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Abstract

The search for novel phases of quantum coherent matter has been one of the
main driving forces in condensed matter physics for many years. The unprece-
dented experimental sophistication reached recently in ultracold atomic gases
has opened new and exciting perspectives in this search. The ability to ex-
ternally manipulate the interatomic interaction, the capacity to embed atomic
clouds in optical lattices or confine them in low dimensions, as well as the possi-
bility to prepare mixtures of atoms with different statistics and/or populations,
is presenting an opportunity to realise and explore novel correlated phases of
matter. During the lectures I will focus mainly on aspects of condensation and
superfluidity phenomena in fermionic systems. Theoretical elements will be
discussed together with recent experimental realisations.
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Chapter 1

Lecture I: Weakly
interacting Fermi gases

After the first realisation of Bose-Einstein condensation for the bosonic species [2,
8], remarkable effort has been devoted to realise and explore degenerate ultracold
Fermi gases. One of the main interests, aside the realisation of a the textbook
example of a non-interacting ideal Fermi gas (see Secs. 1.1 and 1.1.2), has been
the reach of the necessary conditions to observe a transition to a superfluid state
of fermionic pairs, similarly to the Bardeen-Cooper-Schrieffer (BCS) transition
(see Sec. 1.3) which happens for ordinary low temperatures superconductors.
Such experiments will be discussed during Lecture II (see Sec. 2.4).

1.1 The ideal Fermi gas

Although the main experimental challenge in the study of degenerate ultracold
Fermi gases has been the realisation of a superfluid phase, even an ideal non-
interacting Fermi gas can provide useful information about the properties of the
Fermi statistics, as we will see in Sec. 1.1.2.

At very low densities or high temperatures, a gas of bosons and a gas of
fermions behave classically. The quantum behaviour in both cases is governed
by the phase-space density (everywhere in these lecture notes we will fix ~ = 1),

ρ = nλ3
T λT =

(
2π

mkBT

)1/2

, (1.1)

which is a measure of the average distance between the atoms n−1/3 compared
to the thermal de Broglie wavelength λT . Quantum behaviour emerges when ρ
increases to values of the order of unity. In the case of bosons, the transition to
a Bose-Einstein condensate happens for ρ = ζ(3/2) ' 2.612 [27]. In the case of
fermions, when ρ reaches a value of the order of 1, fermions tend to fill all the
available low energy states, with one particle only per state, up to the Fermi
energy.

Therefore, whether we are considering the case of N identical fermions either
in a box of volume V (with density n = N/V ) or in a three-dimensional harmonic
trap, the zero temperature ground state of the system is characterised by all
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T=0

εF B F= k  T 

Figure 1.1: Sketch of the definition of the Fermi temperature for a Fermi gas in
a harmonic trap.

states with energy less than the Fermi energy being occupied, while those with
higher energy being empty. The Fermi energy is therefore defined as

N = G(εF ) , (1.2)

where G(ε) is the number of states with energy less than ε.

Problem: Evaluate G(ε) for N particles in a box of volume V and for a
three-dimensional harmonic potential V (r) = m(ω2

1x
2 + ω2

2y
2 + ω2

3z
2)/2:

G(ε) =
V (2mε)3/2

6π2
box (1.3)

G(ε) =
ε3

6ω̄3
3D harmonic trap , (1.4)

where ω̄ = (ω1ω2ω3)1/3.

Answer: For a particle in a box one has

G(ε) =
εk≤ε∑

k

= V

∫
dk

(2π)3
θ(ε− εk) ,

where εk = k2/2m. For an harmonic oscillator potential, one has the dis-
crete energy levels ε =

∑
i εi =

∑
i(ni +1/2)ωi, with i = 1, 2, 3. For energies

ε large compared with ωi, one can neglect the zero point motion and approx-
imate ni as continuous variables. Then G(ε) is given by a three-dimensional
integral limited on the plane by the constraint ε = ε1 + ε2 + ε3:

G(ε) =
1
ω̄3

∫ ε

0

dε1

∫ ε−ε1

0

dε2

∫ ε−ε1−ε2

0

dε3 .

Using the expressions (1.3) and (1.4), one obtains the following expressions
for the Fermi energy εF and the Fermi temperature kBTF = εF , i.e. the temper-
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ature below which quantum behaviour of fermions starts emerging (see Fig 1.1):

kBTF = εF =
(6π2)2/3

2
n2/3

m
' 7.6

n2/3

m
(1.5)

kBTF = εF = ω̄(6N)1/3 ' 1.82ω̄N1/3 . (1.6)

Problem: Derive the expressions for the transition temperature to a BEC
for N identical bosons respectively in a box of volume V and in a three-
dimensional harmonic potential:

kBTBEC =
2π

[ζ(3/2)]2/3

n2/3

m
' 3.3

n2/3

m
(1.7)

kBTBEC =
1

[ζ(3)]1/3
ω̄N1/3 ' 0.94ω̄N1/3 . (1.8)

The Fermi energy has the same dependence on the system parameters (i.e.
the density and mass of the gas in case of N particles in a box and the number
of atoms and the oscillator frequency ω̄ if the gas is trapped) as the BEC crit-
ical temperature. This is not surprising as in both cases quantum degeneracy
emerges when ρ & 1. 1 However, note that, while for a Bose-Einstein condensate
TBEC marks the value of the temperature at which a phase transition happens,
TF represent the temperature at which the crossover from the classical to the
quantum regime happens.

The total energy of an ideal Fermi gas can be evaluated from

E(T ) =
∫ ∞

0

dεεN(ε)fF (ε) , (1.9)

where

fF (ε) =
1

e(ε−µ)/kBT + 1
(1.10)

is the Fermi distribution function, while

N(ε) ≡ dG(ε)
dε

(1.11)

is the density of states (DoS). For a trapped gas one can easily show that at
zero temperature

E(0) =
3
4
NεF , (1.12)

while for a homogeneous gas E(0) = 3NεF /5. The behaviour of E(T ) with
temperature is plotted in Fig. 1.2 and compared with the energy of a classical
gas, Ecl(T ) = 3NkBT/2 — according to the equipartition principle each particle
brings an energy equal to kBT/2. We will see in Sect. 1.1.2 how E(T ) can be
measured in experiments and how, at low enough temperatures, deviations from
the classical behaviour can be measured at the on-set of quantum degeneracy.

1 Note that for a trapped gas n ∼ N(mω̄2/kBT )3/2.
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Figure 1.2: Energy per particle of a Fermi gas (red solid line) as a function of
temperature, compared with the one of a classical gas (black dashed).

1.1.1 Density profile of a trapped cloud of fermions

In the limit of a large number of atoms N one can make use of a semiclassical
description of the gas. In this case the properties of the gas at a given point
r of the trap are assumed to be those of a uniform gas having a density equal
to the local density n(r). In this local density approximation (LDA) the Fermi
distribution function is given by

fF (r,k) =
1

exp[β(εk + V (r)− µ)] + 1
, (1.13)

where εk = k2/2m, V (r) is the harmonic trapping potential, and the chemical
potential µ is fixed by the number of particle equation:

N =
∫
drn(r) =

∫
dr

∫
dk

(2π)3
fF (r,k) . (1.14)

In other words, in the LDA, the effect of the trap is absorbed in a redefinition
of the chemical potential, which now is a function of space:

µ(r) = V (r)− µ . (1.15)

Problem: Re-obtain the expression of the Fermi energy for a trapped
gas (1.6) making use of (1.14) (Hint: the Fermi energy is defined as
εF = µ(T = 0)).

In the zero temperature limit, the density profile n(r) =
∫
dk/(2π)3fF (r,k) is

therefore given by

n(r) =
1

6π2
[2m(εF − V (r))]3/2

, (1.16)

if V (r) < εF and zero otherwise, where εF = µ(T = 0). The LDA is therefore
equivalent to consider a local Fermi momentum kF (r) such that k2

F (r)/2m +
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V (r) = µ. The profile (1.16) can therefore be also obtained from the gas density
of a homogeneous system:

n =
k3

F

6π2
. (1.17)

1.1.2 Experiments on quantum degenerate Fermi gases

As it will be explained in detail in Sec. 2.1.1, the Pauli exclusion principle forbids
s-wave interaction for identical fermions. In other words the total wave-function
for two identical fermions,

Ψtot(1, 2) = ψ(r1, r2) , χspin (1.18)

is characterised by a symmetric spin component χspin and therefore the wave
function describing the relative motion ψ(r1, r2) has to be antisymmetric un-
der the exchange of the particles (i.e., only angular momenta ` = 1, 3, . . . are
allowed). As a consequence, at low temperatures, identical fermions do not col-
lide, therefore making difficult to apply the the principle of evaporative cooling
(see Appendix C) and reach quantum degeneracy. Alternative experimental ap-
proaches to the ones used for bosons have been therefore used to cool fermions
down:

1. Simultaneous cooling: simultaneous trapping of different spin |F,mF 〉 (see
Appendix A) species: The Pauli principle does not suppress the s-wave
scattering between different spin component.

2. Sympathetic cooling: simultaneous trapping of a mixture of bosonic and
fermionic atoms, such as 7Li-6Li (Rice and ENS) and 87Rb-40K (LENS):
Fermions are cooled by means of the boson, i.e. by evaporating bosonic
atoms, fermionic atoms cools via thermal contact.

Once the mixture is cooled down to degeneracy temperatures, the second com-
ponent, whether a second spin state or the bosonic atoms, are eliminated from
the trap by applying a radio-frequency (RF) impulse.

The main idea and results of the experiments on quantum degenerate (one-
component) Fermi gases will be discussed to some extent during the lectures.
For reference to relevant papers see the captions of Figs. 1.3, 1.4, 1.5.

1.2 Pairing instability

In the remaining of this first lecture, we want to discuss how the non-interacting
scenario for identical (one-component) Fermi gases can dramatically change in
presence of a weak attractive interaction if one considers two-component mix-
tures. Details about how atom interact, about why in order to have interaction
between identical atomic fermions one has to prepare them in a mixture of
two different internal (hyperfine) states, and details about how the interaction
strength can be changed by an external homogeneous magnetic field (Feshbach
resonance), will be discussed in the next lecture. Therefore, for the moment
being, let us consider as a reference example the case of electrons in a metal
and explain the basics of the transition to a superfluid phase — note that much
more detailed explanations about the pairing instability mechanism and the
BCS theory will be given during the course of Derek Lee, therefore this section
is only a reminder.
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Figure 1.3: Temperature dependence of the cross section of a mixture of atoms
in two-spin states and in a single-spin state (from [12]; see also [19]).

Figure 1.4: Energy of the Fermi gas compared to the energy of a classical gas
versus T/TF (from [12]; see also [19]).

(a) (b)

Figure 1.5: Evidence of Fermi pressure (from [37]).
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Figure 1.6: Coupling between electron pair states with opposite spin and mo-
menta in the one-pair Cooper problem and typical scattering process k 7→ k′

due to the pairing potential Uk,k′ .

1.2.1 The one-pair Cooper problem

It was first Leon Cooper’s idea in 1956 [6] (see also [34]) that an even arbitrarily
weak attraction can bind pairs of electrons into a bound state. The toy model
used by Cooper is the one of a pair of electrons which interact above a non-
interacting Fermi sphere — the background electrons enter the problem only by
blocking, via the Pauli exclusion principle, the occupation of the states below
the Fermi energy:

[
− 1

2m
(∇2

1 +∇2
2) + U(r1 − r2)

]
ψ(r1, r2) = (ε+ 2εF )ψ(r1, r2) . (1.19)

It is useful to introduce relative r = r1− r2 and centre of mass R = (r1 + r2)/2
coordinates

ψ(r1, r2) = ϕ(r)eiR·qχspin .

We will start considering the q = 0 case and later on show that finite q states
correspond to higher energy states. As the spin of the electrons is concerned,
one can either be in a triplet or singlet state:

χS
spin =

| ↑〉| ↓〉 − | ↓〉| ↑〉√
2

χT
spin =





| ↑〉| ↓〉+ | ↓〉| ↑〉√
2

| ↑〉| ↑〉
| ↓〉| ↓〉

(1.20)

ϕ(r) = ϕ(−r) ϕ(r) = −ϕ(−r) .

It is possible to show that the state with lowest energy is the spin singlet one.
Considering the Fourier expansion of the relative motion wave-function,

ϕ(r) =
1
V

∑

k

ϕke
ik·r =

1
V

∑

k

ϕke
ik·r1−ik·r2 ,
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the pair wave-function is made up of plane waves of equal and opposite momenta
(see Fig. 1.6) and the Schrödinger equation now reads:

2ξkϕk +
1
V

∑

k′
Uk,k′ϕk′ = εϕk , (1.21)

where ξk = εk − εF and Uk,k′ =
∫
drU(r)eir·(k−k′). Equation (1.21) can be

easily obtained multiplying r.h.s. and l.h.s. of (1.19) by
∫
dre−ik′·r and by

making use of the orthonormality condition
∫
drei(k−k′)·r = V δk,k′ .

In general it is not possible to find an analytical solution of Eq. (1.21) (see [34]
for the case of a separable potential, Uk,k′ ≡ gw∗k′wk). We will consider the sim-
plest case where a maximum frequency ωD (Deby frequency) can be exchanged
between electrons via a phonon:

Uk,k′ =

{
g |ξk|, |ξk′ | < ωD

0 otherwise ,
(1.22)

and where the interaction between the electrons is attractive, g ≡ −λ < 0.
In conventional superconductors, the attractive interaction between electrons
is due do the exchange of lattice vibrations (i.e., phonons): A first electron
polarises the medium by dislocating (attracting) lattice ions, causing a second
electron to be attracted by the region of the distorted potential. The retarded
nature of the phonon interaction allows the electrons to avoid repelling each
other because of the Coulomb interaction.

In the case of the interaction (1.22) we can rewrite (1.21) as

ϕk =
λ

2ξk − ε

1
V

|ξk′ |<ωD∑

k′
ϕk′ ,

where the sum is restricted to an energy interval ωD around the Fermi surface
εF ; summing over k on both sides, one obtains the following equation for the
eigenenergy ε:

1 = λ
1
V

|ξk|<ωD∑

k

1
2ξk − ε

= λ

∫ εF +ωD

εF

deN (e)
1

2(e− εF )− ε
,

where the DoS per unit volume N (e) = N(e)/V has been introduced in (1.11):

1
V

∑

k

=
∫

dk
(2π)3

=
∫ ∞

0

deN (e) N (e) =
m3/2

√
e√

2π2
. (1.23)

The eigenvalue equation can be easily solved assuming that the DoS is approx-
imatively constant at the Fermi surface, N (e) ' N (εF ), giving the solution
ε = −2ωDe

−2/λN (εF )/(1 − e−2/λN (εF )). In the weak coupling approximation,
λN (εF ) ¿ 1, this reduces to:

ε ' −2ωDe
− 2

λN(εF ) . (1.24)

Therefore we can conclude that a bound state always exists, even for any arbi-
trarily weak coupling strength λ as long as the potential Uk,k′ is attractive near
the Fermi surface.
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In addition one can evaluate the mean square radius of the pair wave function
(the size of the Cooper pair):

r2 =
∫
drr2|ϕ(r)|2∫
dr|ϕ(r)|2 ' 4

3
v2

F

ε2
.

We will see later that the binding energy ε is of the same order of magnitude
than the critical temperature to a superconducting phase TBCS resulting from
the macroscopically occupation of Cooper pairs. Therefore, for typical values of
the binding energy ε ' kBTBCS ∼ 10K and the Fermi velocity vF ∼ 108cm/s,
one has a mean radius of about (r2)1/2 ∼ 104Å, which is of the same order of
the Pippard coherence length.

This result has been extremely important in explaining the mechanism at
the origin of superconductivity: Cooper [6] suggested that the instability of
the normal phase to pairing of electrons with opposite momenta and spin is
associated with the occurrence of a superconducting state. However, in reality
superconductors differ in a fundamental way from the one-pair model. Cooper
bound pairs are not well separated in space but instead, as explained in Sec. 1.3,
are strongly overlapping: There are typically around 1011 other electrons within
a ‘coherence volume’ (r2)3/2 and therefore there are many Cooper bound pairs
which centre of mass is in between a given pair. Superconductivity is not a
two-body properties, rather a collective phenomena. We will see in Sec. 1.3
how this has been explained in the correct many-body theory framework by a
seminal work due to Bardeen, Cooper and Schrieffer (BCS).

Finally one can easily show that, with a small centre of mass momentum q,
the binding energy is given by

|ε(q)| ' |ε| − vF |q|
2

, (1.25)

and therefore the pair binding energy is reduced by a drift of the pair.
We will see later that in an ordinary superconductor the critical tempera-

ture described by the BCS theory is proportional to the pair binding energy
in (1.24), i.e. ε ' kBTBCS. In other words, in a BCS superconductor the en-
ergy and temperature scales at which (Cooper) pairs form and condense is the
same (pairing instability). We will also see that this behaviour is very different
from the condensation of composite bosons formed of tightly bound fermionic
molecules, where the energy and temperature for dissociating a bound pair are
much higher that the BEC temperature of condensation.

1.3 BCS theory

The nature of the ordering between electrons in a metal at the basis of su-
perconductivity was explained by Bardeen, Cooper and Schrieffer in 1957 [3].
As explained in the previous section, already the instability of electron pairs
to form bound pairs of states with opposite spin and momentum, k ↑ and
−k ↓, in the vicinity of the Fermi surface was proposed by Cooper [6]. The
BCS theory elucidate how the same pairing mechanism can explain the super-
conducting behaviour on a many-body collective level. The BCS theory (see,
e.g., Refs. [1, 34, 36] for detailed reference books) will be explained during the
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course of Derek Lee, therefore here I will give only the basic elements. Later, in
Sec. 2.3 we will analyse in more detail some aspects in relation to the BEC-BCS
crossover theory.

The starting point is the Hamiltonian with a contact attractive (g ≡ −λ < 0)
potential,

Ĥ =
∑

k,σ=↑,↓
εkc

†
kσckσ +

g

V

∑

k,k′,q

c†k+q/2↑c
†
−k+q/2↓c−k′+q/2↓ck′+q/2↑ , (1.26)

where the interaction is effective on an interval of width ωD around the Fermi
surface (see Eq. (1.22) and Fig. 1.6). The number of particles is fixed by intro-
ducing the Fermi energy εF and considering Ĥ − εF N̂ , where

N̂ =
∑

k,σ=↑,↓
c†kσckσ .

On the basis of the Copper pairing instability argument, the BCS theory starts
from the assumption (pairing Ansatz ) that the ground state of the Hamilto-
nian (1.26) |ψ〉 is described by the presence of Cooper pairs with opposite spin
and momentum. In this case, the order parameter, i.e. the expectation value

∆ ≡= − g

V

∑

k

〈ψ|c−k↓ck↑|ψ〉 , (1.27)

is non zero. With this assumption, one can neglect all the other correlations
than the pair correlations introduced by the order parameter ∆ and consider
the mean-field (Bogoliubov) Hamiltonian

Ĥ − εF N̂ '
∑

k

(
c†k↑ c−k↓

) (
ξk −∆
−∆ −ξk

)(
ck↑
c†−k↓

)
+

∑

k

ξk − ∆2

g
V . (1.28)

Problem: Show that the mean-field Hamiltonian (1.28) can be diagonalised
by making use of the unitary transformation:

(
γk↑
γ†−k↓

)
=

(
cos θk sin θk
sin θk − cos θk

)(
ck↑
c†−k↓

)
. (1.29)

Show that the unitary transformation conserves the anti-commutation rela-
tions for the (Bogoliubov) quasi-particle operators γkσ and that the quasi-
particle energy is given by Ek =

√
ξ2k + ∆2, i.e.:

Ĥ − εF N̂ '
∑

k,σ=↑,↓
Ekγ

†
kσγkσ +

∑

k

(ξk − Ek)− ∆2

g
V . (1.30)

It is clear from the Bogoliubov transformation (1.29) that the ground state
of the Hamiltonian is uniquely given by the state that is annihilated by the
quasi-particle operators γkσ:

|ψ〉 =
∏

k

γ−k↓γk↑|0〉 ∝
∏

k

(
cos θ + sin θc†k↑c

†
−k↓

)
|0〉 .
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Therefore, instead than introducing the mean-field Hamiltonian (1.28) we could
have alternatively used a variational approach, minimising the expectation value
of the full Hamiltonian 〈ψ|Ĥ − εF N̂ |ψ〉 over the variational parameter θk. We
will follow this route later in Sec. 2.3.1 to find the gap (or self-consistent) equa-
tion for the order parameter; in both cases one obtains:

∆BCS = − g

V

∑

k

〈ψ|c−k↓ck↑|ψ〉 = − g

2V

∑

k

sin 2θk = − g

V

∑

k

∆BCS

2Ek
.

Problem: Assuming that the pairing interaction g = −λ extends only over
an interval ωD around the Fermi surface, show that the gap equation can
be solved to give:

∆BCS =
ωD

sinh(1/λN (εF ))
'

λN (εF )¿1
2ωDe

− 1
λN(εF ) . (1.31)

(Hint: Remember the relation (1.23) and approximate N (e) ' N (εF ).)

Note that this expression differs for a factor of 2 in the exponential from the
one of the binding energy in the Cooper argument in Eq. (1.24).

In order to add the effects of temperature we can come back to the expres-
sion (1.30) of the mean-field energy in terms of the Bogoliubov quasi-particle
operators and observe that, at zero temperature, the thermodynamical free en-
ergy potential f(∆) ≡ 〈ψ|Ĥ − εF N̂ |ψ〉 corresponds to fill all the states k with
Ek > 0 (i.e. all!) with Cooper pairs: 2

f(∆) ≡ 〈ψ|Ĥ − εF N̂ |ψ〉 =
∑

k

Θ(−Ek)Ek

︸ ︷︷ ︸
=0

+
∑

k

(ξk − Ek)− ∆2

g
V . (1.32)

At finite temperature one has instead to broaden the Θ-function distribution
and one can show that the free energy potential has the form

f(∆, T ) = −
∑

k

1
β

ln
(
1 + e−βEk

)
+

∑

k

(ξk − Ek)− ∆2

g
V , (1.33)

where β = 1/kBT . One can easily show that, in the limit β →∞ one recovers
the zero temperature expression for the free energy potential. Now the gap
equation, ∂f(∆, T )/∂∆ = 0, will be temperature dependent,

− 1
gN (εF )

=
∫ ωD

0

dξ
tanh [βE(ξ)/2]

E(ξ)
, (1.34)

where E(ξ) =
√
ξ2 + ∆2, and, by considering the ∆ → 0 limit, one can evaluate

the transition temperature to the BCS state (exercise):

kBTBCS ' ωDe
− 1

λN(εF ) . (1.35)

2 Note that clearly the gap equation coincide with the minimisation of f(∆), i.e. ∂f/∂∆ =
0.





Chapter 2

Lecture II: Feshbach
resonances & BEC-BCS
crossover

We have seen in Sec. 1.1.2 that, when a gas of Fermi atoms is prepared in the
same internal spin state, then, at low temperatures, the gas is completely non
interacting. As we will explain below, the case of a mixture of fermions prepared
in two different hyperfine states is different. We will show that in the case of
two-component Fermi gases, a measure of their interaction strength is given by
the dimensionless product

1
kFa

,

where a is the s-wave scattering length (see Sec. 2.1) andkF is the Fermi momen-
tum of the gas. It is easy to show that for a uniform gas containing a mixture of
equal densities of the same specie fermions in two different states, the product
kFa is the only quantity of interest. In fact, at zero temperature the kinetic
energy per particle is given by the Fermi energy, εF = k2

F /2m, while the inter-
action energy per particle is given by nU0, where n is the particle density for
one component. We will show that the effective interaction strength between
the atoms is related to the scattering length by U0 = 4πa/m. Therefore the
ratio between the interaction energy to the Fermi energy, by using (1.17), is
proportional to kFa (i.e. nU0/εF = 4kFa/3π).

After introducing basic concepts on atomic interactions, we will see in Sec. 2.2
how the interaction strength between atoms can be tuned by changing an exter-
nal homogeneous magnetic field, via a mechanism known as Feshbach resonance.
The tunability of the scattering length from a regime of attractive interaction
(a < 0) between the fermions to a regime where fermions form bound bosonic
molecules (and the effective interaction between the fermions is repulsive, a > 0)
will allow to study in Sec. 2.3 the crossover between a BCS state of strongly
overlapping Cooper pairs (as we studied in Sec. 1.3) to a state where instead
tightly bound molecules formed by fermionic pairs can undergo usual BEC. The
pioneering experiments in which this crossover has been realised will be finally
discussed in Sec. 2.4.
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Figure 2.1: Characteristic singlet and triplet scattering potential for 87Rb.

2.1 Interactions between atoms

As explained in more detail in the App. C, quantum degeneracy in alkali gases
can be reached only in a regime of metastability rather than true thermal equi-
librium. This is because the real equilibrium phase of interacting alkali atoms
at the temperatures and densities at which quantum degeneracy can be reached
would be a crystalline solid phase rather than the one of the gas. Therefore
alkali gases have to be kept in conditions of extreme diluteness, where, on the
time scales relevant for the experiments, 3-body collisions can be neglected and
where the collisional properties of the atoms are determined, as we will see, by
the s-wave scattering length only. In this regime, the particle separation is much
larger that the s-wave scattering length and typical values are given by:

r̄ ∼ n−1/3 ∼ 100nm a ∼ 100a0 ∼ 5nm ,

where a0 = 0.529Å is the Bohr radius. Two-body collisions are essential to
ensure thermalization of the cloud, allow to apply cooling techniques such as
evaporative cooling (see App. C), and it is thanks to interaction effects that
two-component Fermi mixtures to undergo a phase transition to a superfluid
phase. 1

When two alkali atoms are very far apart, each of them is characterised by
a given hyperfine state |F,mF 〉 (see appendix A). At large distances, two atoms
interact via a weak Van der Waals attraction (due to the electronic dipole-dipole
interaction between the atoms),

UVdW(r) = −C6

r6
,

which cannot change the hyperfine state the atoms are initially at. In contrast,
at small distances the interaction is predominantly determined by the valence

1 Note however that for a BEC of dilute bosonic alkali atoms, interaction effects do not
strongly modify the results obtained for an ideal gas as, e.g., the critical temperature and the
condensate fraction are concerned.
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electron and one can show that the interaction potential is different depending
whether the two valence electrons form a singlet or a triplet state (1.20) (see
Fig. 2.1). Therefore, since the operators 1/4 − Ŝ1 · Ŝ2 and 3/4 + Ŝ1 · Ŝ2 are
respectively projectors on the singlet (S = 0) and triplet (S = 1) spin component
(N.B. Ŝ1 · Ŝ2 = Ŝ2/2− 3/4 and Ŝ2|S, Sz〉 = S(S + 1)|S, Sz〉), one can write the
interaction potential at short distances in the form:

Ĥint =
Us(r) + 3Ut(r)

4
+ [Ut(r)− Us(r)] Ŝ1 · Ŝ2 . (2.1)

As a consequence, the hyperfine levels can now be mixed (multiple channel
problem), unless the atoms initially occupy the doubly polarised states |F =
I + 1/2,mF = ±(I + 1/2)〉 (see page 42). In fact, in this case,

|F = I + 1/2,mF = ±(I + 1/2)〉 = |mI = ±I,mS = ±1/2〉 ,

therefore both valence electrons have spin either ↑ or ↓ and therefore only the
triplet part of the potential contributes (single channel problem).

In the general case, the term

Ŝ1 · Ŝ2 = Ŝ1zŜ2z +
1
2
Ŝ1+Ŝ2− +

1
2
Ŝ1−Ŝ2+

in (2.1) can scatter the atoms from two initial hyperfine levels into two other
final hyperfine levels; the selection rules for the scattering is governed by the
matrix element 1,i〈F,mF | ⊗2,i 〈F,mF |Ĥint|F,mF 〉1,f ⊗ |F,mF 〉2,f .

Problem: Considering the case of 40K (see problem at page 44), evaluate
the final state in which two atoms initially in |9/2,−9/2〉1 ⊗ |9/2,−7/2〉2
can scatter into.

Answer: Remembering that a hyperfine level for a single atom |F,mF 〉 is
a superposition of the following eigenstates of Îz and Ŝz (as explained in
detail in App. A, in presence of a magnetic field, mF = mI ±1/2 is the only
good quantum number, while F is only a label),

|F,mF = mI ± 1/2〉 = cos θ|mI ,±1/2〉+ sin θ|mI ± 1,∓1/2〉 ,

and noticing that Ŝ1 · Ŝ2 conserves only mF tot = mF 1 +mF 2 (i.e., [F̂z1 +
F̂z2, Ŝ1 · Ŝ2] = 0), the only scattering to a different state which is allowed is

|9/2,−9/2〉1 ⊗ |9/2,−7/2〉2 7→ |9/2,−9/2〉1 ⊗ |7/2,−7/2〉2 .

2.1.1 s-wave scattering length

Let’s consider for the moment the case of (spinless) distinguishable particles,
including later the effects of statistics. In order to consider the scattering of two
particles, we concentrate on the relative motion (r = r1 − r2) and we look for
the eigenstates of the scattering problem,

[
− ∇2

2mr
+ U(r)

]
ψk(r) = εrkψk(r) , (2.2)
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Figure 2.2: Scattering of an incoming plane wave eikz into a scattered wave
f(θ)eikr/r in the direction r̂.

with a defined positive energy, εrk = k2/2mr (mr being the reduced mass,
mr = m1m2/(m1 + m2)). In general we are not interested for the moment in
the specific shape of the scattering potential, U(r), but will only assume that is
characterised by some range Re and that U(r) → 0 when |r| → ∞ fast enough.
At large distances, |r| À Re, we look for a solution of the form (see Fig. 2.2):

ψk(r) = eikz + f(θ)
eikr

r
. (2.3)

In general, one should expect the scattering amplitude f(θ) to be also a function
of ẑ and r̂. However, we have assumed that the scattering process is spherically
symmetric, U(r) = U(r). f(θ) defines the scattering cross section

dσ ≡ |f(θ)|2dΩ = |f(θ)|2 sin θdθdϕ , (2.4)

and moreover the s-wave scattering length is defined as

a ≡ − lim
k→0

f(θ) ⇔ lim
k→0

ψk(r) ∝ 1− a

r
. (2.5)

The sign of the scattering length determines if the effective interaction between
the atoms is either attractive (a < 0) or repulsive (a > 0). In fact, as shown in
Sec. B.1, in the Born approximation

aBorn =
2mr

4π

∫
drU(r) . (2.6)

For indistinguishable atoms (in the same hyperfine spin state) one has that
for bosons the wave-function ψk(r) has to be symmetric under the particle ex-
change, r 7→ −r, while for fermions has to be antisymmetric. As a consequence,
as r 7→ −r requires that simultaneously (r 7→ r, θ 7→ π − θ, ϕ 7→ ϕ+ π) one has
to either symmetrise of anti-symmetrise the wave-function according to:

ψB,F
k (r) = eikz ± e−ikz + [f(θ)± f(π − θ)]

eikr

r
.

Therefore, while for bosons the scattering cross section is given by σ = 8πa2,
for fermions (prepared in the same hyperfine state) σ = 0: A one-component
Fermi gas does not allow s-wave scattering at low energies.
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Figure 2.3: Truncated Van der Waals potential and associated scattering length
(from [7]). The (quasi-period) variation of the scattering length depends crit-
ically on the C6 coefficient of the Van der Waals tail potential UV dW (r) and
a small change in C6 can introduce a new bound state in the potential, when
the scattering length changes from −∞ to ∞. These types of variations in
short-range scattering potential are quite general.

Basic elements on how to evaluate the scattering length a given a scattering
potential U(r) are explained in App. B together with the example of the square
potential well (see Fig. B.2 in App. B). In general one has these following main
features for the low energies scattering properties off a potential of the type
shown in Fig. 2.1:

1. The sign of the scattering length and therefore of the low energy effective
interaction depends on the energy of the highest bound state;

2. If the scattering potential is not deep enough to hold a bound state, the
s-wave scattering length is negative, a < 0, corresponding to an effective
attractive interaction between the atoms;

3. If the parameters of the potential (e.g. the depth) can be changed in
such a way that eventually it can hold a bound state, then the scattering
length becomes positive, a > 0 (corresponding to an effective repulsive
interaction between the atoms), going from −∞ to +∞ when the bound
state first appears;

4. If the potential holds a bound state just below the threshold for dissoci-
ation, then one can show that its binding energy has a universal form in
terms of the scattering length:

εb = − 1
2mra2

. (2.7)

This last property follows from the low-energy form of the wave function for a
bound state (see Eq. (B.2))

ψ(r) = A
e−r

√
2mr|εb|

r
,
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Figure 2.4: Schematic representation of a two-channel model for a Feshbach
resonance. The open channel threshold is given by the energy εαi + εβi, while
the closed channel threshold by εαf + εβf . Thanks to the properties of the
hyperfine levels in a Zeeman field explained in Sec. A, their relative distance
can be tuned by an external uniform magnetic field.

which, when εb → 0, becomes

ψ(r) ' A

(
1
r
−

√
2mr|εb|

)
,

and compared with (2.5) gives (2.7). For a detailed study of the, e.g., truncated
Van der Waals potential (see Fig. 2.3) see Ref. [26].

The considerations above can be extended to the case of scattering between
different internal (hyperfine) states. As explained previously at the beginning of
Sec. 2.1, two atoms in an initial internal state |αi, βi〉 ≡ |F,mF 〉1,i ⊗ |F,mF 〉2,i

can be scattered to a different state |αf , βf 〉 because of the interaction poten-
tial (2.1). Aside the selection rules for the final internal state, scattering between
an entrance channel |ki;αi, βi〉 and an exit channel |kf ;αf , βf 〉 has to conserve
the energy, i.e. k2

i /2mr + εαi + εβi = k2
f/2mr + εαf + εβf . A channel is called

open if k2/2mr > εα + εβ , conversely is called closed. The definition of the
scattering amplitude (2.3) can now be generalised to:

ψ(r) = eikiz|αi, βi〉+
∑

αf ,βf

f
αf ,βf

αi,βi
(ki,kf )

eikf r

r
|αf , βf 〉 .

2.2 Feshbach resonances

In the previous section we have seen that one way to dramatically change the
scattering properties of two interacting particles is by changing the parameters
of the scattering potential in order to accommodate or less a bound state close
to dissociation threshold. In particular, e.g. by increasing the depth of the
potential (see, e.g., the example of square well potential in App. B), we have
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seen that the scattering length goes from −∞ to +∞ every time a new bound
state is accommodated in the potential well.

Unfortunately changing by external means the parameters of a scattering
potential is not possible. However, the elastic scattering properties of a given
open channel can be dramatically altered if the open channel is coupled to a
low-energy bound sate in a second closed channel not far from the open one.
While here we are going to give only a phenomenological description of the
Feshbach resonance mechanism, for a detailed description see, e.g., Ref. [15].

Coupling between the channels follows from the interaction potential (2.1).
If two atoms are initially in the scattering state |αi, βi〉 they will have some
coupling to other scattering states |αf , βf 〉. When the energy of |αf , βf 〉 is
far apart, the atoms will always emerge in the open channel state |αi, βi〉 and
their scattering length will be not modified by the coupling to another channel
|αf , βf 〉. In this case the scattering length is given by the background scattering
length, abg. However, because of the difference in the magnetic moments of the
closed and open channels (see Appendix A), by applying an external uniform
magnetic field, the position of a closed channel bound state can be varied with
respect to the threshold of an open channel (see Fig. 2.4). In this case, the
coupling between |αi, βi〉 and a bound state of |αf , βf 〉 can strongly modify the
background value of the scattering length. Feshbach resonances are therefore
described by a magnetic-field dependent scattering length, according to the
relation:

a(B) = abg

(
1− ∆B

B −B0

)
, (2.8)

where abg is the scattering length in absence of coupling between the channels,
∆B is called the width of the resonance and B0 is the position of the resonance
(see Fig. 2.5).

As an aside remark, note that Feshbach resonances works better for two-
component Fermi mixture rather then for Bose gases. 2 This is because near
the resonance, large values of the scattering length increase the three-body re-
combination processes (see App. C). For Fermions, the Pauli exclusion principle
allows to have longer life-times.

2.3 BEC-BCS crossover

We now come back to the properties of dilute Fermi gases. We have seen in
the previous chapter that if a Fermi gas is prepared in the same internal hyper-
fine state it does not interact at low temperatures and that properties related to
quantum degeneracy starts appearing for temperatures below the Fermi temper-
ature TF defined in Eqs. (1.5) and (1.6). However, if the mixture is prepared in
two different hyperfine states (two-component Fermi mixture), atoms in differ-
ent states can interact and a measure of their coupling strength is given by kFa.
Strikingly, we have also seen that the scattering length a can be tuned externally
by a homogeneous magnetic field via the Feshbach resonance mechanism. The
ability to externally manipulate the interaction strength between the atoms has
opened the exciting possibility to study the crossover between two (and at a
first sight opposite) regimes: When a > 0 and 1/kFa À 1, the two-species of

2 Recently mixtures of bosons and fermions, such as 87Rb and 40K, with an interspecies
resonance have also been realised [20,22,38].
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BCSBEC
Figure 2.5: BEC-BCS crossover from tightly bound molecules (1/kFa → +∞)
to loosely bound Cooper pairs (1/kFa → −∞) across a Feshbach resonance
between the two lowest hyperfine states of 6Li (from [4]): In this case, the
resonance is at B = 834G, B0 + ∆B = 534G, and agb = −1405a0.
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Figure 2.6: Scattering described by the Hamiltonian (2.9).

atoms weakly attract each other and, as we explained in Sec. 1.3 can undergo
a BCS transition to a superfluid phase of loosely bound (and strongly overlap-
ping) Cooper pairs. In contrast, when a < 0 and 1/kF |a| À 1, pairs of atoms
are tightly bound in (composite) bosonic molecules which can undergo usual
Bose-Einstein condensation (see Fig. 2.5). The reason why this is a crossover
rather than a transition is, as we will be explaining in Sec. 2.3.1, that at zero
temperature both states can be described by the same ground state and that
there is a smooth evolution between the two by varying the scattering length,
1/kFa. Note however that at finite temperatures, as we explained in Secs. 1.2.1
and 1.3, while in the BCS regime the temperature scale at which Cooper pairs
form (see Eq. (1.24)) and condense (see Eq. (1.35)) are the same and are much
lower than the degeneracy temperature (∆BCS ∼ kBTBCS ¿ kBTF ), in contrast
in the BEC regime the critical temperature of condensation is of the same or-
der of magnitude than the degeneracy temperature, TBEC ∼ TF , while TBEC is
much smaller than the dissociation temperature for the composite boson — i.e.
molecules forms at much higher temperatures at which they condense.

2.3.1 Zero temperature: Variational approach

Let us consider a mixture of a Fermi gas atoms with mass m in two different
hyperfine states, which we will indicate as the states ↑ and ↓, interacting via
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a two-body potential U(r) (see Fig. 2.6). We will see later that, in the case
where the scattering length a is much larger than the range of the potential Re,
|a| À Re, we can substitute the finite range potential with a contact potential (in
order to do that we will need the renormalisation scheme (B.9) where the ultra-
violet cut-off is given by k0 = 1/Re). For the moment being we will consider
the general case, assuming that kFRe ¿ 1, |a| À Re. while the product kFa
can be changed arbitrarily. The many-body Hamiltonian can be written as

Ĥ =
∑

k,σ=↑,↓
εkc

†
kσckσ +

1
V

∑

k,k′,q

Uk,k′c
†
k+q/2↑c

†
−k+q/2↓c−k′+q/2↓ck′+q/2↑ , (2.9)

where εk = k2/2m. As in atomic gas experiments the number of atoms in the
two states is fixed, it is convenient to work in the grand-canonical ensemble
Ĥ − µN̂ introducing a chemical potential µ to fix the total number of particles

N̂ =
∑

k,σ=↑,↓
c†kσckσ . (2.10)

Note that we are assuming for the moment being that the mixture is prepared
balancing the number of different species, N̂↑ = N̂↓. In this case therefore the
chemical potential of both species can be chosen to be equal. It is the subject
of the third lecture (chapter 3) to understand what happens if we consider an
unbalanced (or polarised) two-component Fermi mixture.

Problem: Show that, as proposed by Leggett in [16], the ground state

|ψ〉 =
∏

k

(
cos θk + sin θkc

†
k↑c

†
−k↓

)
|0〉 , (2.11)

where θk = θ−k, interpolates between a BEC condensate of tightly bound
molecules (when 1/kFa→ +∞) to a BCS state (when 1/kFa→ −∞).

Answer: If we introduce the composite operator

b†q =
∑

k

ϕkc
†
k+q/2↑c

†
−k+q/2↓ ,

then, defining ϕk = tan θk, we can rewrite the state (2.11) as

|ψ〉 ∝
∏

k

eϕkc†k↑c†−k↓ |0〉 = eb†q=0 |0〉 .

This state is a coherent state describing the condensation of the composite
bosonic particles b†q in the ground state q = 0. Note that this a good
description for BEC only at zero temperature, while at finite temperature,
the inclusion of thermal fluctuations for pairs (i.e., finite values of q) is
essential (see Sec. 2.3.3).

We want to use the ground state (2.11) as a variational ground state and
minimised the expectation value 〈ψ|Ĥ−µN̂ |ψ〉 using θk as a variational param-
eter.
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Problem: By introducing the order parameter

∆k ≡= − 1
V

∑

k′
Uk,k′〈ψ|c−k′↓ck′↑|ψ〉 = − 1

2V

∑

k′
Uk,k′ sin 2θk′ , (2.12)

show that gap equation ∂〈ψ|Ĥ − µN̂ |ψ〉/∂θk = 0 and the averaged density
of particles in the ground state n = 〈ψ|N̂)|ψ〉/V are respectively given by:

∆k = − 1
V

∑

k′
Uk,k′

∆k′

2Ek′
(2.13)

n =
1
V

∑

k

(
1− ξk

Ek

)
, (2.14)

where Ek =
√
ξ2k + ∆2

k is the quasi-particle spectrum and ξk = εk − µ.

Answer: One can easily evaluate

〈ψ|Ĥ − µN̂ |ψ〉 = 2
∑

k

ξk sin2 θk +
1

4V

∑

k,k′
Uk,k′ sin 2θk sin 2θk′ ,

from which the minimisation w.r.t. θk gives ξk tan 2θk = ∆k, where the
order parameter is defined in (2.12). From here one has that sin 2θk =
∆k/Ek, therefore obtaining Eq. (2.13). As the number equation (2.14) is
concerned, one can easily show that 〈ψ|N̂ |ψ〉 = 2

∑
k sin2 θk.

Gap (2.13) and number (2.14) equations have to solved simultaneously in
order to find the order parameter and the chemical potential. Note that, as
already discussed in Sec. 1.3, on the BCS side of the resonance the density of
particles is fixed by the value of the Fermi momentum (see Eq. (1.17)) and
therefore µ ' εF . In contrast, on the extreme BEC side we will see that µ < 0
and its value is determined by the molecular binding energy, µ ' εb/2, which,
in the universal regime, is given by the expression (2.7). Therefore we expect
that while in the BCS limit the number of particles equation is used to derive
the chemical potential, while the gap equation can be used to find the order
parameter, in contrast, in the BEC limit, the gap equation can be used to fix
the chemical potential, while the number equation can be used to find the order
parameter.

Problem: Knowing that in the BEC limit one can use the approximation
θk ¿ 1 (see Fig. 2.7: going towards the BEC regime, the bound pairs
become more and more tightly bound and therefore the distribution nk

becomes broader, as fermions with large k participate in the bound state
formation), show that the gap equation (2.13) reduces to the Schrödinger
equation for a single bound pair with energy given by:

µ =
εb
2

= − 1
2ma2

. (2.15)
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Figure 2.7: Number of particles at a given momentum k, nk = sin2 θk versus
εk/εF across the BEC-BCS crossover (from [9]).

Answer: Note that, when θk ¿ 1, |ϕk|2 ' θ2k ' nk and therefore θk is the
molecular wave-function. On this basis we already expect that θk has to
satisfy a Schrödinger equation describing a bound state with energy (2.7),
εb = −1/ma2. In fact the gap equation reduces to ∆k ' 2ξkθk and, from
the definition of the order parameter (2.12), ∆k ' −(1/V )

∑
k′ Uk,k′θk′ , we

can write the equation satisfied by θk:

2εkθk +
1
V

∑

k′
Uk,k′θk′ = 2µθk .

As 2εk = k2/m is the kinetic energy of a molecule of mass 2m, the gap
equation becomes the Schrödinger equation for a single bound pair with
binding energy 2µ = εb. In the limit where the scattering length is much
larger than than the range of the potential Re (universal regime), aÀ Re,
we will explicitly show (for a contact potential) that εb = −1/ma2 (see
Sec. 2.3.2).

2.3.2 Contact interaction

In the case of a contact interaction potential

U(r) = gδ(r) U(k) = g , (2.16)

it is possible to obtain analytical results for the equations (2.13) and (2.14) in
the extreme BCS and BEC limits (note that in this case the order parameter
can be assumed to be uniform, ∆k = ∆). Note however that, as discussed in
some detail in Sec. B.1.1, the contact interaction needs a renormalisation scheme
towards ultra-violet (UV) divergences; it is easy to see that otherwise the gap
equation diverges logarithmically. While in superconductors such a cut-off is
represented by the Deby frequency ωD, in atomic gases is represented by the
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Figure 2.8: Chemical potential µ/εF (left) and order parameter ∆/εF (right)
versus the scattering length 1/kFa obtained by solving simultaneously the
gap (2.18) and number (2.14) equations for a contact potential (2.16). The
BCS and BEC asymptotic limits (dotted lines) have been explicitly derived in
the Problem at page 24.

inverse range of the potential k0 = 1/Re. At the same time, one can introduce
the scattering length via the expression (see Sec. B.1.1 and Eq. (B.9)):

m

4πa
=

1
g

+
1
V

k0∑

k

1
2εk

. (2.17)

In this way the logarithmic divergence of the gap equation is now cured,

m

4πa
=

1
V

k0∑

k

(
1

2εk
− 1

2Ek

)
, (2.18)

and, when ak0 = a/Re À 1, the UV cut-off k0 = 1/Re can be send to infinity,
the dependence on the range of the scattering potential is lost and one is left
with the dependence on the scattering length only (universal regime). Note that
most of the current experiments are in this regime (wide Feshbach resonances),
while for narrow Feshbach resonances one can show that the scattering length
alone in not enough to describe the crossover but one also need the range of the
potential — or alternatively two other parameters such as the detuning and the
width of the resonance.

Problem: Show that in the BCS limit 1/kFa → −∞ (∆ ¿ εF ' µ) the
gap equation can be solved to give

∆ =
8
e2
εF e

−π/2|a|kF , (2.19)

while in the BEC limit 1/kFa → +∞ (εF ¿ ∆ ¿ |µ|) one reobtains
from (2.18) the energy of the molecular bound state (2.15).



2.3 BEC-BCS crossover 25

Answer: It is useful to introduce the DoS per unit volume at the Fermi
surface (see Eqs. (1.11) and (1.17))

N (εF ) =
1
V
N(εF ) =

m3/2√εF√
2π2

=
3
4
n

εF
, (2.20)

in terms of which the scattering length reads m/4πa = (π/2)N (εF )/kFa. a

Introducing the dimensionless units of energy, x = ε/|µ|, b one can write
the gap equation in the form:

π

2kF a
N (εF ) = N (|µ|)

∫ ∞

0

dx
√
x

[
1
2x

− 1
2
√

(x∓ 1)2 + (∆/|µ|)2

]
,

where the sign ∓ corresponds respectively to the cases µ >< 0.
In the BCS limit, we know from the number equation (2.14) that, as ∆ ¿ εF

(weak coupling regime), the chemical potential µ differs from the Fermi
energy εF by an amount O(∆2/ε2F ), µ ' εF . Therefore the gap equation
now reads

π

2kFa
=

∫ ∞

0

dx
√
x

[
1
2x

− 1
2
√

(x− 1)2 + (∆/εF )2

]

︸ ︷︷ ︸
ln(e2∆/8εF )

,

from which one gets the expression (2.19).
In the BEC limit instead µ < 0 and we have seen that θk ' ∆/2ξk ¿ 1
(density of particles in the state k), therefore in the first approximation we
have that:

π

2kFa
N (εF ) ' N (|µ|)

∫ ∞

0

dx
√
x

[
1
2x

− 1
2(x+ 1)

]

︸ ︷︷ ︸
π/2

,

from which we get that
√
|µ|/εF = 1/kFa and therefore Eq. (2.15). One

can double-check that the energy scales are arranged as εF ¿ ∆ ¿ |µ| by
solving the number equation in this limit

n ' N (|µ|)∆2

2|µ|
∫ ∞

0

dx

√
x

(x+ 1)2︸ ︷︷ ︸
π/2

,

which gives ∆ '
√

16/3πεF

√
1/kFa. c

a Note that for a single component Fermi gas N (εF ) = 3n/2εF .
b One has:

1

V

X

k

=

Z
dk

(2π)3
=

Z ∞

0
dεN (ε) .

c One can show that expanding to the next order

„
∆

εF

«2

' 16

3π

1

kF a
+

4

3π2
(kF a)2 .
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Figure 2.9: Quasi-particle excitation spectrum versus momentum on the BCS
(µ > 0) and on the BEC (µ < 0) side of the resonance. The spectrum changes
qualitatively from one shape to the other when µ = 0.

The general behaviour of the chemical potential µ and the order parameter
∆ obtained from solving simultaneously gap and number equations across the
resonance is plotted in Fig. 2.8. The chemical potential is positive in the BCS
limit, negative in the BEC limit, and changes sign across the resonance. The
point at which the chemical potential changes sign, µ = 0 can be interpreted
as the point at which the crossover takes place. In fact it is at this point that
the excitation energy of a quasiparticle with momentum k, Ek =

√
ξ2k + ∆2,

changes qualitatively (see Fig. 2.9). In particular the gap of the excitation
spectrum is given respectively by

Egap ≡ min
k
Ek =

{
∆ µ > 0√

∆2 + µ2 µ < 0 .
(2.21)

Note that µ = 0 occurs on the molecular side of the resonance, i.e. for positive
values of the scattering length, 1/kFa ' 0.6 (see Fig. 2.8), when already a
molecular bound state exists.

2.3.3 Finite temperature

We have seen in the previous section that, at zero temperature, nothing partic-
ularly dramatic happens across the BEC-BCS crossover at the many body level,
even when the scattering length goes through infinity at the resonance, while at
the two-body level a molecular state appears or disappears. This is because at
zero temperature, the very same BCS ground state (2.11) describes both BEC
and BCS condensation regimes of respectively molecules and Cooper pairs [16].

At finite temperatures the situation is very different. This is because, at fi-
nite temperatures, the nature of condensation in the BCS and BEC limits is very
different. In the BCS regime the formation and condensation of Cooper pairs
occur at the same temperature or energy scale (e.g., ∆BCS ∼ kBTBCS ¿ εF ).
In this regime we have seen that the coupling is weak and the critical temper-
ature depends exponentially on the interaction strength (or on the scattering
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Figure 2.10: Critical temperature across the Feshbach resonance evaluated
within the NSR approximation scheme [21]. The dashed line is the critical
temperature in the BCS limit (see, e.g., (1.35)).

length). In contrast, in the BEC limit, the dissociation of molecules happens
at temperatures much higher then the one at which the molecules condense
(TBEC ∼ TF ¿ Tdiss) — i.e., the condensate forms out of preformed molecules.

In more technical terms this means that, at finite temperatures, the mean-
field description (introduced in Sec. 1.3 and also used previously in Sec. 2.3.1
across the entire crossover) cannot be a valid description any longer the closer
we get towards the BEC regime. The mean-field approximation is only able
to describe the pairing and un-pairing mechanism and, while it would give a
good asymptotic description of the critical temperature in the BCS limit (see
dashed line in Fig. 2.10), towards the BEC limit instead a mean-field description
is only able to describe the dissociation temperature of the molecules (roughly
proportional to the molecular binding energy), while molecules form well before
they are able to condense. In order to take this into account one has to go beyond
mean-field and at least, when fixing the number of particles as in Eq. (2.10),
take into account the thermal (molecular) pairs.

As originally proposed by Nozières and Schmitt-Rink (NSR) [21], at the
first approximation one has to add fluctuations above mean-field at the Gaussian
level. Unfortunately there is no time during these lectures to go into any of these
details. A review references to this method is given, e.g., by the Refs. [28, 32].
As an aside remark, note that even though the NSR approximation scheme gives
a smooth crossover a finite temperature, as shown in Fig. 2.10, in the unitarity
regime, where the scattering length is very large, not only mean-field is not a
good approximation, but adding fluctuations corrections at one, two, and so
on loops it is not a well controlled approximation; it is therefore questionable
whether adding fluctuations at one loop order can give an answer for Tc quan-
titatively correct. This is a very interesting problem given that experiments are
in fact close around this regime.
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Figure 2.11: Scattering length measured for a Feshbach resonance at B0 '
224.2G (abg = 174a0 and ∆B ' 9.7G) in a 50% mixture of states |9/2,−9/2〉
and |9/2,−5/2〉 in 40K (from [30]).

2.4 Experiments on the BEC-BCS crossover

The main idea and results of the pioneering experiments on the BEC-BCS
crossover for two-component Fermi mixtures with a Feshbach resonance will be
discussed to some extent during the lectures. For reference to relevant papers
see the captions of Figs. 2.11, 2.12, and 2.13.
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Figure 2.12: BEC of molecules in 50% mixture of states |9/2,−9/2〉 and
|9/2,−7/2〉 in 40K (B0 ' 202.2G, ∆B ' 7.8G) (from [10] and also see
Refs. [29, 31]).

Figure 2.13: Condensation of fermionic pairs in 40K (from [30]).

Figure 2.14: Observation of a vortex lattice in a strongly interacting rotating
Fermi gas of 6Li across a Feshbach resonance (from [39]).





Chapter 3

Lecture III: Polarised Fermi
gases

We have seen in the previous two lectures that in experiments on ultracold gases
it has been reached an unprecedented ability to control the interaction strength
between the atoms via the Feshbach resonance mechanism. This has opened
the possibility to study the phase diagram of various systems in very different
regimes of interaction strength. In particular, in the case of two-component
Fermi mixtures, Feshbach resonances have allowed to explore the crossover be-
tween a BEC phase of tightly bound molecules and a superfluid phase of loosely
bound (Cooper) pairs, reminiscent of the Bardeen-Cooper-Schrieffer theory orig-
inally formulated for superconductors.

At the same time, in experiments is possible to achieve a full control over the
number of atoms in their different spin species. In particular, the full control
over the polarisation of a two-component Fermi mixture opens one of the most
intriguing questions about the superfluid behaviour in fermionic systems: I.e.,
whether superfluidity can persist in presence of a population imbalance (or
polarisation), when not every fermion can pair up (see Fig. 3.1).

This problem is highly relevant in different areas of physics, such as quantum
chromodynamics (and compact stars), magnetised superconductors, electron-

BCSBEC
Figure 3.1: BEC-BCS crossover for imbalaced two-component Fermi gases with
majority specie given by the atoms in the spin state ↑.
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Figure 3.2: Schematic representation of electron-hole bilayers.

hole bilayers. In superconductors, though, the magnetic field used to generate
spin imbalance via the Zeeman effect, also couples to the orbital degrees of free-
dom and as a result the magnetic field is expelled from the bulk of the supercon-
ductor (Meissner effect). We will briefly see in Sec. 3.1 how one can in principle
engineer particular film geometries where the Zeeman effect is the dominant
effect. In QCD, cold dense quark matter might form a colour superconductor –
which might be relevant for describing neutron stars. The differences among the
quark masses cause a mismatch among the Fermi surfaces between the species
which pair. In electron-hole bilayers (see Fig. 3.2) it is possible to engineer
semiconductor heterostructures with two quantum wells and to electrostatically
(but also optically) load electrons in the conduction band of one well and holes
in the valence band of the other well. The independent load by gating and
biasing of the different wells, allows to create an imbalance in the populations
of electrons and holes. As an aside comments about electron-hole bilayers, it
is interesting to note that the idea of the BEC-BCS crossover has originated
in the context of excitonic physics much earlier than even T. Leggett proposed
it in his seminal paper [16]. The idea, due to a seminal work of Keldysh and
Kopaev in 1965 [14], is that by increasing the density of electrons and holes,
it is possible to explore the crossover between a low density (BEC) regime of
tightly bound exciton pairs (i.e., hydrogenic atoms formed by one electron and
one hole) and a high density regime where instead electrons and holes strongly
overlap (and weakly attract each other) and can undergo a BCS-like transition
to a state called exciton insulator (for a review see, e.g., Refs. [13,17]). Atomic
gases clearly provide an ideal testing ground for the quest of superfluidity in
imbalanced Fermi systems, as the populations in two hyperfine states of the
fermionic atoms can be easily controlled externally.

Our starting point will be the same Hamiltonian considered in Sec. 2.3.1 for
two atoms in two spin-states, ↑ and ↓, interacting via a contact potential,

Ĥ =
∑

k,σ=↑,↓
εkc

†
kσckσ +

g

V

∑

k,k′,q

c†k+q/2↑c
†
−k+q/2↓c−k′+q/2↓ck′+q/2↑ , (3.1)

where now however we allow for the density of particles in the two states,

n̂↑ =
1
V

∑

k

c†k↑ck↑ n̂↓ =
1
V

∑

k

c†k↓ck↓ ,
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to vary independently. Therefore, in order to do that, we have to introduce two
different chemical potentials for each spin state, µ↑ and µ↓, or alternatively the
averaged chemical potential µ and the ‘Zeeman’ term h (see Fig. 3.3 for the
BCS limit):

µ =
µ↑ + µ↓

2
h =

µ↑ − µ↓
2

. (3.2)

At zero temperature, one can follow the same variational approach used in
Sec. 2.3.1, minimising the expectation value 〈ψ|Ĥ − µn̂V − hm̂V |ψ〉, where
n̂ and m̂ are respectively the total density and the population imbalance (or
magnetisation):

n̂ = n̂↑ + n̂↓ m̂ = n̂↑ − n̂↓ . (3.3)

Note that we expect the ground state |ψ〉 to be the same whether an imbalance
is present or not. In fact, introducing the order parameter as in Eq. (1.27), the
Hamiltonian (3.1) in the mean-field approximation reads:

Ĥ −
∑

σ=↑,↓
µσn̂σV '

∑

k

(
c†k↑ c−k↓

) (
ξk − h −∆
−∆ −ξk − h

)(
ck↑
c†−k↓

)

+
∑

k

(ξk + h)− ∆2

g
V , (3.4)

where we are considering the case of the same specie (two-component) gas, i.e.,
equal masses m↑ = m↓ = m. 1 As the Zeeman term provides a rigid shift
in energy and it does not change the symmetry of the Hamiltonian, it is clear
that (3.4) can be diagonalised by the same unitary transformation considered
in (1.29) in terms of the Bogoliubov operators γk,σ (exercise),

Ĥ −
∑

σ=↑,↓
µσn̂σV '

∑

k,σ=↑,↓
Ekσγ

†
kσγkσ +

∑

k

(ξk − Ek)− ∆2

g
V ,

where now the quasi-particle energy is given by

Ekσ = Ek ∓ h . (3.5)

Therefore the ground state |ψ〉 has the same form as in (1.27) and corresponds
to have a paired BCS-like state for all the values of k such that Ek↓ > 0, while
those k for which Ek↓ < 0 are filled with only (non interacting) fermionic ↑
particles (majority species) and instead are depleted of ↓ particles (minority
species). 2 In other words the free energy potential reads:

f(∆;h, µ) ≡ 〈ψ|Ĥ −
∑

σ=↑,↓
µσn̂σV |ψ〉 =

∑

k,σ=↑,↓
Θ(−Ekσ)Ekσ +

∑

k

(ξk − Ek)− ∆2

g
V . (3.6)

1 Note that mixing fermionic atoms of different species and therefore considering m↑ 6= m↓
(such as 6Li and and 40K) can also create a mismatch of the Fermi surfaces in the BCS
limit. Unequal masses mixtures will be not discussed here; for recent theoretical work see,
e.g., Ref. [24] and references therein.

2 Note that h can be fixed positive and that there is a symmetry for changing h 7→ −h,
which is equivalent to change the sign of the magnetisation, m 7→ −m.
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Figure 3.3: The imbalance between the density of atoms in the internal state ↑
and in the state ↓ determines, in the BCS limit, a mismatch of the two Fermi
surfaces. The very same happens in a magnetised superconductor, when a
Zeeman term causes a mismatch between the Fermi surface of spin ↑ electrons
and the one of spin ↓ electrons.

As we are going to discuss in Sec. 3.2, a correct solution of this problem re-
quires not only to solve simultaneously the gap equation, ∂f(∆;h, µ)/∂∆ = 0,
together with the number equations, as we instead did for the balanced BEC-
BCS crossover problem in Sec. 2.3.1. In fact, we will see that the presence of a
Zeeman term opens the possibility for first order transitions (and phase sepa-
ration) and therefore the correct solution requires a proper minimisation of the
free energy potential f(∆;h, µ) w.r.t. the order parameter ∆.

3.1 Analogy with magnetised superconductors

In the BCS limit (µ ' εF ) and at zero temperature, a two-component im-
balanced problem admits an analytical solution. In this limit, the problem is
equivalent with the one of a superconductor in presence of a Zeeman term, and
it has been studied first by Sarma in 1963 [33].

For a superconductor in a thin-film geometry, it is possible to design a regime
where the Zeeman effect dominates over the orbital effect. If the film thickness d
is smaller than the penetration depth, the in-plane magnetic field lines enter the
superconductor. Because of the orbital effect, the value of the critical magnetic
field at which superconductivity is destroyed can be estimated by the condition
that the magnetic flux associated to an area ξd (where ξ is the coherence length),
is of the order of one flux quantum, φ0 = hc/2e, i.e. Hcξd ∼ φ0. On the
other hand, the critical field associated to the Zeeman splitting is obtained
from the condition that the exchange energy splitting hZ ≡ gLµBHZ (gL is
the Landé g-factor and µB = e/2m is the Bohr magneton) is of the size of the
order parameter, hZ ∼ ∆. Therefore, the orbital effect can be neglected when
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Figure 3.4: Two branches of the gap equation solution for the magnetised su-
perconductor at zero temperature.

HZ < Hc. I.e., when the thickness is smaller than a critical value, d < dc, the
dominant effect in suppressing superconductivity is the Zeeman splitting and
the orbital effect can be neglected.

Problem: Show that for a magnetised superconductor (with attractive
coupling constant g ≡ −λ < 0), the gap equation reads

∆ = λN (εF )
∫ ωD

√
max{0,h2−∆2}

dξ

2
√
ξ2 + ∆2

, (3.7)

(i.e., if h > ∆ the quasi-particle states are occupied only for ξ >
√
h2 −∆2)

and that admits the following solution:

∆ = ∆BCS

{
1 h < ∆√

2h−∆BCS ≡ ∆Sarma h > ∆ .
(3.8)

where ∆BCS is the BCS solution (1.31) (see Fig. 3.4) (Hint: Starting from
the expression (3.6), consider the gap equation, ∂f/∂∆ = 0 and then use
the BCS result (1.31) for ∆BCS).

Therefore, at zero temperature and for ∆BCS/2 < h < ∆BCS, the gap equa-
tion for a magnetised superconductor admits three solution, ∆ = 0, ∆BCS

and ∆Sarma. The branch solution for h > ∆ takes also the name of Sarma
state [33]. However, by plotting the free energy potential f(∆;h) as a function
of ∆ (see Fig. 3.5), one can easily see that the appearance of the Sarma state
for h ≥ ∆BCS/2 correspond to a maximum of the free energy potential rather
than a minimum, while ∆ = 0 is the real minimum energy solution. Therefore
the study of the gap equation is not enough to know the phases of the system
and one has to properly minimise the free energy. At zero temperature it turns
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Figure 3.5: Free energy potential f(∆, h) (rescaled by f(0)) versus the order pa-
rameter ∆/∆BCS for three different values of the rescaled Zeeman term h/∆BCS.
When h/∆BCS = 1/

√
2 the system undergoes a first order phase transition where

normal (∆ = 0) and superconducting state (∆ = ∆BCS) coexist: I.e., for this
value of the Zeeman term the system undergoes phase separation.

out that one can integrate exactly (3.6) (in the BCS limit) to get (exercise)

f(∆, h)− f(0)
N(εF )

= Θ(∆− h)
[
∆2

2
ln

(
∆

∆BCS

)
+

2h2 −∆2

4

]

+ Θ(h−∆)

[
∆2

2
ln

(
h+

√
h2 −∆2

∆BCS

)
− ∆2

4
+
h2

2
− h

2

√
h2 −∆2

]
.

From its minimisation, we obtain that, when h/∆BCS = 1/
√

2, the system
undergoes a first order phase transition from the superconducting phase (∆ =
∆BCS) to the normal phase (∆ = 0). The fact the at h/∆BCS = 1/

√
2 the two

phases have the same energy it means the system undergoes phase separation
between the two phases.

At finite temperature, we can use the same argument used at the end of
Sec. 1.3 to get the finite temperature free energy:

f(∆;h, µ) = −∆2

g
+

1
V

∑

k

[
ξk − Ek − 1

β

∑
σ

ln
(
1 + e−βEkσ

)
]
, (3.9)

where the quasi-particle energy Ekσ has been defined in (3.5). Again the prob-
lem is particularly easy to solve in the BCS-limit. For h = 0 we already know
that there is a second order phase transition between the superfluid (BCS)
phase and the normal phase (one can show that TBCS ' 0.57∆BCS). In con-
trast for zero temperature we know that the transition is first order when
h = ∆BCS = 1/

√
2. Therefore we expect that the full phase diagram will have

a tricritical point where the transition changes from 1st to 2nd (see Fig. 3.6).
This problem was studied by Sarma [33].
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Figure 3.6: Finite temperature phase diagram for a polarised gas in the BCS
limit (see Ref. [33] for the numerical result).

Figure 3.7: Phase diagram for the 3He-4He mixture: Critical temperature for
the 4He superfluid transition versus the fraction of 3He in the mixture.
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Figure 3.8: In-situ imaging of phase separation for an imbalanced two-
component Fermi mixture in 6Li at unitarity (from [35]).

3.2 Phase diagram across the resonance

The problem of polarised Fermi gases across the resonance is expected to be
particularly rich. First of all let us notice a strong analogy between this problem
and the one of 3He-4He mixtures — after all, in the extreme BEC regime,
where all molecules are tightly bound, the polarised gas is a Bose-Fermi mixture.
In 3He-4He mixtures, for small concentration of 3He, the critical temperature
(λ point) decreases with the concentration simply because one is effectively
depleting the 4He concentration — e.g., if 4He would behave as an ideal Bose
gas, one would have Tc(x) = TBEC(1 − x)2/3, where x is the molar fraction of
3He in the mixture. However, for temperatures below the triple point (which
corresponds to a tricritical point), the mixture phase separates into two liquid
phases (similarly to how oil and water phase separates!).

We will discuss during the lecture (in general and qualitative terms) how
this scenario is recovered in polarised gas Fermi gases and the topology of the
phase diagram across the resonance (see Refs. [23, 24]).

3.3 Experiments on polarised Fermi gases

Experiments on two-component polarised Fermi gases are very recent (and in
part work in progress) and represent one of the forefront experiments in the
field of atomic gases. The main idea and results of the pioneering experiments
in two-component polarised Fermi mixtures with a Feshbach resonance will be
discussed to some extent during the lecture. For reference to relevant papers
see the captions of Figs. 3.8 and 3.9.
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Figure 3.9: Temperature dependence of the transition to a phase separated state
for an imbalanced two-component Fermi mixture in 6Li at unitarity (from [25]):
temperature is below the tricritical point in the upper frames (a) and (b) (where
the transition is 1st order and there is phase separation), while temperature is
above the tricritical point in the lower frames (c) and (d) (where the transition
is 2nd order.





Appendix A

Alkali atoms

The properties of atomic structure of alkali atoms are important for the exper-
imental study of ultracold atomic gases. We discuss here the basic elements.

A.1 Hyperfine levels and Zeeman splitting

In alkali atoms all electrons but one occupy closed shells and therefore have a
single valence electron in an s orbital. Therefore the alkali atom electronic spin
is S = J = 1/2 (and the orbital angular momentum in the ground state is zero,
L = 0). The value of the alkali atom nuclear spin I depends instead on the
isotopic species. Moreover, as their atomic number Z is odd (and neutral atoms
have an equal numbers of electrons and protons), alkali atoms with odd mass
number A = Z+N (even number of neutrons N) are bosons, while those with
even mass number A (odd N) are fermions (see Table A.1).

The nuclear spin Î is coupled to the electronic angular momentum Ĵ = L̂+ Ŝ
by the hyperfine interaction

Ĥhf = AÎ · Ĵ , (A.1)

where A ∝ µ is a constant proportional to the magnetic moment of the nu-
cleus µ (note that for all alkali atoms listed in Table A.1 except 40K µ > 0).
The eigenstates of Ĥhf are given by the eigenstates |F,mF 〉 of total angular
momentum

F̂ = Î + Ĵ , (A.2)

bosons 1H N=0 I=1/2 µ > 0
85Rb N=48 I=5/2 µ > 0
87Rb N=50 I=3/2 µ > 0
23Na N=12 I=3/2 µ > 0
7Li N=4 I=3/2 µ > 0

fermions 6Li N=3 I=1 µ > 0
40K N=21 I=4 µ < 0

Table A.1: Alkali atoms used in experiments with their neutron number N , nuclear
spin I and nuclear magnetic moment µ.
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as 2Î · Ĵ = F̂2 − Î2 − Ĵ2 (F̂2|F,mF 〉 = F (F + 1)|F,mF 〉 and F̂z|F,mF 〉 =
mF |F,mF 〉). For alkali atoms S = J = 1/2 and therefore F = I ± 1/2 (mF =
mI +mS is instead degenerate), giving the two hyperfine energy levels

EF=I+1/2 =
A

2
I EF=I−1/2 = −A

2
(I + 1) ,

and the hyperfine splitting

∆Ehf = A

(
I +

1
2

)
. (A.3)

Characteristic frequencies of the hyperfine splitting are in the range ∆Ehf '
1− 10GHz.

Magnetic trapping of alkali atoms exploits the Zeeman effect on the atomic
energy levels:

Ĥ = AÎ · Ŝ + CSz , (A.4)

where C = 2µBB (µB = |e|/2me is the Bohr magneton) and where we have ne-
glected the Zeeman effect on the nuclear spin, DIz, as D/C ∼ me/mp ∼ 1/2000.
In the weak magnetic field limit, when the Zeeman energies are small compared
with the hyperfine splitting, one case use perturbation theory to evaluate the
matrix element

〈F,mF |Ŝz|F,mF 〉 =
mF

2
S(S + 1) + F (F + 1)− I(I + 1)

F (F + 1)
,

where, we have made use of the relations [F̂2, [F̂2, Ŝz]] = 2(F̂2Ŝz + ŜzF̂2)− (Ŝ ·
F̂)F̂z and Î2 = Ŝ2 + F̂2 − 2Ŝ · F̂, therefore getting the following approximated
expression for the atomic energy levels:

EF,mF
' A

2
[F (F + 1)− I(I + 1)− S(S + 1)] + gLµBmFB

gL =
S(S + 1) + F (F + 1)− I(I + 1)

F (F + 1)
,

(A.5)

where gL is the Landé factor. Many experiments are carried out at relatively
low magnetic fields, where (A.5) apply.

However, for a general value of the magnetic fieldB, either F̂2 nor Ŝ2, Ŝz, Î2, Îz
are good quantum numbers any longer, but only F̂z is conserved (mF = mI ±
1/2). As mF = mI ± 1/2, one can reduce the total Hamiltonian Ĥ in 2 × 2
subspaces with fixed mF . The eigenvalues of (A.4) have to be determined
by diagonalisation: By using the relation Î · Ŝ = IzSz + (I+S− + I−S+)/2,
one can construct the matrix elements of (A.4) on the basis |mI ,mS〉, where
−I ≤ mI ≤ I and mS = ±1/2. The energy levels obtained by such diagonalisa-
tion will be labelled by F and mF (where F indicates only where the eigenvalues
comes from for B = 0).

A.1.1 The I=3/2 example (87Rb, 23Na, 7Li)

Let’s consider for example the case of I = 3/2, valid for atoms like 87Rb, 23Na
and 7Li. For the states with mF = ±2 (also called doubly polarised states) one
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Figure A.1: Hyperfine energy levels for I = 3/2.

can only have

|F = 2,mF = 2〉 = |mI =
3
2
,mS =

1
2
〉 EmF =2 =

3
4
A+

C

2

|F = 2,mF = −2〉 = |mI = −3
2
,mS = −1

2
〉 EmF =−2 =

3
4
A− C

2
.

For mF = 1 instead one has to diagonalise (A.4) on the subspace of |mI =
3/2,mS = −1/2〉 and |mI = 1/2,mS = 1/2〉,

(−3A/4− C/2
√

3A/2√
3A/2 A/4 + C/2

)

which eigenvalues we will indicate with

|F = 2,mF = 1〉 = cos θ|mI =
3
2
,mS = −1

2
〉+ sin θ|mI =

1
2
,mS = −1

2
〉

|F = 1,mF = 1〉 = − sin θ|mI =
3
2
,mS = −1

2
〉+ cos θ|mI =

1
2
,mS = −1

2
〉 ,

according to their B = 0 value:

EmF =1 = −A
4
±

√
3
4
A2 +

1
4
(A+ C)2 .

Analogously one can proceed for the mF = −1 and the mF = 0 states:

EmF =−1 = −A
4
±

√
3
4
A2 +

1
4
(A− C)2

EmF =1 = −A
4
±

√
A2 +

1
4
C2 .

The energy levels are plotted in Fig. A.1.
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(a) (b)

Figure A.2: The different hyperfine states of 40K (a) (from [5]) can be separated
and imaged with a Stern-Gerlach field (b) (from [18]).

Aside the doubly polarised states (F = I + 1/2, mF = F ), the maximally
stretched state (F = I − 1/2, mF = −(I − 1/2)) plays an important role in
experiments.

Problem: Evaluate the energy levels in 40K.

Answer: The hyperfine energy levels are given by

EF=7/2 =
5
2
|A| EF=9/2 = −2|A| ,

and therefore the hyperfine spitting is given by ∆Ehf = 9A/4. Note that,
because of the negative nuclear magnetic moment, A < 0, the F = 9/2 level
has lower energy than the F = 7/2 one. In presence of an external magnetic
field the energy level are plotted in Fig. A.2.



Appendix B

Elements of scattering
theory

In this appendix we briefly (and roughly) explain how, given a certain scattering
potential U(r), it is possible to derive the s-wave scattering length a defined
in (2.5). For a detailed description see, e.g., Refs. [7, 26].

A general solution of the scattering problem (2.2) can be expanded in the
eigenstates of the angular momentum L̂, the Legendre polynomials P`(cos θ):

ψk(r) =
∞∑

`=0

A`P`(cos θ)
uk,`(r)
kr

. (B.1)

Substituting into (2.2) it is easy to show that the radial wave-function uk,`(r)
satisfies the equation

d2uk,`(r)
dr2

+
[
k2 − `(`+ 1)

r2
− 2mrU(r)

]
uk,`(r) = 0 . (B.2)

The term `(` + 1)/r2 represents the centrifugal barrier for finite ` states (see
Fig. B.1). Note that, for identical atoms (prepared in the same hyperfine state)
the values of ` are restricted to even values for bosons and to odd values for
fermions. Scattering for identical fermions prepared in the same hyperfine states
in the p-wave (` = 1) channel is in general strongly suppressed at low temper-
atures — although can be revived via a Feshbach resonance and this is at the
moment an active field of research.

At large distances one can neglect the centrifugal term and the scattering
potential, therefore the radial wave-function has the form

uk,`(r) ' sin[kr − π`

2
+ δ`(k)] ,

where δ`(k) are phase shifts. By considering the expansion of the plain wave
eikz on Legendre polynomials, one can then show that scattering amplitude (2.3)
and scattering cross section (2.4) can be expressed in terms of the phase shift
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Figure B.1: Effective scattering potential U(r)+`(`+1)/(2mrr
2) for ` = 0 (left)

and ` ≥ 1 (right).

in the following way:

f(θ) =
1

2ik

∞∑

`=0

(2`+ 1)[e2iδ`(k)]P`(cos θ)

σ =
4π
k2

∞∑

`=0

(2`+ 1) sin2 δ`(k) .

In order to find explicitly the phase shifts δ`(k), one has to solve the Schrödinger
equation (B.2). We are going to do it for the simple case of a square potential
well for s-wave scattering (` = 0) only and refer to Ref. [7] for more general
cases. In particular one can show that for a finite range potential one has that

δ`(k) ∼
k→0

k2`+1 ,

and therefore the scattering cross section is dominated by the ` = 0 (s=wave)
term, for which the scattering amplitude f`=0(θ) = δ0(k)/k and therefore,
from (2.5),

a ≡ − lim
k→0

δ0(k)
k

.

Equivalently, at low energy, one expects the following asymptotic behaviour for
the radial wave-function:

lim
k→0

uk,`=0(r) ∝ r − a .

Problem: Determine the scattering length for a square potential well (see
Fig. B.2).
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Figure B.2: Square potential well (left) and associated scattering length (right).
The number of bound states which the potential can hold increases every time
k0Re = (2n+ 1)π/2.

Answer: We have to solve the Schrödinger equation for the radial wave
function in the low energy (k → 0) limit:

d2u(r)
dr2

− 2mrU(r)u(r) = 0 .

For the solution

u(r) =

{
c1(r − a) r > Re

c2 sin(k0r) r < Re ,

where k0 =
√

2mrU0, we have to impose continuity of u(r) and du(r)/dr
at r = Re, obtaining the following expression for the scattering length (see
Fig. B.2):

a = Re − tan(k0Re)
k0

. (B.3)

Therefore one has that when k0Re =
√

2mrU0Re < π/2, the depth of the
potential well U0 is too small to allocate a bound states and the scattering
length is negative implying an attractive effective interaction between the
atoms (see Eq. (2.6)). Increasing the value of U0 eventually the well is
deep enough to hold a bound state, at which point the scattering length
becomes positive and the effective interaction between the atoms is repulsive.
By increasing further the value of k0Re the sequence repeats and every
time a new bound states is created the scattering length goes from −∞ to
+∞ at k0Re = (2n + 1)π/2. The relation between the divergence of the
scattering length and the appearance of a bound state is general. At the
same time, when k0Re increases, the scattering length is more likely to be
mainly positive.

B.1 T -matrix formalism

At low energies and large distances it is useful to define the scattering proper-
ties in terms of the T -matrix. This can be defined considering the scattering
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problem (2.2) written in the momentum representation,

(εrk − εrk′)ψ
sc(k′) = U(k− k′) +

∫
dk′′

(2π)3
U(k′ − k′′)ψsc(k′′) , (B.4)

where εrk = k2/2mr and where, taking the Fourier transform of Eq. (2.3),
ψ(k′) = (2π)3δ(k − k′) + ψsc(k′) and U(r) =

∫
dk/(2π)3eik·rU(k). Therefore

the scattered (outgoing) wave can be defined in terms of the scattering T -matrix
as

ψsc(k′) = (εrk − εrk′ + iδ)−1
T (k′,k)

T (k′,k) ≡ U(k− k′) +
∫

dk′′

(2π)3
U(k′ − k′′)ψsc(k′′) .

From its definition it follows that the T -matrix satisfies the following (self-
consistency) Lippmann-Schwinger equation

T̂ = Û + ÛĜ0T̂ , (B.5)

where the free Green’s function is given by

Ĝ0 = [(εr + iδ)Î− Ĥ0]−1 (B.6)

and where we have used a matrix notation. 1 One can formally write the solution
of Eq. (B.5) as

T̂ = (I− ÛĜ0)−1Û = Û(I− Ĝ0Û)−1 . (B.7)

In the zero-energy limit, E → 0 (k → 0), and at large distances, one can express
the scattering length defined in Eq. (2.5) in terms of the T -matrix. In fact in
this limit one has that

ψsc(k′) ' 1
−εrk′ + iδ

T (0, 0) ,

and therefore, considering the Fourier transform of this expression, 2 we obtain
that

ψsc
k (r) '

k→0,r→∞
−2mr

4πr
T (0, 0) ,

and therefore, from (2.5), the scattering length:

a =
2mr

4π
T (0, 0) . (B.8)

1 I.e., we should read (B.5) as an operator equation in momentum space:

〈k′|T̂ |k〉 = 〈k′|Û |k〉+ 〈k′|Û 1

V

X

k′′
|k′′〉〈k′′|Ĝ0|k′′〉〈k′′|T̂ |k〉 ,

where T (k,k′) = 〈k′|T̂ |k〉, U(k − k′) = 〈k′|Û |k〉, and where Ĝ0 is diagonal in momentum
space, G0(k) = (E + iδ − εrk)−1.

2 I.e.
Z

dk′

(2π)3
eik′·r

k′2
=

1

(2π)2

Z ∞

0
dk′
Z 1

−1
d(cos θ)eik′r cos θ

| {z }
2

k′r sin(k′r)

=
1

2π2r

Z ∞

0
dx

sin x

x| {z }
π/2

=
1

4πr
.
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Therefore T (0, 0) describes the low energy and large distances scattering prop-
erties of the scattering potential U and allow not to deal with the details of
the interaction when two atoms are close to each other, but only with the
asymptotic behaviour when they are far from each other. The Born approxima-
tion corresponds to consider the first term in the expansion in Û in Eq. (B.7),
T (k,k′) ' U(k− k′), and therefore we obtain the expression (2.6).

B.1.1 Contact interaction

An useful application of the T -matrix formalism is the renormalisation of the
contact interaction coupling strength via the introduction of the scattering
length, which we are using in Sec. 2.3.2. A contact interaction potential (2.16) is
clearly ill-defined — e.g., Eq. (B.5) is ill-defined for a contact interaction. Also
the gap-equation is divergent for a contact interaction and needs a cut-off. In
the case of superconductivity the cut-off is provided by the Deby frequency ωD

(see, e.g., Eq. (1.22)). We will see here that for atomic gases we can send the
ultraviolet (UV) cut-off to infinity by introducing the scattering length.

As every term of the expansion of the Lippmann-Schwinger equation (B.5)
is ill-defined for a contact interaction potential (2.16), we introduce by hand an
UV cut-off in momentum space k0, which physically represents the range of the
interaction, k0 = 1/Re. In this way we can write every term of the expansion
as

T (0, 0) = g

[
1 +

∞∑
n=1

(
g

V

k0∑

k

1
−εrk

)n]
= g

[
1− g

V

k0∑

k

1
−εrk

]−1

.

By making use of the relation between the T -matrix and the scattering length
a (B.8) we obtain the following renormalisation condition

2mr

4πa
=

1
g

+
1
V

k0∑

k

1
εrk

. (B.9)

as shown in Sec. 2.3.2, this condition is enough to renormalise the gap equation,
where, once a is introduced, the UV cut-off can be sent to infinity. For two
atoms with equal masses m, 2mr = m and εrr = 2εk, where εk = k2/2m.





Appendix C

Elements of cooling and
trapping techniques

In alkali atoms, with the exception of polarised hydrogen atoms, the pressure
versus temperature phase transition line for BEC condensation falls into the
region where the system at equilibrium is instead a solid (see Fig. C.1).

Problem: Evaluate the pressure-temperature phase transition line for a
non-interacting Bose gas:

P = ζ(5/2)
(m

2π

)3/2

(kBT )5/2
. (C.1)

Answer: The total energy of an ideal Bose gas for T < TBEC (µ = 0) is
given by

E =
∫ ∞

0

dεN(ε)fB(ε;µ = 0) ,

where fB(ε;µ = 0) = (eε/kBT − 1)−1 and where the DoS N(ε) has been
defined in (1.11). From

∫∞
0
dxxα−1(ex − 1)−1 ≡ Γ(α)ζ(α) (Γ(5/2) =

3
√
π/2/2) and from the definition of pressure for a homogeneous gas in

three-dimensions, P = 2E/3V , one obtains (C.1). Note that the expression
of the pressure turns out to be independent from the volume of the gas,
i.e. in a BEC phase of an ideal gas the compressibility of the gas is infinite.
This pathology is modified by including interaction effects.

Therefore the BEC configuration is unstable as in thermal equilibrium the
system should be in a crystal phase: The BEC phase in alkali gases can only
exists as a metastable phase. This means that if the gas is diluted enough and the
interaction between two atoms happens only via 2-body collisions (see Sec. 2.1
and the appendix B), then two particles that scatter on each other cannot form
a (molecular) bound state. In fact, energy and momentum conservation require
that only 3-body collisions allow the formation of molecules, the first step in
the formation of a solid: Of the three atoms colliding, two form a molecule
and the third one can carry away the residual energy. Therefore metastability
means that the time-scale for molecule formation via 3-body collisions (∼ n3) is
longer than the time needed by the gas to reach kinetic equilibrium via 2-body
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Figure C.1: Schematic pressure P vs. temperature T phase diagram for alkali
atoms. The BEC phase transition line (red dashed) lies in the region where the
equilibrium state is a solid.

scattering (∼ n2): This gives a window at very low densities where metastability
is possible and where the lifetime of the gas can be in a range between seconds
and minutes. An exception is provided by a gas of polarised hydrogen atoms
(i.e. hydrogen atoms with parallel electronic spin), as this is characterised by a
strong repulsive interaction (see Fig. C.2). Spin-polarised hydrogen remains a
gas down to zero temperature and BEC can here be realised in a true equilibrium
state.

At the same time, the condition for BEC requires λT > n−1/3 (see (1.1)),
therefore dilute atomic gases have to be cooled down at ultralow temperature.
Typical order of magnitudes for BEC are:

T ∼ 500nK− µK n ∼ 1013 − 1015cm−3 .

In order to reach these conditions one needs sophisticated techniques of

1. trapping the atoms — the gas has to be kept away from any material
wall, where interaction with other atoms would favour the formation of
molecules;

2. evaporative and laser cooling — in order to reach such a ultracold tem-
peratures.

Few basic elements and experimental examples of cooling and trapping tech-
niques will be given during the course of the lectures. For an introductory review
see, e.g., Refs. [26, 27].
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Figure C.2: Sketch of the singlet (S = 0) and triplet (S = 1) interaction po-
tentials (see Sec. 2.1) for hydrogen atoms: While the triplet potential is always
repulsive, the singlet one allows the formation of H2 molecules.
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