Modulated phases in electron-hole bilayers & 2D dipolar Fermi gases

Francesca Maria Marchetti

Workshop NSPM11, Erice, 6 Aug 2011

Outline

- 1. Imbalanced electron-hole bilayers
 - ♦ spatially modulated pairing (FFLO)

Outline

- 1. Imbalanced electron-hole bilayers

 - ♦ limit of extreme imbalance
 - unusual bosonic limit of FFLO:
 supersolid

Outline

- 1. Imbalanced electron-hole bilayers
 - ♦ spatially modulated pairing (FFLO)
 - ♦ limit of extreme imbalance

2. 2D dipolar Fermi gases

♦ why beyond RPA

unusual bosonic limit of FFLO:
 supersolid

 \Rightarrow rich many-body physics (even 1 layer)

 \diamond phase diagram (density modulation,

superfluidity, collapse,...)

Background: Two component Fermi gases

- ♦ Tunable interactions
- ♦ BEC-BCS crossover

Background: Two component Fermi gases

Background: Imbalanced Fermi gases

- ♦ Tunable interactions
- ♦ BEC-BCS crossover
- ♦ Density imbalance frustrates pairing

Background: T=0 phase diagram

Background: T=0 phase diagram

FFLO unlikely in 3D Fermi gases

- Displacement of the Fermi surface:
 ...allows Fermi surface nesting
 ...allows the system to polarise
- ♦ However
 - ...nesting is partial
 - ...it costs kinetic energy

♦ Phase separation dominates over FFLO

♦ Experiments (Rice & MIT): FFLO elusive

Electron-hole systems

Electron-hole systems

Electron-hole bilayers: FFLO more 'likely'

Electron-hole bilayers: Experimental realisations

2. Individually contacted doped layers

Electron-hole bilayers: Hamiltonian

 $U_q = \frac{2\pi e^2}{\varepsilon q}$

bare intra-layer Coulomb interaction

 $g_q = -U_q e^{-qd}$ bare inter-layer

 \Rightarrow No spin (spin polarised)

Limit of large imbalance: Variational ground state

♦ single particle in the 2nd layer +
 Fermi see in the 1st layer

$$|\Psi(\mathbf{Q})\rangle = \sum_{\mathbf{k}>k_F} \varphi_{\mathbf{k}\mathbf{Q}} c^{\dagger}_{\mathbf{Q}-\mathbf{k},2} c^{\dagger}_{\mathbf{k},1} |FS\rangle$$

$$d \oint \frac{1}{U} \int \frac{1}{\sigma} = 1$$

Limit of large imbalance: Variational ground state

♦ single particle in the 2nd layer +
 Fermi see in the 1st layer

 $|\Psi(\mathbf{Q})\rangle = \sum_{\mathbf{k}>k_F} \varphi_{\mathbf{k}\mathbf{Q}} c^{\dagger}_{\mathbf{Q}-\mathbf{k},2} c^{\dagger}_{\mathbf{k},1} |FS\rangle$

Limit of large imbalance: Variational ground state

Phase diagram of fully imbalanced EH bilayer

Effect of screening on the LOFF phase

♦ Unscreened case

⇒ Numerically

⇒ Analytically

Effect of screening on the LOFF phase

Which kind of FFLO phase?

Dilute gas of minority particles: Interactions

♦ Normal phase:

effective interaction between two unbound minority particles (RPA)

⇒ repulsive and dipolar $V^{22}(r) \rightarrow \frac{1}{r^3}$: the dilute gas is a Fermi liquid

♦ Excitonic phase:

well separated excitons (dipoles)

⇒ also repulsive and dipolar $V^{ex}(r) \rightarrow \frac{1}{r^3}$: no phase separation (biexciton formation suppressed for single spin species & $\frac{d}{a_0} \gtrsim 0.25$)

Phenomenology of 'bosonic' FFLO

Phenomenology of 'bosonic' FFLO

Observing FFLO

- ♦ FFLO enjoys a sizeable region of existence away from the Wigner crystal
- ♦ Trions only for $d/a_0 << 1$
- - 1. Light scattering off the spatial modulations
 - 2. Photon angular emission

(electron hole recombining): finite momentum pairing ($\pm q_1$, $\pm q_2$)

Supersolidity in imbalanced electron-hole bilayers

 $n_2/n_1^- \sim 0.2$

Conclusions part 1

 ♦ Electron-hole bilayers: promising for observing exotic pairing phenomena

- ♦ Evidence of FFLO phase at large imbalance: finite-Q exciton in presence of a fermi sea
- Dilute gas of finite-Q excitons: condensation with 2D spatial modulation (a supersolid)
 - ⇒ bosonic limit of FFLO

♦ Prospects for experimental observation

2D dipolar Fermi gases

- ♦ Quantum gas of ultracold polar fermions
 ⇒ ⁴⁰K-⁸⁷Rb tightly bound
 heteronuclear molecules
 - ⇒ quantum degeneracy
 - ⇒ 2D confinement

[Ni et al. Science (2008), Nature (2010)] [Ospelkaus et al. Science (2010)] [de Miranda et al. Nature Physics (2011)]

- ♦ Dipole-dipole interaction: long range and anisotropic
- ♦ Rich many-body physics (even for single component and single layer)
 - $\Rightarrow \theta = 0$ isotropic & repulsive

2D dipolar Fermi gases

- ♦ Quantum gas of ultracold polar fermions
 ⇒ ⁴⁰K-⁸⁷Rb tightly bound
 heteronuclear molecules
 - ⇒ quantum degeneracy
 - ⇒ 2D confinement

[Ni et al. Science (2008), Nature (2010)] [Ospelkaus et al. Science (2010)] [de Miranda et al. Nature Physics (2011)]

- ♦ Dipole-dipole interaction: long range and anisotropic
- ♦ Rich many-body physics (even for single component and single layer)
 - $\Rightarrow \theta = 0$ isotropic & repulsive

spontaneous density modulation & crystalline phase

2D dipolar Fermi gases

- ♦ Quantum gas of ultracold polar fermions
 ⇒ ⁴⁰K-⁸⁷Rb tightly bound
 heteronuclear molecules
 - ⇒ quantum degeneracy
 - ⇒ 2D confinement

[Ni et al. Science (2008), Nature (2010)] [Ospelkaus et al. Science (2010)] [de Miranda et al. Nature Physics (2011)]

- ♦ Dipole-dipole interaction: long range and anisotropic
- ♦ Rich many-body physics (even for single component and single layer)
 - $\Rightarrow \theta = 0$ isotropic & repulsive

spontaneous density modulation & crystalline phase

$$\Rightarrow \theta > \operatorname{asin}(1/\sqrt{3})$$
 attractive sliver

superfluidity & collapse

Why not RPA (e.g., for $\theta=0$)

$V_0(q) = 2\pi D^2 [v_0 - q]$

♦ Hartree-Fock ground state energy per particle ($U = mD^2k_F \rightarrow 0$):

$$\varepsilon(n) = \frac{4\pi n}{m} \left(\frac{1}{4} + \frac{32U}{45\pi}\right)$$

♦ Compressibility sum rule

$$-m\frac{\partial^2 [n\varepsilon(n)]}{\partial n^2} = \lim_{q \to 0} \chi^{-1}(q, \omega = 0)$$
$$= \lim_{q \to 0} \frac{1}{\Pi(q, \omega = 0)} - V_0(q) [1 - G(q)]$$
$$\text{RPA}$$
local field factor

♦ The local field factor allows to include exchange correlations neglected by RPA (G(q) = 0)

Why not RPA

 \diamond Approaching the transition to the stripe phase

Thanks to

Meera Parish Cavendish Laboratory, University of Cambridge, UK

POLATOM INTELBIOMAT

Peter Littlewood Argonne National Laboratory

