Polaritons in Disordered Microcavities: blue-shift, phase diagram & Rayleigh scattering

Francesca Maria Marchetti

Cavendish Laboratory -- University of Cambridge

J Keeling, MH Szymanska, PB Littlewood

5th PMP meeting, Lund -- 25 March 2006

Outline

- I. Thermodynamics
- ✓ Disordered quantum wells (CdTe)
- ✓ Lower polariton blue-shift: disordered vs. clean
- Polaritons phase diagram:
 from BEC (BKT) to 'long-range' interactions
- Probing the condensed state: resonant Rayleigh scattering
- II. Non-equilibrium: pump & decay (Marzena)

[I. M. Lifshitz, Adv. Phys. 13, 483 (1964)]

Coupling to Light

$$g_{lpha, \mathbf{p}} \propto \langle arepsilon_lpha | \mathbf{p}
angle$$

Coupling to Light

[R. Zimmermann et al., Pure & Appl. Chem. 69, 1179 (1997)]

Excitonic Optical Density

Excitonic Optical Density

[P. Borri et al., Phys. Rev. B 63, 035307 (2000)]

Coupled Quantum Wells

Screening of the disorder potential (dipole-dipole interaction)

Coupled Quantum Wells

[R. Zimmermann, Solid State Comm. 134, 43 (2005)]

$$\hat{H} = \sum_{\alpha} \frac{\varepsilon_{\alpha}}{2} \left(b_{\alpha}^{\dagger} b_{\alpha} + a_{\alpha} a_{\alpha}^{\dagger} \right)$$

$$\begin{split} \hat{H} &= \sum_{\alpha} \frac{\varepsilon_{\alpha}}{2} \begin{pmatrix} b_{\alpha}^{\dagger} b_{\alpha} + a_{\alpha} a_{\alpha}^{\dagger} \end{pmatrix} & \underbrace{-}_{\mathcal{E}_{\alpha}} & b & \underbrace{-}_{\mathcal{E}_{\alpha}} & \text{two-level system} \\ & + \sum_{\mathbf{p}} \omega_{\mathbf{p}} \psi_{\mathbf{p}}^{\dagger} \psi_{\mathbf{p}} & \omega_{\mathbf{p}} \simeq \omega_{0} + \frac{\mathbf{p}^{2}}{2m_{\text{ph}}} & \text{photon modes} \end{split}$$

Dilute (Bosonic) Limit

✓ Linear dispersion model [D. M. Whittaker, PRL 80, 4791 (1998)]

Inhomogeneous Line-width

[P. Borri et al., Phys. Rev. B 63, 035307 (2000)]

✓ Linear dispersion model [D. M. Whittaker, *PRL* 80, 4791 (1998)]

Dilute (Bosonic) Limit: blue-shift

Linear shift below threshold for condensation (low temp)

Dilute (Bosonic) Limit: blue-shift

...vs clean limit:

$$\begin{split} \delta E_{\text{Coul}} &\sim \mathcal{R} \mathbf{y}_{\mathbf{X}} n a_{\mathbf{X}}^2 \\ \text{or} \\ \delta E_{\text{sat}} &\sim \Omega_R n a_{\mathbf{X}}^2 \end{split}$$

[C. Ciuti et al., PRB 62, R4825 (2000)]

Validity at Higher Densities

✓ Neglected Coulomb interaction between $|\varepsilon_{\alpha}\rangle$ and $|\varepsilon_{\beta}\rangle$ (restrict the occupation to the states in the tail)

✓ Double-occupancy

Validity at Higher Densities

- ✓ Neglected Coulomb interaction between $|\varepsilon_{\alpha}\rangle$ and $|\varepsilon_{\beta}\rangle$ (restrict the occupation to the states in the tail)
- ✓ Double-occupancy

Validity at Higher Densities

- ✓ Neglected Coulomb interaction between $|\varepsilon_{\alpha}\rangle$ and $|\varepsilon_{\beta}\rangle$ (restrict the occupation to the states in the tail)
- ✓ Double-occupancy

From Polaritonic to Condensed Spectra

✓ Fixing temperature $k_BT = 23K$ ($\delta = +6meV$)

ρ_{c} (critical density)

Blue-Shift

non-condensed

Goldstone Mode

Incoherent Photoluminescence

Incoherent Photoluminescence

non-condensed

condensed

Resonant Rayleigh Scattering UP ✓ Light emission in non-specular scattering directions LP 10.0ps 7.5ps 2 1 In out 0 -1

2

3

-2

-3

-2 -1

0

..... 2

1

33 -2 -1

k_[110] (μm⁻¹)

0

1

[W. Langbein&J. M. Hvam, *PRL* 88, 047401 (2002)]

Resonant Rayleigh Scattering

non-condensed

Resonant Rayleigh Scattering

non-condensed

condensed

³ [F.M. Marchetti *et al., PRL* **96**, 066405 (2006)]

Conclusions

✓ Polaritons in disordered microcavities

Conclusions

✓ Polaritons in disordered microcavities

