Course in 3 lectures on Superfluidity in Ultracold Fermi Gases

F.M. Marchetti

Physics by the Lake, Ambleside, 11, 12, 13 September 2007

During lecture I....

1) Fully polarised gas = ideal Fermi gas

- Emergence of quantum degeneracy
- Distribution of the gas
- Energy of the gas
- Fermi pressure
- 2) Two-component mixtures can interact!
 - Today: how & how tuning is possible

3) Pairing instability & BCS theory

Why tuning the interaction is interesting?

binding fermionic pairs into molecules

BCS

II. Feshbach resonances & BEC-BCS crossover

Interactions between atoms

Dilute gases: two-body collisions

Essential to ensure thermalization (equilibrium & cooling)
 Can be tuned!

$$\begin{bmatrix} -\frac{-\nabla^2}{2m_r} + U(\mathbf{r}) \end{bmatrix} \psi_{\mathbf{k}}(\mathbf{r}) = \frac{k^2}{2m_r} \psi_{\mathbf{k}}(\mathbf{r})$$
$$\lim_{r \to \infty, k \to 0} \psi_{\mathbf{k}}(\mathbf{r}) \propto 1 - \frac{a}{r} \quad \text{(low-energy asymptotics)}$$
$$a \simeq \frac{2m_r}{4\pi} \int d\mathbf{r} U(\mathbf{r}) \quad \begin{cases} a < 0 \text{ attractive effective interaction} \\ a > 0 \text{ repulsive} \end{cases}$$

In general

- 1) The sign of a depends on the energy of the highest bound state
- 2) If there are no bound states a<0 (attractive interaction)

But a scattering potential cannot be changed externally...

Interactions between atoms

At short distances, the electronic spin of the two atoms can flip $\uparrow \downarrow \rightarrow \downarrow \uparrow$ and change the initial hyperfine states

$$\widehat{H}_{\text{int}} = \frac{U_s + 3U_t}{4} + (U_t - U_s)\widehat{\mathbf{S}}_1 \cdot \widehat{\mathbf{S}}_2$$

Feshbach resonances

fermionic atoms

At T=0, described by the same ground state

T=0 mean-field theory

$$\hat{\mathcal{H}} = \sum_{\mathbf{k},\sigma=\uparrow,\downarrow} \epsilon_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \frac{1}{V} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} U_{\mathbf{k},\mathbf{k}'} c^{\dagger}_{\mathbf{k}+\mathbf{q}/2\uparrow} c^{\dagger}_{-\mathbf{k}+\mathbf{q}/2\downarrow} c_{-\mathbf{k}'+\mathbf{q}/2\downarrow} c_{\mathbf{k}'+\mathbf{q}/2\uparrow} c_{\mathbf{k}'+\mathbf{q}/2\uparrow} c_{\mathbf{k}'+\mathbf{q}/2\downarrow} c_{\mathbf{k}$$

Fix the total number of atoms (grand-canonical): N.B. $\mu \neq \varepsilon_F$

The BCS ground state can also describe the BEC limit

$$|\psi\rangle = \prod_{\mathbf{k}} \left(\cos\theta_{\mathbf{k}} + \sin\theta_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\uparrow} c^{\dagger}_{-\mathbf{k}\downarrow}\right) |0\rangle$$

- Order parameter $\Delta_{\mathbf{k}} = -\frac{1}{V} \sum_{\mathbf{k}'} U_{\mathbf{k},\mathbf{k}'} \langle \psi | c_{-\mathbf{k}'\downarrow} c_{\mathbf{k}'\uparrow} | \psi \rangle$
- Gap & number equation (now solve simultaneously as $\mu \neq \varepsilon_F$)

$$\Delta_{\mathbf{k}} = -\frac{1}{V} \sum_{\mathbf{k}'} U_{\mathbf{k},\mathbf{k}'} \frac{\Delta_{\mathbf{k}'}}{2E_{\mathbf{k}'}} \qquad n = \frac{1}{V} \sum_{\mathbf{k}} \left(1 - \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right)$$

T=0 mean-field theory

We remember that in the BCS limit

T=0 mean-field theory

Contact interaction

$$\hat{\mathcal{H}} = \sum_{\mathbf{k},\sigma=\uparrow,\downarrow} \epsilon_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\sigma} c_{\mathbf{k}\sigma} + \frac{g}{V} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} c^{\dagger}_{\mathbf{k}+\mathbf{q}/2\uparrow} c^{\dagger}_{-\mathbf{k}+\mathbf{q}/2\downarrow} c_{-\mathbf{k}'+\mathbf{q}/2\downarrow} c_{\mathbf{k}'+\mathbf{q}/2\uparrow} c_{\mathbf{k}'+\mathbf{q}/2\uparrow} c_{\mathbf{k}'+\mathbf{q}/2\downarrow} c_{\mathbf$$

Introduce the scattering length (T-matrix: see App. B)

$$\frac{m}{4\pi a} = \frac{1}{g} + \frac{1}{V} \sum_{\mathbf{k}}^{k_0 = 1/R_e} \frac{1}{2\epsilon_{\mathbf{k}}}$$

Now no (log) divergence in the gap equation

$$\frac{m}{4\pi a} = \frac{1}{V} \sum_{\mathbf{k}}^{k_0 = 1/R_e \to \infty} \left(\frac{1}{2\epsilon_{\mathbf{k}}} - \frac{1}{2E_{\mathbf{k}}} \right)$$

Solved simultaneously with the number equation

$$n = \frac{1}{V} \sum_{\mathbf{k}} \left(1 - \frac{\xi_{\mathbf{k}}}{E_{\mathbf{k}}} \right)$$

BCS limit

BEC limit

Problem 3

$$rac{1}{k_F a}
ightarrow +\infty$$
 $arepsilon_F \ll \Delta \ll |\mu|$

$$\Delta \simeq \sqrt{\frac{16}{3\pi}} \varepsilon_F \sqrt{\frac{1}{k_F a}}$$
$$\mu \simeq \frac{\epsilon_b}{2} = -\frac{1}{2ma^2}$$

from number equation

from gap equation

Crossover

Spectrum of excitations

$$E_{gap} = \min_{\mathbf{k}} \sqrt{(\epsilon_{\mathbf{k}} - \mu)^2 + \Delta^2} = \begin{cases} \Delta & \mu > 0\\ \sqrt{\Delta^2 + \mu^2} & \mu < 0 \end{cases}$$

Finite T

 $\Delta_{\rm BCS} \sim k_B T_{\rm BCS} \ll \varepsilon_F$

of preformed molecules $T_{\rm BEC} \sim T_F \ll T_{\rm diss}$

Finite T

What is measured in experiments?

Molecule formation

BEC of diatomic molecules

Bimodal distribution for the molecular cloud

Condensation on the BCS side

You would not see much from the density distribution!!

Condensation on the BCS side

BCS of Fermi pairs: probe the condensate by pair-wise projection into molecules

BEC-BCS Crossover in Experiments

[Q.J. Chen et al., PRA 73, 041601 (2006)]

Superfluidity across the resonance

[M.W. Zwierlein et al., Nature 435, 1047 (200)]]

Feshbach resonances

