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Supervisors’ Foreword

The discovery of the laws of electromagnetism (EM) in the nineteenth century
triggered an amazing wealth of scientific developments, which have had a pro-
found impact on our society.

Electromagnetism has been developed in many different directions and regimes.
However, until recently, the study of electromagnetic fields interacting with
objects of size smaller than, but of the order of, the wavelength of the field
remained largely unexplored. The reason was the failure, in that regime, of the
highly successful approximations that had allowed the development of most of
electromagnetic phenomena, namely circuit theory (which applies when scatterers
are much smaller than the wavelength) and ray optics (valid when the objects that
the field encounters are much larger than its wavelength). Without these tools
Maxwell equations were, except in the simplest geometries (presenting a high
degree of symmetry, as plane surfaces, spheres...), simply too difficult to handle
with existing mathematics.

This represented not only a nagging gap in fundamental science. The present
control of sizes and positions of objects in the scale of tens of nanometers has
made the understanding of their interaction with light imperative from the tech-
nological point of view. Fortunately, computers have evolved very fast and, since
the 1990s, are powerful enough both speed- and memorywise to allow solution of
Maxwell’s equations for many of the basic geometries. Today, this combination of
improved manufacturing and computing capabilities is triggering a scientific
explosion in what it is now known as the field of Nanophotonics.

Still, the numerical problem is a very difficult one, due to the many different
length scales involved, which range from grid sizes of the order of 2–5 nm (needed
to describe the penetration of fields in metals) to tens of microns for a small system
comprising a few subwavelength objects resonantly coupled.

Nowadays, several computational schemes for solving Maxwell equations have
been developed but, due to the inherent complexity of the problem, it is not clear
yet which is the best one (or even if there is one that is best for most cases). This
thesis focuses on the application of one of the most promising methods, the finite-
difference time-domain method (FDTD), to Nanophotonics.
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In a nutshell, in FDTD an incident electromagnetic wavefield is propagated in
discretized space and discretized time, according to both Maxwell equations and
the constitutive relations (which state how materials respond to the EM field). This
information is then post-processed to obtain the EM response of the considered
system. This method was originally proposed in 1966 by K. Yee, and has been
developed over the years, existing now excellent books about (see references in the
text). The work presented here closely followed these references. Nevertheless, the
actual implementation of a home-made FDTD code still faces some technical
problems; the solution to several of them can be found in the text.

The present thesis is, however, not about the FDTD method, but about its
application to some physical problems related to the control of EM fields close to
metal surfaces. The topics considered include the several aspects on how light
transmits through subwavelength apertures in corrugated metal films (such as the
influence of the metal, dependence on the metal thickness and the study of optical
properties of metal coated microspheres), the optical properties of metamaterials
made with stacked hole arrays and the guiding of metallic waveguides (and their
focusing capabilities when tapered). These systems are thoroughly analyzed and,
whenever possible, the numerical calculations have been accompanied by sim-
plified models that help extract the relevant physical mechanisms at work.

Notably, the thesis also presents many comparisons with experimental data.
That this comparison works without the need for a large number of additional
fitting parameters is not trivial, as the quality of materials (and thus their optical
properties) may, in principle, be altered when these are patterned. The good
agreement obtained between experiments and calculations using available data for
bulk materials (i.e. without adding fitting parameters) suggests that theory can
already be used as a predictive tool in this area.

To summarize, this thesis analyses a large number of topics of current interest
in Nanophotonics and the optical properties of nanostructured metals, and presents
a short introduction to the FDTD Method. Hopefully, it will be useful both to
researchers interested in this numerical method and to those attracted to the field of
optical properties of nano- and micro- structured metals.

Zaragoza, Madrid, August 2011 Luis Martín-Moreno
Francisco José García-Vidal
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Preface

As everybody has experienced by looking at a mirror, light is almost completely
reflected by metals. But they also exhibit an amazing property that is not so widely
known: under some circumstances light can ‘‘flow’’ on a metallic surface as if it
were ‘‘glued’’ to it. These ‘‘surface’’ waves are called surface plasmon polaritons
(SPPs) and they were discovered by Rufus Ritchie in the middle of the past
century. Roughly speaking, SPP modes generate typically from the coupling
between conduction electrons in metals and electromagnetic fields. Free electrons
loose their energy as heat, which is the reason why SPP waves are completely
absorbed (in the visible range after a few tens microns). These modes decay
through so short lengths that they were considered a drawback, until a few years
ago. Nowadays that situation has completely turned. Nano-technology now opens
the door for using SPP-based devices for their potential in subwavelength optics,
light generation, data storage, microscopy and bio-technology.

There is a lot of research done on those phenomena where SPPs are involved,
however there is still a lot of work to do in order to fully understand the properties
of these modes, and exploit them. Precisely, throughout this thesis the reader will
find a part of the efforts done by our collaborators and ourselves to understand the
compelling questions arising when light ‘‘plays’’ with metals at the nanoscale. The
outline of the thesis is:

i. Chapter 1: Introduction
First, the fundamentals of SPPs are introduced. In fact, SPPs will be one of
the most important ingredients in order to explain the physical phenomena
investigated in this thesis.
Our contributions, from a technical standpoint, have been carried out with the
help of two different well known theoretical methods: the finite-difference
time-domain (FDTD) and the coupled mode method (CMM). In this chapter,
we summarize the most relevant aspects of these two techniques, looking for
a better comprehension of the discussions raised along the remaining
chapters.
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Concerning the rest of experimental and theoretical techniques used, it is out
of the scope of this thesis to rigorously describe all of them. Nevertheless,
most of those methods, which will not be presented in the introductory
chapter, will be briefly explained when mentioned.

ii. Chapter 2: Extraordinary Optical Transmission
Imagine someone telling you that a soccer ball can go through an engage-
ment ring. At first, you could think that he or she has got completely mad. A
situation like that could have been lived by the researchers who first reported
on the extraordinary optical transmission (EOT) phenomenon. Thomas
Ebbesen and coworkers found something like a ‘‘big’’ ball passing through a
hole several times smaller than it, although there, the role of the ball was
played by light. Before Ebbesen’s discovery light was not been thought of
being substantially transmitted through subwavelength holes. Until 1998, a
theory elaborated by Hans Bethe, on the transmission through a single cir-
cular hole in a infinitesimally thin perfect conducting screen, had ‘‘screened’’
out any interest in investigating what occurs for holes of subwavelength
dimensions. Bethe’s theory demonstrated that transmission through a single

hole, in the system described above, is proportional to ðr=kÞ4where k is the
wavelength of the incoming light, and r is the radius of the hole. The pro-
portionally constant depends on hole shape, but it is a small number (*0.24
for circular holes). It is clear that whenever k � r transmission is negligible.
Nevertheless, Ebbesen and coworkers experimentally found that light might
pass through subwavelength holes if they were periodically arranged on a
metal surface. More importantly, in some cases even the light directly
impinging into the metal surface, and not onto the holes, is transmitted. The
SPP modes were pointed to be responsible of EOT.
It is not strange that such a breakthrough sparked a lot of attention in the
scientific community. Furthermore, the EOT discovery is not only interesting
from the fundamental physics point of view, but from the technological side
as well.
The EOT phenomenon strongly depends on both geometrical parameters and
material properties. Moreover, EOT does not only occur in two dimensional
hole arrays (2DHAs), so other systems have been investigated in the last
years. In this way, this thesis is partly devoted to study different aspects of
EOT:

(a) We begin by investigating the influence of the chosen metal on EOT
using the FDTD method. We analyze transmission spectra through hole
arrays drilled in several optically thick metal films (viz. Ag, Au, Cu, Al,
Ni, Cr and W) for several periods and hole diameters proportional to the
period.

(b) We also study the optical transmission through optically thin films,
where the transmission of the electromagnetic field may occur through
both the holes and the metal layer, conversely to the ‘‘canonical’’
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configuration where the metal film is optically thick, and the coupling
between metal sides can only be through the holes.

(c) On the other hand, since the first experimental and theoretical papers
some controversy arose over the mechanisms responsible to enhance
optical transmission through an array of holes. Two mechanisms lead to
enhanced transmission of light in 2DHAs: excitation of SPPs and
localized resonances, which are also present in single holes. In this
chapter we analyze theoretically how these two mechanisms evolve
when the period of the array is varied.

(d) There are systems displaying EOT different from holey metallic films.
One of them is built by monolayers of close-packed silica or polystyrene
microspheres on a quartz support and covered with different thin metal
films (Ag, Au and Ni). We show that the optical response from this
system shows remarkable differences as compared with the ‘‘classical’’
2DHA configuration.

iii. Chapter 3: Theory of NRI Response of Double-Fishnet Structures
Veselago demonstrated that the existence of an isotropic, homogeneous and
lineal (i.h.l) medium characterized by negative values of both the permittivity
(e) and the permeability (l) would not contradict any fundamental law of
physics. A substance like that is usually called left-handed material or
alternatively, it is said to posses negative refraction index (NRI), and it
behaves in a completely different fashion from conventional materials. At the
interface between a NRI material and a conventional dielectric medium
interesting things would happen. For instance, the current transmitted into a
NRI medium would flow through an ‘‘unexpected’’ direction, forced by the
Maxwell’s equation boundary conditions. Unluckily, no natural material is
known to posses a negative value of its refractive index. To date, the only
way to achieve NRI materials is by geometrical means. Nevertheless the
optical properties of the constituting materials are still important. For
instance, as the dielectric constant of metals is ‘‘intrinsically’’ negative, NRI
researchers explore how to induce negative permeability on them by
designing their geometry in particular ways. This is the reason why these
kind of materials are usually called ‘‘meta-materials’’ because their optical
response may be different than the optical response of its bulk components.
In this chapter we investigate the optical response of one of these metama-
terials presenting NRI, a two-dimensional array of holes penetrating com-
pletely through a metal-dielectric-metal film stack (double-fishnet structure).

iv. Chapter 4: Plasmonic Devices
The special properties of SPPs are being considered for potential uses in
circuits. Namely, the possibility of building optical circuits aimed by SPPs
has sparked a great interest in the scientific community. As SPPs on a flat
surface propagate close to the speed of light, an hypothetical optical SPP-
device would be faster than its electronic counterpart. Moreover, different
frequencies do not interact, thus several channels would be available for
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sending information. A last advantage, SPP-based technology would be
compatible to electronic technology since both share the same supporting
medium. Transporting optical signals and/or electric ones would be then
possible, depending on the characteristics of a specific instrument.
On the contrary, two disadvantages in the use of SPPs instead of electrons
arise: (i) SPPs are much more difficult to control than electrons on metallic
structures (e.g. surfaces), being efficiently scattered by defects present on
them, and (ii) the finite propagation length of SPP modes. Note that the latter
would not be an actual inconvenient in the case of highly miniaturized cir-
cuits. Although the SPP modes are well positioned candidates, as we say,
they are strongly scattered by any relief on the surface and, due to the
mismatch between freely propagating waves and SPPs, they are difficult to be
properly excited. A lot of theoretical and experimental works have been
devoted on how to guide and generate SPPs.
Regarding the coupling mechanism of light with SPPs, note SPPs can not be
excited by an incident plane-wave, because of their evanescent character.
There are various coupling schemes that allow light and SPPs to be coupled:
prism coupling, grating coupling and near-field coupling. These setups for
exciting SPPs are not always useful for certain applications. In Chap. 4 we
discuss the advantages and disadvantages of those methods, and we dem-
onstrate a device that enables to create a source for SPPs with remarkable
advantages with respect to the other proposals.
In the same chapter we explore different ways for guiding SPP-like modes.
Devices for guiding SPPs by means of metallic bumps or holes drilled on a
metal surface have been suggested. Another possibility is to guide electro-
magnetic waves by either a channel cut into a planar surface or a metallic
wedge created on it. These structures support plasmonic modes called
channel plasmon polarions (CPPs) and wedge plasmon polarions (WPPs)
respectively. The surface could be either a metal or a polar dielectric,
characterized by negative dielectric constant values. We investigate both
CPPs and WPPs by means of rigorous simulations, aimed to elucidate their
characteristics, especially, at telecom wavelengths.
We use that information for suggesting a SPP $ WPP conversion device.
Lastly we study how gradually tapering a channel carved into a metal surface
enables enhanced electromagnetic fields close to the channel apex.

v. Chapter 5: Optical Field Enhancement on Arrays of Gold Nano-Particles
Light scattering by arrays of metal nanoparticles gives rise to nanostructured
optical fields exhibiting strong and spatially localized field intensity
enhancements that play a major role in various surface enhanced phenomena.
In general, local field enhancement effects are of high interest for funda-
mental optics and electrodynamics, and for various applied research areas,
such as surface enhanced Raman spectroscopy and microscopy, including
optical characterization of individual molecules. Furthermore, the highly
concentrated EM fields around metallic nanoparticles are thought to enhance,
in turn, non-linear effects, which can pave the way for active plasmonic-
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based technologies. Also biotechnology can take advantage of such high
intensified optical fields. It is well known that individual metal particles can
exhibit optical resonances associated with resonant collective electron
oscillations known as localized surface plasmons (LSPs). Excitation of LSPs
results in the occurrence of pronounced bands in extinction and reflection
spectra and in local field enhancement effects. Such nanoparticles periodi-
cally arranged, may cause additional interesting effects. Besides, if nano-
particles are deposited on a metal surface, the emergence of a new channel
for light being excited (SPPs) may lead to new phenomena. In this chapter
we investigate the optical response of arrays of gold nanoparticles on both
dielectric and metal substrates. By means of the FDTD method we analyze
the experimental results consisting on: reflection and extinction spectra
measuraments along with the non-lineal response known as two-photon
excited (photo) luminescence (TPL) generated by inter-band transitions of d-
band electrons into the conduction band.
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Chapter 1
Introduction

1.1 Electromagnetic Fields Bound to Metals: Surface Plasmon
Polaritons

Our investigations have been motivated by the exciting phenomena arising when
light interacts with structured metallic systems at the nanoscale. Precisely, most of
the physical mechanisms described and investigated in this manuscript result from
the interaction of a kind of electromagnetic wave called surface plasmon polariton
(SPP) with objects of subwavelength size. In this section, the basic properties of SPP
modes are briefly reviewed leaving out the details that can be found elsewhere [1–4],
including books on plasmonics [5, 6].

In physics we find plenty of examples that are described by differential wave
equations plus a set of boundary conditions. From a mathematical point of view, a
confined mode is a solution that exponentially decays far from the defined boundaries.
There is a vast number of physical phenomena led by surface modes, but we are
interested in those appearing in Plasmonics; the extraordinary transmission of light
[7] is a good example.

Much can be understood about an electromagnetic (EM) mode by examining
their dispersion relation, i.e., the relationship between the angular frequency (ω) and
the in-plane wavevector (�k). This dispersion relationship can be found in different
ways; for example, by looking for surface mode solutions of Maxwell’s equations
under appropriate boundary conditions. We start supposing that an EM wave prop-
agates on the interface between two different media (See Fig. 1.1a) characterized
by their respective dielectric constants (εI , εI I ). The magnetic permeability μ, is
set to be one, which is a good approximation for natural materials at the optical
regime. Additionally, it is imposed that this EM wave will propagate along the
x-direction, being invariant through the y-direction, thus �k = (kx , 0, k I,I I

z ), where

k I,I I
z =

√
εI,I I (

ω
c )

2 − k2
x with I m(kz) ≥ 0. Noticeably, as the system is invariant

along one of the directions in space, this allows us to distinguish between the two
different polarizations. We denote as TM-polarization the one in which the magnetic

S. G. Rodrigo, Optical Properties of Nanostructured Metallic Systems, 1
Springer Theses, DOI: 10.1007/978-3-642-23085-1_1,
© Springer-Verlag Berlin Heidelberg 2012



2 1 Introduction

Fig. 1.1 a Schematic of the
system investigated. b Near
field representation of
|Re(Hy)| for a SPP that
propagates on the silver-air
interface, being
λ0 = 650 nm. On the same
figure the calculated values
of its main defining
properties are also shown.
(The SPP source
(a magnetic dipole) is
located a few microns from
the outer left)

(a)

(b)

field points along the y-axis. The other polarization (TE) is the one in which the
electric field points along the y-axis.

For the TM-polarization, in region I, the magnetic and electric fields are defined
as follows,

�HI = (0, A, 0)eikx x eik I
z ze−iωt

�EI = −A

ε0εIω
(−k I

z , 0, kx )e
ikx x eik I

z ze−iωt (1.1)

where A is the amplitude of �HI . The electric field results from the Maxwell’s curl
equations (in the MKS system of units):

�k × �E = μ0ω �H
�k × �H = −εε0ω �E (1.2)

In the same way, the EM fields in region II read,

�HI I = (0, B, 0)eikx x e−ik I I
z ze−iωt

�EI I = −B

ε0εI Iω
(k I I

z , 0, kx )e
ikx x e−ik I I

z ze−iωt (1.3)

where B represents the amplitude of �HI I .On the surface interface (z = 0), boundary
conditions impose (Hx )I = (Hx )I I and (Ex )I = (Ex )I I , therefore

k I
z

εI
= −k I I

z

εI I
(1.4)
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Taking into account the dispersion relation in each medium,

(kx )
2 + (k I

z )
2 = εI

(ω
c

)2

(kx )
2 + (k I I

z )
2 = εI I

(ω
c

)2
(1.5)

it can finally be obtained the dispersion relation

kx =
(ω

c

)√ εI εI I

εI + εI I
(1.6)

and therefore,

k I
z = ±

(ω
c

)√ ε2
I

εI + εI I

k I I
z = ±

(ω
c

)√ ε2
I I

εI + εI I
(1.7)

The sign of kz has to be chosen so that the fields are forced to decay away from the
interface, so I m(k I,I I

z ) ≥ 0.
By repeating the later process we obtain the condition the TE case should fulfill.

k I
z = −k I I

z (1.8)

As this condition is never satisfied, the TE-polarization does not support confined
waves. Therefore, as we are searching for EM modes bounded to the surface, the
subsequent analysis will go deeply into the TM-solution properties.

For the existence of a confined and propagating mode the real part of kx (Eq. 1.6)
must be non-zero, and the imaginary part of both k I

z and k I I
z (Eq. 1.7) must be also

different from zero. These conditions ensure that a propagating wave would decay
inside both media, as Eq. 1.4 shows. Confinement of EM waves depends on the sign of
the real part of the dielectric constant and whether the imaginary part takes different
values from zero. Let us consider that medium I is a non-absorbing dielectric, in
which case εI = ε is a positive real number. The condition for a surface mode to
exist can be obtained from the requirement that the square root expression in Eq. 1.6
has a positive real part, leading to

Re[εI εI I ] < 0

Re[εI + εI I ] < 0
(1.9)

Note that these conditions are valid whether the imaginary part of εI I is negligible as
compared to its real part (|Re(εI I )| � |I m(εI I )|). According to Eq. 1.9, materials
characterized by a negative dielectric constant value may bound an EM mode if
it is in contact with a lossless dielectric. Precisely, metals belong to this category.
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Before turning to metals, it is interesting to note that also if I m(εI I ) �= 0 EM fields
would decay whatever the sign of Re(εI I ). When Re(εI I ) < 0, such a dielectric
constant would describe an absorbing metal. In contrast Re(εI I ) > 0 would describe
a dielectric material for which absorption has not been neglected. Therefore, the
interface between a dielectric without absorption and an absorbing dielectric supports
confined modes, usually called Brewster–Zenneck waves [8].

We now return to the case of metals. At optical frequencies (and lower), metals
behave like “plasmas”, i.e., as if they were gases of free charged particles [9]. The
optical response of a free electron gas is approximately described by the Drude
model, finding that

ε(ω) = εr − ω2
p

ω(ω + ıγ )
(1.10)

The parameter εr gives the optical response at the range of high frequencies, whereas
γ is related to energy losses by heating (Joule’s effect), and ωp is the plasma
frequency.

Figure 1.2 shows an example. The figure depicts both experimentally measured
dielectric constant (circular symbols) and its fit to a Drude-like formula (solid lines).
As we can see, the agreement is quite good. Later on (e.g. in Chap. 2) we will see that
in order to express accurately the dielectric constant of some metals, additional terms
are needed. For the moment, the Drude model contains all the elements required for
illustrating the next discussion.

Therefore, if εI (= ε) is a real positive number and εI I = εm , where the subscript
“m” states for metals, Eqs. 1.6 and 1.7 define the propagation properties of SPPs.

Figure 1.3 represents the dispersion relation of SPPs on the air-silver interface,
where the dielectric constant of silver has been modeled with the Drude parameters
appearing in Fig. 1.2. As expected, beyond certain energy values the SPP dispersion
relation is clearly distinguished from the light line, a feature due to its intrinsic evanes-
cent character. The anomalous dispersion observed at high frequencies is due to
absorption. For lossless metals an asymptotic regime is reached at large wave-vector
values. In fact, the SPP frequency tends to ωp/

√
1 + εr if the damping coefficient γ

is set to zero for the Drude model (Eq. 1.10).
Hereafter we will take a general assumption that is useful for good metals (Ag,

Au, Cu), namely that |ε′m | � ε′′m (εm = ε′m + ıε′′m), so εm ≈ ε′m . There are other
metals (Al, Ni, Co, Cr, Pb...) for which this approximation is no longer valid, as we
will see. In some cases, the condition |ε′m | � ε is a good approximation as well.

The properties defining a SPP come from its dispersion relation and the z-
component of the �k-vector. These properties tell us what is the spatial “period”
of a SPP, how long it takes before being absorbed, and how confined a SPP is inside
and outside the metal surface (For a review see [11]). The SPP wavelength is defined
as follows,

λSPP = 2π

Re(kSPP)
(1.11)

http://dx.doi.org/10.1007/978-3-642-23286-2_2
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Fig. 1.2 For silver: a Re[εm ]
b I m[εm ]. Circular symbols
render experimental data
[10]. Solid lines fit the
experiments to a Drude-like
formula, defined by the
parameters shown in a

(a)

(b)

Fig. 1.3 SPP dispersion
relation for silver (solid line)
fitted into a Drude-like
formula. We use the
parameters shown in Fig. 1.2.
The dashed line renders the
light cone

For good metals, it can be approximated by:

λSPP = λ0

√
ε + ε′m
εε′m

(1.12)

where λ0 is the wavelength in vacuum
(
ω
c = 2π

λ0

)
. It is easy to see that λSPP < λ0,

which it is another consequence of the singular dispersion relation of SPPs (See
Fig. 1.3).
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The length at which the energy carried by a SPP has decayed a 1/e factor is called
absorption length and is defined as

Labs = [2I m(kSPP)]−1 (1.13)

Again, we can make use of the approximation for good metals to obtain

Labs = λ0
(ε′m)2

2πε′′m

[
ε + ε′m
εε′m

] 3
2

(1.14)

If |ε′m | � ε, the last formula can be further approximated leading to

Labs = λ0
(ε′m)2

2πε′′m
(1.15)

This result means that metals with a large (negative) real part of the relative
permittivity are better for guiding or for resonant processes (which require long time
to occur). It clearly shows the role played by the damping factor of metals in the SPP
behavior: Labs → ∞ when the imaginary part of the dielectric constant (ε′′m) tends
to zero, i.e., as the damping goes to zero too.

Interestingly, for good metals the SPP electric field is primarily transverse in the
dielectric and longitudinal in the metal, as the following expressions demonstrate,

|Eεz | =
√ |ε′m |

ε
|Ex |, |Em

z | =
√

ε

|ε′m | |Ex | (1.16)

showing the hybrid nature of SPPs that combines the features of both propagating EM
waves in dielectrics and free electron oscillations in metals. Since the SPP damping
occurs due to ohmic losses (∼�j �E), which in metals is related to the charge current
( �j) induced by the SPP fields, it is the longitudinal electric field component (Ex ) of
the SPP in the metal that determines absorption.

It is worth defining another magnitude which can deliver useful information about
the SPP nature: the penetration of the SPP fields into each medium. In the dielectric
half-space it takes the form δε = [I m(kεz )]−1 and in the metal, where it is called skin
depth δm = [I m(km

z )]−1. For lossless metals, skin-depth formulas can be rewritten
in a compact manner,

δm ≈ λ

2π
√|ε′m |

δε ≈
√|ε′m |λ

2πε
(1.17)

The penetration depth of the field into the dielectric gives us a measure of the
length scale over which the SPP mode is sensitive to the presence of changes in
refractive index, for example the presence of certain bio-molecules in a biosensor.
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If we substitute in Eq. 1.17 the expression of εm using the Drude formula (γ ∼ 0),
and noting that we are working well below the plasma frequency (ω � ωp) one
obtains for the penetration length into the dielectric

δε = λ2

2πελp

δm = λp

2π
(1.18)

where ωp = 2π/λp. Values for ωp are around ∼9 eV, i.e., λp ∼ 137.7 nm, so in
this case, the confinement of a SPP could be considered subwavelength up to ∼865
nm, since δε < λ for shorter wavelengths. On the other hand, it is interesting that
the penetration depth in metals depends rather weakly on the wavelength, staying
at the level of a few tens of nanometers (δm ∼ 22 nm), while that in dielectrics
increases fast and nonlinearly with the wavelength. The penetration depth into the
metal gives us a measure on the required metal thickness that allows coupling to freely
propagating light in the prism coupling (Kretschmann) geometry (typically 50 nm
for silver and gold in the visible). It also sets the length scale of the film thickness
so that direct transmission through the film occurs. Moreover, the skin depth gives
information about the coupling strength between SPPs at opposite sides of the film.
The penetration depth into metals also gives us an idea of the feature sizes needed to
control SPPs: as features become much smaller than the penetration depth into the
metal they will have a diminishing effect on SPP modes. In SPP investigations, the
small-scale (nm) roughness is associated with many of the fabrication techniques
that create the metal films. Due to this, a minor perturbation to the SPP mode is
provided.

All these quantities (λSPP, Labs, δm, δε) have been represented in Fig. 1.4 for two
different metals: silver [panels (a) and (b)] and nickel [Panels (c) and (d)]. Nickel is
considered a “bad” metal due to the huge imaginary part of its dielectric constant.
We can observe for both metals that at long wavelengths λSPP → λ0, as Eq. 1.12
predicts. As we said, the imaginary part of εm is greater for Ni than for Ag, which
explains the differences between the calculated values of Labs. Nevertheless their
skin depths are similar. As the figure clearly shows, the approximations that have led
to approximated values for δm and δε are no longer valid in the case of “bad” metals,
as one could expect.

1.2 The Finite-Difference Time-Domain Method

1.2.1 The FDTD Algorithm

The finite-difference time-domain (FDTD) method belongs to the general class
of grid-based differential time-domain numerical methods. The time-dependent
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(a)

(b)

(c)

(d)

Fig. 1.4 Characteristics of a SPP on the air-silver interface, a shows the SPP absorption length
for silver (described by a Drude term). Inset: ratio between the wavelength of light and the SPP
one. Additionally, the main figure in b depicts with solid line the SPP skin-depth in air. Inset:
SPP skin-depth into the metal. Dashed lines render their approximated values (Eqs. 1.15 and 1.17).
c and d are as a and b but for SPPs on the air-nickel interface

Maxwell’s equations (in partial differential form) are discretized using central-
difference approximations to the space and time partial derivatives. Both the basic
FDTD space grid and the time-stepping algorithm trace back to a seminal 1966 paper
by Kane Yee [12]. The resulting finite-difference equations are solved in a leapfrog
manner: the electric field vector components in a volume of space are solved at a
given instant in time; then the magnetic field vector components in the same spatial
volume are solved at the next instant in time; and the process is repeated over and
over again until the desired transient or steady-state electromagnetic field behavior
is fully evolved.

Note that the FDTD technique is one of the most extensively developed and used
in computational electromagnetism [13]. It is now impossible trying to cover all
aspects of the FDTD method in an introductory chapter. Hence this section is not
intended to be a complete FDTD guide, instead, our intention is to give the reader a
summarized version of the FDTD method. We will emphasize those techniques that
were developed in the course of the thesis and which, to our knowledge, can not be
found in the literature. Although these technical issues have not been fully explained



1.2 The Finite-Difference Time-Domain Method 9

in our articles, they were of the utmost importance for achieving the objectives
therein.

To start with, we recall some of the most important benefits on the use of the
FDTD method:

i. Different sort of material properties can be treated with FDTD, so we are able to
properly deal with dielectrics, metals, non-linear substances...

ii. There are a lot of available illuminating sources, for instance: plane waves, dipole
sources, gaussian beams...

iii. It is easy to retrieve the optical properties that describes the physical response
of a system: transmission and reflection coefficients, points at dispersion relation
curves, field maps in the frequency domain or whatever quantity depending upon
the EM fields.

iv. This method is fast and it does not consume excessive computer resources
compared with other numerical methods.

Let us turn to the FDTD algorithm itself. The starting point are the curl Maxwell’s
differential equations for isotropic, homogeneous and lineal (i.h.l.) media (MKS
system of units)

∂ �H(�r , t)

∂t
= − 1

μ0μ
∇ × �E(�r , t)

∂ �E(�r , t)

∂t
= 1

ε0ε
∇ × �H(�r , t) (1.19)

Note that in principle there is not only a way to bring Maxwell’s equations from
the “continuous” to the “discrete” space. In the end, the really important question
is whether the scheme used for, gives accurate results being free of divergences,
numerical instabilities,... The FDTD method is one among other possibilities to solve
numerically the curl Maxwell’s equations. When Maxwell’s differential equations are
examined, it can be seen that the change in the E-field in time (the time derivative)
is dependent on the change in the H-field across space (the curl), and viceversa.
Figure 1.5 shows an illustration of a standard Cartesian Yee’s cell used for FDTD, and
how electric and magnetic field vector components are distributed [12]. Visualized as
a cubic box, the electric field components form the edges of the cube, and the magnetic
field components form the normals to the faces of the cube. A three-dimensional
space lattice is comprised of a multiplicity of such Yee cells. A given structure is
mapped into the space lattice by assigning appropriate values of permittivity to each
electric field component, and permeability to each magnetic field component. Yee’s
scheme proposes a distribution in space for the EM field components. We will see
that this leads to an algorithm for the spatial dependence. However each Maxwell’s
curl equation is coupled to each other, so it is not straightforward to decide the time-
stepping. At any point in space, the updated value of the H-field in time is dependent
on the stored value of the H-field and the numerical curl of the local distribution of
the E-field in space. Yee found that the iteration of E-field and H-field updates results
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Fig. 1.5 Illustration of a
standard Cartesian Yee cell
used for FDTD, about which
electric and magnetic field
vector components are
distributed

in a marching-in-time process, i.e., the electric field at time t depends on the electric
field at t −δt and the magnetic field (via the curl) at t −δt/2 (δt is the time step). Once
the electric field at time t is know the process is iterated, this time in order to solve
the magnetic field at time t + δt/2, which in turn depends on H(t − δt/2) and E(t).
The last is usually called “leapfrog” algorithm.

Let us briefly show how the basic FDTD algorithm is obtained. The integral form
of the Faraday’s and Ampere’s laws are the best way to get it,

∂

∂t

∫
�H(�r , t)d�s = − 1

μ0μ

∮
�E(�r , t)d�l

∂

∂t

∫
�E(�r , t)d�s = 1

ε0ε

∮
�H(�r , t)d�l (1.20)

As we see in Fig. 1.5 each component of the �E field can be viewed as surrounded
by a circulating current of �H components, and viceversa. Precisely the EM field
component perpendicular to a given face of the Yee’s cell represents its averaged
value on that surface. Interestingly, there is a connection between Yee’s discrete
space and the simplest discretization of Faraday’s and Amperes’s laws in its integral
form.

Let us apply Faraday’s law to one of the Yee’s cell faces in order to calculate Hy .

The left hand side reads

∂

∂t

∫
�H(�r , t)d�s ≈ 	x	z

∂

∂t

[
Hy |i+ 1

2 , j,k+ 1
2

]
(1.21)

and the right side (counterclockwise integration),

− 1

μ0μ

∮
�E(�r , t)d�l ≈ 1

μ0μ

{
	x
[

Ex |i+ 1
2 , j,k+1 − Ex |i+ 1

2 , j,k

]

+ 	z
[

Ez |i, j,k+ 1
2

− Ez |i+1, j,k+ 1
2

]}
(1.22)
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thus,

∂

∂t

[
Hy |i+ 1

2 , j,k+ 1
2

]
= 1

μ0μ

{
Ex |i+ 1

2 , j,k+1 − Ex |i+ 1
2 , j,k

	z

+
Ez |i, j,k+ 1

2
− Ez |i+1, j,k+ 1

2

	x

}
(1.23)

The “leapfrog” algorithm alternates the update of E-fields and H-fields as

explained. This translates into the FDTD notation as ∂ �E
∂t ≈ �En+1− �En

	t and ∂ �H
∂t ≈

�Hn+1/2− �Hn−1/2

	t . So finally the Hy update is:

Hy |n+ 1
2

i+ 1
2 , j,k+ 1

2
= Hy |n− 1

2

i+ 1
2 , j,k+ 1

2
+ 	t

μ0μ

⎧
⎨
⎩

Ex |ni+ 1
2 , j,k+1

− Ex |ni+ 1
2 , j,k

	z

+
Ez |ni, j,k+ 1

2
− Ez |ni+1, j,k+ 1

2

	x

⎫
⎬
⎭ (1.24)

The rest of the electric and magnetic vector components, can be found straightfor-
wardly following this scheme. Once all the components are calculated, this “piece”
of algorithm allows us to simulate propagation of EM waves through i.h.l media,
defined by the dielectric constant ε, and the magnetic permeability μ.

For the topics covered in this thesis this “particular” FDTD algorithm is of limited
interest by itself, since it does not work with metals. However, it appears every-
where in our codes because the studied systems are always embedded in “vacuum”
regions. The algorithm must satisfy some criteria in order to be numerically stable.
For instance, it can be demonstrated that the dispersion relation for a freely prop-
agating plane wave through the discretized “vacuum” space holds the following
formula [13]:

4

	t
sin2

(
ω	t

2

)
= 4c2

[
1

	x
sin2

(
kx	x

2

)
+ 1

	y
sin2

(
ky	y

2

)

+ 1

	z
sin2

(
kz	z

2

)]
(1.25)

This result implies that the non-dispersive “continuous” free space becomes
dispersive when Maxwell’s equations are defined into the time-space lattice. Clearly,
in the limit of both mesh size and time step going to zero, the dispersion relation in
free space is recovered.

From the dispersion relation, by preventing ω from being a complex number, i.e.,
| sin2

(
ω	t

2

) | ≤ 1 the stability criterium is obtained:

(	t)2 <

(
c2

	x2 + c2

	y2 + c2

	z2

)−1

(1.26)
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The last expression implies that we can not independently choose the mesh size
and time step. Once the mesh size has been fixed, the time step must be such that the
criterium of stability is fulfilled. For a given structure, the mesh size will additionally
depend on two important constrains:

i. When the structure to be simulated can not be exactly accommodated in carte-
sian coordinates, the mesh size should be fine enough to ensure that the discrete
structure represents the actual one.

ii. We must take into account the way EM fields are described in the FDTD algorithm.
In the case of metals, the EM field decays in length scales of the order of 25 nm.
The faithful representation of such fast variations is a great challenge, forcing the
mesh size to be usually smaller that 5 nm.

1.2.2 Field Sources in FDTD

Up to here, we have been devoted to show the basics of the FDTD algorithm. However,
the algorithm by itself it is not enough. If the EM fields on the grid at time t = 0 have
not been defined, we will get a lot of zeroes as output after iterating the FDTD loop.
The subject of sources for FDTD is one of the most challenging in this theoretical
framework. Sometimes it is very difficult to find the proper way to illuminate a struc-
ture. For instance, in two-dimensional (2D) periodic systems at normal incidence,
it is very easy to use a wave-packet (e.g. gaussian beam), while a monochromatic
wave requires further efforts. Illumination by a plane-wave at non-normal incidence
becomes an even more difficult task [13–15].

All sources implemented in our simulations are fully described elsewhere [13].
Here, we limit ourselves to say where and how the different sources are useful.

i. Gaussian wave-packet A gaussian wave-packet is a good source for illuminating
1D and 2D periodic systems at normal incidence. It has the advantage to be
compact in space and broadband in the frequency domain. This source is settled
at t = 0.
Normal incidence is definedas the direction perpendicular to the film where the
lattice is defined. In our notation this direction coincides with the z-direction. One
dimensional periodic systems can be considered as a particular case of the 2D-
periodic case, where the system is invariant along one of the in-plane directions.
Furthermore, at normal incidence, Ez = Hz = 0, so:

�E||(x, y, z, t) = �Eo||eı ωo
c (z−zo−ct/n)e

−
(

z−zo−ct/n
D

)2

(1.27)

Here zo is the position where the initial gaussian field reaches its maximum value,
where ωo = 2πc

λo
and n the refractive index. The initial magnetic field is obtained

from Maxwell’s equations.
If we define the Fourier’s transformation as f (ω) = ∫ +∞

−∞ dt f (t)eıωt we find that
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�E||(x, y, z, ω) =
√
πnD

c
�Eo||eı nω

c (z−zo)e
−
(

nD
2c

)2
(ω−ωo)

2

(1.28)

“Playing” with the D parameter it is possible to fit the gaussian wave-packet to
the available computational space. Note that in the limit of D → ∞ (Eq. 1.27)
the wave-packet becomes a monochromatic plane wave.

ii. Dipole sources Dipole sources in FDTD are useful for calculating dispersion
relations. In these situations we want a source able to couple with all the EM
modes of a given structure, which we do not know beforehand. A dipole source
can be tuned to be broadband or monochromatic. Moreover, all the k-vectors can
be accessed with a dipole source. Dipole sources can be settled to mimic either
a magnetic or an electric dipole, so with such a source we can take advantage of
system symmetries. We will use three types of dipoles:

δ(�r − �ro) × δ(t − to)

δ(�r − �ro) × e−ıω0t

δ(�r − �ro) × e−ıω0t e
−
(

t−t0
τ

)2

(1.29)

The first type is broadband in frequency (and is switched on at t = 0). The
second and the third types must be updated in time. The second type represents
a monochromatic source while the third one is broadband in frequency. These
sources emit both propagating and evanescent waves, thereby are useful in order
to “probe” confined modes, unaccessible for a propagating wave.

iii. Sum of Bloch’s waves In periodic systems the EM modes are a superposition of
Bloch’s waves. The best way to access them is precisely by an illumination with
a superposition of such waves. This source was first used in FDTD by Chan et al.
[16]. Again we refer to Taflove’s book [13] for a complete description.

1.2.3 Data Processing

Calculation of Optical Spectra: “Projection of EM Fields onto Plane Waves”

Maxwell’s equations are solved in real space and in time domain with FDTD, in other
words, a single FDTD simulation results in the knowledge of �E(�r , t) and �H(�r , t).
Nevertheless, these vectors do not provide the most relevant information about the
optical properties by themselves. Actually, the optical response of a certain struc-
ture is described in terms of scattering coefficients, transmission/reflection spectra,
near field maps, dispersion relations... The optical response usually depends on
the pumping frequency (even though the materials involved are non-dispersive).
To obtain a frequency dependent quantity is mandatory to apply a Fourier’s transfor-
mation to the EM fields in the time domain,
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�E(�r , ω) = 1√
2π

+∞∫

−∞
�E(�r , t)e−ıωt dt

�H(�r , ω) = 1√
2π

+∞∫

−∞
�H(�r , t)e−ıωt dt (1.30)

which is not always straightforward as we will see.
Let us concentrate first on how transmitted and reflected energy currents from a

material layer can be calculated with FDTD. In fact, these quantities are not difficult
to calculate, once the EM fields ( �E(�r , ω) and �H(�r , ω)) are known. The averaged
Poynting vector flowing through a given surface, S, reads (in the MKS system of
units),

J (ω) = 1

2

∫

S

d�s Re
[ �E(�r , ω)× �H∗(�r , ω)

]
(1.31)

Equation 1.31 provides the total energy current, at a fixed frequency. In order to
obtain transmission and reflection spectra we would need to know the incident EM
fields. For this, it is necessary to run an extra simulation without scatterers if the
incoming fields are not analytically known. But here, we will discuss a different
method to calculate the transmission and reflection coefficients in periodic systems,
which improves to some extent the previous one. As compared with it, this method
is interesting for two additional reasons. It is possible to obtain transmission and
reflection coefficients which contain information both in the frequency domain and
in the reciprocal space. Moreover, this method allows also to calculate separately
transmission and reflection from a single simulation. The basic idea consists in finding
a way to isolate the current that each �k-vector of the reciprocal lattice carries, as a
function of both the wavelength and the polarization state (See Ref. [17] for further
details).

The plane wave solution for Maxwell’s equations have the following form:

�E(�r , t) = �E0eı(�k�r−ωt), �H(�r , t) = �H0eı(�k�r−ωt) (1.32)

where ω = c|k|√
ε

, being the speed of light in vacuum, c, and ε the dielectric constant
of such media. Thus, curl Maxwell’s equations (MKS system of units) can be written
as:

�k × �E0 = μ0ω �H0

�k × �H0 = −εε0ω �E0 (1.33)

For a given �k vector there are two polarization states that must be considered,
because Eq. 1.33 are invariant under simultaneously change �E → − μ0 �H and
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�H → εε0 �E . We use the usual notation for such states, that is, s-polarized plane
waves are defined as,

�Es ∝ �k × �n (1.34)

and for the p-polarization,

�E p ∝ �k × �k × �n (1.35)

where �n is an arbitrary unit vector. The propagation �k vector and �n define a plane
in space with respect to, the electric (magnetic) field oscillates perpendicular for the
s-polarization (p-polarization).

We restrict our analysis to 2D periodically structured systems, and to the trans-
mission and reflection coefficients in the far field. The 2D-lattice would define the
x−y plane, and �n would be the unit vector ẑ.

At fixed frequency, a plane wave is completely described by the components of the
wave vector parallel to the surface (�k||) and its polarization. We use σ for labeling the
polarization state, which can be either +p, −p, +s or −s. The sign accounts for

the direction the plane wave propagates, i.e, as kz = ±
√
ε(ωc )

2 − �k2||, the ± signs
denotes the plane waves propagating coming from ∓∞, respectively. Evanescent
waves (kz = ı |kz |) do not carry energy to the far field, so they will not be considered
in the following.

Moreover, we are interested only in the EM field components parallel to the
x−y plane, which contain the necessary information to compute the time averaged
Poynting’s vector flow,

〈Sz〉 = Ex H∗
y − Ey H∗

x (1.36)

As we have set �n = ẑ = (0, 0, 1), taking into account Eq. 1.35 and Maxwell’s
equations we find on one hand,

�E0
�k||,p

= βkz

(
kx , ky,−

(k2
x + k2

y)

kz

)T

and

�H0
�k||,p

= β

μ0ω
|k|2 (−ky, kx , 0

)T (1.37)

where T stands for transposition. On the other hand, by utilizing Eq. 1.34 it can be
shown that:

�E0
�k||,s

= β
(−ky, kx , 0

)T

and
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�H0
�k||,p

= β

μ0ω
kz

⎛
⎝kx , ky,−

(
k2

x + k2
y

)

kz

⎞
⎠

T

(1.38)

The value for β can be arbitrarily chosen, however it is usually chosen so that the
current carried by the wave is the unity. A complete description of an eigenvector in
“free” space, at fixed frequency, can be expressed in this way:

〈�r |�k||, σ 〉 = �f r
�k||,σ

eı �k�r (1.39)

where we have used Dirac’s notation, and �f r
�k||,σ

denotes the different polarization

state of the right-vectors:

�f r
�k||,σ

= (ex , ey, hx , hy
)T (1.40)

In the last expression the field components are those shown in the set of Eqs. 1.37
and 1.38. Note that for the particular case where �k|| = �0 we must choose the basis
element by hand. We choose therefore at a fixed wavelength, a bi-vector EM field,
�F(�r , ω), can be described as,

|F〉 =
∫

d�k||
∑
σ

α(�k||, σ )|�k||, σ 〉 (1.41)

In each time step, the FDTD method output is precisely the EM field at this loop
iteration. Within this framework, the EM field components at certain z0 can be written
as:

�F(�r||, z0, t) =
∫

dω �F(�r||, z0, ω)e
−ıωt (1.42)

where

〈�r |F〉 = �F(�r||, z0, ω) =
∑
σ

∫
d�k||α(�k||, ω, σ )〈�r |�k||, σ 〉 (1.43)

To obtain α(�k||, ω, σ ) we must project |F〉 onto the left-vector basis {〈�k||, σ |}.
Unfortunately, the right eigenvectors do not in general form an orthonormal set, so
the left ones must be found by inverting the matrix built with the right-vectors [17].

In fact, the FDTD method has a great advantage over others: a single simulation is
enough to provide the optical response as a function of frequency. However, Fourier’s
integral calculations are time consuming processes. To avoid this drawback as much
as possible, one can make use of the fast fourier transformation (FFT). Usually, the
FFT method is the best choice in post-processing. However the use of FFT methods
to evaluate (1.30) or (1.42) requires storing the fields in the computer memory for
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all times, which is usually prohibitive. Alternatively, if the Fourier’s integral is done
by adding the contributions for each “time slice” as time evolves, fields do not need
to be stored, but performing the fourier transform (FT) is computationally costly.
Therefore the best choice, depends on the problem we are studying and on the
computer resources (speed and available RAM memory).

For the type of structures investigated in next chapters, storing the EM fields of a
typical simulation at each time step is a hard constrain. When the system under study
is large, i.e., when the computer RAM memory requirements are too demanding,
the FFT is not a feasible approach. From a single FDTD simulation the left-hand
side of Eq. 1.42 is obtained, leaving the calculation of α(�k||, ω, σ ) to the FFT post-
processing. Let us show how this way to proceed can not be followed for simulating
transmission or reflection spectra through 2D-systems. Typically, we investigate 2D-
periodic structures with periods ranging from 300 nm to 1000 nm. As we said before,
the mesh size must be quite fine to ensure accuracy (5–10 nm). The film where the
array is patterned is usually 25–500 nm thick. Overall, the whole system (including,
vacuum, PMLs,...) is about X × Y × Z = 100 × 100 × 300 mesh points. Note each
point at this grid would imply to store six complex numbers (EM components) plus
certain auxiliary variables. A system like that would require well over 2Gb RAM.
For instance, to compute α(�k||, ω, σ ) on a single layer of constant z would mean
storing a slice 100 × 100, one for each time step. Converged results are typically
obtained within the range from 30,000 to 120,000 time steps, so it would needed
an available memory from 200 to 400 Gb!. It is obvious that FFT can not be used
for these systems. The best way to proceed in this case consists on calculating the
Fourier’s integral directly:

α(�k||, ω, σ ) =
∫

dt

[∫
d�r||〈�k||, σ |�r〉 �zF(�r||, z0, t)

]
eıωt (1.44)

Note that, fixed the frequency,ω, each pair (�k||, σ ) defines an element of a basis in
which an arbitrary EM field can be expanded. At this point, we have an infinite number
of eigenvector coefficients to be calculated. However, in 2D periodic systems, only
a finite number of such elements carry energy to the far field. First, Bloch’s theorem
[9] imposes that only the reciprocal lattice vectors contribute to the integral [18],
thus:

|F〉 =
∑

�G

∑
σ

α( �G, σ )| �G, σ 〉 (1.45)

where �G runs over the reciprocal lattice vectors defined as �G �R = δi j , for all lattice
vectors �R.Up to here, we have reduced the number of integrals to calculate, although
we still have an infinite numerable number of them. Luckily only a finite number
of these coefficients represent propagative �k vectors (for which kz is a real number).
Therefore, in most of the calculations only a few coefficients in (1.44) must be
calculated in order to find transmission and reflection currents.
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Band Structure and Dispersion Relation Calculations

Band structure and dispersion relation curves provide fundamental information about
the EM modes supported by a given structure. Next, we will discuss how calculate
them with the FDTD method.

It is not difficult to implement an algorithm in order to calculate band structures
for periodic systems with FDTD. Fortunately, a periodic system can be represented
by a single unit cell within FDTD. Bloch’s boundary conditions supply with the
interactions between neighbor cells, thus providing the optical response as a function
of the incident k-vector along a chosen periodic direction. The source of illumination
used to be a sum of Bloch’s waves, though dipole sources (Sect. 1.2.2) work as
well. The key point is that the source fields should somehow match the EM modes
sustained by the structure. Fixed the boundary conditions (k-vector) and the field
source, maxima in spectra (calculated at “suitable” points in space) settle the EM
modes of the structure. Repeating the last procedure for each wave-vector belonging
the first Brillouin zone, it can be finally obtained the band structure. Indeed, the
FDTD band structures calculated throughout this thesis were calculated using this
technique.

On the other hand, if the structure is invariant through a given direction in space, the
dispersion relation can be straightforwardly found using the same method. Suppose
that we are interested on the dispersion relation through that direction, which is
denoted as z, so kz = kz(ω) represents the wave-vector through it as a function of
the frequency, ω. The whole system can be then fitted in a single “slice”, containing
its profile, which repeats itself along z. The slice plays the role of the unit cell of
a periodic system for which the period coincides with the mesh size. The initial
problem of calculating a dispersion relation is “mapped” onto a more easy problem,
i.e., to calculate a band structure within the first Brillouin zone, |kz| ≤ π/q, where
q is the mesh size. Note that the smaller the mesh size, the longer the first Brillouin
zone in k-space is. Because of q is usually very small as compared to the wavelength
(to ensure convergency, accuracy,...), the first Brillouin zone so defined spreads over
a wide range of k-vectors without being folded onto it. As an example, we show
in Fig. 1.6 the FDTD calculated dispersion relation of SPPs supported by a semi-
infinite gold film (circular symbols). This 1D problem is one of the simplest that
can be treated with FDTD. The system is divided in two different half spaces (metal
and vacuum). A dipole just over the metal surface is chosen to be the EM field
source, so that its evanescent fields overlap with SPPs. The “probe”, at which the
field amplitude of either the magnetic or electric field is calculated, is positioned
a few nanometers inside the metal. As we see, there is good agreement between
FDTD and the analytical SPP dispersion relation (solid line). In this case case, the
first Brillouin zone extents as far as 630μm−1 (the mesh size used is 5 nm), wide
enough to cover the frequency range of interest.

In general, the k-vector is a complex number (k = kr + ıki ). Up to here we
have been concerned with the real part of the dispersion relation, i.e., kr = kr (ω).

The imaginary part (ki ) defines the propagation length. Hereafter, we define it as the
distance at which the field intensity has decayed a 1/e factor, so labs = [2ki ]−1.As we
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Fig. 1.6 SPP dispersion
relation for gold: analytical
(solid curve) and calculated
with the FDTD method
(circular symbols). The mesh
size used is 5 nm. The dashed
line depicts the light cone

will see in next chapters, propagation length is one of the most important properties of
guided EM modes at the nanoscale. In fact, one could calculate propagation lengths
running 3D-FDTD simulations. Illuminating the system (e.g. with a dipole) at a
given “point” and then picking the field up at several relevant points, the propagation
length could be directly obtained from fields in real space. The last would require
huge systems, and even the problem of how the structure would be illuminated is
difficult to solve. We have chosen another way to proceed that allow us extract both
the real and imaginary part of k running a single simulation. We assume that EM
fields are harmonic in time, thus φ(t) ∝ e−ıωr t e−ωi t , where ωi must be chosen
positive so that the fields exponentially decay. Additionally, let us express φ(t) in the
frequency domain, that is, φ(ω) ∝ ∫ dte−ı(ω−ωr )t e−ωi t ∝ 1

(ω−ωr )+ıωi
. Therefore:

|φ(ω)|2 ∝ 1

(ω − ωr )2 + ω2
i

(1.46)

thus 2ωi = FWHM = 	ω, where FWHM states for the acronym of full-width at
half-maximum. In this case, ki = ωi

vg
= 	ω

2 vg
(vg being the group velocity), so finally:

labs = vg

	ω
(1.47)

In summary, because of time harmonic response of EM fields, we are “probing”
not only the location of the spectral positions at the kr (ω) plane with this method, but
also the propagation length, retrieved from the FWHM of the spectrum resonances.

We turn to SPP properties. Figure 1.7 renders lSPP analytical values (solid line)
compared to those calculated with Eq. 1.47 by means of the FDTD method (symbols).
Different curves render different sizes of the vacuum half space (Nz), for different
simulation times (Tmax). Interestingly, the calculated propagation lengths are smaller
than the analytical ones at large wavelengths, all except for the case in which Nz =
50μm and Tmax ∼ 30,800 fs. The explanation of this behavior is quite simple: at
large wavelengths SPPs get less absorbed within the metal, furthermore they are
less confined in vacuum, so SPPs can stand on the surface for a long time until the
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Fig. 1.7 SPP propagation
length for gold: analytical
(continuous curve) and
calculated with the FDTD
method (symbols). The
distance from the metal
surface to the corresponding
PML is denoted by Nz , and
Tmax renders the total time
that a simulation takes

resonance builds up, spreading a lot far from the surface. Note that our method relies
on being able to accurately calculate the FWHM from the spectral response, and
precisely this magnitude strongly depends on the time the SPP stands on the surface.
This explains that so long time consuming simulations were needed to get good
results. On the other hand, if the space between PMLs and the metal surface is smaller
than a SPP skin-depth in vacuum, SPP may be absorbed by the PMLs, broadening
the resonance and thereby the FWHM too. This explain the slightly improvement
shown as the vacuum region expands from Nz = 2μm to Nz = 25μm. Therefore,
in order to calculate labs for an EM mode that propagates through a given structure,
one must carefully choose the simulation time. Besides, space regions surrounding
the system must be allocated in the FDTD mesh ensuring they are large enough to
fit it.

1.2.4 Metals Within the FDTD Approach

The Perfect Electric Conductor Approximation

A very useful approximation to investigate the EM properties of metals consists on
considering them as perfect electric conductors (PECs). Roughly speaking, the PEC
approximation disregards the penetration of the EM fields into the metal. The latter
considers the metal conductivity as infinite, i.e., charges inside the metal instanta-
neously respond to the optical excitation. The PEC approach is a very good approx-
imation for metals at microwave or terahertz frequencies. At optical frequencies the
PEC approximation misses some important phenomena (as the existence of SPPs).
Nevertheless, even at optical frequencies the PEC approximation is quite often an
useful starting point for the theoretical analysis.

Apparently, this approximation could seem easy to implement within a FDTD
scheme: at the metal surface the electric field component parallel to it must be set to
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Fig. 1.8 Zeroth-order
transmission through a
2DHA of square holes
(side = 200 nm), perforated
through a free-standing
metal film (width = 100 nm)
approximated as it were a
PEC. The period is 400 nm.
The solid line depicts the
calculation with the FDTD
method. The dashed line is
obtained with the CMM
(Sect. 1.3)

zero. However, the EM field distribution induced by the Yee’s cell requires the imple-
mentation of this boundary condition to be handle with care. Consider a structure
where the PEC regions are in contact with other materials, dielectrics for instance.
In the continuous space, frontiers between both media are well defined. However,
when the continuous space is divided in small cubes (like in the FDTD algorithm),
we must fix them by hand. Let us explain this more precisely. The FDTD algorithm
operates on a discretized space, where the whole space is filled by Yee’s cubes. The
faces of such cubes provide us with suitable boundaries. This implies that some cells
have some of their EM components “on” the boundary while others are only close
to. This is, there are no “metal” cells and “dielectric” cells. Instead, the PEC bound-
aries must be defined by Yee’s cell faces. Once this is clear the implementation of
the PEC approximation on the FDTD code is a question of careful identification of
those Yee’s faces that require special treatment, for any given metal structure. We
have implemented the PEC approximation on the “home-made” FDTD code used
in this thesis and in order to show that it works, we compare in Fig. 1.8. transmis-
sion spectra through a two-dimensional hole array (2DHA) of square holes in a PEC
film calculated with two different techniques: FDTD and the coupled mode method
(CMM) (See Sect. 1.3). For PEC metals CMM is exact, and as we can observe FDTD
recovers the exact result.

Dispersive Materials

Dispersive materials require a special treatment in FDTD, as the dielectric constant
is local in the frequency domain but non-local in the time domain. The Maxwell’s
equations for i.h.l media in the MKS system of units are

∇ × �E(�r , t) = −μ0
∂ �H(�r , t)

∂t
(1.48)
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∇ × �H(�r , t) = ∂ �D(�r , t)

∂t
(1.49)

Non-locality in time-domain generally implies that �D(�r , t) �= α �E(�r , t), where α
is a constant. However, in the frequency domain the electric field and the displacement
vector are proportional

�D(�r , ω) = ε(ω) �E(�r , ω) (1.50)

where the dielectric constant ε, links �E and �D, at fixed frequency ω.
Remember the FDTD algorithm operates in the time domain, so when Maxwell’s

equations are discretized we should count on a time domain version of (1.50), i.e.,
its convolution

�D(t) = ε0ε �E(t)+ ε0

t∫

τ=0

�E(t − τ)χ(τ)dτ (1.51)

where χ(τ) is the first order electric susceptibility in the time domain (From now on
the explicit dependence in the space coordinates will be omitted.)

Throughout this work we have used one of the methods for incorporating disper-
sive properties available in FDTD [13]. The first FDTD approach for simulating
realistic dispersive materials was conducted by Luebbers et al. [19]. They started
investigating substances with an optical response well described by the Debye model.
Next, they extended their conclusions to metals behaving like plasmas [20]. Finally,
they took also into account effects due to the interband transition of electrons in
metals [21]. They called this general procedure piece linear recursive convolution
(PLRC) method.

In the course of this thesis we have been mainly interested in how light interacts
with nano-structured metals, at wavelengths ranging from the visible regime to the
Terahertz regime. Metals at those frequencies are well described by the Drude–
Lorentz model, where the dielectric constant is fitted by several Drude-like and
Lorentzian terms:

ε(ω) = εr −
∑

j

ω2
pj

ω(ω + ıγ j )
−
∑

j

	ε j�
2
j

ω2 −�2
j + ıω� j

. (1.52)

In fact, in the PLRC method an arbitrary number of Drude–Lorentz terms can be
straightforwardly incorporated, which constitutes the main advantage of this method.
Let us briefly outline the PLRC method. In the PLRC method a discretized version
of the integral appearing in (1.51) is considered:

I (nδt) =
n−1∑

m=0

(m+1)δt∫

mδt

�E(nδt − τ)χ(τ)dτ (1.53)
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A very good approximation for the electric field value at time t is obtained by

choosing �E(t) = �Ei + [ �Ei+1− �Ei ]
δt (t − iδt), where �Ei = �E(iδt). In other words, the

electric field is approximated by truncating the corresponding Taylor’s series up to
the linear term

I (nδt) =
n−1∑

m=0

�En−m

(m+1)δt∫

mδt

χ(τ)dτ

+
n−1∑

m=0

[ �En−m−1 − �En−m]
δt

(m+1)δt∫

mδt

(mδt − τ)χ(τ)dτ (1.54)

It is convenient to define

χm =
(m+1)δt∫

mδt

χ(τ)dτ

ξm = 1

δt

(m+1)δt∫

mδt

(mδt − τ)χ(τ)dτ (1.55)

Therefore,

�Dn = ε0ε �En + ε0

n−1∑

m=0

{
χm �En−m + ξm[ �En−m−1 − �En−m]

}
(1.56)

As we know the right hand side of Eq. 1.49 is approximated within the FDTD
formalism as ( �Dn+1 − �Dn)/δt , but evaluated at the same spatial position. In this way
the last equation can be readily written as follows

�Dn+1 − �Dn = ε0(ε + χ0 − ξ0) �En+1 + ε0(ξ0 − ε) �En − ε0 ��n (1.57)

where

��n =
n−1∑

m=0

[
	χm �En−m +	ξm( �En−m−1 − �En−m)

]
(1.58)

	χm = χm − χm+1

	ξm = ξm − ξm+1

Furthermore, if we assume different contributions to the electric susceptibility
in the form of χ(ω) = ∑p

i=1 χ
i (ω), in the time domain we will have χ(t) =∑p

i=1 χ
i (t). Finally, the expression for updating �E(�r , t) reads,
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�En+1 = ε − ξ0

ε − χ0 + ξ0

�En + δt/ε0

ε − χ0 + ξ0
∇ × �Hn+1/2 + 1

ε − χ0 + ξ0

p∑

i=1

��n
i (1.59)

To implement a FDTD algorithm for dispersive materials, one should start taking
into account these expressions. However, a last ingredient is needed to use them: the
time domain response χ(t) for a given ε(ω). For a Drude term the inverse Fourier’s
transformation (F−1) of ε(ω)− εr yields

F−1

(
− ω2

p

ω(ω + ıγ )

)
⇒ ω2

p

γ

(
1 − e−γ t)U (t) (1.60)

where U(t) is the time-step function.
On the other hand, a Lorentz term results in

F−1
(

− 	ε�2

ω2 −�2 + ıω�

)
⇒ δe−αt sin(βt)U (t) (1.61)

where

α = �

2

β =
√
�2 − α2

δ = 	ε�2

β

Luebbers et al. realized that ��n could be recursively calculated if χ(t) is repre-
sented as an exponential-in-time function. Otherwise, it would be necessary to store
�En for a large number of previous time slices, which would be very inefficient. There-
fore, the recursive updating of ��n imposes a hard constraint: only specific functional
dependencies of the dielectric constant are suited within the PLRC algorithm, as we
will show next.

Each term ��n in Eq. 1.59 can be expressed as two sums, and each one can in turn,
be represented as follows

ψn =
n−1∑

m=0

f n−mαm (1.62)

where we have disregarded the vector notation for simplicity. Here f n−mαm is either
�En−m	χm or ( �En−m−1 − �En−m)	ξm in Eq. 1.59.

The updating of ψn is simplified if αm+1 = kαm (being k a constant). In the case
of Drude terms, it is easy to demonstrate from Eq. 1.60 that both	χm and	ξm have
such a form. Then, ψn+1 can be evaluated as:

ψn+1 =
n∑

m=0

f n+1−mαm = α0 f n+1 +
n∑

m=1

f n+1−mαm (1.63)
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taking j = m − 1 we find

ψn+1 = α0 f n+1 +
n−1∑

j=0

f n− jα j+1 (1.64)

as α j+1 = kα j , we reach this final result

ψn+1 = α0 f n+1 + k
n−1∑

j=0

f n− jα j = α0 f n+1 + kψn (1.65)

However, due to the form we express the Lorentz time dependence χ(t) (See
Eq. 1.61), we can not recursively update the corresponding discrete convolution.
Fortunately, we can define a complex time-domain susceptibility like this

χ̂(t) = −ıδe−(α+ıβ)tU (t) (1.66)

so that χ(t) = Re[χ̂ (t)].
In the last case, if the EM fields are real numbers, it is straightforward to demon-

strate that the equation for updating ψn becomes,

ψn+1 = Re[α̂0] f n+1 + k
n−1∑

j=0

f n− j Re[α̂ j ] = Re[α̂0] f n+1 + k ψn . (1.67)

What does it happen in the case of complex fields? Note that in that case:

ψn =
n−1∑

m=0

Re[ f n−m]αm + ı
n−1∑

m=0

I m[ f n−m]αm (1.68)

Provided αm is proportional to an exponential function (like in the Drude case)
the term involving I m[ f n−m] does not add new difficulties. Nevertheless, Lorentz
contributions need to hold a previous condition, that is αm must be expressed as a
complex number. In order to find the updating formula we start with the complex
version of ψn

ψ̂n =
n−1∑

m=0

Re[ f n−m]α̂m + ı
n−1∑

m=0

I m[ f n−m]α̂m (1.69)

or ψ̂n = ψ̂n
R + ı ψ̂n

I , so ψn = Re[ψ̂n
R] + ı Re[ψ̂n

I ]. This is the correct updating
expression when dealing with realistic metals and complex EM fields in the FDTD
algorithm. To our knowledge, a PLRC algorithm has not been reported so far for
properly updating EM complex fields in the general Drude–Lorentz approximation
of the dielectric constant of metals. To illustrate how advantageous it is, we have
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(a) (b)

Fig. 1.9 FDTD calculated transmission spectra at normal incidence through a 50 nm thick gold
film, for different mesh sizes: a without and b with the PLRC correction for updating complex
fields

plotted an example in Fig. 1.9. This figure shows FDTD calculations of transmis-
sion spectra at normal incidence through a 50 nm thick gold film for different mesh
sizes. The dielectric constant of gold has been taken from the experimental data and
fitted to a Drude–Lorentz formula (Table 1.1). If the “complex updating” is not done
(Fig. 1.9a), the EM fields are updated as in the literature [21], and what it is obtained
is disconcerting. The expected trend in FDTD does not hold, i.e, the finer the mesh
size, the worse the results. However, the results depicted in panel(b) are correct,
where the “complex” updating procedure (Eq. 1.69) has been taken into account. In
the last case, the transmission curves calculated with the FDTD method converge to
the analytical one, with mesh sizes smaller than 10 nm. As we said at the introductory
subsection, the FDTD accuracy in treating metals depends so much on how the EM
fields are sampled inside the metal. Even so, a relatively good agreement is achieved
even for a 25 nm mesh size, albeit the skin-depth (δm) is of the same order.

1.2.5 Outer Boundary Conditions

Still, the FDTD method described up to now would have very limited applicability.
The reason is that most of the interesting phenomena have a resonant nature, which
implies that the optical response of the structure builds up over a long period of time.
Not only the time evolution of fields at the structure must be followed, but also the
fields that have been radiated away in previous times. A sloppy treatment of these
fields would introduce spurious fields back into the system. For instance, setting
them to zero at some distant region from the system of interest would be equivalent
to placing a perfectly reflecting mirror, not to the disappearance of these fields. The
ideal would be to terminate the system with a sort of “material” able to perfectly
absorb light, but without being reflected when light impinges on it. In FDTD there
are several ways to achive this. The most extended and used method is based on the
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Table 1.1 Dielectric constant fitted parameters of Ag, Au, Cu, Al, Ni, Cr and W. ωP , γ, � and �
in electron volts

Ag Au Cu Al Ni Cr W

εr 4.6 5.967 1.0 1.0 1.0 1.0 1.0
ωP0 9.0 8.729 8.212 10.83 4.621 4.406 5.955
γ0 0.07 0.065 0.03 0.047 0.021 0.047 0.027
ωP1 - - - - 6.929 - 2.286
γ1 - - - - 1.771 - 0.335
ωP2 - - - - 7.062 - -
γ2 - - - - 3.443 - -
�0 1.2 0.433 0.378 0.333 1.021 3.175 0.590
�0 4.9 2.684 0.291 0.162 1.458 0.121 0.984
	ε0 1.10 1.09 84.49 1940.97 2.1 1191.85 12.0
�1 - - 1.056 0.312 2.410 1.305 1.653
�1 - - 2.957 1.544 3.443 0.543 2.066
	ε1 - - 1.395 4.706 1.2 58.79 14.4
�2 - - 3.213 1.351 - 2.676 2.479
�2 - - 5.3 1.808 - 1.970 4.132
	ε2 - - 3.018 11.39 - 34.21 12.9
�3 - - 4.305 3.382 - 1.335 -
�3 - - 11.18 3.473 - 8.775 -
	ε3 - - 0.598 0.558 - 1.238 -

so-called perfect-matched-layers (PMLs) first proposed by Berenguer [22]. We omit
here the details that are fully developed in Ref. [13], and references therein. Since
the first algorithm by Berenguer, the PML boundary conditions have been improved
a lot. In fact, we use in our simulations Uniaxial PMLs (UPMLs). Roughly speaking,
these boundary conditions are equivalent to a uniaxial and dispersive material with
the above-mentioned optical properties. However, these absorbing layers suffer from
an important drawback, the absorbing efficiency depends on the �k-vector of the
incoming light. Although the claim that UPMLs do not reflect light is absolutely
correct, when light travels through such media the absorption efficiency impairs as
the angle of incidence grows, defined it with respect to the normal direction to the
interface between the UMPL layer and the empty space. This becomes a source of
inaccuracies for isolated systems if they are very elongated. In periodic systems it is
also crucial to avoid reflection, specially that light scattered at almost grazing angles.
This is important since in periodic systems a lot of interesting phenomena occur at
wavelengths close to grazing angle condition. Let us illustrate this with an example.
Figure 1.10 shows an schematic 1D-grating deposited on gold. In a periodic system,
the diffracted waves are characterized by wavevectors satisfying

�kn‖ = �ki‖ + 2π

	x
nx̂ (1.70)
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Fig. 1.10 Zero-order reflection spectra of a 1D-grating array (grating thickness = 50 nm) on a gold
film (55 nm) computed using two different absorbing boundaries. The rest of geometrical para-
meters are: 	x = 740 nm, dx = 370 nm. Empty symbols render the calculation in which the
CCOM+UPML absorbing boundaries are used jointly. The reflection peak at λ ∼ 725 nm is due
to spurious reflection at the “thin” UPML layer

where 	x represents the period of the array and, �ki‖ is the incident k-vector. Each

diffracted mode has kz = ±
√
εg2 − �k2‖, (g = ω/c). Note that if kz → 0, �k becomes

grazing. For normal incidence this occurs at λn =
√
ε	x
n , and it is precisely at that

condition one could expect that UPMLs do not properly work. In Fig. 1.10, empty
symbols show the zero-order reflection spectrum when only UMPLs are used. At
740 nm wavelength there is a sudden jump in reflection. This jump is not physical.
Interestingly this wavelength holds the conditionλn = 	x

n for n = 1 (in the reflection
half-space ε = 1). To overcome this, we could try to enlarge the UPMLs thickness
until no reflection from them was observed. However, there is a better way to proceed.
Besides the UMPLs boundary conditions, we have implemented a different sort of
absorbing boundaries that complement the former. First introduced by Ramahi [23,
24], the basic premise of the so-called complementary concurrent operators method
(CCOM), is that by applying a set of differential operators at the boundaries, the
method is able to cancel outer-boundary reflections. The cancelation is possible by
averaging two independent solutions to the modeling problem. These two solutions
are obtained by imposing radiation boundary operators that are complementary to
each other. It is out of the scope of this section to deal with the technical details (See
[13] for further explanations). In any case, we would like to show the reader how by
using the CCOM method is obtained the correct optical spectrum, which can be seen
in Fig. 1.10 depicted with full symbols.
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1.3 The Coupled Mode Method: An Overview

Modal expansion methods rely on representing the field in terms of a base of eigen-
functions for each different “region”, in which the whole system is divided. The
solution is obtained after applying the proper boundary conditions. These methods
lay on the “a priori” knowledge of exact solutions in the different regions, consid-
ering that each one fills in the whole space. In this thesis, we will use a modal
expansion method applied to electromagnetism problems. Namely, the CMM will
be used in Chap. 2, Sect. 2.4 when investigating the Extraordinary Optical Trans-
mission phenomenon, also in Chap. 3 where Negative Refractive Index presented on
the double-fishnet structure is studied, and finally in Chap. 4, Sect. 4.2 for designing
a source for SPPs. It is not pretended here to fully explain this technique for the
aforementioned problems. We limit to briefly describe the general ideas behind the
method instead.

The details can be found in several references. Let us mention some of them, in
order to give an idea of the type of problems that can be treated with this method:

i. The phenomenon of EOT of light has been extensively investigated with CMM :
through slit arrays [25–27], hole arrays [28–32] and also through quasi-periodic
structures [33, 34].

ii. Optical response of single apertures are treated with the CMM approximation too.
For example, it has been investigated resonant transmission through single holes
[35, 36] and through finite chains of subwavelength holes [37]. The CMM approx-
imation can treat, in some cases, nonlinear optical response as it was demonstrated
in Ref. [38].

iii. Scattering of modes bounded to a surface (like SPPs) is another problem where
CMM is able to reach good results. It has been used in investigating, for instance,
the scattering of SPPs by one-dimensional periodic nano-structured surfaces [39]
and in a fully 3D-problem, the scattering of light and SPPs by arrays of holes
[40].

iv. The CMM approximation can also be applied to problems not related to optics, for
instance, EOT mediated by surface sonic waves [41], and even the transmission
of cold atoms through optically induced potential barriers [42].

To illustrate CMM, let us describe the theoretical formalism used for calculating
optical spectra through 2DHAs drilled on PEC metallic films placed in symmetric
environments, i.e., between a substrate and a cover optically characterized by the
same dielectric constant, ε. An extended discussion of this problem can be found in
Ref. [31], and references therein.

The whole space is divided in three regions (See Fig. 1.11). The EM fields, or
rather, their components lying on the xy-plane are expanded in plane waves (region
I and III), whereas in region II the fields are chosen to be the modes of an infinite
“hole” shaped waveguide. Next, the fields have to be matched by means of the
proper boundary conditions. More precisely, the EM-fields are expressed in terms
of plane waves |kσ 〉, characterized by the in-plane component of the wave-vector

http://dx.doi.org/10.1007/978-3-642-23085-1_2
http://dx.doi.org/10.1007/978-3-642-23085-1_2
http://dx.doi.org/10.1007/978-3-642-23085-1_3
http://dx.doi.org/10.1007/978-3-642-23085-1_4
http://dx.doi.org/10.1007/978-3-642-23085-1_4
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k = (kx , ky) and the polarization σ = p or s. The representation of the modes in the
dielectric half spaces then reads,

〈r|k p〉 = (kx , ky)
T exp (ık r)/(Nk)

〈r|k s〉 = (−ky, kx )
T exp (ık r)/(Nk) (1.71)

where r = (rx , ry), kz = √εg2 − k2 with g = 2π/λ (T standing for transposition).
The normalization constant N = d for 2DHAs. Note also that H-fields are obtained
from E-fields with the help of Maxwell’s equations in the CGS system of units (so in
a uniform media with dielectric constant ε,∇ ∧ E = ıgH and ∇ ∧ H = −ıεgE), so
that impedances (quotient between magnetic and electric fields) are dimensionless.
For an incident plane wave with parallel wave vector k the in-plane EM fields in the
reflection free space region (I) can be written as,

|EI(z)〉 = |k0σ0〉eik0z +
∑

kσ

rkσ |kσ 〉e−ikz z

| − uz ∧ HI(z)〉 = Yk0σ0 |k0σ0〉eik0z −
∑

kσ

Ykσ rkσ |kσ 〉e−ikz z (1.72)

In this way, the EM fields in the transmission region (III) are

|EIII(z)〉 =
∑

kσ

tkσ |kσ 〉eikz(z−h)

| − uz ∧ HIII(z)〉 =
∑

kσ

Ykσ tkσ |kσ 〉eikz(z−h) (1.73)

Here rk and tk are the reflection and transmission coefficients and uz is the unitary
vector along the z-direction. On the other hand Yks = kz/g and Yk p = εg/kz . Note
that the k-vector runs over the reciprocal lattice vectors. Usually a few of them are
enough to obtain accurate results. Inside the holes, EM-fields are expanded in terms
of the TE and TM waveguide eigenmodes. However, for subwavelength rectangular
shaped holes good convergency is attained only considering the less decaying TE
mode (the fundamental waveguide mode). Moreover, within this “minimal model”
results can be worked out analytically, which greatly helps the physical insight. From
now on, this mode is labeled as 0-mode. Thus we can write,

|EII(z)〉 = |0〉[A0eiqz z + B0e−i qz z]
| − uz ∧ HII(z)〉 = Y0|0〉[A0eiqz z − B0e−iqz z] (1.74)

where the quantity Y0 = qz/g corresponds to the admittance of the 0-mode, being

the propagation constant of the fundamental mode qz =
√
εholeg2 − q2

y , (qy =
π/ay). In this case, the fundamental waveguide mode in real space is: 〈r|0〉 =
(1, 0)T sin[qy(y + ay/2)]/

√
M,M = ax ay/2 being a normalization factor, whether

r ∈ [−ay/2, ay/2] × [−ax/2, ax/2] and zero otherwise.
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Fig. 1.11 Schematic picture
of a square array of
rectangular holes of side
ax and ay perforated on a
free-standing metallic film of
thickness h. Parameter d
defines the period of the
array. The apertures are
illuminated by a p-polarized
plane wave at normal
incidence
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Note that when matching the EM fields at the interfaces (z = 0 and z=h),
E-field components parallel to the surface must be continuous over the whole surface.
However H-field components parallel to the interfaces must be continuous only over
the aperture, due to the presence of surface currents in the metal interface. This means
that E-fields must be projected onto {|kσ 〉} set of eigenvectors, whereas H-fields must
be projected onto the fundamental waveguide mode [31]. Coupling between the
0-mode and free-space modes comes from overlap integrals, 〈kσ |0〉, which depends
upon the specific hole shape. For rectangular holes,

〈kσ |0〉 = fk,σ

√
ax ay

2d2 sinc [kx ax/2]

{
sinc

[
(ky + qy)ay

2

]
+ sinc

[
(ky − qy)ay

2

]}

(1.75)
where fk,p = kx/k, fk,s = −ky/k and sinc[x] = sin[x]/x .

By matching the EM fields at the interfaces, we end up with a set of two coupled
linear equations for {E,E′} :

(G −�)E − GV E ′ = I0

(G −�)E ′ − GV E = 0 (1.76)

leading to the solution

E = I0(G −�)

(G −�)2 − G2
v

, E ′ = I0Gv

(G −�)2 − G2
v

(1.77)

where the expansion coefficients have been reorganized as follows, E = A0 +
B0 and E ′ = −(A0eiqzh + B0e−iqzh). These new coefficients are the 0-modal
amplitudes of the electric field at the input and the output sides of the holes, respec-
tively.

The different terms of these equations have a simple physical interpretation. The
term I0 measures the overlap between the incident plane wave and the 0-mode inside
the hole I0 = 2ıYk0,σ0 |〈k0σ0|0〉|2.The term Gv in Eqs. 1.77 controls the EM coupling
between the input and the output sides of the holes, Gv = 2ıY0

e2iqz h−1
. The expression

for the self-energy � is given by, � = ıY0
e2iqz h+1
e2iqz h−1

.

Finally, the EM-coupling between a hole and the continuum of plane waves, is
mediated by the term G, which can be expressed as G = ı

∑
kσ Ykσ |〈kσ |0〉|2. The
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real part of the Green function (Gr ) controls the matching between the 0-waveguide
mode and the evanescent EM modes in vacuum, and so does the imaginary part (Gi )

with the propagating modes.
The transmission at normal incidence T relates to {E,E′} coefficients from

T = Gi |E ′|2/√ε [31]. The last expression can be easily found if one takes into
account that the energy current crossing a unit cell at a given z, J(z), can be computed

by integration of the Poynting vector: J (z) = 1
2 Re

[∫
dr uz( �E(r, z) ∧ �H∗(r, z)

]
=

1
2 Re

[
〈−uz ∧ H(z)|E(z)〉

]
. Using this expression, the incident current yields J0 =

Yk0 σ0/2, thereby transmission in region III is then computed as T = JIII/J0,

where JIII is the current evaluated at coordinate z > h. After some algebra we
arrive to an analytical formula for transmission

T = |Io|2
4
√
ε

Gi

(Gi )2 +
( |G−�|2−|Gv |2

2|Gv |
)2 (1.78)

CMM can take into account also realistic values for the dielectric constant of
metals. The last is done by approximating the “penetration” into the metal surface
by means of the surface-impedance boundary-conditions (SIBCs), except for the
vertical walls of the holes which are treated as perfect conductor surfaces. Following
the same procedure as for PEC metals it can be demonstrated the transmission formula
(Eq. 1.78) holds also for real metals albeit redefining some quantities [37]:

I0 = 2ıYk0,σ0

1 + ZsYk0,σ0

|〈k0σ0|0〉|2

Gv = 2ıY0

eıqzh(1 + ZsY0)2 − e−ıqzh(1 − ZsY0)2

� = ıY0
eıqzh(1 + ZsY0)+ e−ıqzh(1 − ZsY0)

eıqzh(1 + ZsY0)2 − e−ıqzh(1 − ZsY0)2

G = ı
∑

kσ

Ykσ

1 + ZsYkσ
|〈kσ |0〉|2 (1.79)

where Zs = 1/
√
εm (being εm the dielectric constant of the metal), is termed Surface

Impedance. The 0-modal amplitudes of the electric field at the input and the output
sides of the holes in this case are E = A0(1 − ZsY0) + B0(1 + ZsY0) and E ′ =
−[A0(1 + ZsY0)eıqzh + B0(1 − ZsY0)e−ıqzh].

We would like to pay a bit more attention over how Maxwell’s equations are
approximated within SIBC. In the cgs system of units and considering harmonically
oscillating fields (∼e−ıωt ) inside metal

�E = i

gεm
∇ ∧ �H = i

gεm

⎛
⎝
∂yHz − ∂zHy

∂zHx − ∂xHz

∂xHy − ∂yHx

⎞
⎠
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Fig. 1.12 Transmission
spectra at normal incidence
through an array of square
holes (d = 500 nm,
ax = ay = 250 nm and
h = 200 nm) drilled on a
free-standing silver film as
calculated with FDTD and
CMM. With CMM the two
approximations described for
simulating metal properties
(PEC and SIBC) are shown

�E// = i

gεm

(
∂yHz − ∂zHy

∂zHx − ∂xHz

)
� i

gεm

∂

∂z

(−Hy

Hx

)

= i

gεm

∂

∂z
[ûz ∧ �H//] (1.80)

owing to EM fields quickly decay into metals, the derivative of fields along the
direction perpendicular to the surface is dominant over the other ones

|∂yHz | � | ∂zHy |
|∂xHz | � | ∂zHx | (1.81)

these are the so-called SIBCs that have been applied to obtain (1.80).
We are looking for EM solutions inside the metal in the form of

�H//(�r) = �Hoei �k�r

�E//(�r) = �Eoei �k�r (1.82)

where �k = (k‖, kz). Taking into account (1.80) we obtain the approximated relation-
ship between �E// and �H//:

�E//(�r) ≈ − km
z

gεm
[ẑ ∧ �H//(�r)]

�Eo ≈ km
z

gεm
[−ẑ ∧ �Ho] = Zs(g)[−ẑ ∧ �Ho] (1.83)

Here km
z =

√
εm g2 − k2

// , and ẑ is a unitary vector pointing perpendicularly to

the surface, from outside to inside the metal.
Notice that, within SIBC the in-plane E-field is proportional to the in-plane

H-field inside the metal. More importantly, since �E// is continuous at the interface,
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Zs(g)[−ẑ ∧ �H//] will be continuous too. This is the key to improve CMM from the
PEC approximation to the SIBC approximation. In order to obtain Eq. 1.79 we must
impose a “new” set of boundary conditions, at z = 0, namely |EI(z)〉 − Zs(g)| −
uz ∧ HI(z)〉 must be continuous, while at z = h the new boundary condition reads
|EI(z)〉 + Zs(g)| − uz ∧ HI(z)〉. Note that ẑ = −uz in the latter case.

Finally, we would like to discuss how accurately SIBC represents optical proper-
ties of metals. Usually, when dealing with the SIBC approximation km

z is approxi-
mated by

√
εm g, therefore Zs = 1/

√
εm .However, in order to efficiently incorporate

SPPs we could approximate km
z =

√
εm g2 − k2

SPP(kSPP = g
√

εεm
ε+εm

) obtaining an

accurate surface impedance, Zs = 1/
√
ε + εm .

In Fig. 1.12 we present an example of transmission spectra carried out with CMM
within the “minimal model” approximation (only one waveguide mode inside holes)
and we show how it compares with the “exact” FDTD calculation. The structure is
an array of square holes defined by the parameters d = 500 nm, ax = ay = 250 nm
and h = 200 nm. The agreement between FDTD and CMM is good. As expected,
it is better for silver than for the PEC case. However, notice that these calculations
are conducted under the following approximation: the hole walls are considered as
PEC even when SIBC operates. In order to overcome the latter, in Fig. 1.12 the hole
side is actually widened as much as one skin-depth to mimic the penetration of the
EM fields into the metal walls. A better solution consists in using the propagation
constant of the real metal waveguide, as we will see in Chap. 2.
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Chapter 2
Extraordinary Optical Transmission

2.1 Introduction

Anyone of us has experimented that light spreads in all directions upon interacting
with objects. Another matter is how it does it. Diffraction theory is an old problem in
optics, which goes back the works by Thomas Young and Augustin-Jean Fresnel in
the nineteenth century. In 1944 an important landmark in that widely studied topic
was put on the map by Hans Bethe [1]. He found that, at first approximation, the
normalized-to-area transmission through a circular hole perforating an infinitely thin
perfect conductor plate is

T ≈ 64

27π2

( r

λ

)4
(2.1)

where λ is the wavelength of the incoming light, being r the radius of the hole. It
was a great surprise indeed, because most of the well established theories at that
time gave a (r/λ)2 dependence. Furthermore he found the pre-factor, not only that
unexpected dependence. Bethe’s theory shows that a subwavelength hole (λ � r ) is
a poor device for transmitting light through.

Therefore, it is not strange that the discovery of the phenomenon of extraordinary
optical transmission (EOT) through subwavelength holes by Ebbesen et al. [2] has
been one of most important findings in the field of Optics in the last years. The
basic structure in which EOT phenomenon emerges is a two-dimensional periodic
array of subwavelength holes (2DHA) perforated on an optically thick metallic film.
This phenomenon is characterized by the appearance of a series of transmission
peaks and dips in the transmission spectrum. It is commonly accepted EOT occurs
when the normalized to area transmission is larger than unity. On the other hand,
when the transmission per hole in an array is larger than for an isolated hole is called
enhanced transmission. Here we will not differentiate between these two cases. From
the beginning, it was realized that the spectral locations of those resonant features
coincide with the corresponding ones of surface plasmon polaritons (SPPs) [3]. This
link between EOT and SPPs has been corroborated by subsequent theoretical works
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[4, 5] and now it is widely accepted that the excitation of those surface electromag-
netic (EM) modes is at the origin of EOT.

The EOT mechanism has sparked considerable interest for its fundamental impli-
cations and also from the applied point of view, as many potential applications based
on this phenomenon have been proposed [6]. EOT observed in symmetrically perfo-
rated thin metal films [2, 4, 7, 8], the squeezing of the optical near-field by plasmon
coupling resulting in focusing light into very small volumes [9], and beaming of light
via a single slit (or hole) in thin metal films surrounded by a grating like structure
[10] are only a few of many interesting examples. A vast number of applications
have been suggested and some are currently in use, e.g., wavelength tunable filters,
subwavelength lithography, near-field microscopy, surface enhanced Raman spec-
troscopy, etc. Obviously, it is out of the scope of this chapter to review so wide field of
research. We recommend for further reading Ref. [6, 11, 12], and references therein.

Throughout this chapter, we just summarize a part of the contributions to EOT
done during the course of this thesis [13–16]. In these works our aim was trying
to understand some important aspects of the EOT when the parameters defining
the structure presenting EOT are varied. It what follows we will discuss how EOT
depends on: the metal chosen, the shape of the holes and the film thickness. The study
will focus on the optical response of 2DHAs drilled on metal films. Additionally,
we will investigate a quite different system that also displays EOT. The chapter is
organized as follows:

a. In Sect. 2.2, we present a theoretical study, based on the finite difference time
domain (FDTD) method, of the optical response of circular hole arrays drilled
in several metal films (Ag, Au, Cu, Al, Ni, Cr and W). Two series of structures
are studied. In the first one, transmittance peaks are analyzed as all geometrical
parameters defining the system are scaled, except the metal thickness which is
kept constant, showing a good agreement with existing experimental data. In the
second series, also the metal thickness is scaled. These is no available experimental
data for this case, but its theoretical consideration allows a clear distinction in the
behavior of different metals.

b. A theoretical study is developed on the optical transmission through square hole
arrays drilled in optically thin films in Sect. 2.3, by means of the FDTD method.
Nano-structures containing thin films are interesting because transmission may
occur through both the holes and the metal layer. Moreover, the EM bounded
modes supported by thin films are not the same that those supported by thick
films.

c. It is known two mechanisms leading to enhanced transmission of light in 2DHAs:
excitation of SPPs and localized resonances that are also present in single holes.
In Sect. 2.4 we analyze theoretically how these two mechanisms evolve when
the period of the array is varied. Along with the FDTD method this work was
also done with the aim of the coupled mode method (CMM). This method was
adapted to this problem by Dr. A. Mary at the Departamento de Física Teórica de
la Materia Condensada—Universidad Autónoma de Madrid.
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d. Finally, in Sect. 2.5, the spectral dependence of the extraordinary transmission
through monolayers of close-packed silica or polystyrene microspheres on a
quartz support, covered with different thin metal films (Ag, Au and Ni) is investi-
gated. Measured spectra are compared with modeled transmission spectra using
FDTD calculations. The optical response of this system shows remarkable differ-
ences as compared with the “classical” 2DHA configuration.

2.2 Influence of Material Properties on EOT Through
Hole Arrays

Pioneering attempts to understanding EOT pointed out to SPP modes [2, 4, 17, 18]
as responsible for the phenomenon. More generally, it has been shown that EOT-like
behavior occurs whenever two surface modes are coupled between themselves and
weakly coupled to a continuum [4], allowing a Fano-like description of the process
[19]. Examples of this general mechanism are the cases of wave transmission aided
by: Brewster-Zenneck waves in hole arrays drilled in Tungsten [20], guide cavity
modes on slit arrays covered by a dielectric layer [21], surface electromagnetic waves
in photonic crystals [22–24], surface sonic waves [25], and even the transmission of
cold atoms through optically induced potential barriers [26].

Back to the case of 2DHAs, many studies have been devoted to study the depen-
dence of EOT on the different parameters defining the system. As regards to geomet-
rical parameters, it has been found that the hole shape can strongly influence both
the polarization properties and the intensity of the transmission. This has been
related to the presence of single-hole transmission resonances that couple to the
SPPs [15, 27–31].

With respect to the material properties, it is known that some metals (notably
Au and Ag) are best suited for EOT than others (Ni, Co,...) [2, 3]. However, a
systematic comparative between different metals was lacking until the experiments
performed by Przybilla et al. were reported [32]. These experiments analyzed EOT
through 2DHA made of circular holes drilled in optically thick metal films, deposited
on a glass substrate. The study considered different metals and analyzed the peak
transmittance as a function of lattice parameter which, in turn, controlled the resonant
wavelength. If the system were a perfect electric conductor (PEC) the transmission
would not depend on lattice parameter, provided all length scales in the system are
scaled in the same way. Therefore, deviations from this behavior reflects the effect of
material properties. In the experiments [32] the hole radii were scaled with the lattice
parameter but, due to practical limitations, the metal thickness was kept constant,
which makes the analysis even more complex. Another possible complication is that
finite size effects, surface quality and imperfections in hole shape in a real system
could depend on the metal considered.

In this section we present a theoretical study of EOT in periodic hole arrays
drilled in different metals. First we compare with the experimental results presented
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in Ref. [32]. Additionally, we present a study in which all lengths are scaled with the
lattice parameter. In both cases, comparison with the PEC case helps to understand
the effect of material properties in the light transmission through 2DHA.

2.2.1 Theoretical Approach

Our calculations are performed with the FDTD method (See Sect. 1.2). Infinite peri-
odic 2DHA are simulated by applying Bloch conditions at the boundaries of the
unit cell and imposing “uniaxial perfect matched layers” at surfaces parallel to the
metal film. In the FDTD method Maxwell’s equations are discretized in both space
and time. Therefore, convergence depends on both mesh size and temporal step. In
order to properly calculate the influence of material properties, the rapidly decaying
fields inside the metal should be accurately computed. This, together with the proper
representation of circular holes in cartesian coordinates (which are the natural choice
for square arrays in a film), impose very small mesh sizes. In this section we use
mesh sizes ranging from 2 to 5 nm. The dielectric constant in cells at the metal-
dielectric interface is taken as that of the medium with largest volume inside that
particular cell.

For the calculation of the transmittance, the structures were excited by a gaussian
wave-packet composed of normally incident plane-waves (with the electric field
pointing along one of the axes of the square array) and all frequencies of interest
(Sect. 1.2.2). Spectra were calculated after projection onto diffracted modes
(Sect. 1.2.3). In the comparison with experimental data, only the zero order mode
was considered in the post-processing, as experimental intensities were collected in
a small solid angle centered around the normal direction. Additionally, in our study
we will correlate transmittance features to the dispersion relation of modes supported
by the corrugated slab. For this, the band structure is calculated exciting the system
with a superposition of Bloch’s waves with a well defined crystal momentum, and
imposing Bloch’s theorem at the boundaries (Sect. 1.2.3).

Metals require a special treatment in FDTD method because of the dielectric
constant is local in frequency domain but non-local in the time-domain, as explained
in Sect. 1.2.4. We have used the “piece linear recursive convolution method”, which
can efficiently treat dispersive media, provided their dielectric constant ε(ω) can be
expressed as a sum of Drude and Lorentz terms:

ε(ω) = εr −
∑

j

ω2
P j

ω(ω + ıγ j )
−

∑

j

�ε j	
2
j

ω2 −	2
j + ıω
 j

. (2.2)

We have considered the following materials: Ag, Au, Cu, Al, Ni, Cr, and W, taking
the values for the parameters in the Drude-Lorentz form either from the literature
(when available) [33, 34] or from fits to data in Palik’s handbook [35, 36]. The fitting
parameters used were given in Table 1.1, and the wavelength dependence of the
dielectric constant obtained from them is depicted in Fig. 2.1 for reference. Also for
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Fig. 2.1 Dielectric constant
for Ag, Au, Cu, Al, Ni, Cr
and W, as a function of
wavelength (obtained with
Eq. 2.2 from data in
Table 1.1)
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future reference, Fig. 2.2 renders both the skin depth, δ = [I m(km)]−1 (with k2
m =

εmω
2/c2) and the SPP absorption length, LSPP = [2I m(kSPP)]−1, being kSPP =

(ω/c)(εSεm/(εS + εm))
1/2 the SPP longitudinal wavevector. Here εm and εS are the

metal dielectric constant and the substrate dielectric constant, respectively. We stress
here that the dielectric constants used in this study are taken directly from experi-
mental data on bulk. No attempt has been made to improve the comparison between
computed and experimental transmission spectra by incorporating additional fitting
parameters.

2.2.2 EOT Peak Related to the Metal-Substrate Surface Plasmon

Peak Position

Figure 2.3 renders the FDTD results for the transmittance spectra of an array (lattice
parameter P = 400 nm) of circular holes with diameter d = P/1.75 ∼ 230 nm in
different metal films. In all cases, the metal thickness is w = 250 nm, and the films

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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Fig. 2.2 Spectral
dependence for different
metals of (a) skin depth for a
plane wave impinging at
normal incidence on the
metal surface (b) absorption
length for SPP on the
metal-dielectric interface
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are deposited on a substrate with dielectric constant εS = 2.25. The figure clearly
shows the difference in transmittance spectra between different metals. We also
include the calculation for W which, in the considered frequency range, is a dielectric,
i.e., Re(εW ) > 0. Notice that the heights of EOT peaks in W are even smaller
than those of the “bad” metals (Ni and Cr). Notice also that W has a transmission
maximum very close to the Rayleigh condition, λR = √

εS P, wavelength at which
the (1, 0) diffraction order changes character from evanescent to radiative, while the
corresponding one in the metallic case is red-shifted (by as much as ≈125 nm in the
case of the “good” metals in the optical regime: Ag, Au, Cu). In the rest of this section,
and following Ref. [32], EOT is characterized by the transmittance peak appearing
close to λR . More precisely, in the metallic case, this peak is related to the spectral
location of the SPP of the corrugated structure [4, 32, 37]. Here we will label this peak
as S1,0. Figure 2.4 shows the S1,0 peak spectral position (defined as λ1,0) as a function
of the period, for the parameters considered in Ref. [32] (w = 250 nm; d = P/1.75).
In addition, Fig. 2.4 also renders the light line in the substrate (continuous line) and the
results obtained by considering the metal as a PEC, i.e. a metal with ε = −∞, with
the same nominal parameters (asterisk data points). Notice that a flat metal surface
does not support EM modes, but a periodically corrugated one behaves as if it had a
Drude-like dielectric response in which the effective plasma frequency depends only
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Fig. 2.3 A representative
case of computed
transmission spectra, for the
different metals considered.
The geometrical parameters
defining the array are: period
P = 400 nm, metal
thickness w = 250 nm and
hole diameter d = P/1.75
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on the geometrical parameters [38–40]. Thus, comparison with the PEC case allows to
discern geometrically induced effects from the ones due to material properties. In any
case, the agreement between these calculations and the experimental measurements
(see Fig. 2.3 in Ref. [32]) is remarkable. The small differences could be attributed to
variations in the actual dielectric constant from the bulk value, to finite size effects
[41], and/or to irregularities on hole shape and size related to the small uncertainties
from focused ion beam (FIB) lithography technique (which has an accuracy of the
order of 10 nm). In our opinion, the agreement obtained validates FDTD calculations
as a predictive tool in this kind of systems. These results also confirm that, in the
experiments considered, the effect of possible inhomogeneities in hole shape and
size was not relevant. Notice that the good agreement with the experimental data was
obtained by using the bulk dielectric constant, despite the fact the dielectric properties
at the surface could have been modified by the processing related to drilling of
the holes.

In order to obtain further insight on the origin of EOT phenomena, Fig. 2.5 renders
the dependence with period of λ1,0 for the metals Ag and Al, and also for W. In this
figure, we have also included the spectral location of the minimum which appears
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Fig. 2.4 (1,0) substrate peak
position, λ1,0, as a function
of the array period, both for
the metals investigated and
for a perfect electrical
conductor. Hole radius is
scaled with the period as
d = P/1.75 but film
thickness is kept constant at
w = 250 nm
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associated to the S1,0 peak, slightly blue-shifted from the maximum. Results are
presented for the case of constant film thickness, w = 250 nm. In the same figure
we represent both λR and the folded dispersion relation for the SPP of a flat metal-
dielectric interface (given by the expression (ω/c)(εSεm/(εS + εm))

1/2 = 2π/P).
In the case of metals, the correspondence between transmittance minima and

SPP of the flat surface (with no holes) is evident from the figure, with the maxima
following the same trend at slightly longer wavelengths. In the case of the dielectric
(W), both maximum and minimum have much smaller amplitudes with respect to
the transmission background than in the case of metals (see Fig. 2.3), with the very
weak minimum appearing at λR . Both maximum and minimum are related to the
surface EM modes of the corrugated structure. More precisely, each surface EM
mode has associated a maximum and minimum transmission, characterized by a
resonant Fano-like function times a smooth function related to the coupling of the
incident wave with the surface mode. At normal incidence, the incident wave can
couple to SPPs in the periodically corrugated structure which originate from plane
waves differing from �k‖ = 0 by a reciprocal lattice vector. This is confirmed by
Fig. 2.6, which renders the folded light line, the folded SPP dispersion relation of
the flat metal-vacuum interface, and the FDTD calculation for the band structure of
surface EM modes of the corrugated surface.

Transmission Intensity

Up to here we have concentrated on the dependence of the spectral position of
transmission anomalies with the period of the array. The results for the peak intensities
are presented in Fig. 2.7, which renders the maximum transmittance of the S1,0 peak,
T1,0, as a function of its spectral position (i.e. for different periods) for several
materials. In panel (a) all lengths defining the system are scaled with the period,
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Fig. 2.5 Dependence on
period of signatures related
to the (1,0) substrate peak:
maximum (circular symbols)
and minimum (square
symbols). Hole radius is
scaled with the period as
d = P/1.75 but film
thickness is kept constant at
w = 250 nm. The solid red
line represents the SPP
dispersion relation for a flat
metal-dielectric interface,
while the dashed black line
corresponds to the dielectric
light line
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except the metal thickness, which is kept constant at w = 250 nm (this is the case
considered in Ref. [32]).

In panel (b) all lengths are scaled with the period. In this latter case, if the metal
were a PEC, the peak transmittance would not depend on period (line with asterisks).
A real metal presents two main differences with respect to a PEC, each of them having
an opposite effect on the transmittance. On the one hand, real metals absorb energy,
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Fig. 2.6 SPP dispersion
relation in the 
 − X
direction of the first Brillouin
zone, for the dielectric-silver
interface. Circular symbols
(blue line) show the FDTD
band structure for a 2DHA
with period P = 500 nm
and metal thickness w = 250
nm. Flat surface SPP
dispersion relation is
depicted with a solid red
line. Dashed black line
represents the light line. The
spectral position of the (1,0)
transmission maximum,
λ1,0, is depicted by a dashed
horizontal green line
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Fig. 2.7 Peak transmittance
intensity, T1,0, as a function
of the peak spectral position,
λ1,0 for different metals and
lattice periods. In both
panels, hole diameter is
scaled with period as
d = P/1.75. In (a) metal
thickness is kept constant at
w = 250 nm. In (b) w is
also scaled as w = P/2.0

400 500 600 700 800 900
0.00

0.04

0.08

0.12

0.16

400 500 600 700 800 900
0.00

0.04

0.08

0.12

λ1,0(nm)

T 1,
0

(a)

T 1,
0

 Ag

 Au

 Cu

 Al

 Ni

 Cr

 W

 PEC

(b)



2.2 Influence of Material Properties on EOT Through Hole Arrays 47

which reduces the transmittance. This is more apparent in resonant processes, which
require the EM field to stay for a longer time at the surface. As this resonance time
is inversely proportional to the peak width, absorption has a larger influence on
the narrowest transmittance peaks. On the other hand, the EM field penetrates in a
real metal, effectively increasing the hole area accessible to the field and, therefore,
increasing the transmittance. Several approximations can be envisaged in order to
take into account the effective hole area. For instance, the hole can be considered as
a finite portion of a waveguide. Effective areas can then be related to the propagation
constants and the EM fields of different modes in the waveguide [42]. A simpler,
phenomenological, approach is implemented by enlarging the hole radius by a factor
(of order unity) times the skin depth [4]. This is a good approximation, provided the
correction (skin depth) is much smaller than the hole radius. In any case, the effective
hole area depends on the dielectric constant which, in turn, depends on wavelength.
Therefore, from a electromagnetic point of view, even when all nominal lengths are
scaled with the period, the “effective” surface percentage covered by holes does not
remain constant. In what follows, we will show how the comparison with the PEC
case allows to distinguish which of these two competing mechanisms (absorption
and enlargement of the effective area) dominates for a particular circumstance. Let
us start with the case of silver. The computed peak transmittance for silver is even
larger than the corresponding one in a PEC with the same nominal parameters, as
shown in Fig. 2.7. This suggest that, in this case, the "enlargement of effective area"
mechanism is more important than absorption. In order to confirm this point, we
have computed the transmittance peak intensities for 2DHA in PEC, but with the
hole radius enlarged by the skin depth in Ag (computed at the wavelength at which
the peak appears). We will refer to this as the “Corrected-PEC model”. Figure 2.8
renders the results of these calculations, as well as the corresponding ones for 2DHA
in Ag. Discontinuous lines represent the case in which all lengths in the system
have been scaled with the period, except the metal thickness, which has been kept
constant at w = 250 nm. The continuous lines render the case where also the metal
thickness has been scaled with the period, as w = P/2. In all cases, the difference
in transmission peak intensities between 2DHA in Ag and the enlarged holes in
PEC is less than 30%. Notice that the Corrected-PEC model provide much more
accurate results at large periods than at smaller ones, which can be associated to
the increasing effect of absorption occurring at shorter periods and, correspondingly,
smaller wavelengths. This is further corroborated by the fact that, at small periods,
the Corrected-PEC model overestimates the peak transmittance.

This analysis helps understanding the results presented in Fig. 2.7b, and therefore
the relative importance of the previously described mechanisms for different metals.
At peak positions larger than λ1,0 ≈ 700 nm, the dependence of T1,0 on λ1,0 for Au
is similar to that of Ag, reflecting their similar skin-depths and absorption lengths. As
λ1,0 decreases, the difference in skin-depths in Au and Ag remains constant, but the
ratio of their absorption lengths decreases. Correspondingly, due to absorption, T1,0 in
Au is smaller than that in Ag in this frequency regime. At the shorterλ1,0 computed for
Au this decreasing tendency is reversed, reflecting the increase in the skin-depth of Au
(notice that the flattening out of theλ1,0 versus period curve prevents exploring shorter
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Fig. 2.8 Peak transmittance,
T1,0, as a function of the
lattice period for silver
(circular symbols) and PEC
(asterisks). Solid line
represents the case of scaled
thickness (w = P/2.0),
while the dashed line is for
constant w = 250 nm. In the
PEC case, the hole radius
was enlarged by one silver
skin depth (Fig. 2.2),
evaluated at the
corresponding wavelength 200 250 300 350 400 450 500
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values of λ1,0, see Fig. 2.4. To summarize, optical transmissions through 2DHA in
Ag and Au are similar: in both cases the resonant transmission is larger than in a
PEC with the same nominal parameters, the effect being caused by field penetration
inside the metal, which effectively enlarges the hole area. Absorption is not the main
factor for these metals. On the other hand, 2DHA in Cu have transmittance peak
characteristics similar to those in Ag or Au, but with smaller values, reflecting the
smaller absorption lengths in Cu than in the other two noble metals analyzed.

A completely different behavior occurs for a 2DHA in Ni or Cr: in both cases,
the peak transmittance is always much smaller than that in Ag (or in a PEC). This
behavior occurs although the skin depth in these metals can even be larger than in
Ag, and is due to the large absorption present in both Ni and Cr.

Hole arrays in Al have transmittance peak characteristics more similar to the
PEC case, reflecting the fact that the skin depth in Al is, at optical frequencies,
much smaller than those of the other metals. Even so, T1,0 depends on λ1,0 for
2DHA in Al: the skin depth in Al remains approximately constant with wavelength,
implying an “effective area” correction which is relatively smaller at larger hole
areas (i.e., larger periods and larger λ1,0 in the case in which all nominal lengths are
scaled). This explains why, in this case, T1,0 decreases withλ1,0 even if the absorption
length slightly increases (see Fig. 2.2) Notice that this behavior of the absorption
length in Al is also very different to that in noble metals, where the absorption length
increases strongly with wavelength. As a consequence, the absorption length in Al is,
at λ ≈ 750 nm, smaller than that in noble metals. This, combined with the unusually
small skin depth makes that T1,0 in Al has values of the order of those of “bad
metals” (Cr, Ni) at the higher end of the spectral window considered. Finally, a 2DHA
perforated in W present a very different transmission spectrum. As previously stated,
in the considered spectral range W is a lossy dielectric. Transmission resonances are
aided by Zenneck waves [20, 43], which are more weakly bound than SPPs. The
resonances are much weaker, with a much smaller “visibility”: the minima are not
very deep and the maxima are not as high as in the case of metals (see Fig. 2.9). Also,
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Fig. 2.9 Dependence on
period of features of the S1,0
peak in W: Maximum
(circular symbols) and
minimum transmittance
(square symbols). All lengths
have been scaled as in
Fig. 2.7a
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as mentioned before, the spectral position of T1,0 in W (appearing very close to λR)

is different to that of the metallic case.

Full-Width-at-Half-Maximum

The previous analysis on the relative importance of the skin depth and absorption
length on the transmittance through 2DHA, based on the peak intensities, is reinforced
by the spectral dependence of the peak linewidth. Figure 2.10 renders 
1,0, defined
as the the full width at half maximum (FWHM) of the S1,0 transmittance peak, as
a function of λ1,0. The calculations were performed for the configuration where all
lengths are scaled, except the metal thickness which is kept fixed at w = 250 nm.
Agreement between experiment [32] and theory is quite good, although experimental
peaks are wider due to finite size effects and/or sample imperfections. The behavior
of 
1,0 for a 2DHA in Au, Ag and Cu is similar. In this case, and for the parameters
considered, radiation is the main loss channel for the surface EM mode, absorption
being a (non-negligible) correction. Absorption is responsible for both the difference
in 
1,0 between different metals and the decrease of 
1,0 with λ1,0 (following the
increase of the absorption length with wavelength). In the cases of 2DHA in either Cr
or Ni,
1,0 is much larger than that for noble metals, as expected, given that absorption
lengths are much smaller in the former cases. Again, the case of Al is quite different
from that of other metals: it goes from presenting the narrowest resonant peaks at
small λ1,0 to having values of 
1,0 of the order of those of “bad metals” for the larger
λ1,0 considered.

2.3 EOT Through Hole Arrays in Optically Thin Metal Films

As we have stated in the last section, since the discovery of EOT [2], numerous
works have explored different parameter configurations of 2DHAs [6]. In the now
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Fig. 2.10 Full width at half
maximum for the S1,0 peak,

1,0, for 2DHAs in different
metals. All lengths have been
scaled as in Fig. 2.7a., i.e. the
metal thickness is kept
constant at w = 250 nm)

400 500 600 700 800 900

40

60

80

100

400 500 600 700 800 900

120

140

160

180

200

λ (nm)

 Ag

 Au

 Cu

 Al

Γ 1,
0
(n

m
)

Γ 1,
0(n

m
)

 Ni

 Cr

1,0

“canonical” configuration [2] the metal film is opaque. In this case, the EOT
process involves surface modes at each side of the film which couple through the
holes [4]. On the other hand, continuous metal films (thin enough to be translucent)
also present transmission resonances when periodically corrugated. In this configu-
ration, resonant spectral features are related to SPPs of the thin film [44, 45], the so
called Short Range SPPs (SRs) and Long Range SPPs (LRs) [46].

The transmission of electromagnetic radiation through 2DHA, for thicknesses of
the metal film ranging from less than 1 to 2–3 skin depths has been studied in the THz
regime [47, 48]. These works showed how the intensity of the EOT peak developed
with metal thickness, its spectral position being mainly determined by the lattice
parameter. In this section, we extend the study to the optical regime. We analyze the
optical response of 2DHAs on metal thickness, w, going from optically thick films
to films as thin as approximately one “skin depth” (∼ 20 nm).

To provide mechanical stability, actual thin films must lie on a substrate, which we
take to be glass. We consider two different dielectric configurations: the asymmetric
(εI = εI I = 1.0 ; εI I I = 2.25) and the symmetric one (εI = εI I = εI I I = 2.25),
which can be experimentally obtained by using an index matching liquid. Throughout
this section we consider square lattices of square holes; the period, P, is chosen to be
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(c)

(b)

(a)

Fig. 2.11 Zero-order transmittance through 2DHAs in gold, as a function of the film thickness
(P = 400 nm, a = 160 nm) a εI = εI I = 1.0 ; εI I I = 2.25 b εI = εI I = εI I I = 2.25. The
spectral position as a function of w for both the EOT maximum (triangular symbols) an the EOT
minimum (circular symbols) are shown in (c). Dashed lines summarize data obtained from (a),
while solid lines are used for data taken from (b). The horizontal dashed line renders λ(±1,0)

SPP . From
Ref. [14]

400 nm (in order to obtain EOT in the visible). The metal is gold (with a frequency
dependent dielectric constant, εm taken from Table 1.1). A schematic picture of the
structure is shown as an inset in Fig. 2.11c.

Figure 2.11 renders the computed zero-order transmittance spectra through 2DHAs
with different thicknesses, for both (a) asymmetric and (b) symmetric configurations.

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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Calculations have been conducted with the FDTD method. For optically thick films,
we observe the “canonical” EOT resonant features appearing at wavelengths slightly
red-shifted from the Rayleigh wavelength (λR = √

εI I I P = 600 nm). As the film
thickness is reduced, both maximum and minimum transmittance red-shifts by even
hundreds of nanometers, while keeping high peak visibility.

In order to understand these spectral shifts, we analyze the EM modes bounded
to the metal film. A flat unperforated optically thick metal layer supports a SPP on
each surface. When the film thickness is reduced, these two modes interact, and are
substantially coupled whenever the film thickness is smaller than 2–3 skin-depths.
In this case, the dispersion relations of film modes can greatly differ from that of
the SPP, while in the THz regime they remain close to the light line. We denote
by �qmode(λ) the in-plane wavevector of these film modes (where the label “mode”
can be either SPP, LR or SR) as a function of the wavelength λ. These film modes
couple to external radiation and may lead to transmission resonances which, for small
corrugations, are therefore expected to occur close to wavelengths satisfying:

(
kin

x + 2πn

P

)2

+
(

kin
y + 2πm

P

)2

= q2
mode(λ) (2.3)

Here, the in-plane component of the incident wavevector is �kin = (kin
x , kin

y ), and n

and m are integers. From now on, we denote by λ(n,m)mode a wavelength that holds Eq. 2.3
at normal incidence (�kin = 0), for some given values of n and m. Figure 2.11c shows
the spectral positions of both minimum and maximum of the EOT peak appearing at
largest wavelengths. We find that when the film is thick enough the EOT minimum
very approximately coincides with λ(±1,0)

SPP [49]. In contrast, both maximum and
minimum red-shift as film thickness reaches the “optically thin” regime.

To analyze whether the EOT phenomenon through optically thin 2DHAs has
its origin in the excitation of an EM mode bounded to the film, we focus on the
symmetric configuration with w = 20 nm. Figure 2.12a shows the transmission
spectra for 2DHAs with different hole sizes. Vertical dashed lines mark different SR
diffracted orders together with λ(±1,0)

LR .The EOT spectral positions of both maximum

and minimum wavelength approach λ(±1,0)
SR as the hole size decreases. At the same

time, the EOT peak visibility is progressively reduced as the hole size decreases
(the dashed line shows the result for the uniform film). Additionally, there are several
small dips in the transmission spectra, which will be discussed later.

In order to assign even more conclusively EOT features to EM modes of the perfo-
rated film, we have calculated the band structure of surface modes in the holey film.
The result is depicted in Fig. 2.12b (circular symbols), for a 2DHA with a = 60 nm.
The dispersion relations for the bounded modes of a flat film (folded into the first
Brillouin’s zone), are represented with continuous lines. As usual, due to the presence
of holes, the modes are coupled at the Brillouin’s zone edges leading to band-gaps.
In the wavelength window shown here, only the mode at the high-λ edge (labeled as
λ̃SR) is related to an EOT peak at normal incidence, due to the structure symmetry
[50, 51]. The dependence with hole size of λ̃SR, together with that of the spectral posi-
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(b)

(a)

(c)

Fig. 2.12 For a holey thin film with w = 20 nm (P = 400 nm and εI = εI I = εI I I = 2.25), a
shows transmittance versus wavelength for different hole sizes. Vertical dashed lines display several

values of λ(n,m)LR and λ(n,m)SR (see text) at �kin = 0. b 2DHA dispersion relations along the x direction
for a = 60 nm (Circular symbols). Solid lines represent the folded dispersion relations of LR
and SR modes for the unperforated film. The inset in (b) shows a |E | field map in the x-z plane
(y = P/2) at the EOT wavelength. c EOT maxima (square symbols), minima (circular symbols)
and λ̃SR (triangular symbols) as a function of the hole size. From Ref. [14]
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Fig. 2.13 Transmission
spectra for two different film
widths obtained with the
approximate analytical
method: w = 10 nm and
w = 8 nm (a = 160 nm).
Inset zoom close to the LR
wavelengths (Corresponding
λ
(±1,0)
L R wavelengths are

represented by vertical
dashed lines). From Ref. [14]

tions of both maximum and minimum transmittance is displayed in Fig. 2.12c. For
each hole size λ̃SR lies between the spectral positions of the transmission maximum
and minimum. Nevertheless, as the hole size shrinks to zero, the minimum of trans-
mittance tends to λ̃SR. The inset of Fig. 2.12b renders a |E | field map at the EOT
peak wavelength, showing that the field enhancement around the holes [17, 37] is
also present in optically thin films.

Interestingly, LRs do not noticeably contribute to transmission in the FDTD calcu-
lations (Fig. 2.12a). Notice that, due to the antisymmetric charge distribution of the
LR, its field is almost negligible inside metal and it is less bounded to the surface than
a SR mode. Therefore, the LR is both less absorbed and worse coupled to radiation
than the SR. In short, the LR field is perturbed very weakly by the holes, so the
coupling with the incident light diminishes. A consequence of this, is that the LR
band structure for the drilled film virtually coincides with the unperforated one (Inset
Fig. 2.12b). This weak coupling to radiation modes implies long times of the EM field
standing at the surface. This suggest that the LR resonance could have been missed
given the finite simulation time available. To be sure that LRs are not related to the
shallow transmission dips, we have developed an approximate method for solving
Maxwell’s equations. In this method, the field is represented as a Fourier-Floquet
series in the x-y plane and a power series in the coordinate perpendicular to the
layer, z [51]. This approach works only for extremely thin metal films (thinner than
what is experimentally achievable in a continuous film nowadays), so it has mainly
academic value. Nevertheless, it is useful for understanding the underlying physics.
Figure 2.13 renders transmission spectra calculated with the approximate method
for a 8 nm and 10 nm thin films. The zoom in wavelengths close to λ(±1,0)

LR (inset
to Fig. 2.13) reveals that extremely narrow peaks can be associated to LR modes.
Anyway, spectral resolution within the FDTD method does not allow LR peaks to
be resolved. The detection of this transmittance peaks due to LR plasmons would be
even more difficult from the experimental point of view due to the finite size of the
samples. In any case, this analysis shows that the small dips found with the FDTD
method at short wavelengths are exclusively related to higher SR diffracted orders.
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Fig. 2.14 Schematic picture of a square array of rectangular holes of side ax and ay perforated on
a free-standing silver film of thickness h. Parameter d defines the period of the array. The apertures
are illuminated by a p-polarized plane wave at normal incidence

2.4 The Role of Hole Shape on EOT Through
Arrays of Rectangular Holes

Several works shown that the shape of the subwavelength aperture also has a great
importance in the transmission spectra [27–29, 52, 53]. These studies demonstrated
that elliptical or rectangular holes dramatically influence not only the resonant
wavelength but also the polarization and the final transmittance. On the other hand,
several experimental and theoretical works have shown that even a single rectangular
hole exhibits a localized transmission resonance emerging at around the cutoff wave-
length, λc, of the hole waveguide [30, 31, 42, 54]. This resonance can be understood
as a Fabry-Perot resonance in which the propagation constant inside the hole is zero.

The aim of this section is to analyze in detail the interplay between these two
types of transmission resonances (SPP and cut-off resonance) that are operating in
a 2D array of rectangular holes. Figure 2.14 shows schematically the system under
study: an infinite array of rectangular apertures of sides ax and ay perforated on a
free-standing silver film of thickness h. The structure is illuminated by a p-polarized
plane wave at normal incidence (i.e. incoming electric field is pointing along the
short edge of the holes). In our calculations, we use the same geometrical parameters
as those of the experiments carried out in Ref. [29]: ax = 200 nm, ay = 260 nm
and h = 400 nm. The period of the array, d, will be varied between 500 and 900 nm.

Figure 2.15b shows the normalized-to-area transmittance spectra corresponding
to the geometrical parameters of Ref. [29], calculated with the couple mode method
(CMM) (Sect. 1.3). To treat the metal properly, surface-impedance boundary condi-
tions (SIBCs) are imposed on the metallic boundaries, except on the vertical walls
of the holes which are treated as perfect conductor surfaces. To consider only the
fundamental TE eigenmode (TE01) in the modal expansion within the holes gives
accurate results for the transmittance spectrum. As it was stated in Sect. 1.3, in order
to improve the accuracy of the method realistic values for the propagation constant of
the fundamental mode, qz, are incorporated into the formalism by using the effective
index method [55]. Note that the electric field of the TE01 mode points along the
x-direction, i.e., it is parallel to the short side of holes (ax ) and perpendicular to ay .

The properties of the two parallel real metal plates TM mode are the starting point

http://dx.doi.org/10.1007/978-3-642-23085-1_1
http://dx.doi.org/10.1007/978-3-642-23085-1_1
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of the method. From its characteristic equation, it is obtained an effective dielectric
constant (εd) as the ratio between the propagation constant of that mode and the
vacuum one. This procedure follows to match the boundary conditions of the elec-
tric field across the long sides (ay), for this reason the metal surfaces are separated
by a distance ax . Next, the effective index method takes into account the penetration
of the electric field at the short axis by assuming the propagation constant of the TE
mode (in the same system), but being in this case ay the distance between surface
faces. Finally, the value of qz is obtained after solving the characteristic equation
of such mode where the dielectric constant of the region between surfaces is set
to εd . Note that by analyzing the location in which qz changes from being a real
quantity to a purely imaginary magnitude, we can calculate λc within this approach.
For the particular set of geometrical parameters of the holes forming the 2D array
here chosen, λc = 695 nm. Different curves correspond to different periods of the
2D square array (ranging from d = 500 to d = 900 nm). To compare them with the
FDTD method results (Sect. 1.2), Fig. 2.15a depicts the corresponding transmission
spectra obtained. It is clear that CMM is able to capture accurately the main features
observed in the FDTD spectra. The locations and linewidths of the several peaks are
well reproduced within the CMM approach. The heights of the transmission peaks
are higher in CMM, mainly due to the fact that absorption within the vertical walls
of the holes is neglected. It is also important to note that the theoretical results of
panel (b) are in very good agreement with the experimental data [29].

Now we concentrate on analyzing the physical origin of the different transmission
peaks appearing in Fig. 2.15b by just studying this simple formula for transmission
(See Sect. 1.3):

T = |Io|2
4
√
ε

Gi

(Gi )2 +
( |G−�|2−|Gv |2

2|Gv |
)2 (2.4)

For rectangular holes and within the SIBC approximation the different terms in
Eq. 2.4 are:

The term I0 measures the overlap between the incident plane wave and the 0-mode
inside the hole:

I0 = ı 4
√

2

π(1 + Zs)

√
ax ay

dx dy
(2.5)

The term Gv controls the coupling between the input and output sides of the holes:

Gv = 2 i Y0 eiqzh

e2iqzh(1 + ZsY0)2 − (1 − ZsY0)2
(2.6)

The expression for the self-energy � is given by:

� = i Y0
e2iqzh(1 + ZsY0)+ (1 − ZsY0)

e2iqzh(1 + ZsY0)2 − (1 − ZsY0)2
(2.7)

http://dx.doi.org/10.1007/978-3-642-23085-1_1
http://dx.doi.org/10.1007/978-3-642-23085-1_1
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Fig. 2.15
a Normalized-to-area
transmittances calculated
with the FDTD method for
different values of the lattice
period d. b and c show the
normalized-to-area
transmittances calculated
with the CMM. In (b), the
dielectric function is that of
silver whereas in (c)
absorption of silver is
neglected (I m ε(λ) = 0)

d=500 nm
d=600 nm
d=700 nm
d=800 nm
d=900 nm

(a)

(c)

(b)

Finally, the EM-coupling between the holes forming the 2D array is mediated by
the term G, which can be expressed as:
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G = i ax ay

2 dx dy

l=+∞∑

l=−∞

+∞∑
m=−∞

k0 (k0 + Zskz)− k2
m

(kz + Zsk0) (k0 + Zskz)

× sinc2
(

kl ax

2

) [
sinc

(
kmay + π

2

)
+ sinc

(
kmay − π

2

)]2

(2.8)

with kl = 2π
dx

l, km = 2π
dy

m, kp =
√

k2
l + k2

m and kz =
√

k2
0 − k2

p.

Here Zs = 1/
√
εm ( being εm the dielectric constant of the metal), and ε the

dielectric constant of the surrounding media (in this case vacuum). On the other
hand, Y0 = qz/k0 corresponds to the admittance of the fundamental mode with
k0 = 2π/λ.

It can be demonstrated from Eq. 2.4 that transmission maxima and minima coin-
cide with solutions of |G −�| = |Gv|, for 2DHAs at λ >

√
ε d. In other words, as in

a typical resonant phenomenon the transmittance is governed by the behavior of the
denominator. In Fig. 2.16 we show the dependence of both |G −�| and |Gv| versus
wavelength for two limiting values of d, d = 500 nm and d = 800 nm (notice that
Gv does not depend on d). Interestingly, the spectral locations of the transmission
peaks in Fig. 2.15b are marked by the cuts between |G − �| and |Gv|. It is worth
comparing the behavior of |G−�| for the periodic arrays with d = 500, 800 nm with
the corresponding |G − �| for a single rectangular hole (dashed line in Fig. 2.16).
The transmittance through a single rectangular hole is also governed by Eq. 2.4 but
with a different G-term (the sum over diffractive modes in Eq. 2.8 is replaced by an
integral over the continuous spectrum of plane waves). For d = 500 nm, |G − �|
(full black line) at the wavelength region of interest (near λ = 700 nm) is close to the
single hole counterpart. It is expected then that the nature of the transmission reso-
nances will be similar for a 2D array and for an isolated rectangular hole. However,
there is a difference between the single hole case and the 2D array for this value of
d. Whereas in the 2D array, |G − �| = |Gv| at two different wavelengths (leading
to two transmission peaks), for the single hole there is only one transmission peak
appearing at a wavelength in which the difference between |G − �| and |Gv| is
minimal. The reason of this distinct behavior stems from the Fabry-Perot nature
of this transmission resonance. In a Fabry–Perot cavity, the spectral locations of the
transmission resonances strongly depend on the reflectivity at the edges of the cavity.
Our results indicate that the presence of a 2D array modifies the reflectivity of the
metallic interface when compared to the single hole case, leading to the appearance
of two transmission peaks. For d = 800 nm (blue line), |G −�| present additional
features located at λ ≈ 600 nm and λ ≈ 800 nm. These correspond to zeroes of
the denominator of G (see Eq. 2.8), appearing at the condition kz + Zsk0 = 0.
This condition is nothing else than the equation for the excitation of a SPP on
a non-corrugated (no holes) surface of a metal film within the SIBC approach. Note
that the cuts between |G −�| and |Gv| appears at wavelengths slightly larger than
this condition. Therefore, the character of the two transmission peaks for d = 800 nm
emerging atλ ≈ 830 nm will be quite similar to a SPP. The two transmission peaks are
associated with the symmetric and the anti-symmetric combinations of the two SPPs
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Fig. 2.16 Absolute values of
|G −�| and |Gv | terms (in
logarithmic scale) for two
different lattice constants of
the hole array (d = 500 nm
and d = 800 nm) and also
for a single hole
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at the two surfaces which are evanescently coupled through the holes, as explained
in Ref. [4].

As a general conclusion about the nature of the transmission resonances appearing
in 2D arrays, we could state that the two mechanisms leading to EOT (localized
resonance and SPP-based) cannot be simply separated as done in previous studies
[54] [see comment by Cheng-ping Huang and Yong-yuan Zhu, arXiv:0706.0250v1
(unpublished)] and [56]. Even for the shortest and the longest period consid-
ered here, the transmission resonances benefit from both mechanisms. Therefore,
these transmission resonances have a hybrid character. Hybrid resonances have
already been observed and studied previously in lamellar [57, 58] and bottle-shaped
gratings [59]

The physical picture described above is reinforced when looking at the evolu-
tion of the electric field patterns associated with the resonant process as a function
of d. In Fig. 2.17 we plot the E-field amplitude at resonance (normalized to that of the
incident plane wave) evaluated at the z = 0− interface. Four periods are considered
here: d = 600, 700, 800 and 900 nm. The electric field amplitude for d = 600 nm
is mainly concentrated over the holes as corresponds to the excitation of a local-
ized resonance (cut-off resonance) inside the holes. As d is increased, the character
of the resonance changes gradually. For d = 800, 900 nm, the E-field intensity
maxima are along the ridges of the holes as corresponds to a SPP wave propagating
in the x-direction. For d = 700 nm, there is a mixing between the two mechanisms as
fingerprints of the SPP wave begins to emerge at the edges of the holes. The near field
distribution exhibits an intermediate character between the two limiting behaviors
(SPP and cut-off resonances).

Finally, we would like to address the question of why there is a kind of optimum
value for d when looking at the evolution of the transmission peaks with the period of
the array (see Fig. 2.15a,b). In our calculations this optimum d is around 650–700 nm,
close to the cut-off wavelength, 695 nm. Naively, this could imply that the optimum
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Fig. 2.17 Electric field amplitude calculated at the resonant wavelength and evaluated at the z = 0−
plane for a d = 600 nm, b d = 700 nm, c d = 800 nm and d d = 900 nm. The white lines mark
the positions of the holes. The E-field magnitude is normalized to the incident one

d appears when the resonant wavelengths of the two mechanisms (SPP and cut-off
resonance) coincide. However, panel (c) of Fig. 2.15 demonstrates that the explana-
tion is more complex. If the absorption in the metal is neglected, the heights of the
transmission peaks grow with d like d2, as it would correspond to a perfect trans-
mission (100%) per unit cell [60]. Therefore, EOT associated with SPP excitation
is only limited by absorption. As explained above, absorption along the walls of
the holes is not taken into account in the approximated model. However, we have
checked that for all d analyzed in this study, E-field intensity maxima are located
at the horizontal metallic surfaces, where SIBCs are imposed within the modeling.
Therefore, considering only absorption on top and bottom surfaces of the metallic
film is a reasonable approximation when analyzing the evolution of the heights of
the transmission peaks as a function of d.

Within this approach, it is worth defining two different lifetimes operating during
the transmission process. By looking at the linewidth of the transmission peaks with
no absorption (Fig. 2.15c), we can extract the lifetime associated with the resonant
process, τres. This quantity is related with the radiation losses as a result of the
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Fig. 2.18 Absorption
lifetime τabs (dotted line) and
lifetime of the resonant
process τres versus period of
the hole array for ax =
100 nm (dashed line),
ax = 200 nm (solid line) and
ax = 260 nm (dot-dashed
line). Inset Transmittance
calculated at resonance
versus d

maxτ res
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ax
ax
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 =200
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,T        :
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coupling of holes to radiation. It is depicted in Fig. 2.18 as a function of the period
of the array for three values of ax (200, 100 and 260 nm). As expected, when d is
increased, resonant lifetime grows rapidly. On the other hand, absorption introduces
another time into the problem. From the knowledge of ε(λ),we can estimate the time
taken for a photon to get absorbed, τabs. This lifetime is almost independent on λ, as
shown in Fig. 2.18 (dotted line). It is expected that optimum d would appear where
τres(d) ≈ τabs(d). The line of reasoning leading to this naive rule is the following.
When τres(d) is much smaller than τabs(d), photons are mainly transmitted and they
are not absorbed by the metal. Absorption plays a minor role in the transmission
process and the normalized-to-area transmittance at resonance increases when d is
increased, as seen in Fig. 2.15c. In the other limit (τabs(d) being much smaller than
τres(d)), photons are absorbed by the system before the resonance is built up. As
τres(d) grows quadratically with d, a decrease of the transmittance at resonance
versus d is expected to occur in this limit. When interpolating between these two
limits, it is clear that the curve displaying the transmittance at resonance versus d
should present a maximum for an optimum value of d. As τres(d) evolves very rapidly
with d whereas τabs(d) is almost independent on d, optimum d should appear close
to the condition τabs(d) = τres(d). Figure 2.18 demonstrates that this last condition
marks the location of the optimum d for the three different values of ax analyzed.
Therefore, we can safely conclude that the physical origin of the optimum d observed
in calculations stems from the absorption present in the metallic film.

Note that in the experiments [29], the finite size of the hole array introduces a third
lifetime associated with the spatial extension of the array, τsize [41]. As the absorption
in the metal, it also acts as a limiting factor in the final transmittance. If the number of
holes is large enough, τsize is greater than τabs and then the limiting factor would be
the absorption by the metal, as in the case of an infinite array. However, if the array
is very small, τsize would be smaller than τabs and finite size effects would control
the optimum d. Then the cut between τres(d) and τsize would mark the location of
optimum d. If this is the case (τsize < τabs), then the cut would appear at a shorter d.



62 2 Extraordinary Optical Transmission

This seems to be the case in the experiments reported in Ref. [29] as the experimental
optimum d is of the order of 600 nm, instead of a value close to 700 nm obtained
from our calculations for an infinite array of holes (see Fig. 2.18).

2.5 EOT Through Metal-Coated Monolayers of Microspheres

Several papers on EOT involve experiments and simulations of metal films and
gratings of rather simple geometry [2, 4, 8, 28, 61–66]. One drawback, considering
applications, with these structures is that they are usually produced using a material
removal focused ion beam and/or complex lithographic methods. In this section we
analyze a quite different structure, namely, slabs of self-assambled arrays of dielectric
microspheres covered with thin metallic layers. As we will see, these kind of systems
present many similarities in their transmission properties with those in perforated
metal films, with the advantage of being easily deposited over relatively large areas.
Moreover, the following metal deposition can be done by standard techniques.

Monolayers of close-packed arrays of microspheres behave like two dimensional
photonic crystal slabs (PCS) with photonic modes that may couple to the incident
light. It has been shown that the strength of coupling and the position of the observed
transmission dips could easily be altered by deposition of, e.g., amorphous Si onto
the microsphere arrays [67, 68]. If the microsphere array is instead covered with a
thin metal film, EOT through the slab has been observed [69]. Different mechanisms
could be responsible for the EOT-like transmission features: Mie resonances of the
spheres, transmission through the empty spaces left by the spheres after covering
them with the metal,... [69]. In order to clarify the actual origin of the resonances
observed, in this section we analyze a set of experimental results carried out in
the group led by Prof. D. Bäuerle, from the Institute of Applied Physics Johannes-
Kepler-Universitat in Linz (Austria). For this, we use the FDTD method discussed
in Sect. 1.2. The good agreement between measured and modeled spectra allows
further in-depth interpretation of the origin of the different features observed in the
measured transmission spectra, highlighting the relevance of waveguide modes in
the microsphere array on the EOT properties.

2.5.1 Methods

Experiment

Microspheres of different materials have been utilized in various fields of research in
the past few years. Examples of applications are micro-resonators with high quality
factors [71], in mask lithography [70], and also as lens arrays for different types of
laser-induced micro- and nano-patterning of material surfaces. In the case of laser-
induced applications, close-packed 2D-lattices of usually transparent microspheres

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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Fig. 2.19 Scanning electron
microscope (SEM) picture of
a Ni-coated monolayer of
quartz (a − SiO2)
microspheres of diameter
d = 0.72μm. The support is
a 1.0 mm thick a − SiO2
platelet. From Ref. [16]

are used as a lens array allowing single step large area parallel processing [72–76].
Among those are patterns generated from metal-coated monolayers of microspheres
by laser-induced forward transfer (LIFT) [77–80].

Through the experiments, close-packed monolayers of amorphous silica
(a − SiO2) or polystyrene (PS) microspheres (diameters d = 0.39, 0.78, 1.0, and
1.42μm) were deposited on quartz supports (1 mm thick) using colloidal suspen-
sions. The monolayers were covered with different metals (Ag, Au, Ni) and film thick-
ness (30–300 nm) using standard evaporation techniques. A typical metal covered
monolayer is shown in Fig. 2.19. The metal films cover approximately the upper half
of single spheres, while the lower half remains uncoated. At the top of spheres the
thickness of the coating (75 nm) is about equal to that measured with a nearby quartz
crystal microbalance (QCM). Towards the edge of spheres the film thickness slightly
decreases. In the interstices between the spheres, the coating is placed on the quartz
support. Within these areas, the film thickness measured by means of an atomic force
microscope (AFM), is equal to that measured by QCM. The areas of close-packed
monolayers were, typically, of the order of ∼cm2.Because of certain size dispersion
of the microspheres and the deposition technique employed [81], the monolayers
exhibit a polycrystalline structure with a typical domain size of about 50–100 m .
Transmission experiments were performed at normal incidence both on bare PCSs
and on the covered with metal slabs. The transmission measurements were done
in the far-field, in a configuration that only collected the zero-order transmission.
Since aperture diameters of 1–3 mm were used for the transmission measurements,
any polarization dependent effects could not be probed and non-polarized light was
used.
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FDTD Modeling

Simulations were performed by using the FDTD method. A small grid size of 6 nm
was used in all reported results. The dielectric constant of the different metals consid-
ered were taken from their bulk values, and approximated by a Drude–Lorentz func-
tional form (Table 1.1). Dielectric constants for the quartz support, and the silica
and polystyrene microspheres were assumed wavelength independent and set to
1.52, 1.392 and 1.572, respectively. As the geometry of the metal layer is not
precisely known, for simplicity the thickness of the metal film on the top of each
sphere was assumed to be constant (72 nm). We expect that this simplification of
the metal geometry will induce at most some small spectral displacements of the
transmission resonances and of the average transmittance, but will otherwise have
a negligible effect on the overall transmission properties of the system. In order
to compare with the experimental transmittance, only transmission into the zeroth
diffraction order was computed.

2.5.2 Results and Discussion

Figure 2.20 compares measured and modeled spectra for silica sphere arrays covered
with Ni, Ag and Au metals. Overall, the modeled spectra reproduce quite well the
observed features with respect to both the absolute transmission values and peak
positions. The main difference that can be observed is the additional peak at around
1300 nm in the calculated spectra. For the case of Ni, this peak seems to be hidden
under the shoulder of the main peak. For Ag and Au it seems to be absent in the
measured spectra. All peaks in the measured spectra are also slightly broader, likely
because of the size-dispersion of the spheres and the polycrystalline structure of the
array. Nevertheless, the overall good agreement suggests that this simple fabrication
route leads to structures where disorder is small enough as not to spoil the optical
transmission resonances expected in perfect arrays.

In the optical regime, the different behavior of the metals is notable. The peaks
for Ni are less pronounced, while Ag and Au presents more detailed fine structure
in both measured and modeled spectra. This effect is related to the difference in
optical properties of these metals. As discussed in Sect. 2.2, Nickel is a less “ideal”
metal than Ag and Au, with relatively high absorption in the wavelength region of
interest, resulting in less pronounced features in both measured and modeled spectra.
The calculated spectra for gold and silver have more defined (and stronger) peaks
in comparison to the measured ones at shorter wavelengths. This may be due to the
presence of disorder in the sample, where not all unit cells are strictly equal. Also,
films deposited onto the microsphere arrays exhibit a poly/nano-crystalline structure,
which may alter the optical properties of the metal relative to bulk values used in the
calculations. Both such alterations impair resonant behavior, being therefore more
evident in Ag and Au than in Ni (where resonances are already hampered by intrinsic
absorption of the metal).

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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Fig. 2.20 Measured (black)
and calculated (red) zero
order transmission through
metal coated MLs of
a − SiO2 microspheres
(d = 1.42μm). From
Ref. [16]
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The situation is different in the telecom regime (transmission peaks appearing
around 1600 nm in Fig. 2.20). In this case, the transmission level for all metals
considered is similar, being even larger for Ni than for Au or Ag. Notice that, in
this case, the full-width-at-half-maximum (�λ) is very very similar for all three
metals considered: 163 nm for Ni, 154 nm for Ag and 126 nm for Au. Given that the
dielectric constant of Ni is very different from that of Ag and Au, this implies that
the time that the electromagnetic field stays at the structure is limited by radiation,
more than by absorption. This time can be estimated as T = λ2

max/(c�λ) and the
distance that the EM field travels on the surface as LT = λ2

max/�λ, where λmax is
the spectral position of the transmission maximum and c the speed of light. From the
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simulation we can estimate LT = 16.2μm, 17.4μm and 12.6μm for Ni, Ag and
Au, respectively. This values are smaller than, for instance, the propagation lengths
of surface plasmon polaritons at λ = 1600 nm (which approximately are 25μm for
Ni, 360μm for Ag and 360μm for Au), which reenforces the hypothesis that radi-
ation losses dominate over absorption. Notice also that the larger absorption in the
case of Ni could be compensated by the larger skin depth (33 nm in Ni, 22 nm in Ag
and 23 nm in Au for λ ≈ 1600 nm), which implies both a larger direct transmission
through the metal layer and a larger effective hole radius.

To further study the behavior of this composite structure and the validity of using
the FDTD method, different parameters were investigated. Here, the refractive index
of the spheres was changed by considering polystyrene microspheres. The sphere
diameters (periodicity) was also altered, see Fig. 2.21. As expected, by using mono-
layers of polystyrene spheres (with a higher refractive index than a − SiO2) with
different diameters, one finds that the main peak shifts with the periodicity of the
array. Again, measured and modeled spectra show good agreement (Fig. 2.21). We
associate the higher values for the calculated peaks both to disorder in the actual
sample and to the fact that absorption in the PS spheres was neglected in the
calculations.

The main peak is further red-shifted relative to the diameter by about a factor of
1.3 d, whereas a factor of 1.2 d was observed for the silica spheres (Fig. 2.20). This is
related to the higher refractive index of the polystyrene spheres relative to silica. The
same effect is observed for PCS without metal, that is, a higher “effective” refractive
index red-shifts the main minima (dip) in transmission [67, 68]. Additionally, the
main dip in the dotted curves in Fig. 2.21, that show the transmission of the bare MLs,
and the main transmission peak of the metal coated arrays show a clear correlation.
The main transmission peak is slightly red-shifted compared to the main dip. This
behavior implies that the transmission is related to the supported modes of the bare
(uncoated) 2D-PCS as suggested earlier [69]. The transmission spectra of the bare
PCSs are also included in the graphs where, once again, the differences in the trans-
mission curves can be seen. The modeled spectra show much narrower main dips than
the measured ones, again pointing to the influence of absorption in the PS spheres,
and also to size dispersion of spheres and grain boundaries within the monolayers. In
any case, the fabrication method allows for simple scaling (positioning) of any trans-
mission peak (or dip) of interest, as can be seen in Fig. 2.21. It is also demonstrated in
Fig. 2.21c that the main peak can be easily shifted to the visible wavelength region.
This could be interesting with possible application for these composite structures as,
e.g., for the fabrication of relatively narrow band filters.

Importantly, the close spectral correspondence between transmission dips in the
uncoated system and transmission peaks in the coated one is also present in the
calculation, even more clearly so, as spectral features are narrower here than in
the experiment. The thickness of the metal deposit was also varied for both Ag and Au
metals on silica spheres, see Fig. 2.22. For both metals, the intensity of the main trans-
mission peak decreases roughly exponentially. Notice that the measured transmission
is higher for thicker deposits compared to modeled spectra, which we associate to
the assumption of homogenous film thickness in the calculations. Again, quite large
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Fig. 2.21 Measured (black)
and modeled (red) zero order
transmission through
monolayers of polystyrene
spheres. Bare
monolayer-dotted curves
(right y-scales) and coated
with 75 nm silver-full curves
(left y-scales). a d = 1.0μm,
b d = 0.78μm, c d =
0.39μm. The main peak (or
dip) scales with the
periodicity (d). From
Ref. [16]
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discrepancies can be observed between measured and calculated spectra in the short
wavelength region. Also, the main peak red shifts as the thickness is increased (More
pronounced for the measured spectra). Possibly, this can be related to coupling of the
modes on the two interfaces; PCS/metal and metal/air. For films with thickness less
than 50 nm, two peaks can be observed in the calculated spectra, whereas only one
peak is observed for the thicker deposits, suggesting a coupling/decoupling behavior
of the two modes as the thickness is increased.

The rest of the section is devoted to ascertain which are the relevant mechanisms
for the transmission resonances in this system. Notice that the composite slab is
quite complex, and transmission resonances could be due to one or several factors,
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Fig. 2.22 Measured (a, c)
and calculated (b, d)
transmission spectra for
different thicknesses of the
metal deposit. Ag and Au
were used on d = 1.42μm
silica spheres. From
Ref. [16].
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Fig. 2.23 Calculated transmission curves for bare PCS and with different metal coverage (1)–(3).
From Ref. [16].

like: surface plasmons coupled either through the holes in the interstices or through
the metal (if the metal film is optically thin), photonic crystal modes in the sphere
layer (weakly or strongly coupled), Mie resonances of the spheres, particle plasmon
modes of the triangular metal deposit on the quartz support, etc. The good agreement
between measured and calculated spectra allows us to study of the relevance of these
different mechanisms, through the modeling of similar but simpler systems.

To start with, two different but related structures were modeled: Metal coated
sphere arrays without any metal on the support and sphere arrays fully covered with
metal (and consequently no metal on the support either). The calculated results are
shown in Fig. 2.23. Interestingly, the calculations reveal that the metal deposit on the
support has negligible influence on the overall transmission and, more importantly,
that the transmission spectra remains practically unaltered if the holey metal cap
covering the spheres is replaced by a continuous metal cap. So, for this parameter
range, the coupling across the metal film is mainly due to coupling through the
metal, and not through the holes. This calculation also shows that there is no need
for improvements in the fabrication process in order to get rid of the deposited metal
particles in the substrate. In order to investigate the importance of a PCS and its
guided modes as support to the metal film, the spheres were simply removed in the
model system by introducing a uniform refractive index below the corrugated metal
film (both with and without holes). In this case, the transmission process can be
explained by a resonant model involving surface plasmon excitations and tunneling
through the corrugated thin metal film [4, 37]. The results are depicted in Fig. 2.24.
Remarkably, in the uniform dielectric case, absolute transmission values are much
lower than those obtained for the sphere system. In addition, we have computed
the transmission for a thin planar film with triangular holes (with the same size as
those in the experiment) in graphene symmetry. Again transmission values are low
when compared with those in the capped sphere system. These findings suggest
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Fig. 2.24 Calculated
transmission curves for
corrugated (with and without
holes) and planar metal film
with holes in a graphene
symmetry. All films were
modeled in a homogeneous
media. The metal considered
is Au and the lattice
parameter is d = 780 nm.
From Ref. [16].
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that the presence of the photonic crystal layer is of great importance in the overall
transmission mechanism. The close spectral correspondence between transmission
peaks in the coated case and transmission dips in the uncoated one, already points
to the possible relevance of guided modes in the photonic crystal. This relevance is
corroborated by the computed electromagnetic field distributions (see Fig. 2.25 for
a representative case), which present strong field confinement at the location of the
spheres.

It is interesting to highlight the differences on the transmittance between guided
modes in a photonic crystal and guided modes in a uniform dielectric slab. The first
difference is related to the "energetics". A first estimation of the spectral position
at which EOT features appear can be obtained by computing the frequency of the
surface mode involved, at a wavevector equal to the shortest reciprocal lattice vector
(for the case of normal incidence considered here). Similarly, dips in the corrugated
dielectric are expected to appear at the same condition, as Fig. 2.21 shows. Let us
start by considering the uniform dielectric slab. The point here is that the guided
modes in a vacuum-metal-dielectric film-substrate (VMDS) waveguide are different
from the ones in a vacuum-dielectric film-substrate (VDS) configuration, due to the
large differences between the Fresnel coefficients for metal/dielectric and metal/air
interfaces. Therefore, features in a corrugated dielectric and a corrugated metal,
each of them placed on top of dielectric slab, should appear at different wavelengths.
To illustrate this point, we have computed the wavelengths of the guided modes
in both VMDS and VDS configurations, for the following parameters (motivated
by the experimental setup): the dielectric film has a dielectric constant ε = 1.572

and a thickness t = 780 nm. The substrate has a dielectric constant ε = 1.52.

The considered wavevector is k = 2π/t (in a sphere array the inter-distance between
spheres is equal to the dielectric film thickness). The metal thickness is 70 nm and
its dielectric constant is taken as εmetal = −50 (approximately the value for Au at
λ ∼ 1000 nm). We obtain that the wavelengths of the guided modes are: 1176 nm
for the VDS configuration and 1235 nm for the VMDS case. On the contrary, the
dispersion relation of guided modes in the photonic crystal (composed by the two-
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Fig. 2.25 Contour plots for
the modulus of the
z-component of the electric
field across a plane passing
through the center of the
spheres. The system under
study is the one considered
in 2.21. (b). a uncoated case
at the wavelength of the
main transmission dip
(λ = 944 nm). b coated case
at the main transmission
maximum (λ = 1002 nm).
From Ref. [16].

(a)

(b)

dimensional arrays of dielectric spheres) is weakly affected by the presence of the
metal film (calculations not presented here estimate that the difference between the
wavelengths of the guided mode in the metal capped and uncapped configurations
is of the order of 5 nm). This is so because, in this case, the z-component of the
electric field (which is the relevant one for guided modes) is more concentrated close
to the center of the spheres (see Fig. 2.25), so a smaller fraction of the field senses
the different Fresnel coefficients alluded above.

The second difference is related to the coupling of the light, passing through the
metal film in the presence of guided modes, to the different radiation orders. Guided
modes in photonic crystals represent a weaker coupling to radiation modes than either
guided modes in a dielectric or surface plasmons (again due to the previously cited
concentration of the electric field in the photonic crystal guided modes, which places
the EM field away from the radiation region). Notice that radiation damping impairs
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the resonant transmission process, so this feature of photonic crystal modes explains
why the configuration of metal film on top of a photonic crystal is so efficient for
EOT phenomena (Compare Figs. 2.23 with 2.24).

It must be noted that we have concentrated on the transmission peak appearing at
larger wavelengths. At shorter (optical) wavelengths there is also a close correspon-
dence between transmission dips in the uncoated system and transmission peaks in
the coated one, pointing to again to the relevance of guided modes. These modes
could be due either to remappings (aided by a reciprocal lattice vector) of the funda-
mental guided mode or to higher order guided modes. No attempt has been made
here to assign a definite origin to these modes as they give rise to small transmission
peaks.

2.6 Conclusions

In conclusion, we have investigated three different questions that strongly affect EOT:
the metal chosen, the metal thickness and the hole shape.

To elucidate about the influence of the metal chosen on EOT we have investigated
theoretically the resonant optical transmission through circular hole arrays drilled
in different metals. We have performed two series of calculations. In both of them
all lengths except the metal thickness are scaled by the same factor. In one of the
series the metal thickness is kept fixed, while in the other the metal thickness is
also scaled. In the first case, for which there is experimental data available [32], the
comparison between experiment and theory is very good. These results confirm that,
in the experiments, the effects of possible inhomogeneities in hole shape and size
were small. Also the metal surface, despite the processing that has received when
creating the holes, is well described by a dielectric constant close to its bulk value.
Moreover, FDTD is validated as a predictive tool for this kind of systems, as the
comparison with experimental data did not require any fitting parameter. The case in
which all lengths were scaled allowed the comparison of the transmission properties
of real metals with those of a perfect conductor. The analysis reveals different types
of behavior of the transmittance in hole arrays in different sets of metals: in Ag, Au
or Cu, the transmittance is even larger than in the perfect conductor case, reflecting
that absorption is low and the penetration of EM fields effectively enlarges the hole
area. In Ni and Cr, although the effective area is as large as in the previous metals,
absorption strongly reduces the resonant transmittance. Aluminum behaves very
much like a perfect conductor at the lower wavelength end of the optical regime
but for peak wavelengths ≥700 nm the resonant transmittance characteristics are
dominated by absorption, as in the case of Ni and Cr. Finally, tungsten, which in
the spectral range considered is a dielectric, presents transmission resonances with
maxima much smaller than those of even the worse metals (Ni, Cr).

In the study of EOT when the film thickness is varied, we have shown that the EOT
peak can be tuned to longer wavelengths (by even hundreds of nm) by decreasing
the film thickness without strongly affecting neither transmission intensity nor peak
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visibility (which is still large at w ∼ 20 nm). We have demonstrated that only SRs
modes are responsible for the EOT phenomenon in optically thin metallic 2DHAs.
This may be of interest in the fields of EOT and Negative Refractive Index (which
has been obtained in stacked optically thin 2DHAs [82]).

From our study on the hole shape dependence of EOT, we have explained theoret-
ically the interplay between two different mechanisms that enhance the transmission
of light through 2D arrays of rectangular holes: SPP-based extraordinary transmis-
sion and enhanced transmission assisted by the excitation of a localized resonance,
spectrally located at the cut-off wavelength of the hole waveguide,λc.We have shown
that when d < λc the transmission resonance has a localized nature mainly, i.e. it
is mainly governed by the behavior of a single hole. In contrast, for d > λc, SPP
governs the transmittance through the structure, We have also demonstrated that in
this last case, resonant transmission is mainly limited by the absorption in the metal.

Finally, the 2D-photonic crystal structure composed by periodically arranged
microspheres and covered with thin metal films, has been found to present EOT.
Measured spectra have been compared with spectra calculated with FDTD and the
good agreement has allowed modeling of slightly modified structures to get further
information about possible transmission mechanisms. The calculations indicate that
the guided modes in the PCS are mainly responsible to the relatively large transmis-
sion values observed (especially for the main peak). In contrast, the small holes in the
thin metal film (at the interstices between three adjacent spheres) and metal deposit
onto the support do not strongly influence the main transmission peak. The high
transmission values, straightforward fabrication and easy up-scaling of the metal
covered slabs together with simple peak positioning in a broad wavelength region
(VIS/IR) make these structures a good candidate for application purposes.
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Chapter 3
Theory of Negative-Refractive-Index Response
of Double-Fishnet Structures

3.1 Introduction

In the last years we have seen how a new sort of man-made materials with “exotic”
optical properties (not found in nature) could be designed. In turn, this has opened
amazing prospects for future technological applications. One relates to the design of
structures with negative refractive index (NRI). In these NRI metamaterials, firstly
proposed by Veselago [1], both the electric permittivity and the magnetic permeability
are negative, leading to a refractive index that is negative. Metamaterials presenting
NRI are expected to lead to important applications, as the perfect lens proposed by
Pendry [2]. Furthermore, NRI metamaterials are thought to be the bricks for solving a
long lasting question in optics: Is it possible to make an object “invisible”? Predicted
independly by Ulf Leonhardt [3] and Pendry et al. [4], such an “invisibility cloak"
was demonstrated in the microwave regime [5].

Veselago demonstrated that an isotropic, homogeneous and lineal (i.h.l) medium
characterized by negative values of both the permittivity (ε) and the permeability
(μ), does not contradict any fundamental law of physics. In fact, a substance like that
behaves in a completely different fashion that a conventional material (See Ref. [6]
for a complete review).

Plane waves traveling through i.h.l media at fixed frequency (ω) can be expressed
as follows: �E(�r , t) = �E0eı(�k�r−ωt) and �H(�r , t) = �H0eı(�k�r−ωt). In this case, by
applying Maxwell’s equations we obtain:

�k × �E0 = μμ0ω �H0

�k × �H0 = −εε0ω �E0 (3.1)

in the international system of units (MKS). As usual, ω2 = c2|k|2
εμ

, being c the speed

of light in vacuum. From Eq. 3.1 obvious that the set {�k, �E, �H} defines a right-handed
(RH) triplet of vectors whether ε > 0 and μ > 0. Conversely, if ε < 0 and μ < 0
they constitute a left-handed (LH) set. Note that Eq. 3.1 remain invariant by changing
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the signs of the permittivity, the permeability and the �k-vector (�k → −�k, which
defines the phase velocity), simultaneously. Hence, a plane wave will propagate
within LH material with opposite phase velocity as it were traveling through a RH
one. The energy flux carried by a plane wave is determined by the Poynting vector
�S, which is given by

�S = �E × �H (3.2)

The �S vector always forms a RH set with �E and �H , thus the flow of energy is
opposite to the phase velocity in LH media. We arrive at the same conclusion taking

into account that �S = | �E |2
μμ0ω

�k = | �H |2
εε0ω

�k.
Another important discussion is about the energy carried by an EM field in LH

materials. The total energy of an EM field at point in space reads, U = 1
2ε

�E2+ 1
2μ

�H2,
for i.h.l and non-dispersive media. Clearly, this expression is not compatible with
negative values of ε and μ. Therefore, both quantities must depend on frequency,
and the proper definition of total energy is given by U = 1

2
∂(εω)
∂ω

�E2 + 1
2
∂(μω)
∂ω

�H2.
Up to here, we have revisited the propagation properties of light inside LH mate-

rials. Note that if the whole universe were made of LH materials redefining the phase
velocity (�k → −�k), all the electromagnetic phenomena would be exactly the same
as in a RH universe. In the end, it would be a matter of agreement as regards to
the sign of the parameters (ε, μ, �k, . . .). Really, the key point is how light behaves
passing from a RH medium to a LH medium, or viceversa. When light travels from
a medium to another, the boundary conditions for EM fields,

E1
t = E2

t

H1
t = H2

t

ε1 E1
n = ε2 E2

n

μ1 H1
n = μ2 H2

n (3.3)

must be satisfied, independently of whether or not the media have the same “right-
ness” (integer numbers label different media). The superscripts t and n refers to
the tangential and normal to the surface field components, respectively. In the RH
medium the incoming ray will be labeled with a i subscript and r for the reflected
one. As we can deduce from the boundary conditions [Eq. 3.3], the tangential field
components maintain their directions, whereas the normal components change, and
not only their relative values, but their directions as well. We depict in Fig. 3.1 the
refraction-reflection construction for a TM-plane wave traveling from a RH medium
to a LH medium. As we can see, the Poynting vector (represented by dashed arrows)
flows from the RH medium to the LH medium so that energy is conserved. Taking
into account both the proper direction the �k-vector follows in each media and the
field boundary conditions, only the ray refracted to the left of Fig. 3.1 has physical
meaning.

Additionally, it can be seen from Fig. 3.1 that the usual Snell’s law should be given
more precisely,
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Fig. 3.1 Two possible paths
to follow a ray passing
through the boundary
between a RH medium and a
LH one. Only the refracted
ray rendered to the left has
physical sense
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sin(φin)
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=

√
ε2μ2
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(3.5)

RH → L H (3.6)

sin(φin)

sin(φout )
= −

√
ε2μ2

ε1μ1
(3.7)

showing the difference between RH refraction (φout > 0) and LH refraction
(φout < 0). In particular, the index of refraction of a LH medium relative to vacuum
is negative, so they are called NRI media. That negative values of ε and μ give
raise to negative values of n can be also demonstrated as follows. Let us write
ε = εr + ıεi and μ = μr + ıμi , where we take into account the absorbing prop-
erties of the medium (εi > 0 and μi > 0). The refractive index is n = ±√

εμ

or explicitly, n = ±√
(εr + ıεi )(μr + ıμi ). This expression can be approximated

n ≈ ±√
εrμr + ı(εiμr + μiεr ) ≈ ±√

εrμr [1 + ı εiμr +εrμi
εrμr

]. The radiation condi-
tion ( the field must vanish at infinity) imposes that ni > 0, so if εr < 0 and μr < 0
at the same time,then the negative sign must be chosen.

No natural material known possesses negative magnetic permeability. To date,
the only way to achieve the above-mentioned behavior is by combining different
materials, built with different geometries. The system arising is usually called a
“meta-material” because its optical response may be different than the optical
response of its components in bulk. An example of a meta-material displaying nega-
tive μ was first reported by Pendry et al. [7]. They proposed to build arrays of
split-ring resonators. The effective negative magnetic susceptibility found in them
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paved the way in the search of structures presenting NRI (For a recent review on
negative-index metamaterials see Ref. [8]).

In 2005 Zhang et al. [9, 10] proposed and demonstrated a negative index metama-
terial working at near infrared frequencies with a design very similar to the structure
showing EOT. This metamaterial is composed by a two-dimensional (2D) array of
holes penetrating completely in a metal-dielectric-metal film stack, the so-called
double-fishnet (DF) structure. This structure has received a lot of attention for its
optical response as NRI material at visible [11] and near infrared frequencies [12,
13]. Other studies have shown that this NRI metamaterial design also operates in the
microwave frequency regime [14, 15]. Besides, serious attempts to get truly 3D-NRI
metamaterials have been engineered based on it [16].

We present here an alternative physical view to the well established “circuitry”
model of the NRI in DF structures [8] summarizing two works published in our
group [17, 18]. Again, we take advantage of two different theoretical techniques: the
finite-difference time-domain (FDTD) method Sect. 1.2 and an adapted version of
the coupled mode method (CMM) Sect. 1.3 for the DF structure, which was carried
out by A. Mary at the Departamento de Física Teórica de la Materia Condensada
(Universidad Autónoma de Madrid). Within these formulation, these structures can
be interpreted as holey plasmonic metamaterials instead of wire fabrics.

3.2 Theory of Negative-Refractive-Index Response of Double
Fishnet Structures

A DF structure can be described as three films (metal-dielectric-metal) drilled with a
square array of rectangular holes, with hm and hd being the thickness of the metallic
films and the dielectric layer, respectively. In our study, we analyze two very distinct
frequency regimes. First, we consider that the metal behaves as a perfect electrical
conductor (PEC), which is a very good approximation for metals at microwave or
terahertz frequencies. When analyzing this limit, we will use the period, d, as the
unit length. We also present results for silver at optical and near infrared frequencies.
In this case, we take the dielectric function of silver from Table 1.1 and we choose
d = 600 nm. The structures are illuminated by a p-polarized plane wave (i.e., the
in-plane component of the incident E-field pointing along the short edge of the
holes). When analyzing perforated silver films at optical frequencies, we use the
finite difference time domain (FDTD) method (See Sect. 1.2) which, as previously
described, is virtually exact provided that a small enough mesh-size is chosen to
account for the rapid variations of the EM fields. Along with the FDTD method we
also use CMM within the surface impedance approximation (SIBC) (See Sect. 1.3).
In order to analyze 2DHA and DF structures made of PEC material, we apply CMM
as well. The great advantage of CMM is that, when dealing with subwavelength
holes, a very good approximation to the transmission and reflection properties can
be achieved by considering only the least decaying evanescent mode inside the holes

http://dx.doi.org/10.1007/978-3-642-23085-1_1
http://dx.doi.org/10.1007/978-3-642-23085-1_1
http://dx.doi.org/10.1007/978-3-642-23085-1_1#Tab1
http://dx.doi.org/10.1007/978-3-642-23085-1_1
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(the TE01 mode for the chosen polarization of the incident plane wave). This allows
a semi-analytical treatment and to extend the formalism to study a large number of
metallic films, as done at the end of this chapter, that would be difficult with the
FDTD method. For a complete description of CMM applied to DF structures see
Ref.[18].

3.2.1 Effective Parameters of 2DHAs

Schematic pictures of the two systems under study (2DHA and DF) are shown in the
insets of figs 3.2a and 3.3a, respectively. The 2DHA structure is an infinite square
array (period d) of rectangular holes of sides ax and ay , perforated on a freestanding
metallic film of thickness h1. To further simplify the analysis without loosing gener-
ality, the dielectric between the two metal films is chosen to be vacuum or air. The
geometrical parameters are: ax = 0.33 d, hm = 0.05 d, hd = 0.05 d and
h1 = 2hm + hd = 0.15 d. The long edge of holes ay will vary between 0.33d and
0.98d. These values are representative of those used in the experimental samples
showing NRI [12].

First, we revisit the transmission properties of a 2DHA made of rectangular holes.
Figure 3.2a renders the corresponding normal incidence transmittance spectra as a
function of wavelength (λ) and ay for the PEC case. For small holes, two transmis-
sion peaks (leading to 100 % transmission), whose spectral locations appear close
to d, emerge in the spectrum. These two resonances correspond to the symmetric
and antisymmetric combinations of the two surface EM modes associated with the
two interfaces of the structure [19]. Note that, as the metal behaves as a PEC, these
modes are not real SPPs but geometry-induced surface EM modes, the so-called
spoof SPPs [20, 21]. As ay is increased, the extremely narrow peak associated with
the antisymmetric combination remains unaltered at λ ≈ d. However, the symmetric
combination of SPPs strongly hybridizes with the cutoff resonance, which has been
discussed in Sect. 2.4. For rectangular holes appears close to the cut-off wavelength
of the fundamental mode (TE01 mode) of the hole waveguide, λC = 2ay . From now
on, we name cutoff resonance to this hybridized mode that is combination of the
symmetric surface EM mode and the Fabry-Perot resonance. From the knowledge
of the zero-order transmission and reflection coefficients, it is possible to retrieve
bi-univocally the effective optical parameters [22]. The method described in Ref. [22]
is reliable provided the zero-order diffracted beams are the only ones propagating
in both the reflection and transmission regions (for normal incidence this implies
λ > d). The real part of the effective permittivity, εeff , of the 2DHA structure is shown
in Fig. 3.2b. Dashed and solid lines indicate the wavelength in which Re[εeff ] = 0
and the cutoff wavelength, respectively. Note that except in the region λ ≈ d, there
is a close correspondence between these two wavelengths. This kind of coincidence
can be understood by revisiting the concept of spoof SPP modes. As explained in
Ref. [20], the dielectric response (in the effective medium limit in which diffraction
effects are neglected) of a semi-infinite holey PEC presents a Drude-like behavior in

http://dx.doi.org/10.1007/978-3-642-23085-1_2
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Fig. 3.2 a Transmittance versus both ay and λ for a 2DHA perforated on a PEC film, with geomet-
rical parameters: ax = 0.33 d and h1 = 0.15 d. Inset contains an schematic picture of the 2DHA. b
Re [εeff ] as a function of λ and ay . Solid line Cutoff wavelength, λ = 2ay . Dashed line λ that satis-
fies the condition Re [εeff (λ)] = 0. In the inset, the corresponding FDTD results for silver-2DHA
with the same parameters as in a and d = 600 nm are displayed.

which the plasma frequency of the electron gas is replaced by the cut-off frequency of
the hole waveguide. Regarding the magnetic response, the effective magnetic perme-
ability, μeff takes a constant value. In mathematical terms, these two last sentences
translate into:

εeff = 1

S2

(
1 − ω2

p

ω2

)
, μeff = S2 (3.8)

where S = 2
√

2 ax ay/πd and ωp = πc/ay . Therefore, in the effective medium
approximation (λ >> d), a holey semi-infinite PEC is characterized by a Re[εeff ]
that changes from negative (λ < λC ) to positive values (λ > λC ), and by a μeff that
remains constant and positive (Here λC = 2ay).

Figure 3.2b shows that the relation between λC and the condition Re[εeff ] = 0
also holds for a very thin PEC film and for λ slightly larger than d. Moreover, this
link is maintained when moving to frequencies in the optical regime, as shown in
the inset of Fig. 3.2b. Here the spectral locations of both the cutoff wavelength of the
hole waveguide (black line) and the condition Re[εeff ] = 0 (green dashed line) are
rendered as a function of ay , for the same geometrical parameters as in panel (a),
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Fig. 3.3 a The evolution of the spectral locations of both the cutoff wavelength (black line) and the
condition Re[εeff ] = 0 (green dashed line). The regions of negative Re[μeff ] (red vertical lines) and
Re[neff ] (black horizontal lines) are also displayed as a function of ay for the PEC-DF case. Inset:
transmittance versus both ay and λ for a PEC-DF structure with the geometrical parameters as in
Fig. 3.2. Solid curve renders λ = 2ay line. b As in a, but for a silver-DF structure with d = 600 nm.
A contour plot of the FOM is rendered, for the regions where Re[neff ] < 0

and d = 600 nm. Notice however that for a silver-2DHA in the limit ay → d, the
condition Re[εeff ] = 0 is linked to the cutoff wavelength calculated with the FDTD
method for waveguides forming a 2D periodic array (blue dashed line in the inset of
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Fig. 3.2b). In this limit, the cutoff deviates from the one of an isolated waveguide,
due to the cross-talk between waveguides through the vertical metal walls.

3.2.2 The Double-Fishnet Structure

The rest of this chapter is devoted to analyze the optical properties of the DF structure.
Inset of Fig. 3.3a renders the normal incidence transmission spectra for the PEC case.
The two transmission peaks previously described for a 2DHA also appear in the DF
structure. Fig. 3.3a shows the spectral location of the condition Re[εeff ] = 0 (green
dashed line), and the regions in which Re[μeff ] (red vertical lines) and Re[neff ]
(black horizontal lines) are negative. Notice that the cutoff resonance wavelength
also controls Re[εeff ] in the case of a PEC-DF structure, as shown in Fig. 3.3a. On
the other hand, the presence of a second metal layer and a dielectric gap results in
the emergence of additional resonant features (transmission peak and dip) in the
transmission spectra. Associated with this new resonant behavior, Re[μeff ] presents
negative values (see panel (a)). As expected, the effective refractive index is nega-
tive when both Re[εeff ] and Re[μeff ] are negative. This condition is only satisfied
when ay < 0.58 d (for this set of geometrical parameters). For larger holes, as the
magnetic resonance appears at a shorter wavelength than the cutoff peak, the regions
of Re[μeff ] appear where Re[εeff ] is positive, leading to positive values for Re[neff ].

The behavior of the effective optical parameters is very similar for a silver-DF
structure. Panel (b) of Fig. 3.3 shows the same quantities as in panel (a) but now for a
DF structure made of silver with the same geometrical parameters as in Fig. 3.3a, and
d = 600 nm. As in the PEC case, the link between the condition Re[εeff ] = 0 and
the cutoff wavelength is clearly observed. Moreover, a band of negative Re[μeff ]
presenting a smooth linear dependence with ay also appears. The disappearance
of this band for small ay is due to absorption (calculations for a lossless silver
show regions of negative Re[μeff ] for small ay). Absorption also explains why, as a
difference with a PEC-DF, the region of negative Re[neff ] is larger than the one in
which both Re[εeff ] and Re[μeff ] are negative. Note that the general condition for
having Re[neff ] < 0 is Re[εeff ]|μeff | + Re[μeff ]|εeff | < 0 (for more details see Ref.
[23]). Notice however that the figure-of-merit (FOM), defined as the modulus of the
ratio between the real and imaginary parts of neff , is maximum inside the region in
which both Re[μeff ] and Re[εeff ] are negative.

The physical origin of the magnetic resonance described above clearly emerges
when looking at the corresponding E-field patterns. In Fig. 3.4 we plot the E-field
amplitudes for the DF structure evaluated at a xy plane between the two metal films
[panels (a) and (b)] and at a xz plane that cuts the holes through their centers [panels
(c) and (d)]. Panels (a) and (c) correspond to the PEC-DF case whereas (b) and
(d) present the results for silver-DF. In these calculations, the long edge of the
holes is fixed at ay = 0.5d and the E-fields are evaluated at the wavelength of the
magnetic resonance. In the two frequency ranges analyzed (PEC and optical regimes),
the E-field is mainly concentrated in the gap region between the metallic films and
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(c) (d)

(b)(a)

Fig. 3.4 a and b Render the electric field amplitudes at the magnetic resonance evaluated in the
xy plane just in the middle of the dielectric slab (z = 0.075 d). c and d Amplitudes in a xz plane
(y = 0.25 d). The geometrical parameters are as in Fig. 3.3 with ay = 0.5 d. a and c Correspond
to the PEC case whereas b and d are for the silver-DF structure with d = 600 nm. White lines mark
the positions of the holes

also has a strong standing wave character in the x-direction. The E-field intensity
maxima are along the ridges of the holes, suggesting that in both cases two SPP-like
modes that counter-propagate in the x direction are involved in the formation of the
resonance.

A dielectric gap placed between two metallic films supports the propagation of
SPP-modes that are usually called gap-SPPs [24]. For two non-perforated silver
films of thickness hm = 30 nm and separated by a 30 nm-vacuum gap (geomet-
rical parameters of the silver-DF structure), the spectral location of the gap-SPP
mode that could be excited by a normal incident plane wave can be calculated by
evaluating the gap-SPP dispersion relation at kx = 2π/d. This calculation leads to
λres = 1050 nm = 1.75d, that nicely coincides with the limit ay → 0 of the
magnetic resonance leading to negative neff displayed in Fig. 3.3b. Folding of the
gap-SPP dispersion relation at kx = 4π/d originates the small NRI-region located at
λ ≈ 1.3d for small ay observed in Fig. 3.3b. When the metal is a PEC, gap surface EM
modes that are very similar to the gap-SPP modes in the optical regime are created due
to the presence of a hole array drilled in the PEC films, even though non-perforated
PEC films do not support the propagation of gap-SPP modes. The dispersion relation
of these geometry-induced gap-SPP modes lies very close to the light line, explaining
why the magnetic resonance band for a PEC-DF appears very close to λ = d (see
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Fig. 3.5 Transmittance as a function of both incident wavenumber (k0) and parallel momentum
(kx ) for ay = ax = 0.33 d a and ay = 2ax = 0.66 d b. White dashed lines show the spectral
locations of the gap-SPP modes in the holey structure.Insets corresponding dispersion relations for
the gap-SPP modes in DF structures made of silver with d = 600 nm

Fig. 3.3a). The connection between the resonant magnetic response and the excita-
tion of gap-SPP modes is highlighted for the PEC case in Fig. 3.4c. The electric field
is pointing at opposite directions at the two sides of the dielectric slab, generating
a displacement current that resembles that of the one created by a magnetic dipole
parallel to the y-direction. This is the standard explanation of the magnetic behavior
in DF structures, as described in Ref. [8]. But interestingly there is a link between the
resonant magnetic response of a DF structure with the excitation of gap-SPP modes,
both in the PEC and optical regimes.

If gap-SPP modes are involved in the resonant magnetic response, it is expected
that this response will be very sensitive to the angle of incidence. This is demonstrated
in the main panels of Fig. 3.5 that renders contour-plots of the transmittance versus
wavenumber (k0 = 2π/λ) and parallel momentum (kx ) for two different PEC-DF



3.2 Theory of Negative-Refractive-Index Response of Double Fishnet Structures 87

Fig. 3.6 Transmittance
versus wavelength for
DF-based structures in which
the number of air gaps, N, is
increased from 1 to 4. Here
ax = ay = 0.33d and
εd = 1.0. From Ref. [18]

N=1

N=2

N=3

N=4

structures. In panel (a), ay = 0.33d whereas panel (b) shows the case ay = 0.66d.
The spectral locations of the transmission resonances due to the excitation of gap-
SPP like modes (leading to negative μeff ) are underlined with white dashed lines.
Due to the folding of the dispersion curves of the gap SPP-like modes inside the first
Brillouin zone, there are three branches that present resonant magnetic response. For
small holes, these curves highly disperse with kx (angle of incidence), specially the
lower branch. As ay is increased (see panel (b)), the hybridization of the gap SPP-like
modes with the cutoff resonance decreases the dispersion of the gap SPP-like modes
with kx . Insets in Fig. 3.5 show the corresponding results for the silver-DF structures.
The locations of the optical gap-SPP modes (and their associated NRI) also disperse
with parallel momentum, although this dispersion is less pronounced than the one
found in the PEC case.

3.2.3 3D Metamaterials: Stacked DF Structures

The fact that DF structures display NRI behavior at near-infrared and optical frequen-
cies is quite interesting but, however, they are not truly 3D metamaterials as their
thicknesses are much smaller than the operating wavelength [25]. Therefore, the
question on what happens to the NRI behavior of DF-based structures when many
metal-dielectric-metal stacks are added is timely and important from both the funda-
mental and applied points of view. In what follows, we address this issue by making
use of the CMM in which the inclusion of many multilayers is straightforward. In
Fig. 3.6 we plot the evolution of the transmission spectra as the number of dielec-
tric layers, N, is increased from 1 (the case we have analyzed up to now) to 4. The
geometrical parameters of the 2D hole array we have used in these simulations are
ax = ay = 0.33d and εd = 1.0. The metal is approximated as a PEC. As clearly
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Fig. 3.7 a Transmittance versus wavelength for the case N = 10. The geometrical parameters are
the same as the ones used in previous cases. b–e Display the amplitude of electric field patterns for
b λ = 1.049 d (1st peak), c λ = 1.066 d (2nd peak), d λ = 1.081 d (3nd peak) and e λ = 1.092 d
(4th peak) evaluated in a xz plane that cuts the holes passing through their centers. From Ref. [18]

seen in this figure, the inclusion of more and more layers results in the appearance of
additional resonant features in the transmission spectrum. The number of these new
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Fig. 3.8 Transmission versus photon energy (in eV) for a multilayered DF-based structure in which
the number of air gaps is N = 200. The 200 peaks within the energy window 1.87−1.98eV should
reach 100 % transmission. The inset shows the dispersion relations (energy versus momentum in
the z-direction) for the two NRI-bands as calculated with the FDTD method. From Ref. [18]

features exactly coincides with the number of dielectric layers, N. Associated with
these transmission peaks, resonant behaviors of the magnetic response, μeff , leading
to negative values are also observed. Note that the EOT peaks associated with the two
surface EM modes of the entrance and exit surfaces of the structure are still present in
the transmission spectrum but their linewidths are strongly reduced as N is increased.
The fact that the number of transmission peaks coincides with N suggests that the
origin of the multiple transmission peaks stems from the electromagnetic coupling
between the spoof gap-SPP modes running at the air gap regions. These localized
modes are electromagnetically connected via the 2D hole arrays of the PEC layers.
This hypothesis is nicely corroborated in Fig. 3.7 which shows the E-field amplitude
patterns (evaluated at a xz plane that passes through the center of the holes) for the
first four resonances appearing for the case N = 10.

These patterns look like the different waveguide modes appearing in a Fabry-Perot
cavity. They present standing wave character both in the x-direction (coming from
the the interference between two counter-propagating gap SPP-like modes) and in
the z direction, typical of Fabry-Perot like resonance. The first resonance (appearing
for this set of parameters case at λ = 1.049d) is the fundamental mode in which
no nodes are present in the z-direction. As the wavelength is increased (see panels
(c)–(e)), more and more nodes emerge in the pattern. These four panels highlight
the collective nature of the EM modes involved in the NRI response of multilayered
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DF-structures. In the structure analyzed in Fig. 3.7 (N = 10), the thickness of the
whole structure is still of the order of the wavelength.

The final system we want to present is a truly DF-based 3D metamaterial made
of silver. In Fig. 3.8 we render the transmission spectrum (in this case transmission
versus photon energy in eV) for a DF-based structure with N = 200 air gaps.
The geometrical parameters are the same as in previous cases and we have used
d = 600 nm as the period of the hole array. As expected, many transmission peaks
located within a very narrow energy range emerge in the spectrum. The linewidth of
this NRI band (marked with label 2 in Fig. 3.8) is of the order of 50 nm.

Interestingly, there is another NRI band (marked with label 1) appearing at higher
frequencies. These results are corroborated by FDTD calculations on the infinite
DF-structure. The inset of Fig. 3.8 displays the dispersion relation (frequency versus
momentum in the z-direction) of these NRI bands as calculated with the FDTD
method. There is an excellent agreement between the FDTD and modal expansion
results that shows again the reliability of our theoretical framework. More impor-
tantly, these results demonstrate that the NRI behavior in DF structures is maintained
as the number of DF-layers is increased. Note that in real metals in the optical or
near-infrared regimes, the presence of absorption within the metal layer would limit
strongly the NRI response in multilayered DF-based structures.

3.3 Conclusions

In conclusion, we have presented a complete theory of the NRI response of double-
fishnet structures by analyzing two very distinct frequency regimes. Our results show
that these structures can be interpreted as holey plasmonic metamaterials. Their elec-
tric permittivity is governed by the cutoff frequency of the hole waveguide. Negative
values of the magnetic permeability are associated with the excitation of gap-SPP
modes in the dielectric film. Finally, we have also analyzed how the negative refrac-
tive index response evolves when many double-fishnet units are stacked together.
Multiple magnetic resonances emerge in these structures originated from the elec-
tromagnetic coupling between the different gap surface modes of the dielectric gaps.
These results show the negative refractive index behavior is maintained in a truly 3D
DF-based metamaterial.
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Chapter 4
Plasmonic Devices

4.1 Introduction

The emerging field of Plasmonics is based on exploiting the coupling between light
and Surface Plasmon Polaritons (SPPs). Because of SPP modes are not constrained
by the optical diffraction limit, it is hoped they could enable the construction of
ultra-compact optical components [1–3]. Among these components would have SPP
sources and waveguides for sending information through, from one place to another
on a hypothetical Plasmonic-chip.

During this thesis, we have been working on these very interesting topics in the
potential use of SPPs as we will see below:

a. The first topic is addressed in Sect. 4.2, which is related with the inherent difficulty
of exciting SPPs in an efficient manner [4, 5]. Given that SPPs cannot be directly
excited due to the mismatch momentum with freely propagating light, the light-
plasmon coupling efficiency becomes of crucial importance for the success of
any plasmonic device. In these works, we investigated a nano-structured metallic
system that allows SPPs being unidirectionally excited from the source, in this
case, a slit drilled through a metal film. It is vital for the realization of SPPs
nano-optical components that the relatively poor light-SPP coupling is improved.
Another difficulty in plasmonic circuits is that the incident light, which is conven-
tionally used to launch SPPs in a metal film [6–9], is a significant source of noise,
unless directed away from a region of interest which then decreases the signal and
increases the system’s size. Back-side illumination of subwavelength apertures in
optically thick metal films [10–16] eliminates this problem but does not ensure a
unique propagation direction for the SPP.
In Sect. 4.2 we present a novel back-side slit-illumination method which incorpo-
rates a periodic array of grooves carved into the front side of a thick metal film.
Bragg reflection enhances the propagation of SPPs away from the array, enabling
them to be unidirectionally launched from, and even focused to, a localized
point. We also show a comprehensive study on the modulation (enhancement or
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suppression) of such coupling efficiency. Our approach is based on simple
wave interference and enables us to make quantitative predictions which have
been both numerically and experimentally confirmed at both the near infra-
red and telecom ranges. From the theoretical standpoint we use the finite-
difference time-domain (FDTD) method (Sect. 1.2) and a Coupled Mode Method
(CMM)(Sect. 1.3 ) version adapted for investigating the optical response of finite
set of 1D-indentations. The CMM method has been conducted by Dr. F. López-
Tejeira at the Departamento de Física de la Materia Condensada (Universidad de
Zaragoza).

b. In Sect 4.3 the second topic is investigated, which relates with our ability to control
light on a surface once it has been “launched”. In references [17–19] we presented
a theoretical study on two different proposals for guiding EM fields, namely the
modes supported by a carved triangular groove in metal and, in a way, the “comple-
mentary” structure, a triangular metal wedge. This challenging matter, the guiding
of light within a subwavelength cross section, is especially compelling due to the
ever increasing demands for miniaturization of photonic circuits. Therefore, the
realization of subwavelength guiding structures is a key factor for miniaturization,
because these components would permit denser waveguide packaging without
crosstalk, and lower waveguide bending loss.
Light may be confined in the direction perpendicular to a flat metallic surface at
energies below the metal plasma frequency if it couples to SPPs. Various geome-
tries have been proposed to achieve confinement of the plasmon-polariton in the
plane transverse to the propagation direction [20–25]. Among these proposals,
the plasmon-polariton guided by a V-shaped groove carved in a metal (channel
plasmon-polaritons, CPPs) and the modes supported by a metallic wedge (wedge
plasmon-polaritons, WPPs) are particularly interesting. CPPs were theoretically
suggested by Maradudin et al. [26] and subsequently studied in the visible regime
[22, 27]. CPPs have been experimentally investigated at telecom wavelengths
[28], displaying strong confinement, low damping, and robustness against channel
bending. Thanks to these properties, prototypes of basic devices could be demon-
strated [29]. On the other hand, WPPs were also shown to support strongly local-
ized plasmons, which has been demonstrated both theoretically [18, 23] and exper-
imentally [23, 30].The first devices were developed with the help of effective index
approximations. An effective index approximation can deliver information about
the dispersion relation, but it is expected to be inaccurate for frequencies close
to the mode cutoff and is unable to determine modal shape and polarization. The
functionality of many devices relies on the overlapping of electromagnetic fields
at various sites inside the device. For this reason the knowledge of the modal shape
is essential to provide a solid foundation for the design of CPP-based devices.
In Sect. 4.3, we present rigorous simulations of guided CPPs and WPPs aimed at
elucidating their characteristics at telecom wavelengths, including full vectorial
modes, dispersion, and losses. The simulations were performed with two rigorous
electrodynamic techniques: the FDTD method (Sect. 1.2) and the multiple multi-
pole method (MMP) [31], this latter carried out by Dr. E. Moreno at the Depar-
tamento de Física Teórica de la Materia Condensada, Universidad Autónoma de
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Madrid. Our goal thus is to understand the fundamental CPP and WPP modes
guided by realistic structures at telecom wavelengths [28]. Nevertheless, in order
to comprehend the behavior in this regime, which is close to cutoff, we will
consider a broader spectrum, higher order modes, and a number of different
geometries. Finally, we design optical devices which rest on the results previ-
ously found. In this way, we propose a WPP to SPP geometry-driven conversion
device. Besides, it is demonstrated both theoretically and experimentally that
“tapered” CPP supporting structures can enhance EM fields near the surface.

4.2 An Efficient Source for Surface Plasmons

Because of the so-called “excess of momentum” with respect to light of the same
frequency, SPPs cannot propagate away from a planar surface and are thus bound
to and guided by it. As a consequence of such binding, SPP modes can be laterally
confined below the diffraction limit, which has raised the prospect of SPP-based
photonic circuits [1, 2, 32]. To build up this kind of circuits one would require a
variety of components in which incident light would be first converted in SPPs,
propagating and interacting with different devices before being recovered as freely
propagating light. Hence, a great deal of attention has been devoted to the creation of
optical elements for SPPs [29, 33–37], as well as to the efficient coupling of freely-
propagating light into and out of them. This latter issue constitutes the fundamental
bottleneck that must be overcome in order to fully exploit the potential of SPPs,
given that established techniques for SPP generation (which make use of prism [6,
7], grating [8] or nanodefect [9] coupling) require that the system’s size be well out
of the subwavelength scale in order to obtain a neat SPP signal. On the other hand, p-
polarized back-side illumination of subwavelength apertures in optically thick metal
films [10–16, 38] prevents both damping and signal blinding but it does not ensure
only a propagation direction for the generated SPPs.

In the present section we present a back-side slit-illumination method based on
drilling a periodic array of indentations at one side of the slit. It will be demonstrated
that the SPP beam emerging from the slit to its corrugated side can be back-scattered
in such a way that it interferes constructively with the one propagating in the oppo-
site direction, thus obtaining a localized unidirectional SPP source. We provide a
comprehensive version of such proposal and discuss in some extent its range of
validity.

4.2.1 Description of the Proposal

A picture of the proposed structure is shown in Fig. 4.1. The starting point for such a
design can be found in a previous work on 1D SPP scattering by means of the CMM
[39, 40]. In order to cope with SPP launching, it was considered a single slit flanked by
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Fig. 4.1 Parameters
{ai , h, w, d, P} defining
the geometry of the system
are also shown

an array of indentations (rectangular grooves) placed in the output surface of a thick
metallic film. Eventually, the distance between the slit and indentations was taken to
be infinity. In this way, the slit merely played the role of a theorist’s SPP-launcher, as
far as it can be shown that the field created by the slit corresponds to SPP illumination
into the grooves. Besides, it was also found a simple geometrical condition for the
groove array to behave as a perfect Bragg mirror, associated to the low-λ edge of the
plasmonic band gap for the periodic system. For narrow subwavelength indentations,
the spectral locations of these edges can be approximated by folding the dispersion
relation of SPPs for a flat metal surface into the first Brillouin zone [41]. Such folding
results in

kp P = k0 Re[qp]P = mπ, m = 1, 2 . . . (4.1)

where P is the period of array and kp holds for in-plane plasmon wave-vector.
Combining these two elements, one can obtain a remarkably simple scheme for

the modulation of SPP coupling-in: given an incident wavelength, let us place at
a distance d from one of its sides a groove array for which reflectance rises to a
maximum. Hence, any SPP emerging from the slit will be mainly back-scattered
and interfere either constructively or destructively with the one leaving the slit by its
opposite side. This interference can be tuned by adjusting the separation d between
the slit and the first groove of the array, defined centre to centre. The total phase
difference, φ, between the interfering SPPs will then consist of the phase change
upon reflection plus the additional shift resulting from the two different path lengths
along the metal:

φ = φR + 2Re[kp]d, (4.2)

According to Eq. 4.2, constructive or destructive interference should occur for those
phase values equal to, respectively, even or odd multiples of π.
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We have found that φR is close to π over a wide range of groove depths for
a/λ ≤ 0.2 at both NIR and telecom ranges, as stated in Ref. [5]. Taking this result
into account and substituting for kp from Eqs. 4.1 into 4.2 yields

φ(λR) =
(

2md

P + 1

)
π, (4.3)

which reduces the design of our proposed scheme to a suitable choice of the d/P
ratio.

However, the key point of the proposal still relies on the properties of SPPs. The
EM fields radiated by the slit cannot be considered “purely plasmonic” at distances
smaller than several wavelengths, where the field consist partly of a different wave
that decays as x−1/2, the so-called “creeping wave” [39, 42]. This makes necessary
detailed computations that go beyond the simple model described before. On the
other hand, SPPs have been thought to dominate the EM field beyond this region.
However, irrespectively of the metal considered, the long-distance asymptotic limit
of the EM field at metal surface is not the SPP but a different type of wave known
as Norton wave (NW) [43]. This wave decays as x−3/2 for 2D-dipole sources and as
x−2 for 3D-dipoles, a behavior substantially different from the exponential decay of
SPPs. Note nevertheless that contribution to the surface field of NWs is negligible
at distances smaller than ∼5 times the corresponding SPP propagation length [43].
At the near infrared and telecom the propagation length of a SPP is greater than 100
microns by far, so NWs do not play a significant role.

In order to characterize the efficiency of the slit + array system as a SPP-launcher
for any slit-to-array separation, we introduce its “efficiency ratio”, ER : given that the
array be located at the left side of the slit (see Fig. 4.1), ER is defined as the quotient
between the current intensity of right-propagating SPP with and without the grooves.
Strictly speaking, ER provides the efficiency of the output side of the device. The
total efficiency, defined as the percentage of incident energy transferred onto the
plasmon channel, strongly depends on the illuminating setup. ER should vary within
the interval [0, 4] showing a dependence on the distance between the illuminating slit
and the groove array. More importantly, ER > 2 implies that the right-propagating
SPP current in the presence of grooves is larger than the total SPP current (left- plus
right-moving) in the single slit case, so some of the power radiated out of plane is
redirected onto the SPP channel. According to this simple wave interference model,

ER ≈ |1 + re2ikpd |2, (4.4)

where r is the complex reflection coefficient of the groove array for SPPs. To check
the validity of Eqs. 4.3 and 4.4 for slit-to-array separations outside the asymptotic
regime, we have carried out numerical calculations of EM fields by means of both
CMM (Sect. 1.3) and FDTD (Sect. 1.2). The system under consideration is intended
to operate at a wavelength of 800 nm on a gold film (Table 1.1). We consider an array
of ten grooves with a period P = 390 nm. The depth of the grooves is chosen to be
w = 100 nm, while the width of both grooves and slit is a = 160 nm, which are

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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typical experimental parameters. Figure 4.2a shows the comparison between Eq. 4.4
and numerical evaluations of ER, as well as the location of interference maxima
(vertical lines) predicted by Eq. 4.3 for m = 1. The agreement between CMM and
FDTD results is excellent, except for very small distances (d ≈ 2a) between the slit
and the array, when intra-wall coupling between the slit and the first groove has to
be taken into account. As can be seen, the locations of maximum ER are accurately
predicted by Eq. 4.3, which allows us to design SPP-launchers without elaborate
numerical calculations. Moreover, the simplified model of Eq. 4.4 provides a good
approximation to ER with the sole input of r. This also implies that non-plasmonic
contributions to groove illumination play a minor role in the occurrence of either
constructive or destructive interference, for this particular structure choice, which is
clearly described by Eq. 4.4 with the except of minor shifts.

In addition to the efficiency ratio, field patterns in both minimum and maximum
condition were also calculated using the FDTD method. As shown on Fig. 4.2b,
SPPs are completely absent from the left side of the slit whereas field intensity at
its right side is clearly modulated by the slit-to-array separation, which also governs
the spatial distribution of the field that is radiated into the vacuum.

4.2.2 Results

Near-Infrared

To test experimentally the proposal, several samples were prepared at Laboratoire de
Nanostructures, ISIS, Universitè Louis Pasteur, in the group of Prof. T.W. Ebbesen.
Using a focused ion beam in 300-nm-thick gold films they made samples for different
values of d, with all other geometrical parameters being the same as in the previous
calculations. Each sample consists of a single long slit flanked by a finite periodic
groove array that extends over only half of the slit length (see Fig. 4.3).

This sample design allows the quantitative experimental study of the SPP
launching efficiency, as the “isolated” slit (upper part) can be used as an in-chip
reference. The set of samples was imaged by a photon scanning tunnelling micro-
scope at Laboratoire de Physique de l’Universitè de Bourgogne, (Dijon, France) in
the group of Prof. A. Dereux, making use of an incident focused beam illumination
for frequencies in the [765,800] nm interval. Owing to specific features of the exper-
imental set-up used for measurements in the optical regime, the incident laser beam
was directed on the sample (attached to a prism) under an angle of 43◦ with respect
to the normal. However, it should be noted that the choice of angle of incidence is
not critical for the spatial distribution of transmitted energy, as a subwavelength slit
in an optically thick metal film transmits only in the fundamental mode. For each
distance, d, a pair of images was recorded by scanning at a constant distance of
about 60–80 nm from the sample surface. The first image of the pair, corresponding
to the SPP launching by a single slit, was obtained by focusing the laser beam on
the upper part of the slit. For the second image, the laser beam was moved to the
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Fig. 4.2 Numerical results for the SPP launcher at wavelength λ = 800 nm. a Dependence of the
efficiency ratio ER on the slit-to-array distance. The geometrical parameters defining the system
are: slit and groove widths a = 160 nm, groove depth w = 100 nm and array period P = 390
nm. The figure renders the curves obtained by means of FDTD (solid), CMM (dashed) and Eq. 4.4
(short-dotted). Vertical lines mark the positions of ER maxima according to (4.3). b Calculated
|Re[Hy]| distributions over xz plane for two different distances corresponding to minimum and
maximum values of ER at λ = 800 nm
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Fig. 4.3 Scanning electron
micrograph and schematic
diagrams of the proposed
structure

lower part to collect the data for the slit+grating case. Image for d = 585 nm is
shown in Fig. 4.4a. This figure clearly shows that the grating increases the intensity
of the right-propagating SPP for d = 585 nm. To quantify this effect, an average
longitudinal crosscut of each image is obtained by using 20 longitudinal cross-cuts,
corresponding to different coordinates along the slit axis. Then, the relative position
of the two average cross-cuts composing each image pair is adjusted so that the satu-
rated areas (that is, the signal taken right on top of the slit) are superimposed. Finally,
the experimental efficiency ratio, ER, is extracted by averaging the ratio between the
two curves along the longitudinal cross-cut. Figure 4.4b shows experimental results
for ER for the five different samples fabricated. The agreement between the experi-
mental data and the FDTD predictions is quite remarkable (especially when taking
into account that each experimental point corresponds to a different sample), showing
that the presence of the grating modulates the coupling into the right-propagating
SPP.

Telecom

Similar samples to those used in the NIR measurements were designed to operate
at the telecom range by up-scaling the period of the array and its separation from
the slit (see Fig. 4.5a). Telecom measurements were conduced by I.P. Radko and
Prof. S.I. Bozhevolnyi in Aalborg (Denmark) at the Department of Physics and
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Fig. 4.4 Experimental measurement of ER at λ = 800 nm for the same geometrical parameters
as in Fig. 4.2. a Photon scanning tunneling microscope (PSTM) micrographs recorded for a sample
with d = 585 nm at both “single slit” (top) and slit+array configurations (bottom). The right panel
shows the two cross-cuts from which ER is obtained. Vertical lines define the interval along the
ratio is averaged. b Experimental (circles) and numerical (solid line) values of ER as a function of
slit-to-array distance. The error bars represent the standard deviation over a set of different structures
with the same nominal parameters

Nanotechnology. During the experiments, they found an instability in the illumination
setup that resulted in a noticeable variation of SPP intensity while taking place the
near-field scan process, which took about 45 min per image. As a consequence of
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(d)
Experiment
CMM

Experiment
CMM

Fig. 4.5 Spectral dependence of ER at the telecom range. a Scanning electron micrograph of the
sample. The geometrical parameters are: slit length L = 50μ m, slit width a0 = 400 nm, groove
width a = 200 nm, groove depth w = 100 nm and array period P = 750 nm. b Near field image
recorded with the laser beam focused at the “isolated slit” position of a sample with d = 3P/2 =
562 nm. (Size = 70 × 26μm2, λ = 1,520 nm). c Same for slit+array focusing. d Spectral depen-
dence of ER for slit-to-array distances of d = 3P/2 = 1,125 nm (experiment: squares; theory:
solid line) and d = 3P/4 = 562 nm (experiment: circles; theory: dashed line)

those intensity jumps, the technique used to evaluate the “efficiency ratio” in the
NIR became unsuitable. Instead, ER was found as the SPP signal ratio taken from
each pair of near-field images (with and without side grooves) at the same distance
from the slit. This reference distance (≈50μm) is chosen so that the non-plasmonic
field contribution can be disregarded, whereas the SPP signal is still substantial for
the quantification. To decrease the uncertainty of the measured efficiency, a series of
scans were performed for every structure and wavelength measurements, conducting
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independent adjustments, and the subsequent averaging of the ER values obtained.
Hence, the error ER represents a statistically estimated deviation.

A typical pair of near-field optical images is presented in Fig. 4.5b and c. For
telecom wavelengths, the SPP propagation length is increased up to ≈200μm. Panel
(c) features a strong SPP beam propagating away from the slit in the direction oppo-
site to the array and thereby demonstrating unidirectional SPP excitation. Averaged
results and estimated errors for ER are rendered in Fig. 4.5d. Notice that the validity
of our proposal is now tested in a different way: for a given slit-to-array separa-
tion, ER is measured within the wavelength range 1,500–1,620 nm, so that the phase
difference described by Eq. 4.2 changes as the wavelength increases, providing the
conditions for constructive or destructive interference. This spectral dependence of
the efficiency is different for different slit-to-array separations. For the case of the
sample with d = P + P/2 = 1,125 nm, ER decreases as the wavelength increases
(with the only exception of the data point at 1,520 nm), evolving from a favorable
regime (ER ≈ 2) to one in which coupling into SPPs is clearly diminished by the
array ( ER < 1). Conversely, ER ≈ 2 for the sample with d = 3P/4 = 562 nm all
over the range. As can be seen, the comparison between experiments and CMM is
rather satisfactory.

Finally, we have to mention that the proposed approach for the excitation of
localized unidirectional SPP beams can also be combined with the appropriate design
modifications to create functional components for SPP focusing to a spot or tuning
the SPP beam divergence. If ER ≥ 2 is expected for a given slit+array set, its circular
bending may produce a converging gaussian beam whose waist length and radius can
be adjusted changing the curvature. Several curved SPP focusers have been studied
previously [44–48], but our scheme presents the advantage of preventing SPPs to
escape in the opposite direction to the focus. Although the rigorous modeling of SPP
coupling at curved structures is rather complicated, we expect Eq. 4.3 to still provide
a good estimation for the proper design of the structure, for moderate curvatures.
On that assumption, several samples were fabricated consisting of an arc-of-a-circle
slit flanked by the corresponding array of parallel bent grooves (see Fig. 4.6a–c).
Geometrical parameters a0, a, w, P are the same as in Fig. 4.5, whereas slit-to-array
distance is set to d = 3P/2 = 1,125 nm.

As shown in Fig. 4.6d–f, the effect of SPP launching and focusing can be appre-
ciated already at the stage of far-field adjustment due to weak out-of-plane SPP
scattering by surface roughness. Near-field images of SPP excitation on those struc-
tures recorded at free-space wavelength of 1,520 nm are presented in Fig. 4.7. These
images clearly demonstrate the ability of a curved slit to excite a convergent SPP
beam, this effect being sufficiently enhanced due to the side grooves (cf. [45, 46]).
With the smallest radius of curvature (30μm), focusing to a confined spot having
size 3×3μm2 is observed (see the cross cuts in the lower left panel of Fig. 4.7). The
SPP beams excited on the less curved structures present an extended waist (Fig. 4.7b
and c), which scales (at least visually) according to expectations, providing a wider,
and hence less divergent, SPP beam. This might be useful for particular applications,
e.g., in sensing of elongated biological samples or in coupling to low-numerical-
aperture waveguides.
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Fig. 4.6 a Scanning electron micrograph of the curved structure, characterized by slit and groove
widths of 400–200 nm, respectively, groove periodicity P = 750 nm, groove depth w = 100 nm
and slit-groove distance d = 1,125 nm. Film thickness h = 280 nm, curvature radius R = 30μm
and slit chord length L = 40μm. b, c Same for R = 45μm and R = 60μm. d–f Far field images
of SPPs excited on the structures (a–c), respectively, recorded with a charge-coupled device camera
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Fig. 4.7 a–c Near-field images (size 64 × 32μm2) of SPPs excited on the structures in Fig. 4.6 at
λ = 1,520 nm. Lower left panel depicts cross cuts obtained from (a) by dissecting the SPP focal
spot along longitudinal and transversal directions
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4.3 Guiding and Focusing EM Fields with CPPs and WPPs

As we said, CPPs are electromagnetic modes supported by grooves carved in metallic
surfaces whereas WPPs are the corresponding modes sustained by metallic wedges.
Roughly speaking, one could say that the electromagnetic field of CPP and WPP
modes is guided along the bottom of the groove or the edge of the wedge, respectively.

Behavior of electromagnetic fields next to corners and edges has arisen the interest
of scientific community since a long time. The first report dealing with these geome-
tries within the context of surface plasmons was published by Maradudin et al. [49].
The mentioned paper considers an idealized geometry in the electrostatic approxima-
tion. The next landmark, in 2002, was a complete treatment including retardation for
realistic geometries [26]. After this year the number of works, both theoretical and
experimental, reporting on CPPs and WPPs has rapidly increased. We can mention
the following reasons for this interest. First, the achievement of tightly confined
modal fields and long propagation lengths count among the main design goals. We
will see that CPPs and WPPs feature good confinement and a reasonable propaga-
tion length, and are therefore promising candidates. Second, the planar paradigm is
preferred from a technological perspective, and the modes studied in this chapter
fit well with planar metallic structures. From a more fundamental point of view, let
us remark that edges and corners appear in other structures. In this sense CPPs and
WPPs constitute building blocks that show up in other kinds of plasmonic guides
such as stripes, trenches, gaps, and so on. Thus, understanding the properties of CPPs
and WPPs is very useful for the design of another kind of plasmonic waveguides.
Let us mention that, in spite of the difficulties to fabricate narrow angle CPPs and
WPPs, these have been already demonstrated and CPP-based functional devices
have been reported [50]. Recently, CPPs have been experimentally investigated at
telecom wavelengths [28], displaying strong confinement, low damping, and robust-
ness against channel bending. Thank to these properties, prototypes of basic devices
have been demonstrated [29].

The mentioned devices have been developed and analyzed with the help of the
effective index approximation. The effective index approximation can deliver infor-
mation about the dispersion relation, but it is expected to be inaccurate for frequen-
cies close to the mode cutoff and is unable to determine either the modal shape, the
polarization and the propagation length, as we have said in the introduction.

As mentioned above, the goal of this section is to provide an understanding of
the properties of CPP and WPP modes beyond the effective index approximation.
We will describe the behavior of modal field, dispersion, modal size, propagation
length, and the dependence of these magnitudes on various parameters by means of
rigorous computational electrodynamics techniques (Fig. 4.8).
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Fig. 4.8 Schematics of structures supporting channel and wedge plasmon polaritons. a Groove
carved in surface. b Wedge grown on surface. c Infinite wedge

4.3.1 Channel Plasmon Polaritons

The functionality of many devices relies on the overlapping of electromagnetic fields
at various sites inside the device. For this reason the knowledge of the modal shape is
essential to provide a solid foundation for the design of CPP-based devices. Here we
present rigorous simulations of guided CPPs aimed to elucidate their characteristics
at telecom wavelengths, including full vectorial modes, dispersion, and losses.

Nevertheless, in order to comprehend the behavior in this regime, which is close
to the waveguide cutoff, we will consider a broader spectrum, higher order modes,
and a number of different geometries. The simulations have been performed with
two rigorous electrodynamic techniques: MMP [31] and FDTD (Sect. 1.2). Within
the MMP method the corners are rounded (10 nm radius of curvature). FDTD results
were converged for a mesh of about 5 nm. Such fine meshes are essential, specially for
wavelengths shorter than ≈0.8μm. The grooves are carved in gold and we employ
experimentally measured values (Table 1.1) of the dielectric permittivity ε.

Figure 4.9 shows the dispersion relation for a non-truncated groove with an angle
of φ = 25◦ and infinitely long sides. This structure sustains two modes, being termed
CPP(∞) (see right insets), which are outside the dispersion line of the SPP at a flat
surface. The modal shape (time averaged electric field amplitude) is shown in the right
insets for a wavelength of λ = 0.6μm. In the figure it is also plotted the dispersion
relation for a non-truncated metallic wedge of angle φ = 102.5◦ and infinitely long
sides. The corresponding wedge mode running along the edge is termed WPP(∞)
(see left inset). WPP(∞) for this φ will be relevant when we later truncate the above
groove at a finite height: it corresponds to the edges at both sides of the finite-height
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Fig. 4.9 Dispersion relation for various modes. Black thick line SPP mode on a flat surface. Green
lines (squares) CPP(∞) modes for an infinitely deep groove. Red line (open circles) WPP(∞) mode
for an infinitely deep wedge. Right insets time averaged electric field amplitude of the two CPP(∞)
modes at 0.6μm. Left inset same for the WPP(∞) mode. The lateral size of the insets is 2μm

Fig. 4.10 Dispersion relation for various modes. Black thick line SPP mode on a flat surface. Blue
lines (full circles) CPP modes for a groove of height 1.17μm (computed with MMP method).
Triangles same as before computed with FDTD method. Red line (open circles) WPP(∞) mode
for an infinitely deep wedge. Insets time averaged electric field amplitude of the two CPP modes at
0.6μm. The lateral size of the insets is 2μm. From Ref. [17]

groove. The WPP(∞) modal field at 0.6μm is shown in the left inset. For increasing
wavelength all three modes approach the SPP line (none of them has a cutoff). In
this process modal shapes remain qualitatively the same, the only difference being
that the fields are expelled away from the groove or wedge corners.

Figure 4.10 represents a similar plot but now a groove of finite height is considered,
being arbitrarily chosen 1.17μm (however it is of the order of typical experimental
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values). The CPP modes exhibit now a cutoff at different wavelengths (∼1.44μm
for the first mode and ∼0.82μm for the second one). This was advanced in Ref.
[51], and it is a consequence of the above mentioned behavior of the fields for
increasing wavelength. As the wavelength increases, the field is pushed out of the
groove and, after a certain threshold, it can no longer be confined by the groove sides
and is radiated in the form of SPPs along the contiguous horizontal metal surfaces.
It is important to realize that, before reaching the SPP dispersion line, both modes
approach and cross the WPP(∞) line. This means that close to cutoff the CPP modes
must be hybridized with the modes running on the edges at both sides of the groove.
This idea is visualized in the insets, that render the modal shapes (time averaged
electric field amplitude) at 0.6μm. At this wavelength the first mode is not close
to WPP(∞) and the hybridization does not take place, but it is already happening
for the second mode. The described phenomenon is even more distinct in Fig. 4.11
displaying the fundamental mode for increasing wavelengths. It is observed that the
CPP mode becomes more and more mixed with the WPP(∞). Close to cutoff (at
about 1.44μm) the mode is not guided at the groove bottom anymore but rather at the
groove edges. A hint of this possibility was mentioned in the first experimental work
[52]. In the experiments, the edges at both sides of the groove have larger radius of
curvature than in the previously presented simulations. We have verified that this does
not alter our conclusion by repeating the same computation with a radius of curvature
of 100 nm at the groove edges (while keeping a radius of curvature of 10 nm at the
bottom). Figure 4.11d shows the instantaneous transverse electric field amplitude for
this case and it is clear that hybridization with edge modes still occurs. The transverse
electric field is approximately horizontal inside the channel (an assumption used by
the effective index approximation), but it is not horizontal near the edges where the
field is maximum. Let us note in passing the excellent agreement between of the two
techniques employed here (the residual discrepancy in Fig. 4.10 for the fundamental
mode at 0.6μm is due to different rounding schemes of the groove bottom in the
two methods). From the point of view of fabrication it is useful to mention that, for
λ ∈ (0.6, 0.8μm), the dispersion relation is extremely sensitive to the fine details of
the groove bottom (e.g., rounding), as concluded after a large number of simulations
where the details of the bottom were subjected to small perturbations. On the other
hand, this does not happen for telecom wavelengths (as expected from the modal
shape), a circumstance that has also been observed experimentally [29]. Note that
the calculated cutoff wavelength of the fundamental mode is somewhat lower than
the wavelengths used in the experiments. This discrepancy can be ascribed to (small)
differences in the groove geometry, both in the groove shape (angle, side flatness)
and in the groove depth, and/or different dielectric permittivity of gold. We have
verified (not shown here) that slightly less negative ε or/and smaller groove angle
φ leads to a higher cutoff wavelength. Finally, the experiments were conducted at
ambient conditions so that water condensation could not be excluded (a very thin
water layer can significantly increase the cutoff wavelength).

The effect of absorption is summarized in Fig. 4.12 that renders the propagation
length l = [2Im(kz)]−1 versus wavelength, for the various structures considered
(kz is the modal wave vector). The propagation lengths are in all cases smaller than
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Fig. 4.11 Modal shape of the CPP fundamental mode for increasing wavelength λ. a λ = 0.6μm,
b λ = 1μm, c λ = 1.4μm (close to cutoff). These panels display the time averaged electric field
amplitude. d Instantaneous transverse electric field amplitude at λ = 1.4μm for a structure with
groove edges rounded with 100 nm radius of curvature. All panels have a lateral size of 2μm. From
Ref. [17]

Fig. 4.12 Propagation length versus wavelength for various modes. Black thick line SPP mode on a
flat surface. Blue line (full circles) CPP fundamental mode for a groove of height 1.17μm with the
MMP method. Green line (squares) CPP(∞) fundamental mode for an infinitely deep groove. Red
line (open circles) WPP(∞) mode for an infinitely deep wedge. The FDTD calculation is plotted
with square black symbols for the truncated groove
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that of SPPs at a flat surface. This is a consequence of the field enhancement at the
corners and the field confinement that decreases the portion of field propagating in
air. When comparing the CPP modes it is observed that the effect of truncation at a
finite height is only important for wavelengths larger than 1μm,which is reasonable
because the field is strongly confined at the groove bottom for smaller λ. For longer
wavelengths the CPP propagation length is decreased as compared to that of CPP(∞).
At λ = 1.4μm we find that lCPP = 53μm and lCPP = 35μm with MMP and FDTD
(See Sect. 1.2.3 for further details), respectively. To explain this discrepancy between
the two methods, we must take into account that high lCPP values are a consequence
of the “long-lasting” processes being involved in building the resonance up. The
different rounding schemas used, while not affecting the dispersion relation spectral
position of CPPs at telecom wavelengths, become nevertheless an important issue
when propagation lengths are calculated. Note that the experimental values reported
in Ref. [28] at 1.55μm are larger than the computed ones. The discrepancy can
be again ascribed to slight differences in geometry and/or dielectric permittivity
that rise the cutoff wavelength. If the trend of the line corresponding to the CPP
is extrapolated, we find good agreement with the reported data. It must be noticed
that the propagation length of WPP(∞) is significantly higher, a fact that could find
obvious applications as we will show later.

4.3.2 Wedge Plasmon Polaritons

The basic structure studied here is a metallic wedge surrounded by vacuum. It has
an infinitely long edge, which is the propagation direction (Z-axis) for the supported
electromagnetic modes (the edge is rounded with radius of curvature r). The wedge
angle is denoted asφ.We consider both wedges truncated at a certain height y = h (as
shown in Fig. 4.8b), and non-truncated wedges (h → ∞). The modes corresponding
to non-truncated wedges will be named WPP(∞), as before. The considered metal
is gold. The size of the considered structures is sufficiently large so as to use bulk
dielectric functions and neglect additional damping due to electron scattering at
the metal surface. The effective index model allows one to argue that a metallic
wedge sustains modes that are localized close to its edge and propagate along it, but
numerical simulations are needed to determine accurately the modal characteristics.
The results presented in this section have been obtained with FDTD and MMP.

After an early analysis of WPPs in the electrostatic approximation [49], these
modes were studied by Pile et al. [23] in the visible regime, where the mode prop-
agation length is very short. Here the emphasis is on telecom wavelengths where
losses are much lower (see also [53]). Figure 4.13 displays the modal behavior of
WPP(∞) modes for a wedge with angle φ = 20◦ and radius of curvature of the
edge r = 10 nm. Panel (a) shows the dispersion relation (red line) of the funda-
mental mode. As corresponds to a non-radiative mode, it lies outside the shaded area
bounded by the dispersion relation of a SPP mode. The mode has no cutoff wave-
length. The modal shape for wavelengths at both ends of the considered spectrum is

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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Fig. 4.13 a WPP dispersion
relation. Black thick line,
SPP mode on a flat surface;
red line (squares), WPP(∞)
mode supported by a
non-truncated wedge. Insets
time-averaged electric field
amplitude of WPP(∞) mode
at wavelengths λ = 0.6μm,
and λ = 1.6μm. The lateral
size of the insets is 0.5μm. b
Modal size (red dashed line)
and propagation length
(black solid line) of
WPP(∞) mode as a function
of λ. Inset diagram of the
truncated wedge
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plotted in the insets. Modal size and propagation length as a function of wavelength
are presented in panel (b) (left and right axes, respectively). Here the modal size is
defined as the transverse separation between the locations where the electric field
amplitude of the mode has fallen to one tenth of its maximum value. The factor
1/10 in this definition is somehow arbitrary but it is sufficient for our mode char-
acterization purposes. The modal size (red dashed line) grows as λ increases, but
subwavelength guiding is achieved in the whole regime. As mentioned above, the
propagation length (black line) is very short in the visible region of the spectrum
(
0.5μm at λ = 0.6μm), but it rises to about 40μm in the telecom regime.

Wedge and channel plasmon-polaritons are now compared atλ = 1.5μm. In order
to have a meaningful comparison, we consider exactly the same geometry for both
structures, simply exchanging the metallic and vacuum regions (Fig. 4.14). The angle
and radius of curvature are the same as above, but we now compute more realistic
structures with finite height (h = 1.2μm, a typical value for experiments with CPPs).
The corners where the flat horizontal surface meets the triangular structure are also
rounded (with a radius of curvature R = 100 nm, also typical for experimental CPPs).
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Fig. 4.14 Transverse electric field amplitude of a CPP mode, and b WPP mode, both atλ = 1.5μm.
The geometry of both structures is identical (see main text) exchanging the metallic and vacuum
regions. The lateral size of panels is 2μm

The transverse electric field amplitude of both CPP and WPP modes is plotted in
Fig. 4.14. The modal size of the WPP is 0.46μm, significantly smaller than that of
the CPP (2.5μm). This is mainly due to the fact that the CPP mode is hybridized
with wedge modes supported by the edges at both sides of the groove, as stated in
the previous section. These edges correspond to wedges with a large angle (φ′ =
100◦) and radius of curvature (R = 100 nm), and for which the corresponding WPP
modal sizes are larger, as will be shown below. Despite the different modal sizes, the
computed propagation lengths are quite similar for both modes: 37μm for the WPP,
and 34μm for the CPP. It is worth mentioning that the CPP mode is very close to
cutoff and for a height h = 1μm the mode is no longer guided, whereas the WPP is
guided whenever the height verifies h > hc 
 0.2μm.

Let us now consider the dependence of the modal characteristics of WPPs as a
function of the most relevant geometric parameters. The following data correspond
to λ = 1.5μm. The dependence with the height h of the wedge is summarized in
panels (a) and (b) of Fig. 4.15, whereas the dependence with the angleφ of a WPP(∞)
is presented in the lower panels (c) and (d). The modal effective index neff (i.e.,
modal wavevector divided by wavevector in vacuum) is displayed in panel (a). As h
decreases, neff tends to the effective index of a SPP on flat surface (for h < hc, neff
reaches the effective index of a SPP and the mode is no longer guided). Note that a low
effective index is equivalent to a more extended field, as confirmed in panel (b) where
the modal size is plotted (red dashed line). The propagation length is also shown in
panel (b) (black line), increasing when the cutoff height is approached. The behavior
of the WPP(∞) modal characteristics as the angle φ increases is reminiscent to what
occurs when the height h decreases. There is however a major difference: there is no
critical angle above which the mode is not longer guided. As φ is increased towards
180◦, propagation length, neff , and modal size tend to those of a SPP on a flat surface.
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(a) (b)

(c) (d)

Fig. 4.15 WPP modal characteristics as a function of wedge height or angle. In a and b the height
is varied and the wedge angle is constant, φ = 20◦. In c and d the wedge angle is varied (the wedge
is not truncated). The radius of curvature is r = 10 nm in all cases. a Solid line, effective index
of WPP mode. b Red dashed line, modal size of WPP; solid line, propagation length of WPP. c
Solid line, effective index of WPP(∞) mode. d Red dashed line, modal size of WPP(∞); solid line,
propagation length of WPP(∞)

Modal size rapidly increases as the angle grows, but our numerical simulations show
waveguiding no matter how large the angle is (whenever φ < 180◦).

4.3.3 CPP and WPP Based Devices

A WPP to SPP Conversion Device

Up to this point we have only been concerned with waveguiding, finding that WPPs
display better confinement as compared to CPPs, while keeping both similar prop-
agation lengths. In this section we present strategies for WPP↔ SPP conversion.
A device with this functionality should convert the shape and size of a WPP into that



114 4 Plasmonic Devices

of a SPP. The task can be also understood as focusing a SPP to a WPP (if the time
arrow is reversed). Since SPPs on flat surfaces have infinite transverse extension, the
main challenge is the large modal mismatch. Here, conversion will be achieved by
deforming the metal surface from a wedge geometry to a flat geometry in a continuous
way along the mode propagation direction (Z-axis). In other words, the wedge height
or angle become functions of the z-coordinate, h(z), φ(z). It is clear from Fig. 4.15a
and c that, as the angle φ increases or the height h shrinks, the effective index is
reduced, leading to a growth of the modal size. If this conversion were done adia-
batically, radiation and reflection losses would be negligible, but absorption losses
would be large. We hope that a conversion performed within a few wavelengths
would strongly reduce absorption losses, while maintaining low reflection and radi-
ation. In order to verify this scenario we have performed three-dimensional (3D)
FDTD simulations for structures with constant wedge angle (φ = 20◦) and various
h(z) profiles. The tight confinement of the mode requires very fine meshes (we used
a mesh of 10 nm). The simulation domain is a parallelepiped surrounded by perfect
matched layers (PMLs). The simulations are performed atλ = 1.5μm in continuous-
wave mode. All structures have an initial section with constant wedge height (See
Fig. 4.16). The input WPP mode is excited by a source (located at z = 0.5μm in
front of the wedge and buried inside a cavity to prevent direct illumination from the
source to the conversion device).

After a short spatial transient (z < zt = 2μm), the field settles down to a propa-
gating WPP mode. We first simulate a set of test structures all of them with constant
height, h ∈ (0.2, 0.48) μm (structures I). These computations will allow the evalua-
tion of losses in later structures, and serve as a test of the FDTD simulations (as the
comparison with MMP results, which were done for 2D systems, is very good). After
the initial transient, the exponential modal decay found is solely due to absorption
in the metal, and not in the PMLs. Modal reflection at the domain boundary is very
small (reflected power less than 0.1%). Thus, for structures I, the field computed
at z = 9.0μm (shortly before the simulation domain boundary) is a pure WPP
mode without radiation. Structure II has h = 0.48μm for z < 3.9μm, and then
the wedge height decreases linearly to zero along a distance �z = 3.3μm (h(z) is
zero beyond this point). Figure 4.16a shows a longitudinal cross section at the ZY
plane (side view), while Fig. 4.16b shows the same but at the ZX plane at a height
h = 0.3μm (top view) of the electric field amplitude. The mode runs from left to
right. From panels (a) and (b) reflection seems to be very low. As the wedge height
decreases, the modal size expands. This is observed in panels (c–f), which display
the corresponding transverse cross sections (XY planes at various z-coordinates). For
comparison, we have considered structure III, which is identical to structure II for
z < 4.6μm but with a wedge height abruptly becoming zero after this point (side and
top view in panels (g) and (h), respectively). In this case we observe strong reflection
at the discontinuity.

We now want to evaluate non-ohmic losses during WPP→SPP conversion in
structure II. To this end, for every transverse cross section z < zc 
 5.8μm (zc being
the coordinate corresponding to the modal cutoff height hc), we have computed the
overlap of the field in structure II at that z, and the field of a WPP mode with the
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Fig. 4.16 Electric field amplitude in the WPP→ SPP transition (geometries are detailed in the
main text). a and b longitudinal cross sections for structure II (dashed line in (a) is the location of
longitudinal section (b)). Transverse cross sections (XY plane, at various z-coordinates) for structure
II are rendered in (c–f) (dashed lines in (b) show the position of these transverse cross sections).
Longitudinal cross sections for structure III are rendered in (g) and (h). The cartesian axes are
shown in Fig. 4.8b. The wavelength is λ = 1.5μm. The size of all panels along X and Y directions
is 1.4μm

height of structure II at z (these fields are available from our computations of type I
structures). Let us briefly describe the method used here to calculate field overlaps.
It can be shown that the electromagnetic eigenmodes supported by the translational
symmetric structure (e.g., a wedge of constant height) are mutually orthogonal [54].
Let us denote such eigenmodes as

|n〉 = |n(rT)〉 = {En(rT),Hn(rT)} (4.5)
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where n = ±1,±2,±3, . . . .The fundamental mode is n = ±1, and negative indices
correspond to modes propagating in the negative z direction. {En,Hn} stands for the
electric and magnetic field, and rT = (x, y) are coordinates in the transverse plane.
Eigenmode orthogonality reads

〈n|m〉 = 〈n(rT)|m(rT )〉
=

∫ ∫

XYplane

dxdyezEn(rT)× H∗
m(rT) = sgn(n.m)δ|n||m| (4.6)

where ez is a unit vector along the longitudinal Z axis, the star denotes complex
conjugate, and sgn(.) stands for the sign function. Let us remark that: (1) the depen-
dence on the z-coordinate, exp(iknz), has been omitted (kn is the modal wave vector),
(2) orthogonality applies both for guided and radiation modes (continuous indices
should be used to label radiation modes, but we will avoid this to simplify notation),
(3) counter propagating modes with the same index (e.g., |1〉 and | − 1〉) are not
orthogonal, (4) the scalar product of a mode with itself is proportional to the power
carried in the longitudinal Z direction, (5) in general, the integral should be carried
out in the infinite transverse XY plane. Nevertheless, when one of the modes is guided
the integrand is non-negligible only in a finite part of the XY plane, due to transverse
localization of the guided mode. Thus, in our computations of scalar products shown
later, the integration area will be the transverse FDTD simulation window, (6) in
fiber and guided optics, orthogonality conditions are routinely used even when small
losses are present. For a general non-cylindrical structure (e.g., a wedge with height
varying along the z-coordinate), a generic solution | f (x, y, z)〉 can be expanded in
eigenmodes. For each z the eigenmodes corresponding to that particular transverse
cross section, |n(x, y, z)〉, should be used:

| f (x, y, z)〉 =
∑

n

an(z)|n(x, y, z)〉 (4.7)

where the coefficients an(z) in the linear expansion are related to the projections (also
termed overlaps) of the solution | f 〉 on the various eigenmodes |n〉. For instance, the
overlap with the fundamental WPP mode (n = +1) is

〈 f |1〉(z) = 〈 f (x, y, z)|1(x, y, z)〉 =
∫ ∫

XYplane

dxdyez{Ef (x, y, z)× H∗
1(x, y, z)}

(4.8)
When absorption is present, it is convenient to normalize both | f 〉 and |1〉 in

a particular way that simplifies the bookkeeping of radiation leakage. Namely, at
every transverse cross section, z = const, the functions | f 〉 and |1〉 are normalized
to unity in the chosen finite integration area. In the following we will plot the square
of the overlap integral, |〈 f |1〉(z)|2, for the structures considered here. Notice that,
since |1〉 and |−1〉 are not orthogonal, this function may include an oscillating
term whenever reflection occurs, due to the interference of both eigenmodes and the
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Fig. 4.17 Squared overlap
integral |〈 f |1〉(z)|2 as a
function of the longitudinal
z-coordinate for various
structures. Black solid line
structure I, red line structure
II, green dotted line structure
III. The schematics on top of
the graph shows the height
profile for the three
structures considered and the
physical processes involved

subsequent formation of a standing wave. On the other hand, the function should
be constant for single mode propagation, with no reflection and negligible radiation
losses (the mentioned constant is unity with the chosen normalization). This function
is also smaller than unity when the linear expansion of | f 〉 includes other modes
different from |±1〉. In other words, |〈 f |1〉(z)|2 is smaller than unity when radiation
is present (in the chosen finite normalization area). This is expected in regions close
to the source. As we move away from it, it is expected the contribution of radiation
to the total field diminishes, thereby |〈 f |1〉(z)|2 should tend to a unit value.

Figure 4.17 renders the function |〈 f |1〉(z)|2 for the three mentioned structures.
For the function associated to structure I (black line) we distinctly observe three
phenomena: (1) small ripples, (2) a value lower than unity for z < zt = 2μm, and
(3) a value about unity for z > zt . The ripples are due to the interference of the
incoming WPP and a reflected (counter propagating) WPP at PMLs. The spatial
period of the oscillation is consistent with the WPP wave vector. From the amplitude
of the ripples it can be computed that the reflection coefficient is 0.1%. The function
being smaller than unity for z < zt is due to the fact that, in our FDTD simulations, the
source excites both WPP and radiation modes. The displayed behavior of |〈 f |1〉(z)|2
shows that the contribution of radiation modes to the total field | f (x, y, z)〉 is negli-
gible (in the transverse simulation window) after the excitation transient (i.e., for
z > zt ). Finally, a value of the function about unity for z > zt demonstrates that,
after the excitation transient, radiation does not leak anymore (ohmic absorption is
the only source of losses after the excitation transient in structure I). The analysis
of structure II (red line) is analogous: the reflection is still very small (0.2%) and
not important for our purposes. This tiny reflection is most likely caused by the
discontinuity (at zd = 3.9μm) in our conversion device. The radiation losses in the
excitation transient are similar to those discussed for structure I. Finally, the function
|〈 f |1〉(z)|2 is plotted as long as the WPP mode exists (i.e., for z < zc = 5.8μm).
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Fig. 4.18 Near field image of the vertical (dominant) component of the electric field

The graph demonstrates that radiation leakage induced by our conversion device
is very small: less than 5% for zt < z < zc. These are the important results of
this section: our W P P → S P P conversion device produces very little amount of
reflection and radiation up to the coordinate zc, where the WPP mode reaches the
cutoff and the field extends outside the simulation window. The data corresponding
to structure III (green dotted line) show large oscillations due to the reflection of
the WPP mode at the abrupt height discontinuity (zI I I = 4.6μm). Reflection is
estimated to be about 20% in this case. In summary, reflection and radiation can
be estimated with the help of overlap integrals. The performed tests show that the
W P P → S P P conversion device with varying height produces very small reflection
and radiation losses.

Besides, quantitative comparison between the field computed for structure II in
the transverse cross section at z = 9μm and that of a pure SPP shows that the field is
mainly a SPP at this coordinate. It is difficult to distinguish between radiation, SPP,
and WPP along the remaining length available in the simulation domain, as all these
modes have similar wavelengths at the chosen telecom wavelength (λ = 1.5μm).
As an aid for the visualization Fig. 4.18 shows a cross section of the real part of the
electric field dominant component (the vertical one). Qualitatively, the field after the
end of the ramp very much resembles a SPP. A quantitative proof that a SPP is excited
follows. We have compared the decay along the vertical (Y) direction of the field
computed for structure II at various z-coordinates, and the same decay for a pure SPP
on a flat surface (we have done the comparison for all vector components for both E
and H fields). Figure 4.19 renders the dominant (vertical) component of the electric
field along vertical lines located at increasing z-coordinates (colored curves) and the
same magnitude for a SPP (computed analytically, black curve). Two comments are
in order: (1) for increasing z the decay of the curves resembles more and more an
exponential function, which would not be the case if the field was pure radiation. In
other words, this suggests that, for increasing z, as radiation escapes, the field is more
akin to a SPP, (2) the agreement is not perfect for large Y, which is also expected
since interference with a certain amount of radiation is still present (the behavior of
the other important field component (Hx ) is very similar). The field at the transverse
simulation window at z = 9μm is, strictly speaking, a superposition of SPP and
radiation, but the main contribution is plasmonic (Fig. 4.19). This information can
be used to estimate the power carried by SPPs through this transverse cross section.
We have seen that the radiation contribution at the surface (z = 9μm, y = 0) is
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Fig. 4.19 Dominant
(vertical) component of the
electric field along vertical
lines located at increasing
z-coordinates (colored
curves) and the same
magnitude for a SPP
(computed analytically,
black curve)

negligible and there the field is essentially a SPP. Assuming that the field at the
surface (z = 9μm, y = 0, obtained from the simulation) corresponds to a pure SPP
mode, the power carried by this SPP can be evaluated as 29 % of the input power. This
value fits very well with that obtained in the simulation for the transmitted power.

This agreement is consistent with the similarity of the fields shown in Figure 4.19,
(power scales with the square of the field). We can thus conclude that the power
through the simulation window at z = 9μm is essentially carried by SPPs. Notice
that, at the end of the device, an (in-plane) angular spectrum of SPPs is excited,
so that the total power coupled as SPPs may be larger than 29%. The finite size of
the simulation domain impedes the calculation of the total power coupled to SPPs
propagating in all directions in the horizontal plane. In any case, the goal of the
device is converting the WPP mode into a SPP propagating collinear with the Z-axis.

Finally, in structure II, WPP modes do not exist for h < hc. Moreover, such a
device converts a WPP mode to SPPs propagating with an in-plane angular spectrum.
For both reasons the coupling of WPP to Z-propagating SPP may be reduced. These
restrictions should not apply for WPP(∞) modes when the angle is the control
parameter along the Z-axis. Therefore, we expect a better performance for a structure
where the wedge angle φ is continuously varied from a flat surface (φ = 180◦) to a
wedge with φ = 20◦. Three-dimensional simulations of this case are inherently very
difficult because, by construction, the modal size grows increasingly fast as φ →
180◦. Thus, the mode cannot fit in the simulation domain, which is constrained by
the available computer memory. Nevertheless, the idea is illustrated in Fig. 4.20, that
plots the transverse electric field for decreasing wedge angles (2D MMP simulations).
Note how the field is concentrated close to the edge. The previously shown FDTD
computations and other studies [55], lead us to expect that focusing (without radiation
or reflection) can be achieved in a short length also in this case.
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Fig. 4.20 Focusing of the WPP(∞) modal field as the wedge angle φ is slowly decreased from
φ = 180◦ (SPP mode on a flat surface) to φ = 20◦. The panels display the transverse electric field
at a wavelength of 1.5μm. The lateral size of the panels is 2μm. The radius of curvature of the tip
is r = 10 nm. The color scale of the various panels is not the same

The Plasmonic “Candle”

Nanoguiding and concentrating optical radiation with SPP modes supported by
metal nanostructures is a main strategic research direction in Plasmonics [3, 56],
with implications ranging from quantum optics [57] to nano-sensing [58]. Various
configurations have been suggested for SPP nanofocusing [18, 59–63] all of them
supporting progressively more confined SPP modes in the limit of infinitely small
waveguide cross sections. However, experimental demonstrations of SPP nanofo-
cusing [64, 65] have so far been indirect (based on far-field observations of scattered
[64] or frequency upconverted [65] radiation) and inconclusive with respect to the
field enhancement achieved in the focus. Here we report a mechanism for radiation
nanofocusing with CPPs that propagate along subwavelength metal grooves being
gradually tapered synchronously both in depth and width. Efficient CPP nanofo-
cusing at telecom wavelengths is directly demonstrated.

The idea of radiation nanofocusing (and thereby of greatly enhanced electromag-
netic fields) by gradually decreasing a waveguide cross section has always been very
appealing due to its apparent simplicity. Its realization however requires for the corre-
sponding waveguide mode to scale in size along with the waveguide cross section,
a nontrivial characteristic that is not readily accessible and, for example, cannot be
achieved with dielectric waveguides due to the diffraction limit. The physics of SPP
guiding is fundamentally different and intimately connected with the hybrid nature
of SPP modes, in which electromagnetic fields in dielectrics are coupled to free elec-
tron oscillations in metals [66]. Several SPP guiding configurations exhibit, in the
limit of infinitely small waveguide dimensions, the required scale invariance, i.e., the
mode size scaling linearly with that of the waveguide. The appropriate SPP modes
are supported, for example, by thin metal films (short-range SPPs) and narrow gaps
between metal surfaces (gap SPPs) [67], and by corresponding cylindrical, i.e., rod
and coaxial, structures [20, 68]. Note that their nanofocusing [59–63] is conceptually
simple only at a fairly basic level and requires dealing with several rather compli-
cated issues, such as excitation of the proper SPP mode [64] and balancing between
SPP propagation losses (that increase for smaller waveguide cross sections) and
focusing effects [69]. The situation becomes even more complicated if one considers
SPP modes whose scaling behavior is not straightforward. Thus CPP guides, which
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Fig. 4.21 a Schematic of the
V-groove geometry and b the
taper region

(a) (b)

can be efficiently excited with optical fibres and used for ultracompact plasmonic
components [29], exhibit rather complicated behavior with respect to their geomet-
rical parameters, as we have seen in Sect. 4.3.1, and their potential for nanofocusing
of radiation has not yet been explored. An important quantity in waveguide theory is
the so-called “waveguide parameter”, V, which is a measure of the field confinement
in a particular waveguide. This parameter was previously used for planar thin-film
waveguides as a basic parameter that, along with the asymmetry parameter, allowed
charting universal dispersion curves for TE modes [70]. In this case the normalized
waveguide parameter is in the form: V = k0w

√
ε f − εs, w being the film thickness,

ε f and εs the dielectric constants of the film and the substrate, respectively. Based on
the last expression, we approach the problem of CPP nanofocusing by making use of
the following (approximate) expression for the normalized (CPP-based) waveguide
parameter [71]:

VCPP ∼= 2

√
k0dεd

√|εd − εm |
|εm |tan(θ/2)

≡ 4d

√
πεd

√|εd − εm |
λw|εm | (4.9)

λ is the light wavelength (k0 = 2π/λ), d and w are the V-groove depth and width,
θ is the groove angle so that tan(θ/2) = 0.5w/d, εd and εd are the dielectric
constants of dielectric and metal (See Fig. 4.21a). It has been demonstrated that V-
grooves with different dimensions and operating at different wavelengths but having
the same waveguide parameter feature very similar field confinement [71]. If the
CPP waveguide groove depth and angle are gradually and synchronously decreased,
the corresponding waveguide parameter (Eq. 4.9) could be kept constant. In this case
(and within the same approximation [71]), one can show that the CPP effective index
of nanometer-sized V-grooves diverges towards the taper end: nCPP ≈ (k0d)−1,

i.e., it behaves in the same manner as that of the SPP mode of a tapered nanowire
[60]. In the adiabatic approximation, the CPP field is continuously squeezed by
the walls of a tapered V-groove with the maximum field being limited only by the
CPP propagation loss. In general and similarly to the nanofocusing with nanowires
[69], the field enhancement at the taper end is a result of the interplay between CPP
dissipation (contributed to by CPP absorption, reflection and out-of-plane scattering)
and field squeezing.

In order to gain further insight and reveal the potential of CPP nanofocusing,
we have conducted 3D-FDTD simulations for V-grooves terminated with tapers
of different lengths. In the considered configuration, the metal (gold) surface is
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deforming from the straight channel geometry to a flat surface in a continuous way
along the mode propagation direction, i.e., along the Z-axis (Fig. 4.21a). In other
words, the channel parameters are kept constant (d0 = 1μm, φ0 = 28◦, w0 ∼=
450 nm) during the initial 20-μm-long propagation and then become functions of
the z-coordinate. We considered linear tapering with respect to the groove depth:
d(z) = d0(1 − (z − z0)/t), where t is the taper length, z0 is the starting coordinate
of the taper and z0 < z < z0 + t (Fig. 4.21b). At the same time, the groove width
was adjusted following four different dependencies:

w(z) = w0(d(z)/d0)
n (4.10)

for n = 0, 1, 2 and 3. Consequently, the normalized waveguide parameter introduced in
Eq. 4.9 varied as follows: VCPP(z) = V 0

CPP(d0/d(z))0.5n−1.Therefore, as the channel
tip is approached, the parameter V was maintained constant for n = 2, while V �→ 0
for n = 1 (constant-angle tapering) and n = 0 (constant-width tapering), finally
V �→ ∞ for n = 3.

The tight confinement of the mode requires very fine meshes (we used a mesh
of 10 nm), for a working wavelength in the telecom regime. The simulation domain
is a parallelepiped surrounded by PMLs to avoid spurious reflections on the system
boundaries. The fundamental CPP mode is excited by a monochromatic oscillating
magnetic dipole source pointing along the z direction and located at z = 1μm into the
channel. Such a light source has the same E-field symmetry of a CPP, so it efficiently
couples to CPPs. The excitation wavelength is chosen to be 1,480 nm.

Near field information can be readily retrieved once the stationary state is reached,
as it is shown in Fig. 4.22. In this figure we can see field distributions through the
lateral (y–z plane) cross sections where the groove width and depth decrease in
accordance with the different dependencies described with (a) n = 0, (b) n = 1,
(c) n = 2, (d) n = 3. We have chosen the 2-μm-long taper because it features the
best enhancement in all cases, as we will see later on. Besides the occurrence of a
very bright spot in near-field (Fig. 4.22), these simulations show the increase of the
standing wave pattern contrast for the taper with n = 2 (that is obviously related to
a corresponding increase of the reflection efficiency of the taper) as well as a strong
scattering in the taper region (especially for n = 0 and 1). However, the simulated
V-groove taper (with optimum parameters: t = 2, n = 2) characteristics are much
better with respect to the field enhancement.

Normalized to the non-tapered channel CPP optical signals (|E |2) for different
n values are shown in Fig. 4.23a. These optical signals are extracted from Fig. 4.22
along the dashed line drawn in panel (a) as reference, which is placed at 10 nm above
the metal surface. As we can see, the best performance (with respect to the field
enhancement achieved at the taper end) is found for n = 2, obtaining a maximum
value of ∼1,000. This result is reinforced by the dependence of the optical signal at
its maximum value through the direction normal to the surface, which is depicted
in Fig. 4.23b. In this figure is clearly seen the evanescent character of fields above
the surface for n = 2 and 3. In contrast, for the cases n = 0 and n = 1 the
field near the surface does not decay exponentially because radiation dominates
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(a)

(b)

(c)

(d)

Fig. 4.22 3D-FDTD simulations of CPP field distributions through the lateral (y–z plane) cross
sections calculated for 2-μm-long tapers (λ = 1,480 nm). The groove width and depth decrease in
accordance with the different dependencies described by Eq. 4.10 with a n = 0, b n = 1, c n = 2,
d n = 3. Insets show the corresponding near-field maps at sample surface plane ∼10 nm over the
surface (indicated with dashed line in the main figure a)

over reflection at the taper end. The field near the surface does not exponentially
decay because of radiation dominates. The theoretical findings agree well with our
qualitative considerations in the sense that the groove tapering should be conducted
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Fig. 4.23 a Depicts the
normalized CPP optical
signal at 10 nm distance over
the flat metal surface
(y ∼ 1μm) along the
propagation direction (z), for
the 2-μm-long taper and
different n values. The
dashed line shows the
exponential fitting of the
optical signal along the
non-tapered channel. b
Optical signal through the
direction perpendicular to
the surface (y) at maxima (a)

(a)

(b)

so that the groove depth and width decrease in accord, keeping the normalized CPP
parameter (Eq. 4.9) constant.

Concerning the optimum taper length, we believe that its value is mainly controlled
by the constructive interference of the propagating (towards the taper) and reflected
CPP modes, though it is affected by the CPP propagation loss as well. Figure 4.24
shows different cross sections of the field amplitude (|E |) along the propagation
direction at 10 nm above the metal surface (y∼1μm) for different taper lengths, for
the case n = 2 (Note that the beginning of the ramp is in this case placed at z = 1μm).
As we advanced, the greatest enhancement is achieved for the 2-μm-long taper.

For the experimental verification of the idea, different samples were fabricated
using focused ion-beam (FIB) milling by the group of Prof. T.W. Ebbesen at the
Laboratoire de Nanostructures, ISIS (Universitè Louis Pasteur). The samples were
done in a 1.8-μm-thick gold layer, deposited on a glass substrate coated with
ITO. Several straight 150-μm-long V-grooves were milled with the angles close
to 28◦ and depths of 1.1–1.3μm, which were gradually tapered out over different
distances t = 2, 3, 4, and 6μm. The fabricated structures were characterized with a
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Fig. 4.24 Cross sections of
the field amplitude along the
z direction at 10 nm above the
metal surface for different
taper lengths, being n = 2

collection scanning near-field optical microscope (SNOM) by the group of Prof. S.I.
Bozhevolnyi in Aalborg (Denmark) at the Department of Physics and Nanotech-
nology. Experimental details on the SNOM setup can be found elsewhere [29].

The SNOM investigations showed that all fabricated structures exhibited the effect
of signal enhancement at the taper end, with the near-field optical images featuring
subwavelength-sized bright spots located at the taper end as judged from the (simulta-
neously recorded) topographical images (Fig. 4.25a and b). The largest enhancement
of the signal was observed for the and 2-, 3-μm-long tapers (Fig. 4.25c and d) in
accordance with FDTD results. The CPP propagation length was estimated to be
≈50μm. This values was obtained from the exponential fit to the optical signal
variation along the CPP propagation, for different tapered V-grooves excited at the
wavelength of 1,480 nm. While this value is consistent with previous observations
[29], it does not agree with the theoretical one appearing in Fig. 4.23, which is about
14μm. This discrepancy may be due to the theoretical structure having a more acute
angle which, as we have investigated in Sect. 4.3.1, implies higher absorption levels.
The experimental value is also consistent with the measured signal enhancement 
,
defined as the ratio between the maximum signal in the tapered V-groove and that
expected at the taper end coordinate in the absence of tapering (Fig. 4.25e).

In any case, we should emphasize that the relationship between near-field optical
signal distributions and field intensity distributions existing near the sample surface
(in the absence of a SNOM probe) is very complicated [72], as it is not obvious how
the EM fields couple to the SNOM tip. Even in a very simple approximation of the
dipole-like detection (taking place at the position of an effective detection point inside
a fibre probe) [73], different field components contribute differently to the detected
signal, making it impossible to directly relate the near-field intensity distributions and
the corresponding SNOM images. In this situation, it is extremely important to control
that the detected signal does originate from the evanescent field components (and
thereby is associated with the focused CPP fields), since the detection of propagating
waves, such as scattered at the taper, is much more efficient than that of evanescent
ones [73]. Near-field optical images were recorded with shear force feedback, a few
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Fig. 4.25 Plasmonic candle.
a Topographical and b, c
Near-field optical (λ = 1,480
nm) SNOM images in
different presentations in
order to emphasize the signal
enhancement 
 realized at
the taper end. d The optical
SNOM image obtained with
the 3-μm-long taper. e
Renders the normalized
cross sections obtained with
the optical images (similar to
those shown in (c) and (d))
recorded for the tapered
V-grooves, with different
taper lengths

(a)

(b)

(c) (d)

(e)

nanometers away from the surface, and then with the SNOM fibre probe scanning
along a plane located ≈100 nm from the sample surface (Fig. 4.26).

A drastic signal decrease, and significant image blurring, observed with the
increase of the probe-surface distance signifies unambiguously that the bright spots
seen on the SNOM images are indeed the result of detection of evanescent (CPP)
field components. It is further seen that, for the 2-μm-long taper, the maximum
optical signal (at the bright spot) decreased by a factor of ≈6 (cf. Fig. 4.26b and c)
while the CPP-related signal measured away from the taper region decreased only



4.3 Guiding and Focusing EM Fields with CPPs and WPPs 127

t = 2 m

h ~ 100 nm

t = 3 m

S Smax~9.2 max~1.6 VV

V

1 m

h ~ 100 nm

S Smax~7.3 max~1.5 V

(a) (b) (c)

(d) (e) (f)

Fig. 4.26 Influence of evanescent field components at telecom (λ = 1,480 nm). a and d Topograph-
ical images for the 2- and 3-μm-long taper samples, respectively. Their corresponding nearfield
optical SNOM images (with shear force feedback) are shown in (b) and (e). c and f Same as in (b)
and (e) but at 100-nm distance from the sample surface with the tapered V-grooves. The decrease
in signal and the significant image blurring when increasing the probe-surface distance reveal the
dominance of evanescent field components in the images obtained

by a factor of ≈2. It is reasonable to assume that, in both cases, the optical signals
(being proportional to the field intensity at an effective detection point [73]) decrease
exponentially with the probe-surface distance but at different rates, because the corre-
sponding optical fields are laterally confined to the different widths. The latter implies
that the observed intensity enhancement decreases also exponentially with the height
of observation plane. Finally, taking into account the circumstance that the effective
detection point is located typically ≈150 nm away from the tip end [73], we obtained
≈90 as a ballpark estimate of the field intensity enhancement realized at the sample
surface with the 2-μm-long taper. It is worth to mention that the simulation results
are consistent with the experimental observations, which feature (1) the strongest
enhancement for the 2-μm-long taper, (2) the occurrence of a very bright spot in
near-field optical images and (3) the interference fringes indicating the CPP reflec-
tion and scattering in the taper region (cf. Fig. 4.26 and Fig. 4.22c). At the same time,
the field enhancement estimated from the calculations is much larger than even the
ballpark estimate. Indeed, using the same definition as before one obtains (Fig. 4.23a)
the computed field intensity enhancement of ≈ 1,000 for the 2-μm-long taper with
n = 2. Interestingly the maximum values is reached inside the channel, as Fig. 4.23b
shows. On the other hand, some difference should be expected given the limited FIB
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Fig. 4.27 Plasmonic
candlestick. a SEM image of
a multichannel configuration
for delivering nanofocused
and enhanced radiation to
four spatial locations via
consecutive 5-μm-long
Y-splitters terminated with
2-μm-long tapers (see the
inset with an overview SEM
image). b Microscope image
of a coupling arrangement
superimposed with the
far-field image taken at the
excitation wavelength
λ = 1,500 nm with an
infrared camera, showing the
track of CPP propagation
and four bright spots at the
tapers. c Near-field optical
(λ = 1,500 nm) SNOM
image demonstrating
significant signal
enhancements realized at the
four groove tapers, with
signal levels being similar
and exceeding greatly even
the signal level at the input
channel

2 m

50 m

5 m

(a)

(b)

(c)

resolution and the fact that the maximum field intensity is calculated to be fairly
close to the taper end with the taper width being only ≈50 nm (while the groove
depth is still ≈300 nm).

Finally, it have been explored the prospect of realization of a multichannel configu-
ration for delivering nanofocused and enhanced CPP fields to several different spatial
locations by making use of consecutive Y -spli t ters (Fig. 4.27). The level of signal
enhancement observed with the SNOM images was fairly constant for the four tapers
amounting to a factor ≈5 with respect to the signal at the input channel, which is
consistent with the enhancement of ≈20 observed for the individual 2-μm-long
taper (Fig. 4.25c), given the power distribution between four channels. This experi-
ment demonstrates that the suggested approach for radiation nanofocusing is rather
versatile and robust, features that are extremely important for future applications.
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4.4 Conclusions

First, we have proposed an efficient unidirectional source for SPPs. The way to
achieve this is coupling-in with SPPs by means of a subwavelengt aperture in
the back-side illumination montage. This proposal allows the modulation of such
coupling-in by means of a finite array of grooves. Our approach is based on a simple
wave interference model that, despise of the simplified description of some of the
physics involved, has been found in good agreement with both sophisticated computer
simulations and experimental measurements at NIR and telecom ranges.

Additionally, we have investigated the guiding properties of the plasmonic modes
supported by straight metallic grooves and wedges. We have briefly discussed the
results obtained by two different rigorous numerical techniques. The dependence on
various geometric parameters of the modal dispersion, size, polarization, and losses
have been analyzed. The knowledge of these properties can be of great help for the
analysis of plasmonic devices featuring edges and corners. Both CPP and WPP modes
are quite well confined in the transverse plane and their losses are reasonably low.
These properties make them very interesting candidates for plasmonic interconnects.

Finally, we have also explored the possibility of light focusing via the geometry-
driven conversion of a standard SPP into a tightly confined WPP. On the other hand,
based on CPP supporting structures we have demonstrated that intense EM fields can
be achieved by tapering a channel in a proper manner. This approach has been found
rather versatile and robust as it would be desired for future applications. Indeed, one
can envisage further development of these concepts for other plasmonic waveguides
based on gap SPP modes [71] as well as applications for miniature bio-sensors.
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Chapter 5
Optical Field Enhancement on Arrays
of Gold Nano-Particles

5.1 Introduction

Light scattering by arrays of metal nanoparticles gives rise to nanostructured optical
fields exhibiting strong and spatially localized (on a nanometer scale) field inten-
sity enhancements that play a major role in various surface phenomena. The local
field enhancement effects are of high interest, in general, for fundamental optics
and electrodynamics [1], and for various applied research areas, such as surface
enhanced Raman spectroscopy [2] and microscopy including optical characteriza-
tion of individual molecules [3]. Furthermore, the highly concentrated EM fields
around metallic nanoparticles are thought to enhance, in turn, non-linear effects,
which could pave the way for active plasmonic-based technologies. Also biotech-
nology can take advantage of such high intensified optical fields as for instance, it
has been demonstrated in trapping living cells [4]. Individual metal particles can
exhibit optical resonances associated with resonant collective electron oscillations
known as localized surface plasmons (LSPs) [5]. Excitation of LSPs results in the
occurrence of pronounced bands in extinction and reflection spectra and in local field
enhancement effects. On the other hand, random arrangements of gold particles on
gold film are well known substrates for the observation of strong surface enhanced
effects like surface enhanced Raman scattering (SERS) [2, 6] or surface enhanced
luminescence [7, 8]. The physical mechanism responsible for the surface enhanced
effects is at least partly related to the strong optical near fields close to resonantly
driven surface plasmons on nano-structured metal (usually gold or silver) surfaces
[5]. On random substrates (e.g. deposited colloid, electrochemically roughened or
evaporated films) so-called “hot-spots” are observed, i.e strongly localized areas on
the substrate, where the enhancement is particularly strong [6]. For these hot-spots
record enhancement values for SERS of up to 1014 have been reported [2]. These
huge enhancements are considered to be related to narrow gaps between neighboring
nanoparticles, which are electromagnetically coupled across the narrow gap thereby
causing huge fields inside the gap [6]. This interpretation is qualitatively supported
by different simulations, but a detailed understanding of the effect is still missing.
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On one hand, numerical simulations are challenging due to computational limits
causing restrictions to the minimal cell size and due to the limited knowledge of
the (non)local behavior of the metal dielectric function in these size regimes. On
the other hand, these very narrow gaps are also experimentally demanding, both
in the exact metrological characterization below the 10 nm range and the repro-
ducible fabrication of such structures with nm precision or better. These drawbacks
might be addressed by arranging the particles. In this way, the enhancement effects
present in random particle distributions on gold may be further enhanced due to reso-
nant interactions between particles periodically arranged. For metal particles placed
on a metal surface, inter-particle interactions can be mediated by surface plasmon
polaritons (SPPs), whose resonant excitation can be achieved by tuning the array
periodicity.

The search for configurations ensuring reliable realizations of strongly enhanced
local fields is often conducted with the help of linear extinction/reflection spec-
troscopy, where minima in the transmitted/reflected light intensity are associated
with the excitation of system resonances (see [9] and references therein). This char-
acterization technique is considered reliable but lacking spatial resolution, since the
spectra are influenced by a whole illuminated area containing many nanoparticles.
In addition, the information obtained is not direct, since the relation between the
extinction/reflection minima and local field enhancements is rather complicated. For
example, the extinction is determined not only by the absorption and scattering of
individual particles but also by the scattering diagram of a given particle array [10]. A
more direct approach for the evaluation of local field intensity enhancement has been
recently developed [11]. This technique is based on the fact that strongly enhanced
local fields due to the excitation of LSPs in gold nano-structures give rise to two-
photon absorption. This, in turn, leads to a broad emission continuum generated by
inter-band transitions of d-band electrons into the conduction band known as two-
photon luminescence (TPL) [12–15]. It has been demonstrated that nonlinear scan-
ning optical microscopy, in which the TPL excited with a strongly focused laser beam
is detected, can be used for characterization of the local field intensity enhancement
in gold nanoparticles (bow-tie nano antennas) and at their surfaces [11]. However,
it was difficult to ascertain the accuracy of a main formula used in the developed
approach, since a crucial parameter, viz., the area of TPL origin, had to be found
in the course of simulations [11]. It would be advantageous to verify this approach
by using the same modeling tool for the (same) scattering system investigated not
only with the TPL but also with another, preferably well-established experimental
technique (e.g., extinction spectroscopy).

In this chapter, we summarize our results [16–18] on the optical response (extinc-
tion spectroscopy and TPL emission) of regular arrays of rectangular gold nanopar-
ticles deposited either on glass (Sect. 5.3) or on gold (Sect. 5.4) substrates, which are
investigated from the theoretical and experimental point of view. In order to model
the optical response, we use the finite-difference-time-domain (FDTD) approach (see
Sect. 1.2). The nanoparticle samples were made by Dr. A. Hohenau and Prof. J.R.
Kreen at the Karl-Franzens University and Erwin Schrödinger Institute for Nanoscale
Research in Graz (Austria). They also characterized the samples by using linear

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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extinction spectroscopy. The TPL measurements were carried out by Dr. J. Beermann
and Prof. S.I. Bozhevolnyi from the Department of Physics and Nanotechnology at
Aalborg University.

5.2 Sample Description and Methods

5.2.1 Simulations

The structures consist either on gold particles on top of an semi-infinitely extending
glass substrate (gold-on-glass) or on gold particles on top of a 55 nm thick gold film
deposited also on a glass substrate (gold-on-gold). The fields were calculated in a box
of�x ×�y × 1.3μm with periodic boundary conditions at the walls perpendicular
to the substrate and an “uniaxial perfect matched layer” (UPML) at the walls parallel
to the substrate. Additionally, the Complementary Concurrent Operators Method
(CCOM) layers were also added to the UPML layers (Sect. 1.2.5). The parameters
defining the CCOM layers were chosen complementary to the UPML layers. In this
way, one can use thinner UPML layers and still absorb better the energy flowing at
grazing incidence. This is of special importance in the considered system, as small
SPP peaks in reflection have to be resolved and small errors in the reflection of grazing
modes due to unwanted lack of absorption by the absorbing layers could be attributed
spuriously to SPP resonances. Typically the cell size was 5×5×5 nm in space and the
time steps were 0.0077 fs (corresponding to a Courant-Friedrich-Levy factor of 0.8),
to guarantee the numerical stability of the (3D) simulations. Moreover, we found that
after a simulation time of 100 fs, convergency was guaranteed. As usual, the dielectric
function for gold was approximated by a Drude-Lorentz formula (see Sect. 1.2.4). In
the simulations, the structures were excited by a Gaussian wave-packet composed of
plane waves with wave-vector k perpendicular to the substrate and all frequencies
of interest (Sect. 1.2.2).

Spectra were calculated after projection onto diffracted modes (Sect. 1.2.3). In
the comparison with experimental data, only the zero order mode was considered in
the post-processing, as experimental intensities were collected in a small solid angle
centered around the normal direction.

For the calculation of the TPL enhancement, we assume that the TPL signal
originates from the “top” layer (∼half a skin depth deep) of the covered gold areas
following the surface topography. The achievable TPL intensity enhancement factor
α(λ) can be evaluated from the electric field amplitudes E by

|α|2(λ) =
∫ ∫

Acell
|E(x, y, zb, λ)|4dxdy∫ ∫

Acell
|E(zm, λ)|4dxdy

, (5.1)

where the quantity |E(x, y, zb, λ)|4 integrated over the top layer of the gold surface
(bump or unit cell) is assumed to be proportional to the TPL-signal from the array

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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Fig. 5.1 SEM images of the investigated arrays of rectangular gold nanoparticles on glass substrate
with a �x = �y = 740 nm and dx = dy = 130 nm (type A), b �x = 2�y = 740 nm and dx =
dy = 130 nm (type B) and c with �x = �y = 740 nm and dx = 0.5dy = 130 nm (type C).
d Sketch of the arrays defining the different parameters. The array and particles dimensions were
varied between the different samples in the range of (all dimensions in nm): 130 ≤ dx ≤ 160, 65 ≤
dy ≤ 320 h = 25 or 50, 740 ≤ �x ≤ 860 and 370 ≤ �y ≤ 1740

and compared to |E(zm, λ)|4 integrated over the same size of area, but from a smooth
gold film without particles. Using simulated intensity enhancement maps as those
will be shown later, but obtained for several excitation wavelengths, it is possible to
estimate the spectral dependence of the achievable TPL enhancement.

5.2.2 Experimental

The gold-on-glass particle samples consist of 2D-arrays of nominally rectangular
gold particles on top of a 0.5 mm thick glass-substrate (Fig. 5.1) produced by electron
beam lithography [19]. The dimensions of nanoparticles (∼150 × 150 × 50 nm3)

were chosen to realize the LSP resonance with a polarization parallel to the substrate
close to the wavelength of 750 nm, so that its influence could be observed both,
in optical spectra and TPL images. On the other hand, the gold-on-gold particle
samples consist of 2D-arrays of nominally rectangular, 50 nm high gold particles on
top of a 55 nm thick gold film on glass-substrate (inset Fig. 5.11b) produced also by
electron beam lithography. The overall size of the arrays is 100 × 100μm2. The
lateral dimensions of the particles and the grating constants of the arrays were varied
to systematically study their influence on the optical extinction and reflection spectra
and the TPL signal.
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Extinction spectra were recorded by a Zeiss MMS-1 micro-spectrometer attached
to a conventional optical microscope equipped with a 2.5×, 0.075 numerical aper-
ture objective. To control the polarization of the incident light, a polarizer is inserted
in the optical path of the microscope. The extinction is calculated from the transmis-
sion of the arrays on the substrate (T) with reference to the transmission of the bare
substrate (Tglass) as log10

(
Tglass/T

)
, for the gold-on-glass samples. Importantly

the reference for the reflection spectra was taken on the plain, unstructured gold film
outside the areas covered with particle arrays, for the gold-on-gold samples.

The experimental setup for TPL scanning microscopy enables to simultaneously
record the TPL signal (detected by a photomultiplier) and the backscattered light
(detected by a photodiode) as a function of the sample position with the resolution
determined by a focal spot size of the excitation laser at the sample surface (∼1μm)
[20, 21]. In these experiments, it was used a 200 fs Ti:Sapphire laser at a repetition
rate of 80 MHz with a linewidth of ∼10 nm and an adjustable polarization plane.
The laser wavelength can be tuned between 720–900 nm, which permits to make
spectrally resolved studies of TPL efficiency. The typical average incident power is
in the range of 0.1–50 mW.

5.3 Spectroscopy and TPL of Au Nanoparticle Arrays on Glass

In this section, we combine the results of TPL microscopy (in the wavelength range
of 720–800 nm) with theoretical modeling based on the FDTD, where only the inde-
pendently determined geometry and dielectric functions of the sample were used
as input without any adjustable parameters. Additionally, the theoretical results are
compared carefully to experimentally recorded extinction spectra (in the wavelength
range of 450–950 nm) to verify the quality of the modeling. In general, the individual
LSP resonances of nanoparticles can be tuned by varying both, particle dimensions
and shapes [22], while the resonances stemming from multiple interactions within
the grating of particles (scatterers) can be tuned by varying the grating period or gap
between particles [9, 11, 23]. We pay special attention to the case when the indi-
vidual LSP resonance is matched to the grating resonance since one could expect
a strong modification of the field intensity enhancement compared to the “normal”
case [1, 11].

5.3.1 Spectroscopy

We first investigate numerical extinction spectra compared to the experimental results
of the fabricated arrays of gold particles on glass substrate, aiming at identification of
the LSP resonances and understanding of their interrelations with the particle shapes
and sizes as well as the array periods in analogy to the previous studies of arrays of
ellipsoidal particles [5, 10].
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To demonstrate the influence of particle shape and array parameters on the extinc-
tion spectra, we focus in the following on three different types of arrays (see Fig. 5.1):
(A) arrays with �x = �y and dx = dy (quadratic array of quadratic particles),
(B) arrays with �x = 2�y and dx = dy (rectangular array of quadratic parti-
cles), and (C) arrays with �x = �y and 2dx = dy (quadratic array of rectan-
gular particles). For all arrays, we kept �x = 740 nm and recorded spectra for
dx = 130, 140, 150 and 160 nm.

Figure 5.2 depicts the experimental and simulated extinction spectra of arrays of
type A. The dominating feature in the experimental spectra is one broad extinc-
tion peak with a maximum between 710 and 810 nm, depending on the polarization
and particle size. In analogy to ellipsoidal particles, this extinction peak can be
attributed to the excitation of the LSP resonance with dominating dipolar character.
Since the particles are rectangular in shape, we can assume that several excited LSP-
eigenmodes contribute to this extinction peak [5]. With increasing lateral particle
dimensions (the particle height was kept constant) we observe a red-shift and an
increase in extinction strength, as it would be the case for arrays of simple ellipsoidal
particles of increasing size as well. The slight blue shift of the spectra recorded
with polarization parallel to the y-axis compared to those recorded with polarization
parallel to the x-axis stems from a slight asymmetry in the actual x and y-dimension
of the particles.

The simulated spectra (Fig. 5.2b) agree very well, both quantitatively and quali-
tatively, with the experimental spectra, thought exhibiting small (but distinct) addi-
tional dips at 740 nm and at 550 nm. These dips coincide with the excitation of the
first grating orders propagating (nearly) parallel to the sample interface on the air
and substrate sides of the particles, respectively.

In the case of type A arrays, due to the large grating constant, optical near-field
interactions between the particles only weakly influence the spectral position of the
LSP resonances [24]. This was verified by comparing the recorded extinction spectra
of type A arrays with grating constants ranging from 740 to 860 nm (not shown).
Nevertheless, a considerable effect of the grating constant is observed for arrays of
type B, whose extinction spectra exhibit not only the expected red shift for increasing
particle sizes but also a remarkable difference between the spectra obtained for x-
and y-polarizations (see Fig. 5.3). Such a strong effect can be explained as follows.

For type B arrays, the grating constant parallel to the y-axis�y is only 370 nm, i.e.,
the array periodicity is lower than the wavelength of light in air for (vacuum-) wave-
lengths larger than 370 nm and of light in the substrate (refractive index n = 1.52) for
(vacuum-) wavelength larger than 550 nm. Therefore, the coherently excited (dipolar)
LSPs can emit in the y-z-plane only to the 0th grating order. In addition, for the polar-
ization parallel to the x-axis, diffraction into the first grating order in the x-z-plane
is weak due to the dipolar far-field emission characteristic. Therefore, the radiation
damping for x-polarization is considerably reduced, resulting in narrower widths and
stronger maxima observed for the corresponding extinction peaks (compare Figs. 5.2
and 5.3). At the same time, for y-polarization, the field scattered by one particle is
of comparable strength and approximately in counter phase (due to retardation and
the phase shift between LSP and exciting field) with the incident field at the position
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Fig. 5.2 Experimental (a) and simulated (b) extinction spectra of type A arrays with �x = �y =
740 nm and dx = dy = 130, 140, 150 and 160 nm

of its next neighbors in y-direction, thereby decreasing the total field experienced by
the particles. This leads to a decrease of the extinction (normalized to the particle
density) compared to arrays of type A.

Also in case of type B arrays we find good agreement of the simulated extinction
spectra (Fig. 5.3b) with the experimental ones, except for the behavior observed at
740 nm, where the simulations show strong dips or peaks related to the occurrence of
a grazing grating order on the air side. For y-polarization, we find a similar dip in the
spectra as for type A arrays, but for x-polarization we observe a sharp peak in case
the extinction peak of the particles coincides with the grating constant (d = 160 nm;
thick, dash-dotted curve).

This behavior can be qualitatively accounted for by the aforementioned effect
of coherent superposition of the LSP fields (driven by the incident field) with the
fields scattered by the neighboring particles. For the array with the particle size
d = 160 nm, the particle separation in terms of light wavelength λ at the LSP extinc-
tion peak are �y = λ/2 and �x = λ, respectively. Assuming the LSP scattered
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Fig. 5.3 Experimental (a)
and simulated (b) extinction
spectra of type B arrays with
�x = 2�y = 740 nm and
dx = dy = 130, 140, 150
and 160 nm

fields to be qualitatively similar to the fields emitted by a point dipole, the electric
field in the direction of the induced LSP is dominating over that in transverse direction
(in this distance regime). Due to retardation, the scattered field of one particle at the
position of its next neighbor (in the direction of the dipole) has a phase shift close toπ
for y-polarization or 2π for x-polarization, respectively. Therefore either destructive
or constructive interference occurs which is responsible for the dip or peak in the
extinction spectrum. This effect is clearly seen in the distributions of optical near-field
intensity calculated for different polarizations. For x-polarization (Fig. 5.4), there is
constructive interference of the LSP fields of one particle and the fields scattered
by its neighboring particles, similar to the resonance of a series resonant circuit.
Therefore the field intensities at the top corners of the particle are very strong. In
contrast, for y-polarization (Fig. 5.5), we find (due to destructive interference) very
weak field intensities at the top corners of the particle, similar to the antiresonance of
a parallel resonant circuit. This spectrally sharp constructive or destructive interfer-
ence of the calculated local fields also changes the field strength within the particles
and is therefore recognized in the far-field by a decrease or increase of the extinction.
However, this effect is not readily observed in the experimentally recorded spectra.
We will explain this along with other observed discrepancies between experiments
and theory in Sect. 5.5.

Finally, let us consider the influence of the particle shape on the spectra. Figure 5.6
displays the experimental and simulated extinction spectra for type C arrays with
�x = �y = 740 nm and rectangular particles with dy = 2dx . Whereas for x-
polarization the extinction looks similar to that of type A arrays but with some-
what broader peaks, for y-polarization (parallel to the largest particle dimension) the
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Fig. 5.4 Simulated distribution of the local field intensity enhancement
|Ebump(r,λ)|2
|Efilm(λ)|2 around a single

gold particle (dx = dy = 160 nm, height dz = 50 nm) positioned on a glass substrate in a type B
lattice with �x = 2�y = 740 nm and obtained for a x-polarized (resonant case) exciting electric
field E as indicated on each image. The distributions are taken in planes either through the center of
the particle (a, b) or from the top (c) and bottom (d) surface of the particle as indicated by coordinate
axes on each image. The maximum levels are (a) ∼102, (b) ∼820, (c) ∼2300, and (d) ∼20000

Fig. 5.5 The same as
Fig. 5.4, but obtained for a
y-polarized (antiresonant
case) exciting electric field E
as indicated on each image.
The maximum levels are a
∼138, b ∼13, c ∼157, and
d ∼3100

extinction is very low, featuring a weakly pronounced peak (in both experimental
and simulated spectra) close to 570 nm, which we attribute to multipolar LSP exci-
tation. Due to the changed particles geometry with doubled y-dimension, the dipolar
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Fig. 5.6 Experimental (a)
and simulated (b) extinction
spectra of type C arrays with
�x = �y = 740 nm and
dx = 0.5dy = 130, 140, 150
and 160 nm. The inset in (b)
depicts the simulated
extinction spectrum for
dx = 160 nm and
y-polarization in the spectral
range from 900 to 1400 nm

LSP peak (that can be excited with y-polarization) is shifted to the near-infrared
wavelengths (at ∼1200 nm) as revealed by simulations in a spectrally extended
region (see inset in Fig. 5.6b).

5.3.2 TPL Microscopy

The good agreement found between the simulated and experimental extinction
spectra encouraged us to apply the developed modeling tool for simulations of the
field intensity enhancement and subsequent comparison with the results obtained
with the TPL microscopy. For a first comparison, we decided to choose a sample
exhibiting the most pronounced effects, i.e., large extinction values and strong polar-
ization influence. Within the range of geometrical parameters studied here, we found
the sample having square 160×160 nm2 nanoparticles but different grating constants
�x = 860 nm and �y = 430 nm fulfilling best the premises. The experimentally
measured extinction spectra as well as the results of FDTD simulations for this array
are shown in Fig. 5.7.

The TPL images were recorded at different wavelengths (730, 745, 760, 775 and
800 nm) of the fundamental harmonic (FH) illuminating the sample along with the FH
reflection images. Figure 5.8 displays exemplarily the result for the FH wavelength
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Fig. 5.7 Experimental (a) and simulated (b) extinction spectra of a gold nanoparticle array with
�x = 860 nm, �y = 430 nm, dx = dy = 160 nm

Fig. 5.8 FH (a,c) and TPL
images (b,d ) of a gold
particle array on glass with
�x = 860 nm,�y = 430 nm,
and dx = dy = 160 nm
obtained using 3 mW of
incident power at the
wavelength of 760 nm for the
polarizations indicated by
arrows on the images. The
maximum TPL signal is (b)
∼6200 and (d) ∼2000 cps

of 760 nm obtained for two polarization configurations of incident FH and detected
TPL radiation indicated by arrows on the images (the sample orientation corresponds
to that shown in Fig. 5.1b. The image size is 15 × 15μm2 with 75 × 75 points and
the incident power was kept at ∼3 mW to avoid sample damage.

The FH and TPL images (Fig. 5.8) were obtained starting ∼3μm outside the array
of particles. This relatively long distance turned out to be very important in order
to get an accurate signal reference from bare glass. The reflection from the glass
substrate is rather weak compared to the reflection from gold particles and appears
dark in the images. The individual bumps are only resolvable along the x-axis where
the separation between them is ∼700 nm.This is expected as the resolution in FH and
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TPL images has previously been determined to approximately 1μm and 0.7μm,
respectively [20]. Overall, the FH images appear similar for the investigated polar-
ization directions and wavelengths, while the TPL images are more different. For
x-polarized excitation and detection the average TPL signal from the gold particles
is relatively high and homogenous, while the y-polarization produces lower average
TPL signal but with a few bright spots appearing clearer on the dark background.
With respect to the TPL dependence on excitation wavelength, the highest signal was
observed for x-polarization and with a resonance around 745 nm. For y-polarization,
no pronounced maxima were observed and the signal was considerably weaker (in
agreement with the spectroscopy measurements). It should be noted that, in general,
the absolute TPL signal levels were found to be very sensitive to the focus adjustment
and possible gradual damage of the sample [1].

Based on the method previously used [11, 21], the average (over the particle area)
intensity enhancement factor α observed in the TPL measurements can be estimated
by comparing the TPL signals from gold nanoparticles to those from smooth gold
films. The appropriate relation is given by

α =
√

T P Lbump

T P Lfilm

〈Pfilm〉2

〈Pbump〉2

Afilm

Abump
, (5.2)

where TPL is the obtained TPL signal, 〈P〉 is the used average incident power, and A
is the area generating the TPL signal. Using this relation for the TPL-measurements
with the Abump-area kept constant, one obtains Fig. 5.9. At the 745 nm resonance we
find an average intensity enhancement of ∼111 and a maximum (measured at one
of the bright spots in Fig. 5.8) of ∼250. For sample configuration (�y = 430 nm)
there are two rather than one particle within the focal spot of the exciting laser beam.
This larger density of particles can be accounted for in the estimated enhancement by
using Abump = 2×(160 nm)2, resulting in the average intensity enhancement of ∼80
and a maximum of 177. This indicates, that the particle near-field interaction of this
sample plays only a minor role for the generation of the TPL signal for x-polarization.

5.3.3 FDTD-Results on TPL

In Fig. 5.10 the intensity enhancement values estimated from the simulations are
depicted for the wavelength range 450–1100 nm with 20 nm steps. As seen in Fig. 5.10
the simulated TPL intensity enhancement for square particles (160 × 160 nm2) in
a rectangular lattice geometry (�x = 860 nm, �y = 430 nm) exhibits the same
clear polarization dependence as observed in the TPL microscopy measurements (see
Fig. 5.9). Furthermore, for both simulated and measured intensity enhancements the
ratio between x- and y-polarization is of the same order of magnitude, though the
absolute levels are different. The difference in the peak enhancement levels and the
slightly shifted to shorter wavelengths peak position (around 750 nm) will be also
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Fig. 5.9 Experimental
spectral dependence of the
average TPL enhancement
(Eq. 5.2) obtained from the
particle array on glass. Solid
and dashed lines represent
x- and y-polarization,
respectively

Fig. 5.10 Simulated spectral
dependence of the average
TPL enhancement obtained
from the particle array on
glass

explained in Sect. 5.5. The most interesting feature in this context is that, in the
simulated field enhancement spectra, one observes a clear red shift of the maximum
with the increase of the array period (Fig. 5.10). We found a similar linear shift also for
other array periods (not shown). Note that the extinction spectra depend only weakly
on the period in this range. Overall, there are indications that the extinction and field
intensity spectra of particle arrays might reach maxima at different wavelengths, but
this conjecture would require a separate study that can corroborate its existence and
explain its origin.

5.4 Spectroscopy and TPL of Au Nanoparticle Arrays
on Gold Films

In this section, we apply again the techniques of reflection spectroscopy and TPL
microscopy along with the FDTD modeling to study gold nanoparticle arrays placed
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on a gold surface, aiming at optimizing the array geometry for TPL enhancement and
elucidating the roles played by LSP and SPP resonances in local field enhancement
effects as well as gaining further insight into the electrodynamical processes involved
in TPL generation.

5.4.1 Reflection Spectra

We first consider the far-field reflection spectra of the particle arrays to confirm
that the FDTD method is applicable to this system and leads to results in reasonably
good agreement with the experiment. Figure 5.11 depicts the experimentally recorded
and FDTD simulated reflection spectra for arrays with particles of approximately
150 × 150 × 50 nm3 in a square array with periods �x = �y = 740, 780, 820 and
860 nm. Due to the symmetry of the arrays, the spectra for x- and y-polarization
look identical. In very good agreement between experiment and simulations, the
reflection spectra display distinct features in three wavelength regions: (A) a single,
broad reflection dip at ∼550 nm independent of the array period, (B) a dip at the long
wavelength wing of the 550 nm dip and (C) a dip (in case of the experimental spectra
with a shoulder ∼20 nm to the blue of the dip) at a light wavelength close to the
value of the array period (740−860 nm).Whereas the independence of dip A on the
array period points towards the excitation of a mode localized to the single particles,
i.e., the LSP mode, the dip structures B and C clearly depend on the array period and
can therefore be related to coupling between the particles. A closer analysis of the
spectral dip positions allows to clarify their origin (Fig. 5.12).

Dip C as well as dip B are exactly at the position expected for grating coupling
to SPPs on the air-gold interface in the [1 0] and [1 1] mode (the SPP dispersion
relation on the array is assumed to follow that of the SPP on an unstructured surface
of a 55 nm thick gold film [25]). The experimentally observed shoulder ∼20 nm to
the blue of dip C in turn is close to the spectral position expected for coupling to
grazing grating orders in air. The slight blue shift of its observed spectral position
compared to the “ideal” position is due to the far-field emission pattern of dipoles or
multipoles above a plane interface, which show considerable strength only close to
the grazing angle but are vanishing in the direction parallel to the interface [26]. This
shoulder appears much weaker in the simulations and is not discernible in Fig. 5.11b.

To gain information on the parameters which determine the spectral position and
strength of the LSP resonance and the grating coupling dips, we produced and inves-
tigated samples with different particle shapes and array geometries. For example,
rectangular particles created by either bisecting (not shown) or doubling (dash-dotted
curves, Fig. 5.13) the y-dimension of the particles lead to a slight splitting of the LSP
resonance (peak A) for different polarizations.

For the latter case we observe a red shift (∼20 nm) of the resonance for a polar-
ization parallel to the long particle axis (y-polarization, thin dash-dotted curve in
Fig. 5.13) and a blue shift (∼5 nm) for a polarization parallel to the short particle
axis (x-polarization, thick dash-dotted curve in Fig. 5.14). In addition, the experi-
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Fig. 5.11 a Measured and b calculated reflection spectra of particle arrays of square gold particles
(dx = dy = 150 nm, height dz = 50 nm) on a 55 nm thick gold film on top of glass (see inset
part b) for different array periods: �x = �y = 860 nm (solid line), �x = �y = 820 nm (dash-
dotted line), �x = �y = 780 nm (dashed line), �x = �y = 740 nm (dotted line). The curves
are vertically offset for clarity. The inset in a depicts the measured extinction spectra which show
features at the same spectral position as observed in the reflection spectra. The spectra are identical
for x- and y-polarization

ments for this polarization show a comparably strong occurrence of dip B (grating
coupling to the SPP along the [1 1] direction) combined with a slight red shift, for this
polarization. For the polarization parallel to the long particle axis (y-polarization) it
seems that the efficiency of coupling to grating modes is enhanced while the coupling
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Fig. 5.12 Position of the different dips observed in the reflection spectra versus array period as
measured from Fig. 5.11 (circles experiment; crosses simulation). The lines represent the expected
dip positions for grating coupling to the [1 1] (solid line) and the [1 0] (dashed line) surface
plasmon modes, the excitation of a grazing light mode (dotted line). The horizontal lines reflect the
independence of a localized mode on the array period (dash-dotted lines)

to the LSP mode gets slightly weaker. These effects are reproduced by the simulations
but their origins remain to be clarified and would require further study.

Finally, by bisecting the array period in y-direction (�x = 2�y = 860 nm) a
complete suppression of the [1 1] SPP modes can be demonstrated (dashed curves,
Fig. 5.13). This effect can be qualitatively understood by considering the grating
coupling mechanism and the optical properties of the gold film. The SPP wavelength
determined by the grating mode and the array period (i.e. 385 nm for the [1 1] mode)
requires a frequency that is larger than the onset of the gold d-band absorption.
SPPs excited within this absorption range are strongly damped and have propagation
lengths smaller than their wavelengths and the grating periodicity. Consequently, no
resonant grating excitation of these SPP modes can occur.

It is interesting to note the differences in the spectra of these arrays of gold particles
on a 55 nm thick gold film to the spectra of similar particles on glass substrate, studied
in the last section. The spectra of the particles on glass substrate are dominated by
the (shape-dependent) LSP resonance of individual particles, whose strength and
spectral width is influenced by the array in terms of suppression of different allowed
or forbidden diffraction modes. In contrast, for the particles on gold film, we find a
LSP resonance whose spectral position only weakly depends on the particle shape and
size (Fig. 5.13) and is always close to ∼550 nm. Additionally, we observe different
features corresponding to grating coupling to SPPs on the gold-air interface and
the excitation of grazingly diffracted light modes in air. The spectral position of
these features naturally depends mostly on the array period but their strength can be
influenced by the particle shape and size.
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Fig. 5.13 a Measured and b calculated reflection spectra of particle arrays with �x = �y =
860 nm; dx = dy = 150 nm (solid line), �x = 2�y = 860 nm dx = dy = 150 nm (thick and thin
dashed line for x- and y-polarization, respectively) and �x = �y = 860 nm dx = 1

2 dy = 150 nm
(thick and thin dash-dotted line for x-polarization and y-polarization, respectively). The particle
height for all arrays is dz = 50 nm. The insets show electron micrographs of the corresponding
arrays

5.4.2 Optical Near-Field Pattern

We now turn to the calculated optical near-field pattern and analyze them for the array
with �x = �y = 740 nm and particles dimension dx = dy = 150 nm and height
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Fig. 5.14 Calculated optical near-field enhancement images for the array with �x = �y =
740 nm, dx = dy = 150 nm (see Fig. 5.11), in the x–y plane at the surface of the gold-film
when excited at a 563 nm ([1 1] mode) and b 752 nm ([1 0] mode). The corresponding images in the
x–z plane through the particle center are rendered at c 563 nm and d 752 nm. The plotted quantity
is log

(|E(r, λ)/E(λ)|2) , where E(r, λ) is the electric field amplitude of the array and E(λ) is the
electric field amplitude in the top layer of a flat surface

dz = 50 nm. For this array the LSP resonance and the [11] SPP resonant excitation
coincide spectrally, leading to an enhanced SPP excitation and, therefore, a stronger
signature in the optical near-fields. We consider first the optical near-field intensities
in a x–y plane at the surface of the gold film for illumination at the wavelengths of
563 nm (Fig. 5.14a) and 752 nm (Fig. 5.14b), corresponding to the resonant grating
excitation of the [1 1] and [1 0] SPP modes, respectively (See Fig. 5.11). The images
clearly show standing wave patterns which result from the interference of the excited
SPP modes and corroborate the interpretation derived from the spectra. In the first
case (excitation at 563 nm), four equivalent SPP modes are excited: [1 1], [1 −1],
[−1 1] and [−1 −1]. The interference of these four modes which propagate in the
diagonal directions leads to the characteristic pattern observed. Due to the partly
longitudinal nature of the SPP field, no SPP modes propagating perpendicularly
to the polarization direction of the incoming light can be excited [27]. Therefore,
in the case of the excitation at 752 nm (x-polarization), only the [1 0] and [−10]
SPP modes are excited whose interference leads to a standing wave pattern with
wavefronts parallel to the y-direction, as clearly observed in Fig. 5.14b.

The optical fields are in both cases vertically well-confined to the surface region
(Figs 5.14c and d) manifesting thereby their evanescent nature, inherent to SPP
modes. In addition to the SPP fields covering a large part of the array surface, strongly
localized near-fields are observed close to the upper edges of the particles in both
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Fig. 5.15 Calculated TPL
enhancement spectra for the
arrays with �x = �y =
860 nm dx = dy = 150 nm
(solid line), �x = �y =
740 nm dx = dy = 150 nm
(dashed line). For clarity the
curves are vertically offset
by 100. The inset depicts a
closeup of the spectral region
of 735–950 nm (no offset
between curves)

cases (Fig. 5.14c and d). These local field enhancements are due to the lightning rod
effect (i.e., field enhancements close to sharp tips or corners) being further enhanced
in the first case due to the LSP resonance.

By comparing the near field intensities just below and above the metal surface in
the cross-cuts of either Fig. 5.14c or d, one can realize the strong intensity jumps over
the gold-air interface in some regions. This is related to the fundamental difference of
the continuity condition for the electric field components parallel and perpendicular
to the interface. In regions where the electric field is mostly parallel to the metal-
air interface, the fields are continuous across the interface, but in regions where the
electric field also has a considerable component vertical to the metal-air interface,
this component is larger in air by the ratio of the dielectric constants of gold to air
(for example at 752 nm excitation εAu � −20.2 + 1.3i which can cause a maximum
intensity jump of |εAu|2 � 411 in case of an electric field purely perpendicular to the
interface). This detail highlights the complementary nature of TPL signals, which
probe the field inside the metal, versus other methods probing the near field (e.g.
surface enhanced Raman scattering or any type of optical near field microscopy) just
outside the metal.

5.4.3 TPL Enhancement

The intensity enhancement values estimated from the simulations are shown in
Fig. 5.15 in the wavelength range 480–950 nm exemplarily for the arrays with
dx = dy = 150 nm and �x = �y = 860 nm (solid line) and �x = �y = 740 nm
(dotted line). The TPL enhancement factor roughly resembles the spectral features
in the reflection spectra, i.e. a broad peak (1) at ∼575 nm corresponding to the LSP
mode but slightly shifted to the red compared to the dip in the extinction spectrum
(see Fig. 5.11), and peaks (2) at 635 (solid line) corresponding to the excitation of the
[1 1] SPP mode, and (3) at 880 nm (solid line) and 750 nm (dotted line), corresponding
to the excitation of the [1 0] SPP mode.

Also for the other arrays investigated up to here (TPL spectra not shown), the major
contribution to the TPL signal is predicted to be at ∼575 nm. We have noted previ-
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ously that the LSP resonance wavelengths deduced from the reflection/extinction
(far-field) spectra might differ from the TPL enhancement maxima found from near-
field calculations (Sect. 5.3). In the current case, the red shift might be due to the
circumstance that the reflection dip is associated with the absorption of the reso-
nantly excited LSP mode (and the absorption drastically increases towards shorter
wavelengths) whereas the TPL enhancement peaks up at the maximum of the LSP
field.

It transpires from the preceding considerations that the insofar investigated arrays
are not expected to lead to strong TPL enhancements or significant spectral features
in the experimentally accessible spectral range between 730 and 820 nm (Fig. 5.15).
Indeed, TPL measurements showed enhancement factors of ∼10–20, with spectrally
flat characteristics (not shown). For a more valuable comparison of simulated and
measured TPL signals, it is necessary to investigate arrays exhibiting pronounced
(resonant) TPL features in the spectral range accessible to the experimental setup.

In order to design and fabricate an appropriate sample, we first optimized the
array parameters by simulations and found that arrays with �x = �y � 750 nm
(similar to the arrays investigated in the previous section) and particle dimensions
close to dx = dy � 465 nm should have a relatively strong resonance associated
with the [1 0] SPP excitation in the spectral region relevant for the experiment
(Fig. 5.17b). For this sample, the images of the optical near field intensity at the two
SPP resonances (580 nm [1 1]-resonance and 800 nm [1 0]-resonance) are depicted
in Fig. 5.16, in x–y planes 5 nm below and above the gold–air interface, and in the x–z
planes through the center of the particles. In this case, similar to the smaller particles
near field patterns are observed. Again, close to the [1 1]-resonance (∼580 nm), four
equivalent SPP modes are excited: [1 1], [1 −1], [−1 1] and [−1 −1], i.e., four
SPP waves which propagate in the diagonal directions, leading to a characteristic
interference pattern depicted in the inset of Fig. 5.16a. In the case of the excitation
at a light wavelength of 800 nm, only the [1 0] and [−1 0] SPP modes are excited
whose interference leads to a standing wave pattern with wavefronts parallel to the
y-direction, which in case of a flat interface would lead to the pattern depicted in
the inset of Fig. 5.16b. Here, qualitatively similar patterns are observed, but there are
also geometrically induced strongly localized near-fields at the particle edges, which
considerably contribute to the overall near field intensity and lead to a less obvious
appearance of the characteristic [1 1] and [1 0] pattern (Fig. 5.16a, b, c and d). As it
will be shown, TPL enhancement is higher for the larger particles as compared to the
smaller ones, which is intimately related with the strongly localized near-fields found
on them. The reflection spectra of the correspondingly fabricated sample (Fig. 5.17a)
exhibit close similarities to the simulations, except for the experimentally observable
much stronger occurrence of the dip attributed to the excitation of light scattered at
grazing angle to substrate (a close analysis of the simulated spectra reveals also
the presence of this feature but as very weak shoulder of the [1 0]-grating coupling
dip). This difference as well as the weaker and broader experimentally observed dips
compared to the simulations were already observed with the previous samples and
can be explained similarly (Sect. 5.5).
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Fig. 5.16 Optical near-field
enhancement images
(defined as in Fig. 5.14) for
the [1 1] (a), (c) and (e) and
[1 0] (b), (d) and (f)
resonance for the array
with�x = 760 nm, �y =
750 nm and dx = dy =
465 nm, in cross-cuts
parallel to the substrate, 5 nm
below (a, b) and above (c),
d) the film surface and in
cross-cuts perpendicular to
the substrate through the
center of the particles (e, f).
The insets in (a) and (b)
show the interference pattern
of similar SPP-waves on a
flat interface [18]

TPL spectra from arrays with particle sizes dz = 50 nm and dx = dy = 160 nm,
265 nm, 364 nm, and 465 nm for polarization parallel to y, and seven different wave-
lengths (730, 745, 760, 775, 790, 805 and 820 nm) recording reflected FH and TPL
microscopy images were measured in the group of Prof. S.I. Bozhevolnyi. The typical
FH and TPL images obtained from the area with 465 nm-sized particles are displayed
in Fig. 5.18 for the excitation wavelength of 745 nm . For every wavelength, the FH
and TPL images were obtained starting ∼3μm outside the array of particles. This
relatively long distance was used in order to get an accurate reference from smooth
gold surface areas. Note that the FH images have been recorded in the cross-polarized
configuration. This means that the smooth gold film (reflecting the FH radiation with
the maintained polarization) will appear dark in the FH images, while the gold parti-
cles (scattering and changing the light polarization) will appear bright.

Applying the method used in Sect. 5.3, the intensity enhancement factor α
observed in the TPL measurements can be estimated by comparing the area averaged
TPL signals from the arrays to those from smooth gold films. The used relation is

α =
√

Sarray

Sfilm

〈Pfilm〉2

〈Parray〉2

Afilm

Aarray
, (5.3)

where S is the obtained TPL signal, 〈P〉 is the used average incident power, and A is
the area generating the TPL signal. The average TPL enhancement estimated from
the recorded TPL images using this relation is shown in Fig. 5.19 as a function of the
FH wavelength for all four investigated samples along with the calculated values of
the TPL enhancement. It is clearly seen from the experimental results, that the array
with dx = dy = 465 nm produces the highest average TPL enhancements of ∼100,
whereas the arrays with smaller particle sizes result in lower enhancements with their
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Fig. 5.17 a Measured and b
calculated reflection spectra
of particle arrays with
�x = 760 nm, �y =
750 nm and dx = dy =
160 nm (solid line),
dx = dy = 265 nm (dashed
line), dx = dy = 364 nm
(dash-dotted line) and
dx = dy = 465 nm (dotted
line). The particle height is
dz = 50 nm and the
polarization is parallel to y

Fig. 5.18 a FH and b TPL image of a gold particle array with �x = 760nm, �y = 750 nm, and
particle size dx = dy = 465 nm and dz = 50 nm obtained using ∼0.3 mW of incident power at the
wavelength of 745 nm. The maximum TPL signal is ∼1600 cps and the polarization of excitation
and detected TPL is parallel to y as indicated by arrows on the images

peak positions moving towards shorter wavelengths. A qualitatively similar behavior
can be observed in the enhancement spectra calculated with the FDTD approach.
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Fig. 5.19 Measured (filled circles) and calculated (open circles) spectral dependence of the
average TPL enhancement (Eq. 5.3) obtained from the particle arrays with �x = 760 nm,�y =
750 nm and dx = dy = 160 nm (solid lines), dx = dy = 265 nm (dashed lines), dx = dy =
364 nm (dash-dotted lines) and dx = dy = 465 nm (dotted lines). The particle height is dz = 50 nm.
Inset: TPL-microscopy image of the latter sample recorded off resonance at 745 nm

It should be mentioned that the maximum TPL enhancement observed from a few
individual particles in the array, behaving differently from the average nanoparticles,
is ∼225. However, at the same time these few particles (bright spots in the TPL
images) seem to be more sensitive to damage/reshaping than the remaining parti-
cles. Since we aim here at the evaluation of reproducible field enhancements, this
damage and reshaping of particularly luminous (individual) positions is neglected in
order to allow the excitation power necessary to observe reliable TPL signals from
average nanoparticles in the arrays. Note that the incident power used here is between
∼0.3 and 0.6 mW for the largest particles (dx = dy = 465 nm, dx = dy = 364 nm)
and up to ∼1.7 mW for the smallest particles (dx = dy = 265 nm, dx = dy =
160 nm). These values should be compared to ∼3 mW used in the previous TPL
measurements from arrays with gold particles on glass.

One can further observe that, except for the smallest particle size, the measured
maximum TPL enhancements actually agree with the calculation results within a
factor of 2. However, the experimental TPL peaks are broader and less pronounced
as compared to the calculated ones, a difference which is consistent with the tendency
observed when comparing measured and simulated reflection spectra.

Finally, let us elucidate the issue of spatial confinement of the TPL signals and field
enhancement, respectively. In particular, considering the near-field intensity distrib-
utions in Figs. 5.14 and 5.16, the question on the effective surface zone responsible
for the TPL signal arises, i.e. if it is the particle alone which emits the TPL signal.
This issue can be clarified by plotting ρ = Spart/Stot, the relative contribution of the
simulated TPL signal originating from the particle surface only (Spart) to the simu-
lated total TPL signal (Stot) as a function of the excitation wavelength (Fig. 5.20).
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Fig. 5.20 a Average TPL enhancement α and b relative contribution ρ of the particle area to the
overall TPL signal for arrays with�x = 760 nm, �y = 750 nm anddx = dy = 160 nm (solid line),
dx = dy = 265 nm (dashed line), dx = dy = 364 nm (dash-dotted line) and dx = dy = 465 nm
(dotted line). The particle height for all arrays is dz = 50 nm and the polarization is parallel to y.
The thin dotted line in part a depicts the enhancement factor α calculated on the air side of the
gold-air interface of the array with dx = dy = 465 nm

It transpires from the computed TPL signal that, although the peak at about 800 nm
comes from the SPP excitation (i.e., related to delocalized SPP fields), the TPL
originates primarily from the particles whenever the enhancement factor α is of
considerable strength. The reason for this is that the excited SPPs provide additional
“illumination” of the particles, contributing thereby to the formation of strong fields
inside the particles (particularly around the edges) which are then responsible for
the TPL and near field enhancement inside the gold. To emphasize the relation of
the near field enhancements on both sides of the gold-air interface, we addition-
ally depict for comparison in Fig. 5.20 the unit-cell average of the enhancement
factor α calculated over a layer just above the gold surface (which reflects e.g. the
gain in surface enhanced Raman scattering) for the array with dx = dy = 465 nm
(thin dotted curve). As can be seen in the graph, it roughly reproduces the general
shape of the average TPL enhancement below the gold surface (dotted curve), but
is larger by one order of magnitude. As discussed in detail in Sect. 5.4.2, this is
due to the continuity relations, which require a jump of the electric field component
perpendicular to the surface.

5.5 Confrontation of Simulations to Experiments

Despite the good qualitative agreement between simulations and experiments, there
are also significant deviations. The observed differences between the experimental
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and simulated reflection spectra: Figs. (5.2, 5.3, 5.6, 5.7) (gold on glass) and (5.11,
5.13, 5.17) (gold on gold), and the TPL-enhancement spectra on glass Figs. (5.9,
5.10) and on gold Fig. 5.19, may originate from several reasons: (1) experimental
variations in particle size and array period, (2) the finite numerical aperture of the
spectrometer setup (not considered in the simulations), (3) the TPL excitation and
detection geometry, (4) deviations of the dielectric function of gold between the
actual sample and the Drude-Lorentz fit used for FDTD simulations, including non-
locality effects and spatial variations, (5) surface roughness (not considered in the
simulations), and (6) influences of the FDTD boundary conditions and the finite array
size. A detailed consideration of the different possibilities leads to the following
estimations of the different contributions.

1. Experimental variations in the particle size and array period: Due to the fabrication
tolerances, the geometrical parameters of the samples investigated may vary in
the order of ∼10 nm, i.e., by 2%. This causes small phase mismatches in case
of the grating coupling to SPP and related to that a weakening and broadening
of the corresponding resonances. The changes in the peak position caused by
such variations are at maximum ∼15 nm and can therefore partly account for the
experimentally observed broader peaks. However, for the localized resonance at
∼520 nm on gold particles on gold, these variations are not sufficient to explain
the larger experimental observed peak width in the reflection-loss spectra, since
this peak is basically independent on variations of the particle shape in this range.

2. The finite numerical aperture of the spectrometer setup leads to an angular spread
of the incident light. At inclined incidence of a plane wave, the reflection-loss
peaks caused by grating coupling to SPP-modes split into a blue- and a red-
shifted contribution. For an angular spread corresponding to NA = 0.075 as in the
experiments this would cause a peak broadening of at maximum ∼120 nm at a
light wavelength of ∼800 nm, depending on the effective NA of the illumination
path (angular intensity distribution).

3. From the experimental point of view, the TPL excitation and detection geometry
sources of disagreement between experiments and theory might be justified as
follows. The observed difference with the simulations might partly be due to the
fact that the TPL measurements use a tightly focused beam with a (correspond-
ingly) wide angular spectrum and a small spot-size of only ∼1μm.This can result
in both, a broadening of the peaks and an increase of the background, by facil-
itating for example, SPP excitation at about any wavelength in the wavelength
range (contrary to what one has in simulations). Moreover, the TPL radiation
originating from gold areas with strong field enhancements has unknown angular
distribution and interacts with the scattering system (i.e., particle array), so that
the detected TPL is in fact also subject to all scattering phenomena (scattering
at surface roughness, coupling to SPP resonances,...) considered above for the
illuminating radiation. However, for coupling to SPP modes we do not expect
any relevant influence of the grating, since the propagation length of SPP’s at
the spectral range below 550 nm is too low to lead to any grating effects with
the array periods consider here [28]. Additionally, the experimental results are
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affected by the circumstance that the rather weak TPL signals exhibit consider-
able uncertainties, especially for longer wavelengths, due to inaccuracy in the
focus adjustment, possible gradual damage of the sample, etc. Finally, the fact
that the TPL enhancement levels measured far from the resonances (for instance
the dx = dy = 160 nm-particle array in Fig. 5.19) do not approach unity should
be related to the TPL response from corrugated surfaces (here, due to the surface
processing when fabricating particles), which will always be larger than from
the flat surface.From the theoretical standpoint, we expect TPL emission being
proportional to |E |4. But it is not clear how to count how many photons will
be able to leave the metal and reach the detector, and how the probability for
this process depends on both the direction of the electric field and the depth at
which this process takes place. So a proper comparison with experiments may
be much more complex. For instance, results could depend on whether the TPL
emission comes from inside the metal, so it should be somehow considered in
theory. Clearly, this should bring into account geometrical factors related to the
emission and detection of TPL photons; for instance, are photons emitted close
to the bump base detected? Therefore, the field inside the whole metal should
be included, specially as TPL is emitted at shorter wavelengths, for which the
skin depth is larger than for the excitation wavelength. Without a better theory
for the TPL enhancement, it would be worth to estimate the importance of this
factors by calculating separately the contribution from different places of the
structure. Figure 5.21 shows Yee’s cell (Sect. 1.2.1). In this cell, different electric
field components are represented in different spacial points. We have chosen the
parallel components to be represented at the interface, while the cell perpendic-
ular components are chosen to lie either inside or outside. In Fig. 5.22, we revise
a result already shown in Fig. 5.10. In this figure, the curve depicted with square
symbols is that the E-fields are estimated just outside the top surface of the metal
particle. Circular symbols show what we obtain only considering the top surface
just inside the metal (Ex and Ey at the interface and Ez evaluated at 2.5 nm depth
inside the metal, as the mesh size is 5 nm). The latter estimation for α is smaller
than the former, as the Ez component is a factor ε(ω) smaller than in the previous
calculation. The rest of the curves are estimations for α considering the fields
inside the metal up to the the distance to the top surface indicated by the labels.
Notice that in these calculations we include the contribution from the side metal
interfaces. The integration is up to a depth of 37.5 nm, since we do not expect
the TPL signal reaching the metal surface if it is generated at the bottom. In any
case, there is still a strong polarization dependence in the calculated α, for the
different depths chosen. Figure 5.23 renders the same plot as Fig. 5.22, but for the
other structure considered in Fig. 5.10. In this case, α is much smaller when Ez

contributes from inside than when it does from just outside. The point is that if
the electric field is mainly along the z direction, on the top surface it is decreased
by a factor ε(ω), but on the lateral sides it is not. This is the case here, and the
main contribution comes from a “belt” of high Ez at about half depth of the metal
bump. Here the variation with integration depth is very fast. In the case of gold
particles on gold, the key point is that α, when TPL contributions are taking into

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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Fig. 5.21 Yee’s cell
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account inside the metal, gives a result close to what we obtain without doing
that, but only for the particle resonances. The “pure SPP” peaks appearing are no
longer so strong, as the fields in this case have mainly Ez component.
Deviations of the dielectric function of gold between the actual sample and the
Drude-Lorentz fit used for FDTD-simulations: For the FDTD-simulations, the
frequency dependent data of the experimentally measured dielectric function of
gold are fitted with a Drude-Lorentz behavior (see Sect. 1.2.4). This leads to a
very good approximation at larger wavelength, but increasing mismatch with
decreasing wavelength in the range below 500 nm. This mismatch can account
for deviations between simulated and measured reflection spectra at shorter wave-
length and could be reduced by e.g. adding a second Drude-term to the fit.
Additionally, the effective dielectric function of the gold-film and gold-particles
could deviate from the literature values (e.g., due to surface morphology, see
below).

5. Surface roughness: By a detailed analysis of the SEM image of the gold particle
arrays on gold (Fig. 5.13a) on can realize a structural difference between the poly-
crystalline gold film and particle surfaces, i.e., there are smaller grains (∼20 nm
in diameter and ripples on the particles compared to larger crystallites in the size
range of ∼50–500 nm on the film outside the particles. This qualitative difference
in the gold nanostructure comes from the surface processing when fabricating
the particles and might cause changes in the effective dielectric function, espe-
cially an increase of the imaginary part due to enhanced surface scattering. This
contributes to the less pronounced, weaker peaks in the experimental reflection
and TPL spectra. Additionally, the surface corrugations lead to additional local-
ized resonances, which are best visible in TPL images recorded off resonance
(inset Fig. 5.19) by the randomly distributed bright spots, whose positions depend

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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Fig. 5.22 Estimation of the
integrated TPL enhancement
up to different “depths”
inside the metal surface,
obtained from particle arrays
on glass (
x = 2
y =
740 nm, dx = dy = 160 nm,
x-pol)

Fig. 5.23 Estimation of the
integrated TPL enhancement
up to different “depths”
inside the metal surface,
obtained from particle arrays
on glass (
x = 2
y =
860 nm, dx = dy = 160 nm
x-pol))

on the excitation wavelength. In average over a larger area, these resonances do not
lead to spectrally confined features, but are responsible for the offset in measured
TPL compared to simulations and for the fact that the TPL enhancement levels
measured far from the resonances (especially for the dx = dy = 160 nm-particle
array) do not approach unity.

6. Influences of the boundary conditions: On the vertical walls of the unit cells, the
simulations consider strictly periodic boundary conditions, i.e., infinite arrays,
but the experimentally investigated arrays are certainly finite (100 × 100μm2).

However, since the propagation length, and therefore the interaction distance
between the particles (∼20μm at 800 nm wavelength), is much smaller than the
arrays size, we do not expect relevant modifications of the results. On the bottom
and top boundary of the volume considered in the FDTD simulations, absorbing
boundary conditions realized by a combination of a UPML and a CCOM layer
(Sect. 1.2.5) at a distance of ∼0.6μm above and below the gold film are applied.
This is to better absorb the energy flowing at grazing incidence, which is of special
importance in the considered system, as small SPP peaks in reflection have to be

http://dx.doi.org/10.1007/978-3-642-23085-1_1
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resolved and small errors in the reflection of grazing modes due to unwanted
lack of absorption by the absorbing layers could be attributed spuriously to SPP
resonances. Since this combination of UPML and CCOM is carefully chosen and
tested for the simulations, we also do not expect artefacts in the spectra or near
fields arising from these boundaries.

5.6 Conclusions

In conclusion, we have investigated the electrodynamical processes involved in the
generation of TPL from arrays of rectangular gold nanoparticles deposited either
on a glass substrate or on a thin gold film. FDTD simulations have been combined
with linear extinction spectroscopy and TPL-microscopy to gain insight into this
particular problem.

For gold nanoparticles on glass, the simulations show pronounced effects when
the particle resonances spectrally overlap with array resonances. Such effects are not
well captured by the experiments. We attribute this to the geometrical imperfections
of the samples and the measurement process. TPL enhancements were found to be
in the range of 102 with a sharp spectral response. The FDTD calculations reproduce
well the experimental TPL excitation spectra considering E4 integrated over the “top”
layer (∼half a skin depth) of the particles as the origin of the TPL signal. Additionally,
we found indications that the spectral position of the maximum near field intensity
enhancement might differ considerably from the position of the maximum seen in
the extinction spectra, depending on the period of the particle array.

In the case of gold nanoparticles on top of a thin gold film, the dimensions of
the nanoparticles and the array periods were systematically varied to optimize the
strength of the SPP resonance in the wavelength range accessible to the experimental
characterization techniques. On the optimized array a TPL enhancement up to ∼200
has been observed with a relatively broad spectral response. It could be demonstrated
that TPL enhancement is well described by our simulations also for this configuration,
where we assume that it is related to the field intensity enhancement just below
the gold surface, i.e., inside the gold. We could show, that even if the optimized
resonance at ∼800 nm is due to a resonant excitation of a delocalized SPP mode, the
maximum field enhancement (an thereby the origin of the TPL signal) is localized at
the particles. This is due to a combination of geometrical field enhancement (lightning
rod effect) and the better penetration of the field into the metal at the particle edges.
Additionally, our simulations reveal, that the enhancement factor calculated just
outside the gold (as it would be probed by e.g. surface enhanced Raman scattering)
is in average one order of magnitude larger than inside the gold. The origin of this
can be found in the continuity relation across the gold-air interface, which requires
the electric field component perpendicular to the interface to be enhanced by the ratio
of the dielectric functions.

In addition, by a careful comparison of experimental results versus FDTD simu-
lations, we have identified the parameters responsible for the differences between
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experiment and theory. To overcome these differences between simulations and
experiment, an improved experimental control of surface structure and crystallinity
of the gold film and particles and a better knowledge of the gold dielectric function
are crucial. For the simulations the possibility include also surface roughness would
lead to a substantial improvement. However, the generally reasonable well agree-
ment of simulations and experiments can be interpreted in a way, that macroscopic
Maxwell equations as solved by the FDTD code are suitable for a detailed description
of similar systems.
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