: Interaction mediated by graphene ribbons. (a,b) Electric field profile for an
emitter decaying to the ribbon-SPP. The dipole is placed at x = 0, y = 0 and z = λ0/40

in panel (a) and at z = λ0/10 in panel (c) (the same would be obtained for z > λ0/10). (c)
Sketch showing two emitters separated by x placed at a distance z on top of a graphene ribbon
of width ∆. (d) Super-radiance mediated by the ribbon-SPP mode shown in panel (a). The
green line shows the exponential decay of the interaction and the red line shows the free space
interaction.

the coupling to the 1D SPP is reduced, and therefore γ decreases. Subradiance is quickly
reached, approaching the free-space value, γ = 0, which is achieved when the QEs are
placed at a distance 2∆ from the ribbon’s center. In the second situation, one QE is kept
at the ribbon’s center and the other is displaced perpendicularly to the ribbon’s axis [see
sketch (2)]. In this case, the system is always superradiant for the distances considered:
γ starts at 2 and approaches 1, while in free space γ is of the order of 0.05 at y = ∆ (blue
line in the inset panel). The reason for this lies on the fact that the QE whose position
is fixed always couples to the SPP. Remarkably, with only one QE efficiently coupled to
the ribbon-SPP, the interaction between both QE is very different to the vacuum case.
Our results for both configurations (reflection and transmission) demonstrate that the
coupling between QEs mediated by the SPPs propagating along 1D graphene ribbons
is very insensitive to the lateral displacement and that the effective lateral extension of
these SPPs is of the order of ∆/2 measured from the edge’s ribbon.
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Figure 5.11: Dependence of the coupling between two QEs in graphene ribbons on the lateral
separation from the center of the ribbon, y = 0. (a) γ factor between two QEs in the reflection
configuration as a function of x for several lateral separations from the center of the ribbon (blue
lines). The scale in each sub-panel is between 0 and 2. The red line shows the corresponding
interaction in vacuum. The inset panel shows a top view of the structure. (b) γ factor as a
function of the lateral separation y in the transmission configuration for two cases. First (red
line), γ factor when the two QEs are displaced simultaneously, as shown in sketch (1). The
dots correspond to numerical simulations and the continuous line is a guide-to-the-eye. Second
(blue line), γ factor (from simulations) when the upper QE is fixed at the center of the ribbon
and the lower is displaced, as shown in sketch (2). The inset panel shows the corresponding
interaction when the QEs are placed in vacuum.

5.5 Strong coupling between an ensemble of quantum

emitters and propagating surface plasmons

Reversibility in the dynamics of a single QE coupled to the EM modes of a metal
surface (or thin film), as we discussed in Subsection 5.3.2, has not yet been observed
in an experiment. In contrast, several experimental studies have shown the emergence
of SC, i.e., coherent energy exchange between propagating SPPs and a large number
of excitons either in organic molecules [204–209, 211, 216] or in QDs and quantum
wells [212–215]. In this Section we focus on the study of this phenomenon and present
its theoretical foundation. For that purpose, we develop a complete quantum treatment
that accounts for the coherent coupling between the QEs and SPPs and incorporates the
presence of dissipation and dephasing. Our formalism is able to reveal the key physical
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mechanisms that explain the reported phenomenology and also to determine the physical
parameters that optimize the strong coupling. While a semiclassical treatment is also
able to reproduce the reported phenomenology (see Section 5.7), our quantum model
can deal with more complex aspects as photon statistics, which enables a discussion
regarding the classical or quantum nature of this phenomenon.

The Section is organized as follows. We first derive a Hamiltonian for the coherent
QEs-SPPs interaction in Subsection 5.5.1. Next, by means of an open quantum system
approach, we use a master equation formalism (Subsection 5.5.2) to incorporate dis-
sipation in the metal and internal degrees of freedom within the QEs (dephasing) as
incoherent decay channels whose effect is to modify the QEs’ lifetime. Finally, in Subsec-
tion 5.5.3 we study saturation effects and the photon statistics of the system, reporting
the conditions needed for the observation of quantum statistics.

5.5.1 Hamiltonian formalism

In the following we develop a full quantum treatment of the QEs-SPPs coupled system
that allows us not only to reproduce the reported phenomenology but also to deal with
the photon statistics. Our model reproduces the main features of the experimental condi-
tions reported in Refs. [204–208, 211–216]. A sketch of the general structure that mimics
the usual experimental configuration can be seen in Fig. 5.12 (a). A collection of N QEs
is embedded into a dielectric layer of thicknessW , which is placed on top of a thin metal
film (thickness h). A second dielectric film below the metal allows for laser excitation
of SPPs propagating along the metal/dielectric interface. In some of the experimental
setups and in order to avoid quenching of the QEs, a dielectric spacer of width s is
located between the QEs and the metal substrate. In the calculations presented in this
Thesis, we take ε2 = ε1 = 1 and we use the dielectric function of the metal (silver),
εm, as tabulated in Ref. [14]. As a minor simplification, we assume a semi-infinite metal
substrate instead of the metal film considered in the experiments (these films are thick
enough for the SPPs to be very similar to those of a single interface).

As we have already discussed, a QE placed in the vicinity of a metal surface inter-
acts with three different channels: (i) excitation of SPPs that propagate along the metal
surface, (ii) radiation of photons into the far field and (iii) dissipation through ohmic
losses in the metal. In Section 5.3 we studied how an individual QE couples to modes
at all the k vectors available in the plasmonic system. We showed that at optical fre-
quencies and intermediate distances between the QE and the metal surface, the effect of
the plasmonic media can be treated under the Markov approximation, where the QE’s
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population features an exponential decay at a modified rate given by the density of
states at the QE’s transition frequency (Subsection 5.3.1). On the other hand, if the QE
is placed at very short distances from the metal surface, the effect of high frequencies
where absorption is large is very important and may even lead to reversible oscillations
in the dynamics of the QE’s population (Subsection 5.3.2). Different from this case, in
the situation considered in this Section, the collective coupling to the propagating SPP
imposes conservation of the k vector, which prevents the QEs from interacting with high
frequency regions of large absorption, as we will see below. Moreover, at the distances
and frequencies reported in the experiments, the QE’s emission is dominated by coupling
to SPPs (see Fig. 5.2). These two features allow us to treat the coupling between the
QEs and the SPPs as a coherent channel while dissipation is handled as a perturbation.
Since we deal with losses separately, we will rely on a quantization procedure for the
EM field in the absence of absorption and use Hamiltonian 5.9 to treat the QE-SPP
interaction.

We start by deriving the Hamiltonian that describes the coherent interaction between
N QEs and the SPPs confined to the 2D metal/dielectric interface. First, we consider
the case of a single QE. As we showed in Subsection 5.2.1, the Hamiltonian is composed
of three terms: the QEs free-energy, the SPP field and their interaction. From Eq. 5.9,
we can write 7

H = ~ω0σ
†σ +

∑
k

~ω(k)a†kak +
∑
k

~gµ(k, z0)√
A

(
akσ

†eik·R0 + a†kσe
−ik·R0

)
, (5.87)

where k stands for the parallel momentum and σ (σ†) describe the lowering (raising)
operators of the QE, located at (R0, z0). The QE has resonance frequency ω0 and dipole
moment µ, that relate to its spontaneous decay rate via Eq. 5.33, γ0 = ω3

0µ
2/(3πε0~c3). In

addition, ak and a†k are the destruction and creation operators for the SPPs propagating
along the 2D metal/dielectric interface characterized by permitivities εm/εd. Finally, and
different from Eq. 5.9, in the interaction term we have explicitly written the quantization
area factor, 1/

√
A, and the in-plane dependence of the coupling, eik·R0 .

Operators ak and a†k in Hamiltonian 5.87 correspond to a canonical quantization pro-
cedure in the absence of losses. Equivalently to Eq. 5.3 for the free space electric field,
the quantized SPP field at point r = (R, z) can be written as [283, 284]

E(r) =
∑
k

√
~ω(k)

2ε0A
uk(z)

[
ake

ik·R + a†ke
−ik·R] , (5.88)

7Recall that this Hamiltonian is written within the dipolar and rotating wave approximations.
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where the in-plane momentum k and energy ω are linked by the dispersion relation
k2(ω)(εm + εd) = εmεdω

2/c2, with k = |k|. The polarization vector, uk(z), is given by:

uk(z) =
1√
L(k)

e−kzz
(
ûk + i

|k|
kz
ûz
)
, (5.89)

where ûz (ûk) is the unit vector in the z (in-plane) direction and kz is the vertical
component of the momentum in the dielectric medium, kz =

√
k2 − εdk2

0, with k0 = ω/c.
In addition, L[k(ω)] is the “effective length” of the mode, that is chosen so that the EM
energy of the mode is normalized [284]:

L[k(ω)] =
π

2

εm(ω)− εd√
εdεm(ω)|k(ω)|

[
εm(ω) + εd

(
1 + ω

dεm(ω)

dω

)]
. (5.90)

Finally, we can write an explicit expression for the coupling constant of the dipolar
interaction between a given QE and the SPP field, gµ(k; z). Following Eq. 5.7 and using
the expression for the quantized SPP field, the coupling strength reads as

gµ(k; z) =

√
ω(k)

2ε0~L(k)
e−kzzµ · (ûk + i

|k|
kz
ûz). (5.91)

The dependence of gµ with z is dictated by the decay length of the SPP in the z-direction
via the value of kz. In Fig. 5.12 (b), we render the evolution of gµ(k; z) with frequency for
two possible orientations of the dipole: parallel to the momentum k and perpendicular
to the metal surface. In both cases, the couplings are evaluated for QEs at z0 = 20

nm and with hγ0 = 0.1meV, which corresponds to a lifetime of τ0 = 40 ps, close to the
reported value of 70 ps [276] for the J-aggregates used as QEs in some of the experiments
[204, 206, 207]. As shown in Fig. 5.12 (b), the coupling constant between the QE and the
SPP mode is larger for the perpendicular orientation, as kz is always smaller than |k|. By
comparing the coupling constant to the β factor for a QE coupled to the SPPs supported
by a metal surface given in Fig. 5.3, we see that β is also larger for the perpendicular
orientation of the dipole moment. On the other hand, note that gµ(k; z) is maximum
at z = 0 [see Eq. 5.91] and not where β peaks. The reason for this is that we have not
included losses when writing Hamiltonian 5.87 while the β factor reflects the fact that
lossy modes at high wavevectors are available for the emitter to couple for very small
distances to the metal surface.

Next, we generalize the single-emitter Hamiltonian given by Eq. 5.87 for a collection
of N QEs located at positions ri = (Ri, zi), with i = 1, ..., N . As sketched in Fig. 5.12
(a), the QEs are embedded in a dielectric host of thickness W that is placed on top of
the metal surface. A spacer layer (thickness s) is placed between the dielectric host and
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Figure 5.12: Strong coupling between a collection of emitters and SPPs. (a) Schematic picture
of the N QEs distributed in a volume of width W separated by a distance s from a metal film
of thickness h. (b) Coupling constant gµ(k; z0) for a single QE with perpendicular (solid blue)
and parallel (red dashed) orientations (see inset) placed at z0 = 20 nm and interacting with a
SPP of momentum k(ω).

the metal surface. We model the volume distribution of QEs as NL layers with Ns QEs
each (N = NL × Ns) and generalize the single QE Hamiltonian. Assuming the same
transition frequency for all the emitters, ωi = ω0, the Hamiltonian for the N QEs reads
as

HN =

NL∑
j=1

Ns∑
i=1

~ω0σ
†
i,jσi,j +

∑
k

~ω(k)a†kak

+
∑
k

NL∑
j=1

Ns∑
i=1

~gµ(k; zj)√
A

(
akσ

†
i,je

ik·Ri + a†kσi,je
−ik·Ri

)
. (5.92)

Here, σi,j and σ†i,j are the QE lowering and raising operators of a QE that is located at
(Ri, zj). In addition, ak and a†k are the already introduced SPP operators and gµ(k; zj)

is the coupling constant between each of the QEs and the SPP, given by Eq. 5.91 and
plotted in Fig. 5.12 (b).

To simplify the general Hamiltonian for the collection of emitters, we make a series
of assumptions. First, we consider that, in the low excitation regime, the QEs are far
from saturation. Hence, their lowering and raising fermionic operators (σi,j and σ†i,j),
can be mapped into bosonic operators, bi,j and b†i,j, respectively, by means of a Holstein-
Primakoff transformation [285],

σi,j =
√

1− b†i,jbi,j · bi,j , (5.93)

σ†i,j = b†i,j

√
1− b†i,jbi,j . (5.94)

Here, [bi,j, b
†
m,n] = δmiδnj. Assuming a low pumping rate, such that 〈σ†i,jσi,j〉 � 1, we
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have to first order σi,j ≈ bi,j, thereby arriving to the following total Hamiltonian

HN =

NL∑
j=1

Ns∑
i=1

~ω0b
†
i,jbi,j +

∑
k

~ω(k)a†kak

+
∑
k

NL∑
j=1

Ns∑
i=1

~gµ(k; zj)√
A

(
akb
†
i,je

ik·Ri + a†kbi,je
−ik·Ri

)
. (5.95)

Second, we construct a collective mode of the Ns emitters in each j-layer in a standard
way as

D†j,q =
1√
Ns

Ns∑
i=1

b†i,je
iq·Ri . (5.96)

In terms of these collective mode operators, the interaction term of the Hamiltonian
reads as

HN
int =

∑
k,q

NL∑
j=1

~gµ(k; zj)
√
ns

Ns

(
S(k− q)akD

†
j,q + S∗(k− q)a†kDj,q

)
, (5.97)

where ns = Ns
A

is the surface density of emitters. In the above equation we have in-
troduced the structure factor, S(k), of the distribution of QEs in each layer, which is
defined as

S(k) =
1

Ns

Ns∑
i=1

eik·Ri . (5.98)

Next, as in the experiments the ensemble of QEs is disordered, we assume that the struc-
ture factor is peaked at zero-momentum, i.e., S(k−q) ≈ δk,q. Within this approximation,
the interaction Hamiltonian simplifies to

HN
int =

∑
k

NL∑
j=1

~gµ(k; zj)
√
ns
(
akD

†
j,k + a†kDj,k

)
. (5.99)

Note here that the collective modes, Dj,k, are orthonormal only if the distribution of
emitters is homogeneous 8. Finally, we define a collective mode of the whole ensemble of

8The commutation relation of operators Dj,k reads as

[
Dj,k, D

†
j′,q

]
=

1

Ns

Ns∑
i,i′=1

[
bi,j , b

†
i′,j′

]
ei(k·Ri−q·Ri′ ) = δjj′S(k− q) ≈ δjj′δk,q.
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emitters, D†k, by means of a transformation in which each excitation is weighted by its
coupling to SPPs

D†k =

√
ns

gNµ (k)

NL∑
j=1

gµ(k; zj)D
†
j,k, (5.100)

where gNµ (k) is defined such that the collective mode operator is normalized. Based
on this, the total Hamiltonian of the N QEs interacting with the SPP modes of a 2D
metal film can be written as HN =

∑
kH

N
k , in which the Hamiltonian associated with

momentum k has the following expression

HN
k = ~ω0D

†
kDk + ~ωka

†
kak + ~gNµ (k)(akD

†
k + a†kDk). (5.101)

The effective coupling constant, gNµ (k), is an average over the single QE-SPP coupling
constants and reads as

gNµ (k) =

√√√√ns

NL∑
j=1

|gµ(k; z)|2 . (5.102)

Assuming a continuum of layers in the z-direction with a total thicknessW and a volume
density of emitters n = NsNL/(AW), the above expression can be written as

gNµ (k) =

√
n

∫ s+W

s

|gµ(k; z)|2dz . (5.103)

The Hamiltonian 5.101 allows an ab-initio quantum treatment of the coherent coupling
between an ensemble of N QEs and SPPs. This interaction conserves the total momen-
tum of the system composed of the supermode of QEs and the SPP. When evaluating
the coupling constant for a momentum k, gNµ (k), there is no need to rely on fitting
parameters and can be calculated from first principles, as shown below.

In Figure 5.13 (a) we plot the effective coupling constant gNµ evaluated at k(ω0) for
a density of emitters n = 106µm−3 (of the order of the volume densities used in the
experiments) as a function of W and for different values of the spacer width. The mag-
nitude of the collective coupling constant depends on the orientation of the QEs’ dipole
moments. Here we render the two limiting cases (all dipoles oriented perpendicularly or
parallel to the metal surface) as well as an isotropic average over these two orientations,
giso = 2g2

‖/3 + g2
⊥/3. Two main conclusions can be extracted from this figure. First, gNµ

depends strongly on W but saturates for thick enough films. This saturation is due to
the exponential dependence of gµ on z, related to the spatial decay of the SPP mode (see

153



5. Coupling between quantum emitters and propagating surface plasmons

(a)

0.0

0.1

0.2

0.3

0.4

1 5 10 50 100 500 1000
W (nm)

(b)

1 5 10 50 100 500 1000

10-2

10-3

10-4

10-5

10-1

W (nm)

Figure 5.13: Collective coupling constant and losses. (a) Coupling constant, ~gN (W), for sep-
arations s ranging from 1 to 50 nm and for parallel, perpendicular and isotropic orientations of
the QEs with hγ0 = 0.1 meV. (b) Collective mode losses, ~γDk

(W), for an isotropic orientation
of the QEs and the same range of spacer thickness as in panel (a). The volume density in both
panels is n = 106 µm−3.

Eq. 5.91), and, therefore, is determined by the dielectric environment of the metal film.
Second, the dependence of gNµ (k) on the width of the spacer layer is not very strong.

Finally, the excitation of the hybrid system needs to be included into the theoretical
framework. In order to reproduce the typical experimental configuration, we will assume
that SPPs are excited by a coherent laser field. A new term is incorporated into the total
Hamiltonian, HL

k (t) = ~Ωk(ake
iωLt + a†ke

−iωLt) [192], in which Ωk measures the intensity
of the laser field and ωL is the operating frequency of the laser. In this way, the laser
field fixes the SPP parallel momentum, k, implying that only the term HN

k in the total
hamiltonian HN needs to be taken into account. The final total coherent Hamiltonian
then reads as

Hk = HN
k +HL

k . (5.104)

5.5.2 Master equation

The description of the dynamics of the system must be completed by considering both
the losses in the ensemble of QEs and the dissipation associated with the SPP mode. We
use a Markovian master equation for the density matrix and introduce perturbatively the
corresponding Lindblad operators [286] associated with each of the dissipative channels.
Recalling that the general expression of a Lindblad term associated with an arbitrary
operator c is Lc = (2cρc† − c†cρ − ρc†c), the master equation for the density matrix
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associated with momentum k, ρk(t), can be written as

ρ̇k =
i

~
[ρk, H

N
k +HL

k ] +
γDk

2
LDk

+
γak
2
Lak +

γφ
2
LD†kDk

. (5.105)

In this equation, we need to provide a decay rate for each decoherence mechanism. First,
the decay rate of the SPP mode, γak , can be calculated from the SPP propagation
length, LSPP, and group velocity, vg, as γak = vg/LSPP. The SPP lifetime decreases as
the frequency approaches the SPP cut-off frequency, being around ~γak ∼ 5meV for
~ω0 = 2 eV.

Second, the decay rate associated with the collective mode of the ensemble of N QEs,
γDk

, can be obtained from the averaged value of the decay rates for each individual QE,
γσ(z), as follows. The losses associated to the N QEs before doing the transformation
to the collective mode, are given by the following Lindblad term:

LNσ [ρ] =

NL∑
j=1

Ns∑
i=1

γσ(zj)

2
Lσi,j [ρ]. (5.106)

Here γσ(zj) stands for the losses of a single QE, i.e., the coupling of a QE to all EM
modes other than SPPs. This magnitude only depends on the z-coordinate and can be
obtained from the spontaneous decay rate, Γ, and the βspp factor of the coupling to SPPs
as

γσ(zj) = [1− βspp(zj)] Γ(zj). (5.107)

In Section 5.2 we showed that the spontaneous decay rate is given by the imaginary part
of the Green’s function of the classical problem evaluated at the QE’s location through
Eq. 5.29. In addition, Γ(z) for a QE placed in front of a metal surface was calculated
in Section 5.3.1 and plotted in Fig. 5.2 for a QE with ~ω0 = 2 eV. On the other hand,
we also showed that βspp can be calculated from the SPP pole in the Green’s function,
Γspp (see Eqs. 5.54, 5.55 and 5.59). The Lindblad term for the collective mode LDk

can
be derived from Eq. 5.106 making use of the expression for D†k [through Eqs. 5.96 and
5.100]:

LDk
[ρ] =

∑
k

γDk

2
LDk

[ρ] +

NL∑
j,j′

∑
k,k′

γDj,k,Dj′,k′

2
(2Dj′,k′ρD

†
j,k −D

†
j,kDj′,k′ρ− ρD†j,kDj′,k′),

(5.108)
where we have separated the elements of the sum in k that conserve momentum and
those that connect collective modes from different layers and with different k’s. The
second term originates from the inhomogeneity of γσ(z) between different layers (j and
j′) or different orientations (in the case of an isotropic ensemble). Connecting modes of
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different k-vectors implies an incoherent coupling between the collective mode of the N
QEs (Dicke state) at k and the reservoir of dark modes at other k′, thereby yielding an
inhomogeneous broadening. However, it can be shown that generally γDj,k,Dj,k < γDk

and,
furthermore, γDk

is itself generally smaller than other loss mechanisms, as we will see
below. Therefore, in our theoretical analysis we neglect the second term in the right-hand
side of Eq. (5.108). Regarding the k-conserving term, it involves a decay rate associated
to the collective mode that can be written in terms of the decay rate of a single QE
given by Eq.(5.107), as follows:

γDk
=

n

|gNµ (k)|2

∫ s+W

s

dz γσ(z)|gµ(k, z)|2 . (5.109)

Notice that, as in the definition of the collective mode (Eq. 5.100), the losses correspond-
ing to each layer are weighted by a term that is proportional to gNµ (k, z).

The evolution of γDk
with the dielectric thickness, W , is plotted in Fig. 5.13 (b). An

isotropic distribution of QEs is considered, and the dependence with the spacer layer
thickness, s, is also presented. Except in the case of a very thin spacer layer (s = 1 nm)
the plot shows that the QEs’ losses do not vary strongly with the geometrical parameters,
W and s. Moreover, γDk

is of the order of γ0, which makes this dissipation mechanism
negligible when compared to, for instance, the SPP losses ~γak ≈ 5meV. For the case of
s = 1 nm, the value of γDk

increases due to the fact that the QEs are very close to the
metal surface and quenching is not avoided. However, for dielectric layers of thicknesses
W & 100 nm, the value of ~γDk

decreases to ≈ 1 meV, which is below the SPP losses.

Finally, in order to be as close as possible to the experimental conditions, the existence
of vibro-rotational states in organic molecules must also be taken into account. These
degrees of freedom within the QEs can be incorporated into the two-level system model
by means of pure dephasing mechanisms, characterized by a dephasing rate, γφ. A typical
value at room temperature for the organic molecules used to observe SC between QEs
and SPPs is ~γφ = 40meV [276].

Once all the ingredients in equation 5.105 have been introduced, the properties of
the system, such as populations, can be obtained from it. As we are interested in the
stationary properties of the system we solve the linear equation: ρ̇k = 0, which yields the
steady-state density matrix of the system ρssk . Then, any property of the system described
by a given operator O can be obtained as: 〈O〉 = Tr [Oρssk ]. The solution of the master
equation for k0 = k(ω0) (in-plane momentum that displays maximum coupling) yields
to coherence functions being proportional to exp(iRt) where R is the Rabi splitting at
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Figure 5.14: (a) Real (solid black) and imaginary (red dashed) parts of the Rabi splitting
at resonance for dipoles oriented isotropically, Riso, as a function of the density of emitters, n,
for the geometrical parameters: s = 1 nm, W = 500 nm and ~γφ = 40 meV. (b) Polariton
population of a distribution of QEs as a function of k, with the same geometrical parameters
as in panel (a) and with Ωk = 0.1gN . The volume density in this case is n = 106 µm −3, as in
Fig. 5.13.

resonance:

R =
√

[gNµ (k0)]2 − (γDk0
+ γφ − γak0

)2/16. (5.110)

Following the standard analysis [278], we will consider that our hybrid system is within
the SC regime when the imaginary part of the Rabi splitting is zero. In Fig. 5.14(a), we
plot the evolution of R ≡ Rr + iRi with the volume density n for an ensemble of N
QEs whose dipole moments are oriented isotropically. For very low densities (for this set
of parameters, n < 2 × 103µm−3), R is a purely imaginary number and, therefore, the
system operates in the WC regime. This density threshold, nt, is mainly controlled by
γφ as γφ � γD, γa for this set of decay rates. Notice that as γφ decreases exponentially
when lowering the temperature [276], nt is expected to be much smaller at very low
temperatures (by assuming γφ = 0 at zero temperature, nt would be around 20µm−3).
For high enough densities (n ≈ 105 − 108µm−3, typical densities in the experiments
[205]), Rr (the so-called vacuum Rabi splitting) is dominated by the coupling constant
gN as gN � {γD, γa, γφ} and Rr ≈ gN . As this coupling constant scales as

√
n, so does

Rr, as observed in the experiments. Within our formalism, it is also possible to evaluate
the absorption spectra, a magnitude that is attainable experimentally. In Fig. 5.14(b)
we plot the polariton population (the sum of both the QEs supermode and SPP mode
occupations, a magnitude that is proportional to the absorption by the system [287])
versus energy and parallel momentum, showing the anti-crossing between the flat band
at ω0 associated with the collective mode of the N QEs and the dispersive band of the
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SPPs. Moreover, our theoretical framework can be confronted with experimental results.
In Ref. [205], the metal film was silver, W = 50 nm, and an ensemble of n = 1.2 × 108

µm−3 of rhodamine 6G molecules were used as QEs (γ0 = 1 µeV [288]). This resulted in
the observation of a Rabi splitting of 0.115 eV. For those parameters, our theory predicts
Rr = 0.04 eV for parallel-oriented QEs, Rr = 0.18 eV for the perpendicular orientation,
and Rr = 0.10 eV for an isotropic average, showing a good agreement between theory
and experiment.

5.5.3 Saturation effects and quantum statistics

Here we address the fundamental question regarding the classical/quantum nature of the
SC regime observed in this type of systems. Although a semiclassical formalism fed with
phenomenological parameters is able to reproduce qualitatively the reported absorption
spectra (see Section 5.7), this should not be taken as a statement that the system con-
tains no interesting quantum physics. Non-classicality is unambiguosly revealed by the
presence of photon antibunching in the dynamics of the strongly coupled system. For this
reason, we analyze the behavior of the second-order correlation function, g(2), defined as

g(2)(τ) = lim
t→∞

〈D†k(t)(D†kDk)(t+ τ)Dk(t)〉
〈D†kDk(t)〉2

. (5.111)

Photon antibunching yields g(2)(0) < 1 [184], which reflects the single emitter character
of the QEs. As we will show below, only when the intrinsic non-linearity of the QEs is
taken into account g(2)(0) can take values < 1. Indeed, within the approximations leading
to Hamiltonian 5.101 withDk constructed from bosonic operators, the system behaves as
two coupled harmonic oscillators. In this case, g(2)(0) is always greater or equal to 1 and
its time evolution critically depends on the excitation means. For the case of coherent
pumping, the system acquires the statistics of the laser field and hence g(2)(τ) = 1, as
shown in Fig. 5.15 (a) (blue dotted line). A different case, that of incoherent pumping,
is simulated in our theoretical formalism by introducing a Lindblad term, PDkLD†k/2
[278], into the master equation (Eq. 5.105), instead of HL

k . As shown in Fig. 5.15 (a)
(green-dashed line), when the collective mode is driven incoherently g(2)(0) = 2 and its
time dependence presents some Rabi oscillations due to SC but g(2)(τ) ≥ 1.

When the intrinsic non-linearity of the QEs is taken into account, with the following
Hamiltonian term,

Hnl =
∑
k,k′,q

~UDD†k+qD
†
k′−qDkDk′ , (5.112)
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Figure 5.15: Second-order correlation function. (a) Dependence of g(2) on the delay, τ , for a
system with |UD| = 0.025gN and ωL = ω0 + 0.1gN (solid black) and with |UD| = 0 for both
incoherent pumping (dashed green) and coherent excitation (dotted blue). (b) Contour plot of
g(2) at zero delay as a function of the nonlinearity, |UD|/gN and detuning (ω0 − ωL)/gN . The
colour code is 0 blue, 1 white, 2 red. The pumping is coherent and the system parameters are:
s = 10 nm, W = 10 nm and n = 106 µm−3, which yields ~gN ≈ 50 meV, see Fig. 5.13 (a). (c)
Two cuts of the contour plot in panel (b) for different nonlinear parameters: |UD| = 0.005gN

(dashed red) and |UD| = 0.025gN (solid black). (d) Contour plot of Mandel parameter, Q,
revealing the optimal detuning for the observation of antibunching in this system. The colour
code is: < 0 blue, 0 white, > 0 red. In (a-d) we have taken a dephasing rate γφ = 0.

fingerprints of non-classicality can be found in our system (g(2)(0) < 1). The physical
origin of such a non-linear term can be twofold [289]: a direct coupling between the
QEs, similar to the Coulomb interaction between excitons reported in semiconductor
structures, and/or saturation effects. In this last case we can quantify this contribution
by introducing the second-order correction within the Holstein-Primakoff approach in
the process of replacing the QE lowering and raising operators by the bosonic ones. From
Eqs. 5.93-5.94 we can write

σi,j ≈ (1− b†i,jbi,j/2)bi,j. (5.113)

This way, the QEs’ saturable character is taken into account. With the expression above,
the free-energy term of our starting Hamiltonian 5.92 becomes

HN
0 =

NL∑
j=1

Ns∑
i=1

~ω0b
†
i,jbi,j −

NL∑
j=1

Ns∑
i=1

~ω0b
†
i,jb
†
i,jbi,jbi,j . (5.114)
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The first term in this equation is the first order contribution appearing in Eq.(5.92).
On the other hand, the second part of the equation is a non-linear term that can be
expressed by means of operators Dj,k as9

Hnl = −
NL∑
j=1

∑
k,k′,q

~ω0

Ns

D†j,k+qD
†
j,k′−qDj,kDj,k′ . (5.115)

In particular, we now focus on a quasi-2D layer of QE’s (W → 0). In this limit, Dj,k ≈
1√
NL
Dk and the non-linear term can be written in terms of the collective mode operator

Dk as follows:

Hnl = −
∑
k,k′,q

~ω0

N
D†k+qD

†
k′−qDkDk′ , (5.116)

which is a particular case of Eq.5.112 with UD = −ω0

N
. Notice that whereas in the linear

case the key parameter is the volume density n, the saturation contribution to the non-
linear term is controlled by the total number of active QEs, N .

In Fig. 5.15 (b), we show the dependence of g(2)(0) on |UD| and the frequency detuning,
(ω0−ωL), both expressed in units of gN . In these calculations we have taken a dephasing
rate γφ = 0 in order to find the most favorable conditions to observe photon antibunching.
As we consider pumping to only one k-state, the population of a SPP-mode with parallel
momentum k′ is proportional to δ(k−k′), canceling out the summation in k′ in Eq. 5.112.
In addition, as a first approximation to this problem we neglect also the summation in
q. This is justified by the fact that the shape of the SPP dispersion relation does not
allow parametric scattering, in which both energy and momentum are conserved, to SPP
states with q 6= 0 [290, 291]. Two particular cases (|UD| = 0.025gN and 0.005gN) are
displayed in Fig. 5.15 (c) for a better visualization. If we assumed a saturation origin
for UD, these two cases would correspond to N ≈ 2 × 103 and N ≈ 104, respectively.
Importantly, photon antibunching is observed in both cases and is greater when the laser
frequency almost coincides with ω0 or ω0±gN . Finally, in Fig. 5.15 (d) we show a contour
plot of the Mandel parameter at zero delay, which is defined as [184]

Q(τ) = nDk

[
g(2)(τ)− 1

]
, (5.117)

being Q > 0 for photon bunching and Q < 0 for antibunching. This definition is conve-
nient because, different from g(2)(τ), Q is weighted by the population of the mode. Hence,
it differentiates regions of g(2)(τ) < 1 but very low population from regions of g(2)(τ) < 1

9Using b†i,j = 1√
Ns

∑
qD
†
j,qe
−iq·Ri .
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but larger population, which is interesting from the experimental point of view. In the
Q plot, the antibunching region at zero detuning disappears because the system is in
the SC regime and thereby the population at ωL = ω0 is very low. Therefore, our results
suggest that in order to observe noticeable photon antibunching, the laser should be
tuned at ω0 ± gN and the experiments should be performed at very low temperature
to avoid dephasing and plasmon losses. Additionally, in order to reduce the number of
active QEs, the laser beam should have a very small spot size, and the QEs should be
disposed forming quasi-2D layers.

5.6 Conclusions

To summarize, in this Chapter we have studied the interaction between QEs and the
EM modes supported by plasmonic structures. We have started by reviewing in Section
5.2 the QED formalism appropriate for treating the coupling of QEs to the EM field.
Then, we have considered the coupling of an individual QE to plasmonic media, the
SPP-mediated coupling between two QEs and the SC regime between a collection of
QEs and propagating SPPs.

In Section 5.3 we have addressed the coupling between an individual QE and the EM
modes supported by inhomogeneous plasmonic environments. First, we have considered
the modification of the spontaneous decay rate of the QE induced by the presence of the
plasmonic media. In particular, we have studied a QE placed close to a metal/dielectric
interface as well as a graphene sheet. For both systems, we have identified three different
decay channels for the QE: radiation to free space, coupling to SPPs and non radiative
decay to lossy processes in the plasmonic medium. We have shown that for intermediate
distances between the metal surface or the graphene sheet, the coupling to SPPs is the
dominant contribution to the total decay rate. Second, we have studied the dynamics of
the QE’s population beyond the Markov approximation. For the case of metal/dielectric
interfaces, we have explored the conditions under which a single QE interacting with
the EM modes supported by the interface shows reversible dynamics. Through numer-
ical and analytical tools, we have identified the parameters that determine both the
emergence and the visibility of oscillations in the population of the excited state. We
have found that the EM modes of frequencies around the cut-off frequency of the SPP
modes, i.e., the most dissipative EM modes of the system, are the most relevant for the
observation of reversible dynamics. In addition, in the region of very short distances, we
have mapped the problem to an effective dissipative Jaynes Cummings model, yielding

161



5. Coupling between quantum emitters and propagating surface plasmons

analytical expressions for the coupling and the dynamics.
In Section 5.4 we have studied the tailoring of the interaction between two QEs medi-

ated by SPPs propagating in graphene. We have shown that the interaction between two
QEs mediated by the SPPs in 2D graphene sheets can be controlled at a subwavelength
scale and can be tuned by means of external parameters through the chemical potential
of the sheet. We have studied the appearance of the super- and subradiant regimes, both
in the reflection and transmission configurations. Additionally, when the interaction is
confined to 1D in graphene ribbons, a longer interaction range between the QEs and
a very deep subwavelength control of the interaction can be achieved. By considering
the lateral displacement of the QEs from the ribbon’s axis, we have also shown that the
coupling to the graphene SPPs supported by the ribbon is very robust. Our results show
that both graphene sheets and graphene ribbons can be used as efficient platforms to
modify the interaction between two QEs in their vicinity.

Finally, in Section 5.5 we have made use of a quantum formalism to study the phe-
nomenon of SC between ensembles of QEs and propagating SPPs in 2D metal surfaces.
Based on this formalism, we have predicted a critical density where SC emerges for a
given geometry and distribution of QEs, and also determined the optimal geometrical
parameters that maximize the SC. These results show that, for experiments carried out
at room temperature, QE and SPP losses play a minor role in the emergence of SC.
Both coherent coupling between the QEs and SPPs and pure dephasing mechanisms
determine the strength of the phenomenon in this case. Additionally, the development
of this general quantum framework allows studying the fundamental nature (classical
versus quantum) of this phenomenon by analyzing the conditions in which photon anti-
bunching could be observed.

5.7 Appendix: Semiclassical model for strong

coupling

In this Appendix we show how a semiclassical model is also able to reproduce the phe-
nomenology reported on the SC regime between a collection of QEs and SPPs.

The SC regime reveals itself through an energy splitting in the dispersion relation of the
system of interest. When the interaction strength between two modes is large enough to
enable a coherent energy exchange between them, any excitation of the system becomes
delocalized. Then, the dispersion relation displays an avoided crossing of the energy levels
with a characteristic splitting. It is well known that such a regime can be understood
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Figure 5.16: Multilayer model for a semiclassical approach to the SC between a collection of
QEs and SPPs.

classically. For instance, two coupled classical harmonic oscillators of eigenfrequencies
ωa,b =

√
ka/ma,b and coupling constant g, display an avoided crossing of levels with a

splitting given by (see for instance Ref. [292])

∆ =

√
g/ma

√
g/mb√

ω′a
√
ω′b

, (5.118)

with ω′a,b =
√

(ka,b + g)/ma,b, and where we see that ∆ ∝ g. Including damping in the
model, γa,b, results in a broadening of the energy levels. Hence, anticrossing can only be
observed if the energy splitting overcomes the sum of the linewidths, i.e. ∆ > (γa + γb).
Within a quantum formalism, two coupled oscillators show the same results and the
anticrossing is usually termed Rabi splitting. As a result, the observed avoided crossings
between the QEs’ level and the propagating SPP mode in Refs. [204–208, 211–215] can
be understood within a classical framework.

Here we present a semiclassical approach based on a multilayer model for the QEs-
SPPs interacting system studied in Section 5.5 10. A sketch of the model, that reproduces
the usual experimental configuration, can be seen in Fig. 5.16. First, a dielectric/metal
interface of permittivities ε1/ε2, with ε1 > 1 and ε2 = εm(ω), enables the excitation
of SPPs that propagate through the upper metal/spacer/dielectric interface (ε2/ε3/ε4).
The thickness of the metal film is h and we take it to be silver, with the dielectric
function tabulated in Ref. [14]. The thickness of the spacer layer is s and it has ε3 = 1.
The dielectric material on top (ε4) is the host for the QEs and has a thickness W .
Finally, radiation outcouples through a dielectric/dielectric interface (ε4/ε5), where we
take ε5 = 1.

The QEs are modeled through an effective dielectric function, ε4 = ε(ω). We start from
a quantum model for the polarizability of a two-level system of resonance frequency ω0

10Similar approaches have been presented to deal with SC in cavity QED systems [293].
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Figure 5.17: Anticrossing in the semiclassical approach. (a) Optical response of the molecules
slab as given by Eq. 5.121 and with parameters ~ω0 = 2 eV, hγ0 = 0.1 meV, ~γφ = 40 meV
and n = 106 µm−3. (b) Absorbance, A = 1 − R − T , in the multilayer medium (colour scale)
as a function of frequency and in-plane wave vector. The free-space light line is shown as a
thick black line, while the dielectric light-line is shown as a dashed black line. The dispersion
relation for the SPPs propagating through the metal film is depicted as a red dashed line. The
horizontal dashed line points at the molecules resonance frequency, ~ω = 2 eV. The geometrical
parameters are h = 50 nm, s = 1 nm, W = 500 nm and ε1 = 2.25.

(see Ref. [11]),

α(ω) =
e2

ε0m

f0

ω2
0 − ω2 − iωγ

, (5.119)

where e and m stand for the electron’s charge and mass, respectively. In addition, γ
stands for the radiative damping of the QEs, which we identify with their dephasing
rate, γφ. The oscillator strength, f0, accounts for the QEs’ dipole moment and can be
written in terms of the QEs’ free space decay rate, γ0, as

f0 =
2πmε0c

3

e2ω2
0

γ0. (5.120)

Finally, we derive ε(ω) from a classical dielectric model (see Ref. [294]) as

ε(ω) =
1 + 2/3nα(ω)

1− 1/3nα(ω)
, (5.121)

where n is the QEs’ number density. The real and imaginary parts (solid blue and dashed
green, respectively) of the resulting dielectric function is plotted in Fig. 5.17 (a) for the
same parameters considered in Section 5.5: ~ω0 = 2 eV, hγ0 = 0.1 meV, ~γφ = 40 meV
and n = 106 µm−3.

Next, we develop a scattering formalism for the multilayer structure and we calculate
the absorbance (A) through A = 1 − R − T , with R being the reflectance and T the
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transmittance. The contour plot in Fig. 5.17 (b) represents the absorbance value as a
function of frequency, ω, and in-plane momentum, k, of the excitation. For this calcula-
tion, we have considered a multilayer with geometrical set of parameters similar to the
experimental setups: h = 50 nm, s = 1 nm, W = 500 nm and ε1 = 2.25. In this case, we
have chosen a metal film that is thick enough to avoid the appearance of the short and
long range SPP modes, such that it effectively acts as a semi-infinite metal surface. The
plot clearly displays an anticrossing between the SPP dispersion and the QEs’ energy of
the order of those measured in the experiments. In addition, an extra feature appears
close to the light line and the QEs’ energy level, similar to what is observed in some of
the experiments as well as in a recent theoretical calculation [295]. Our results indicate
that such feature corresponds to a propagating mode within the dielectric slab that hosts
the QEs.
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Chapter 6

Conclusions

English

In this Thesis we have presented our contributions to four different topics that lie at
the frontier of Plasmonics. These four topics are among the diverse prospects that have
been explored in the research field of Plasmonics during the last four years. All the
exciting prospects of Plasmonics take advantage of the ability of surface plasmons to
confine largely enhanced electromagnetic fields at subwavelength volumes, even beyond
the diffraction limit. As a consequence, surface plasmons build a bridge between two
different length scales, which enables many novel electromagnetic phenomena with dis-
tinct applications. Throughout this Thesis we have explored four topics that exploit the
remarkable properties featured by surface plasmons. In the following we summarize the
main achievements presented here.

First, we have presented a framework for controlling the propagation of surface plas-
mons along metal/dielectric interfaces. The subwavelength confinement of surface plas-
mons opens up a new route to bridge electronics and photonics and many research efforts
are devoted to the development of a surface plasmon-based photonics. Our approach
makes use of Transformation Optics, a theoretical technique that aims to control and
manipulate electromagnetic fields through devising coordinate transformations which
are then implemented by means of materials with specifically designed optical proper-
ties, i.e., metamaterials. Applying Transformation Optics to Plasmonics allows us to
control the flow of surface plasmons propagating along metal surfaces. In particular, we
have presented various plasmonic devices working at subwavelength scales and based
on patterning solely the dielectric medium that lies on top of the metal surface. More-
over, we have shown that devices relying on isotropic materials can be devised by the
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appropriate choice of coordinate transformation.
Next, we have presented a work that aims to transfer the promising prospects of

particle Plasmonics to lower frequency regimes, also adding the ingredient of magnetism.
We have shown that metal particles with periodically textured surfaces support localized
dipolar surface plasmons of electric as well as magnetic characters. These resonances are
termed spoof surface plasmons, as they emerge as a result of the particle’s corrugation
instead of the optical properties of metals, as is the case in canonical surface plasmons.
For this reason, these geometrically-induced magnetic surface plasmons appear at a
broad range of frequencies ranging from the microwave and THz regimes up to the near-
IR, as we have demonstrated for realistic metal properties. We have also shown that by
corrugating the metal structure with very long grooves, deeply subwavelength magnetic
localized modes emerge. Furthermore, we have presented experimental results carried
out in the microwave regime that verify our theoretical predictions.

At a different level, we have addressed the use of plasmonic antennas as a platform to
manipulate nanoscopic targets at subwavelength scales. We have proposed a plasmonic
structure that enables not only the trapping of Rayleigh dielectric or biological objects,
but also their transport over long distances. The large field enhancement originated at the
vicinity of optical antennas first enables the trapping of such objects in subwavelength
volumes. Next, we achieve a directed drift of the targets by means of a combination of
geometrical asymmetry and non-equilibrium physics. This is possible by the Brownian
ratchet mechanism, that rectifies the Brownian motion of nanoscopic particles even in
the absence of an external bias. Achieving a long-distance transport of the targets may
find many functions in microfluidics and lab-on-a-chip applications.

Finally, we have studied the effect of plasmonic systems on the interaction between
light and matter. In particular, we have shown that the sub-diffraction confined electro-
magnetic modes supported by flat plasmonic media can greatly enhance the coupling
between quantum emitters and photons. For the case of an individual quantum emitter
and for weak light-matter coupling strengths, the Markov approximation holds and the
emitter’s population decays irreversibly at a rate that is different from the free-space
spontaneous decay rate. Interestingly, there is a range of distances close to the flat plas-
monic structure where coupling to propagating surface plasmons results in an enhanced
decay rate for the emitter. We have shown that this fact occurs both for quantum emit-
ters in the optical regime placed in the vicinity of a metal/dielectric interface and in
the THz regime for the case of a graphene sheet. In addition, when the emitter is in a
very close proximity to the interface, the emitter’s decay rate is greatly enhanced due to
electromagnetic modes of very large modal wave vectors associated to fast non radiative
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decays within the plasmonic medium. In this case, the coupling strength is enhanced,
Markov approximation breaks down, and the emitter’s population exhibits reversible
dynamics. Next, focusing in weak coupling strengths, we have considered the media-
tion of the interaction between two emitters by the surface plasmons propagating along
graphene sheets and ribbons. The graphene surface plasmon polaritons enable longer
interaction ranges between the emitters as well as the emergence of collective super-
and subradiant states with modified decay rates. Moreover, the interaction between the
emitters can be controlled at subwavelength scales through external parameters thanks
to graphene’s sensibility to external fields. Finally, we have studied the strong coupling
regime for a collection of quantum emitters interacting with the surface plasmons prop-
agating along a metal/dielectric interface. In this case, the ensemble of emitters enables
a collective strong coupling with the surface plasmons polaritons. By means of the ap-
propriate quantum framework, we have first reproduced the phenomenology reported in
various experiments and then analyzed the conditions under which quantum statistics
could be observed.
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Castellano

En esta tesis se han presentado las contribuciones que hemos realizado en cuatro temas
distintos que se encuentran en la frontera de la Plasmónica. Los temas que hemos tratado
se hallan entre las diversas perspectivas que la comunidad científica ha explorado en este
campo durante los últimos cuatro años. Todas las expectativas generadas por este área
de investigación se basan en la capacidad de los plasmones de superficie de confinar el
campo electromagnético en tamaños menores que la longitud de onda de la radiación,
incluso superando el límite de la difracción. Como consecuencia de ello, los plasmones de
superficie tienden un puente entre dos escalas de longitud muy distintas, lo que permite
la aparición de fenómenos electromagnéticos novedosos y variados. A lo largo de esta
tesis, hemos explorado cuatro temas que explotan las propiedades características de los
plasmones de superficie. A continuación, resumimos los principales resultados expuestos
en este manuscrito.

En primer lugar, hemos presentado una serie de herramientas para controlar la propa-
gación de plasmones de superficie a lo largo de la interfaz entre un dieléctrico y un
metal. La propiedad que presentan los plasmones de superficie de confinar los campos
electromagnéticos a escalas menores que la longitud de onda supone una nueva ruta para
combinar la tecnología electrónica con la fotónica. De hecho, numerosos trabajos científi-
cos se han interesado por el desarrollo de una tecnología fotónica basada en plasmones de
superficie. Nuestro enfoque se basa en el uso de la Óptica de Transformación, una técnica
teórica que consigue controlar y manipular campos electromagnéticos, ideando transfor-
maciones de coordenadas. Dichas transformaciones dan lugar a una serie de parámetros
electromagnéticos, que se implementan en la realidad haciendo uso de metamateriales,
materiales con propiedades ópticas específicamente diseñadas. Al aplicar la Óptica de
Transformación a la Plasmónica, hemos desarrollado formas de control del flujo de plas-
mones propagándose a lo largo de superficies metálicas. En particular, hemos presentado
varios dispositivos plasmónicos de dimensiones menores que la longitud de onda de la
radiación involucrada, y que se basan únicamente en estructurar el medio dieléctrico que
se encuentra sobre la superficie metálica. Además, hemos demostrado que, eligiendo la
transformación de coordenadas de manera apropiada, es posible diseñar dispositivos que
requieren solamente el uso de materiales dieléctricos isótropos.

En segundo lugar, hemos expuesto una propuesta para transferir las expectativas gen-
eradas por los plasmones localizados en partículas metálicas a regímenes de frecuencia
más bajos, incluyendo asimismo modos plasmónicos magnéticos. Hemos mostrado que
partículas metálicas con superficies periódicamente corrugadas admiten modos plasmóni-
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cos localizados de carácter dipolar eléctrico así como dipolar magnético. Tales resonan-
cias se denominan plasmones de superficie spoof, ya que aparecen como resultado de la
corrugación de la superficie en lugar de como resultado de las propiedades ópticas de
los metales, como ocurre en el caso de plasmones convencionales. Por este motivo, estos
modos magnéticos de origen geométrico aparecen en un amplio rango de frecuencias,
desde los regímenes de microondas y terahercios hasta el infra-rojo cercano, tal y como
hemos demostrado simulando estructuras con propiedades metálicas realistas. También
hemos mostrado que al corrugar una estructura puramente metálica con indentaciones
muy largas, los modos plasmónicos magnéticos aparecen a longitudes de onda mucho
menores que la de la radiación en vacío. Además, hemos presentado unos resultados
experimentales que verifican nuestras predicciones teóricas.

Por otra parte, hemos considerado el uso de antenas plasmónicas como plataforma
para la manipulación de objetos dieléctricos de dimensiones nanométricas, ya sean éstos
tanto nano-partículas como objetos biológicos. Para ello, hemos propuesto una estruc-
tura plasmónica que permite no sólo atrapar tales objetos sino también su transporte a
lo largo de distancias mucho mayores que sus tamaños. El aumento del campo eléctrico
que se genera al iluminar antenas ópticas posibilita localizar dichos objetos de manera
controlada en volúmenes menores que la longitud de onda de la fuente de iluminación
empleada. Después, y gracias a la acción combinada de una geometría anisótropa y de
procesos de fuera de equilibrio, conseguimos un transporte del objeto dieléctrico en una
dirección. Esto es posible debido al mecanismo conocido como ratchet Browniano, que
rectifica el movimiento térmico de una partícula difusiva sin necesidad de aplicar un gra-
diente de temperatura o una fueza macroscópica. Se espera que el transporte de objetos
biológicos encuentre diversos usos en aplicaciones en micro-fluidos y en laboratorios de
análisis integrados en micro-chips.

Finalmente, hemos estudiado el efecto producido por estructuras plasmónicas en la
interacción entre la luz y la materia. En concreto, hemos demostrado que el confinamiento
de los modos electromagnéticos en tamaños menores que el límite de difracción generado
en las cercanías de estructuras plasmónicas planas, puede incrementar de manera muy
significativa el acoplo entre fotones y emisores. En el caso de un sólo emisor cuántico y
asumiendo un acoplo débil, la aproximación Markov es válida y el emisor se desexcita
de manera irreversible a una tasa distinta a la tasa de de desexcitación espontánea que
tiene lugar en vacío. Es de resaltar que hay un rango de distancias entre el emisor y la
estructura plasmónica en el cual el acoplo a plasmones de superficie propagantes origina
un incremento de la tasa de desexcitación del emisor. Hemos mostrado que este efecto
ocurre tanto para emisores ópticos localizados en la cercanía de la interfaz entre un

172



metal y un dieléctrico, como para el régimen de terahercios en el caso de una lámina
de grafeno. Asimismo, cuando el emisor está aún más próximo a dicha interfaz, su tasa
de desexcitación sigue incrementándose debido a modos electromagnéticos asociados a
procesos no radiativos que disipan energía rápidamente en el medio metálico. En este
caso, se incrementa mucho la intensidad del acoplo entre la luz y la materia, de manera
que la aproximación Markov puede dejar de ser válida y la población del emisor puede
presentar una dinámica reversible. En siguiente lugar, y considerando acoplos débiles,
hemos estudiado la posibilidad de mediar la interacción entre dos emisores a traves de
los plasmones de superficie propagándose a lo largo de láminas y tiras de grafeno. Los
plasmones existentes en grafeno dan lugar a interacción de mayor alcance, así como a
la aparición de estados colectivos, denominados súper- y sub-radiantes, con tasas de
desexcitación modificadas. Además, de esta manera se puede controlar la interacción
entre los emisores a escalas menores que la longitud de onda de la radiación a través
de parámetros externos gracias a la sensibilidad del grafeno ante a campos aplicados.
Por último, hemos estudiado el régimen de acoplo fuerte para un conjunto de emisores
cuánticos en interacción con los plasmones de superficie que se propagan a través de la
interfaz entre un metal y un dieléctrico. En este caso, el régimen de acoplo fuerte aparece
gracias a la acción colectiva de los emisores. A través del desarrollo de un formalismo
cuántico apropiado, hemos reproducido la fenomenología encontrada experimentalmente
en este tipo de sistemas, además de analizar las condiciones necesarias para la aparición
de propiedades cuánticas en la estadística.
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Appendix A

Conformal and quasiconformal mappings

In this Appendix we give some technical details on the properties of the conformal and
quasiconformal transformations used in Chapter 2.

A.1 Conformal transformations

Consider a transformation from a coordinate grid, {x′} = {x′, y′}, into another, {x} =

{x, y}, given by,

w = f(z, z) = x(x′, y′) + iy(x′, y′), (A.1)

where z = x′ + iy′ and w = x + iy. The above transformation is said to be conformal
if the function f depends on z but not on its conjugate z and if it is analytical, i.e.
f ′(z) can be defined. The line element of the conformal transformatiol, dz2, is related
to the euclidean metric ds2 = dx2 + dy2 by a real-valued conformal factor, Λ(z), such
that ds2 = Λ(z)2dz2. As a consequence, a conformal transformation maps, to first order,
circles into circles. The condition ∂f/∂z implies that a conformal transformation satisfies
the Cauchy-Riemann equations,

∂x

∂x′
=
∂y

∂y′
;

∂x

∂y′
= − ∂y

∂x′
. (A.2)

Alternatively, these equations can be expressed as Laplace’s equations for the functions
x(x′, y′) and y(x′, y′),

∇′2x = 0; ∇′2y = 0, (A.3)
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where the Laplacian is taken in the primed coordinate system ∇′2 = ∂2/∂x′2 + ∂2/∂y′2.
Consequently, the metric tensor of the transformation, which is defined as follows,

Ĝ =

(
∂xk

∂xi

)(
∂xk

∂xj

)
, (A.4)

is found to be,

Ĝ =

(
∂2x′

∂x2 + ∂2y′

∂x2 0

0 ∂2x′

∂x2 + ∂2y′

∂x2

)
=
√
g · I2×2, (A.5)

with g being the determinant of the metric tensor.

A.2 Optical conformal mapping

Here we demonstrate that optical conformal mapping technique developed in Ref. [55]
is equivalent to Transformation Optics for the particular case of a conformal transfor-
mation.

In the limit of ray optics, where the refractive index n(x, y) is nearly constant over the
scale of a wavelength 2π

|~k| , the field amplitude for each polarization satisfies Helmholtz’s

equation. In virtual space (z = x′ + iy′), this equation reads as(
∇′2 +

ω2

c2
n′2
)
ψ = 0. (A.6)

Let us now consider a transformation w = w(z) from virtual to physical space (w = x+iy)
such that it is conformal. Making use of the relation between the Laplacian in virtual and
physical spaces, ∇′2 = |dω/dz|2∇2, we can transform Helmholtz’s equation to physical
space, (

∇2 +
ω2

c2

∣∣∣∣ dzdω
∣∣∣∣2 n′2

)
ψ = 0. (A.7)

This equation is left invariant if we choose a refractive index of the form [55],

n =

∣∣∣∣ dzdω
∣∣∣∣n′, (A.8)

where n′ is the background refractive index, n0. By means of the Cauchy-Riemman
equations (A.2) we can express the refractive index in terms of the metric tensor of a
conformal transformation,

n = n0

∣∣∣∣ ddω (x′ + iy′)

∣∣∣∣ = n0

∣∣∣∣∂x′∂x
+ i

∂y′

∂x

∣∣∣∣ = n0

√
∂2x′

∂x2
+
∂2y′

∂x2
= n0g

1/4. (A.9)

which is the same expression for the refractive index derived in the main text according
to TO (Eq. 2.16).
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A.3 Quasiconformal transformations

Quasiconformal transformations are generalizations of conformal mappings which map
circles into ellipses to first order. In this case, the relation between its line element, dz2,
and the Euclidean metric is given by the expression,

ds2 = Λ(z)2
∣∣dz2 +H(z, z)dz2

∣∣2 , (A.10)

where the functionH(z, z) = µ(x′, y′)+iν(x′, y′) is zero if the transformation is conformal.
A quasiconformal map w = f(z, z) satisfies the following condition,

∂f

∂z
−H(z, z)

∂f

∂z
= 0. (A.11)

This expression implies a generalized form of the Cauchy-Riemann equations,

α
∂x′

∂x
+ β

∂x′

∂y
=
∂y′

∂y

β
∂x′

∂x
+ γ

∂x′

∂y
= −∂y

′

∂x
, (A.12)

where α = ((1− µ)2 + ν2) / (1− µ2 − ν2), β = −2ν/ (1− µ2 − ν2) and
γ = ((1 + µ)2 + ν2) / (1− µ2 − ν2). Finally, a generalized form of Laplace’s equation can
also be obtained for quasiconformal mappings, reading as follows,

∂2x

∂x′2
+
∂2x

∂y′2
+

(
∂β

∂y
+
∂α

∂x

)
√
g = 0,

∂2y

∂x′2
+
∂2y

∂y′2
−
(
∂β

∂x
+
∂γ

∂y

)
√
g = 0. (A.13)

Notice that these expressions reduce to Laplace’s equation, Eq. A.3, for a conformal
transformation (α = γ = 1 and β = 0). The equations above imply that quasiconformal
mappings yield approximately diagonal metric tensors (see, for instance, Refs. [226, 227]).
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Appendix B

Perfect Electrical Conductor

In PEC approximation metals are assumed to have high conductivities, such that the
electrons in the metal perfectly shield the EM field. In other words, EM fields can not
penetrate in a PEC. The penetration depth of a metal (usually called skin depth), δ, can
be used to characterize the PEC limit. It is defined as the inverse of the imaginary part
of the wavector inside the metal, δ = 1/Im k. This wavevector is just the product of the
free space wavevector, k0 = 2π/λ, and the refractive index of the metal, n =

√
ε(ω): k =

k0

√
ε(ω). An important physical quantity to look at when evaluating the validity of the

PEC approximation is the ratio between the skin depth and the operating wavelength:

δ

λ
=

1

2π

1

Im
√
ε(ω)

. (B.1)

Notice that this normalized magnitude (and not δ) is closely related to the impedance
of a metal, ZS(ω) = 1/

√
ε(ω), which measures how much the parallel component of the

electric field at a metal surface, ~E‖, departs from its PEC value, ~E‖ = 0.
Figure B.1 (b) shows the behavior of δ/λ as a function of the frequency for silver, whose

dielectric function is depicted in panel (a). We have modeled the dielectric permittivity
of this metal with a Drude formula,

ε(ω) = 1−
ω2
p

ω2 + iωτω
, (B.2)

with ωp = 1.37 × 1016 Hz being the plasma frequency and ωτ = 2.73 × 1013 Hz the
damping frequency [238]. The ratio between skin depth and wavelength, δ/λ, is of the
order of 10−5 for GHz frequencies and increases as the frequency increases. Therefore,
PEC approximation (that assumes ZS = 0) is a very accurate approximation for very
low frequencies and becomes worse for higher frequencies.

179



B. Perfect Electrical Conductor

(a) (b)

Figure B.1: Silver optical properties. (a) Silver electric permittivity, with parameters from
Ref. [238]. (b) Skin depth, δ, normalized to the free-space wavelength, λ.
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Appendix C

Green’s function mode expansion

C.1 Expansion in normal modes

Here we follow Ref [11] to derive the expansion of the Green’s function, Ĝ(r, r′, ω), in
terms of some normal modes, uk,λ(r, ωk), which are labeled by the wave vector, k, and
the polarization state, λ = 1, 2. We start by writing the expansion as

Ĝ(r, r′, ω) =
∑
k,λ

Ak,λ(r
′, ω)uk,λ(r, ωk), (C.1)

where the Green’s function satisfies

∇×∇× Ĝ(r, r′, ω)− ε(r, ω)
ω2

c2
Ĝ(r, r′, ω) = Îδ(r− r′), (C.2)

and the normal modes satisfy the following Helmholtz equation

∇×∇× uk,λ(r, ωk)− ε(r, ω)
ω2
k

c2
uk,λ(r, ωk) = 0, (C.3)

and the orthonormality condition∫
u∗k′,λ(r, ω

′
k) · uk,λ(r, ωk)d3r = δkk′ . (C.4)

Substituting Eq. C.1 into Eq. C.2 and making use of expression C.3 and the orthonor-
mality relation C.4, we find that the expansion coefficients satisfy

Ak,λ(r
′, ω)

[
ω2
k

c2
− ω2

c2

]
= u∗k,λ(r, ωk). (C.5)

Then, we have for the Green’s function

Ĝ(r, r′, ω) =
∑
k,λ

u∗k,λ(r
′, ωk)uk,λ(r, ωk)

(ω2
k − ω2)/c2

. (C.6)
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C. Green’s function mode expansion

which represents the field at point r = (x, y, z) generated by a dipole located at r′ =

(x′, y′, z′).
Now we derive an important expression that relates the imaginary part of the Green’s

function to the local density of states through the normal modes. We start by taking the
imaginary part of the above expression,

Im
{
Ĝ(r0, r0, ω)

}
= c2Im

{
lim
η→0

∑
k,λ

u∗k,λ(r0, ωk)uk,λ(r0, ωk)

ω2
k − (ω + iη)2

}
, (C.7)

where we have introduced a small imaginary part η > 0 in the frequency to perform a
contour integral. Integration in the complex plane for ω > 0 yields

Im
{
Ĝ(r0, r0, ω)

}
=
c2π

2ω

∑
k,λ

u∗k,λ(r0, ωk)uk,λ(r0, ωk)δ(ω − ωk). (C.8)

The partial local EM density of states, ρµ, can be identified in the right hand side of the
above expression following

ρµ(r0, ω) = ρµ(r0, ω) = 3
∑
k,λ

[
nµ · (uk,λu

∗
k,λ) · nµ

]
δ(ω − ωk,λ). (C.9)

Hence, we can write the relation

ρµ(r0, ω) =
6ω

πc2

[
nµ · Im

{
Ĝ(r0, r0, ω)

}
· nµ

]
. (C.10)

C.2 Plane wave expansion

Plane waves with p and s polarization constitute a set of normal modes for Maxwell’s
equations. In this section we make use of this basis to derive the Green’s function plane
wave expansion. Using the notation uk,λ(r, ωk) = 〈r|k, λ〉, the plane wave basis reads as

〈r|k, s〉 =
1

k||

−kykx
0

 eikr, 〈r|k, p〉 =
kz√
εk0k||

 kx

ky

−k2
||/kz

 eikr, (C.11)

with k0 = ω/c, k = (k||, kz) = (kx, ky, kz), k|| =
√
k2
x + k2

y and kz =
√
εk2

0 − k2
|| with

Im(kz) > 0. Thus, from Eq. C.6 the Green’s function reads as

Ĝ(r, r′, ω) =
∑
λ

∫
d3k

(2π)3

〈r|k, λ〉〈k, λ|r′〉
k2 − εk2

0

. (C.12)
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C.2. Plane wave expansion

In order to treat problems without spatial invariance in the z direction it is convenient
to re-define the basis as

〈r|k, λ〉 = 〈r|k±λ 〉e
ik±r = 〈r|k±λ 〉e

ik||r||±ikzz, (C.13)

where we have introduced the notation k± = (k||,±kz) and "+" must be taken for
z − z′ > 0 while "−" for z − z′ < 0. The basis is now given by

〈r|k±s 〉 =
1

k||

−kykx
0

 , 〈r|k±p 〉 =
kz√
εk0k||

 kx

ky

∓k2
||/kz

 . (C.14)

Performing the integration in kz in Eq. C.12 yields

Ĝ(r, r′, ω) =
i

8π2

∑
λ

∫
d2k||

eik±(r−r′)

kz
〈r|k±λ 〉〈k

±
λ |r
′〉. (C.15)

It is clear from the above equation that Ĝ(r, r′, ω) = Ĝ(r− r′, ω). Hence, we introduce
the notation R = r − r′.

C.2.1 Free space Green’s function

The total Green’s function in free space can be obtained from Eq. C.15 by taking z−z′ >
0. For the two polarizations we have

Ĝs
0(R, ω) =

i

8π2

∫
d2k||

eikR

kzk2
||

 k2
y −kxky 0

−kxky k2
x 0

0 0 0

 , (C.16)

Ĝp
0(R, ω) =

i

8π2

∫
d2k||

eikR

k2
||εk

2
0

 k2
xkz kxkykz kxk

2
||

kxkykz k2
ykz kyk

2
||

kxk
2
|| kyk

2
|| k4

||/kz

 . (C.17)

Summing over the two polarizations we obtain

Ĝ0(R, ω) =
i

8π2εk2
0

∫
d2k||

eikR

kz

εk
2
0 − k2

x −kxky −kxkz
−kxky εk2

0 − k2
y −kykz

−kxkz −kykz εk2
0 − k2

z

 . (C.18)

Equivalently, the Green’s dyadic can be expressed in terms of a scalar Green’s function,
G0(R, ω), as

Ĝ0(R, ω) =

(
Î +

1

εk2
0

∇∇·
)
G0(R, ω), (C.19)

183



C. Green’s function mode expansion

with G0(R, ω) satisfying

G0(R, ω) =
i

8π2

∫ ∞
0

dk||
∫ 2π

0

dφ
eikR

kz
. (C.20)

Performing the angular integration yields

G0(R, ω) =
i

4π

∫ ∞
0

dk||J0(k|||R|||)
k||
kz
eikz |z−z

′|. (C.21)

At the dipole’s location we have R = 0 and

G0(ω) =
i

4π

∫ ∞
0

dk||
k||
kz
. (C.22)

An useful quantity is its imaginary part, that can be written as

Im{G0(ω)} =
1

4π
Re
[∫ ∞

0

dk||
k||
kz

]
. (C.23)

Introducing the dimensionless wavenumbers q = k||/k0 and qz = kz/k0 =
√
ε− q2, we

arrive to

Im{G0(ω)} =
k0

4π
Re
[∫ 1

0

dq
q

qz

]
=

ω

6πc
, (C.24)

where we have made use of the fact that qz is real only for propagating waves (0 < q < 1)
and of the integral

∫ 1

0
dx x3/

√
1− x2 = 2/3.

C.2.2 Green’s function for a layered structure

We now consider the problem of a point dipole located close to a boundary between
two media, a and b. Assume that the dipole is placed at point r′ = (x′, y′, z′) within
medium a (z > 0) and that the plane interface is at z = 0. The Green’s function at point
r = (x, y, z) must be separated in two regions as

Ĝ(R, ω) = Ĝ0(R, ω) + ĜR(R, ω), z > 0, (C.25)

Ĝ(R, ω) = ĜT (R, ω), z < 0, (C.26)

where Ĝ0(R, ω) is direct contribution from the dipole, ĜR(R, ω) is the reflected con-
tribution and ĜT (R, ω) is the transmitted part. For each polarization, we have from
C.15,

Ĝλ(R, ω) =
i

8π2

∫
d2k||
kaz

eik||R
[
〈r|k+

aλ〉〈k
+
aλ|r

′〉+ rλ〈r|k+
aλ〉〈k

−
bλ|r

′〉eikaz (z+z′)
]
, z > 0,

(C.27)
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C.2. Plane wave expansion

Ĝλ(R, ω) =
i

8π2

∫
d2k||
kaz

eik||Rtλ〈r|k−bλ〉〈k
−
aλ|r

′〉ei(kazz′−kbzz), z < 0, (C.28)

where kaz =
√
εak2

0 − k2
|| and kbz =

√
εbk2

0 − k2
||. In this expression we have introduced

the reflection, rλ, and transmission, tλ, coefficients through the interface for s and p

polarizations, given by

rs =
kaz − kbz
kaz + kbz

, ts =
2kaz

kaz + kbz
, (C.29)

rp =
εak

b
z − εbkaz

εakbz + εbkaz
, tp =

√
εa
εb

2kaz εb
εakbz + εbkaz

. (C.30)

Finally, we can write

Ĝs(R, ω) =
i

8π2

∫
d2k||
kazk

2
||
eik||R||

 k2
y −kxky 0

−kxky k2
x 0

0 0 0

[1 + rse
ikaz (z+z′)

]
, z > 0, (C.31)

Ĝp(R, ω) =
i

8π2

∫
d2k||
εak2

0k
2
||
eik||R||

 k2
xk

a
z kxkyk

a
z kxk

2
||

kxkyk
a
z k2

yk
a
z kyk

2
||

−kxk2
|| −kyk2

|| −k4
||/k

a
z

[1 + rpe
ikaz (z+z′)

]
, z > 0,

(C.32)

Ĝs(R, ω) =
i

8π2

∫
d2k||
kazk

2
||
eik||R||

 k2
y −kxky 0

−kxky k2
x 0

0 0 0

 tse
i(kaz z

′−kbzz), z < 0, (C.33)

Ĝp(R, ω) =
i

8π2

∫
d2k||√
εaεbk2

0k
2
||
eik||R||

 k2
xk

b
z kxkyk

b
z kxk

2
||k

b
z/k

a
z

kxkyk
b
z k2

yk
b
z kyk

2
||k

b
z/k

a
z

kxk
2
|| kyk

2
|| k4

||/k
a
z

 tpe
i(kaz z

′−kbzz), z < 0.

(C.34)
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