
Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

Course Notes — part I

September 28, 2017

Francesca Maria Marchetti
Departamento de Fisica Teorica de la Materia Condensada

Facultad de Ciencias
Office : C-V 606

Phone: 91 497 5590
E-mail: francesca.marchetti@uam.es

Web: http://www.uam.es/francesca.marchetti

I remind you here the timing and day of classes, as well as the location:

09:30 – 12:30 Friday 29 Sept Ciencias - CIE7 (01.17.LD.101) -
modulo 17, 101

09:30 – 12:30 Friday 6 Oct

09:30 – 12:30 Friday 20 Oct

09:30 – 12:30 Friday 3 Nov

09:30 – 12:30 Friday 17 Nov

09:30 – 12:30 Friday 24 Nov

09:30 – 12:30 Friday 1 Dec

09:30 – 12:30 Friday 15 Dec

09:30 – 12:30 Friday 19 Jan EXAM

At the end of each class I will give a set of problems to carry on at home and
to submit before the following class (use file name your name problem-set-number.m)
at the following e-mail address francesca.marchetti@uam.es — the solutions
to these problems (as well as the interaction in class) will allow me to evaluate
you at the end of the course.

1 Basic concepts

1.1 Matlab as a calculator

Matlab can perform all the calculations available in a common calculator.

• + (addition)

• - (subtraction)

• * (multiplication)

• / (division)

1 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

• ∧ (power)

In addition, in Matlab there are several mathematical functions already built-in
and ready to use. Among those:

• sin

• cos

• log

• tan

• exp

• sqrt

• . . . try to find out what mathematical functions are available in Matlab.

There are useful commands to start with

• help (try help help)

• more on

• format (try help format)

1.1.1 Exercise:

1. perform basic calculations such as 12-3/2, (12-3)/2, exp(3+5),
exp(3)+5, . . . , and get familiar with the correct use of parenthesis;

2. compare -5∧2 with (-5)∧2;

3. compare the different formats you can have for the answers of your
calculations (type help format for informations); explain what you
get;

4. evaluate sin(5.2)/cos(5.2), compare with tan(5.2)

5. evaluate asin(sin(pi/2)); is the answer given in radians or degrees?
How do you switch between one and the other?

6. evaluate sqrt(2) and sqrt(-2) and explain what you get.

Note that one can equivalently write either 0.00078 or 7.8*10∧(-4); in addition
in Matlab one can use the shortcut 7.8e-4.

1.2 Variables

Matlab can store numbers inside variables; for example, consider

a=1;

b=4;

a+b

2 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

Note that the computer ‘reads’ from right to left, i.e., a=1 is ‘read’ by the
computer as the following: assign the value 1 to the variable a; you cannot write
1=a (try it and see what you get). When you define variables, for examples by
defining b=4, the computer stores the number 4 in a part of memory which is
called b. Until you somehow ‘clean’ that part of the memory b will be 4. During
calculations, often it is useful to use commands such as clear, clear all, who,
clc (use the help command to understand their meaning and use).

1.2.1 Exercise:

1. get familiar with the commands clear, clear all, who (i.e., type
help clear, . . .) and explain what they are useful for;

2. explain what the variable ans is;

3. repeat the exercises in Ex. 1.1.1 now using variables.

Note that there are predefined variables in Matlab. For example,

• ans

• pi

• i and j

• eps

What do they correspond to? The names of these pre-defined variable should
be avoided. Otherwise, you can give your variables the name you like — use of
meaningful variable names is advised.

1.2.2 Exercise:

1. Define a variable rad2deg which converts radians in degrees; evaluate
asin(sqrt(3)/2) * rad2deg and check it gives 60◦.

Variables can also store complex numbers, as in the following examples

z=10.2+i*2.3;

x=10.2+j*2.3;

y=complex(10.2,2.3);

Are the three variables z, x, and y the same complex number? With the use
of the help command, discover the role of the following functions operating on
complex numbers:

• abs

• complex

• conj

• imag

• real

3 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

2 Vectors and Matrices

Matlab can also store several numbers in a vector. For example you can define
the row vector

a=[3 5 9 2 11 7];

and access the individual elements of the vector by using the indices: a(1)

stores 3, a(2) is 5, a(3) is 9, a(4) is 2, a(5) is 11, a(6) is 7. Try, typing

a(1)

Note that an index can only be a natural number (i.e., a counting
number!!), 1, 2, 3, etc. etc. Try typing either a(0) or a(-1) and see what
you get. Similarly a(7) will give you error; why?

You can also define column vectors

at=[3; 5; 9; 2; 11; 7];

check that the indexing will be exactly the same as above for the row vectors,
i.e. say at(3) is 9. You can go from column to row vectors and the other way
around via the transposition ′; for example at′ is a and a′ is at. Check it on
your own.

Matrices are defined similarly to vectors — after all a raw vector is a n× 1
matrix and a column vector is a 1× n matrix. This is done by using a comma
separated list of column vectors, or a semicolon separated list of row vectors.
For example:

M=[1.3, 5.2, 9.3; 4.2, 4.5, 6.1]

defines the matrix

M =

(

1.3 5.2 9.3
4.2 4.5 6.1

)

.

In order to access the single elements of a matrix you have two options:

1. either by using (i,j) indices, where i is the index in the row, and j in
the column; i.e., in the previous example

(

M(1, 1) M(1, 2) M(1, 3)
M(2, 1) M(2, 2) M(2, 3)

)

;

2. or by using a single index. In this case, the order is column major, meaning
you first go through all elements of the first column, then the second
column, etc... — for example M(1,2) is 2 and coincides with M(3); i.e.,

(

M(1) M(3) M(5)
M(2) M(4) M(6)

)

;

Try it yourself.

4 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

In reality every variable in Matlab is a matrix: a=0.2 is a 1×1 matrix, a=[3
5 9 2 11 7]; is a 1× 6 matrix, its transposed at=a′ is a 6× 1 matrix, M=[1,
2, 3; 4, 5, 6] is a 2× 3 matrix and so on.

Try the following commands on the previously defined matrices and explain
their use:

• size(M)

• diag(M)

• zeros(3)

• eye(5)

• ones(2)

• find(M>2.2)

2.0.3 Exercise:

Define the matrix M=[1.1, 12.4, 3.6; 7.5, 2.4, 7.8; 10.3, 33.5,

18.4] and:

1. consider the new vector index=find(M>5.0);

2. what is in practice this vector index?

3. what do you get if you evaluate N=M(index)? Which kind of vec-
tor/matrix is now N?

2.0.4 Exercise:

Define the matrix M=[4, 12, 23; 2, 1, 3; 4, 2, 1] and:

1. evaluate its (2,3)-element in two different ways;

2. What do you get if you consider a=M(:)? Is now a a scalar or a vector?
If it is a vector, which kind of vector? What do you get if you evaluate
a(3)?

3. What do you get if you consider b=M(2,:)? Is now b a scalar or a
vector? If it is a vector, which kind of vector? Can you evaluate b(3)
and b(4)?

4. What do you get if you consider c=M(1,1:2)? Is now c a scalar or a
vector? If it is a vector, which kind of vector?

5. try help colon;

6. try help length.

2.1 Vector and matrix operations

There are several mathematical operations you can perform with vectors and
matrices:

5 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

• +

• -

• *

• .*

• ./

• ∧

• .∧

Matlab distinguishes between mathematical and numerical vector products; for
example considering the following two vectors

a= [1.5 6.2 4.4] b= [2.1 9.4 7.1]

• * is a mathematical vector multiplication and the result is either a
scalar or a matrix. For example a*b’ gives as a result a scalar correspond-
ing to a(1) ∗ b(1) + a(2) ∗ b(2) + a(3) ∗ b(3); in fact mathematically one
multiplies matrices with the “row times column” rule:

(

a(1) a(2) a(3)
)





b(1)
b(2)
b(3)



 = a(1) ∗ b(1) + a(2) ∗ b(2) + a(3) ∗ b(3) .

The operation a*b’ is equivalent to dot(a,b). Instead a’*b is a matrix
which elements are a(i)∗ b(j), i.e., following the same “row times column”
mathematical rule:





a(1)
a(2)
a(3)





(

b(1) b(2) b(3)
)

=





a(1)b(1) a(1)b(2) a(1)b(3)
a(2)b(1) a(2)b(2) a(2)b(3)
a(3)b(1) a(3)b(2) a(3)b(3)



 .

Finally, a*b and a’*b’ are not valid operations, as you can check.

• .* is instead a component-wise multiplication (there is no correspond-
ing mathematical operation) and the result is a vector. For example a.*b
is a row-vector which components are a(i)∗b(i), i.e., in the example above:

a. ∗ b gives
(

a(1)b(1) a(2)b(2) a(3)b(3)
)

;

similarly a’.*b’ is the same vector but now column:

a′. ∗ b′ gives





a(1)b(1)
a(2)b(2)
a(3)b(3)



 ;

The two operations a’.*b and a.*b’ are instead not allowed.

The best way to understand how the above operations work is by trying via
several examples.

6 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

2.1.1 Exercise:

Consider the following matrices

A =

(

4 2 1
5 9 12

)

B =

(

4 2 −7
9 2 0

)

C =





2 5
−3 2
5 −9



 .

1. Consider the following operations A.*B, A.*C, A.*C′, B.*C, B.*C′, A*C,
C*A, A*B, A*B′, and determine which of these operations is valid and
explain the result;

2. explain what is the difference between the operation * and .*. When
can you use one and when the other?

3. evaluate A.∧2 and explain the result; why you cannot consider A∧2?

2.1.2 Exercise:

Consider the following vectors

a= [1.5 6.2 4.4] b= [2.1 9.4 7.1]

1. explain the operations norm, dot, and cross;

2. find an equivalent definition of norm(a) using the function sqrt and
the operation * ;

3. how else can you define dot(a,b)?

4. find the components of the vector cross(a,b).

2.2 Commands which define vectors: : and linspace

Matlab can generate vectors containing equally spaced values in two different
ways:

• x1=(0:2:10): in this case you are asking the computer to define a vector
x1 which goes between 0 and 10 in steps of 2;

• x2=linspace(0,10,6): now you are asking to define a vector with 6 ele-
ments equally spaced (N.B. 10/(6− 1) = 2) which goes from 0 to 10.

You can check the two vectors x1 and x2 coincide.

2.2.1 Exercise:

Define a vector which goes from 0 to 10 in steps of 0.5 in two different and
equivalent ways, using the commands : and linspace defined above.

In general, if in an interval [a, b], you want to generate a grid of equally spaced
N numbers xi, as in Fig. 1, you can use equivalently the following equivalent

7 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

definitions:

definition 1 x = linspace(a, b, N)

definition 2 y = [a : (b− a)/(N− 1) : b]

where we indicate the components of each vector as x(i) = xi and y(i) = yi.
The vectors x and y are exactly the same; try it with different values of starting-
point a, end-point b, and number of points on the grid N. How do you access the
single components of the vectors x and y? With an index vector i = 1, 2, . . . , N ,
so that x(i) and y(i) will give you the component:

x(i) = y(i) = a+ (i− 1)
b− a

N − 1
.

Here, as it is shown in Fig. 1, the value δx = b−a
N−1 is the value of the interval

step on the grid.

Figure 1: Meaning of the equivalent commands x=linspace(a,b,N) and
[a:(b-a)/(N-1):b] used to define vectors of N equally spaced numbers. Here
the components of the vector x are indicated as x(i) = xi.

Note that often is useful to generate an index vector to address certain
values in a matrix or in a vector. For example, consider the following vector
y=(0:2:100), and now define the index i=(1:10:51); what do you get by
evaluating y(i)? Explain the result.

Finally note that instead than linspace you can use logspace. Type
help logspace to understand the role of this command. The syntax is x =

logspace(log10(a), log10(b), N). Show that the two definitions

x = logspace(log10(a), log10(b), N)

y = 10.∧(linspace(log10(a),log10(b),N))

are equivalent.

3 Scripts

Scripts are collections of Matlab commands stored in plain text files. When you
run a Matlab script, the commands in the script file are automatically executed

8 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

as if you had typed them in from the keyboard. Script files must end with the
extension “.m” (for example “myScript.m”), and often these files are referred
to as m-files. A script can be thought of as a keyboard macro: when you
type the name of the script, all of the commands contained in it are executed
just as if you had typed these commands into the command window. Thus,
all variables created in the script are added to the workspace for the current
session. Furthermore, if any of the variables in the script file have the same
name as the ones in your current workspace, the values of those variables in the
workspace are changed by the actions in the script. This can be used to your
advantage. It can also cause unwanted side effects.

Script files are usually created with a plain text editor. You can also use the
Matlab diary command to record commands as you type.

Example of script:

%------------------------------%

% Ex.1 on matrices and vectors %

%------------------------------%

% everything written after the % is a

% comment and is not executed

clear all

A=[2,1,3; 5,4,3]

%element (1,3)

A(1,3)

%compare with

A(5)

%vector a2 equal to the second row of the matrix A;

a2=[A(2,(1:1:3))]

%equivalently

a2=A(2,:)

sort(a2)

b2=a2(find(a2>3.5))

To execute the script you can also press Control-Enter. Also you can separate
various independent parts of a script which you want to run independently
with %%. The script page splits and you run the part of the script which is
highlighted. From now onwards, you are asked to write scripts rather than
typing on the command window. Later on in the course you will be explained
the use and advantage of external functions.

3.1 Additional exercises on vectors and matrices

Solve the following exercises by writing scripts

9 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

3.1.1 Exercise:

Define the matrix A=[1,2,3; 5,4,3] and:

1. evaluate its (1,3)-element;

2. define a vector a2 equal to the second row of the matrix A;

3. sort a2 in ascending order;

4. define a new vector b2, which contains only the elements of a2 bigger
than 3.5.

Hints:

• Use the command sort(a2);

• Use the command find(a2>3.5);

3.1.2 Exercise:

Define two row vectors a and b of 4 elements each: a has the first even
numbers (2,4,6,8) and b the first odd numbers in reverse order (7,5,3,1) —
use a different definition than the trivial one!

1. Find two equivalent ways to define the vector dot product between
the two vectors (

∑4
i=1 a(i)b(i));

2. Find two equivalent ways to define the modulus of each vector;

3. Evaluate the angle between a and b in radians and degrees;

4. Describe which kind of matrix/vector one gets by considering a*b’,

a’*b, a.*b, (b.*a)’.

Hints: Use the commands dot(a,b) and norm(a).

3.1.3 Exercise:

Generate a vector c going from 99 down to 0 in steps of 3, extract every
10th element of that vector and generate an index vector which gets the
first and last element of c.

Hints Use the command length(c).

4 Plotting

Plotting with Matlab is very easy and quick. For functions of a single vari-
able (say, y = y(x)) the command is plot(x,y), by having previously de-
fined both vectors x and y, with the same size, i.e., the same number of
components, x=[x1 x2 ... xN] and y=[y1 y2 ... yN]. Then, the command
plot(x,y) creates a sequence of points in the x-y plane corresponding to the
values (x1, y1), . . . (xN, yN) and joints them with lines — see the examples

10 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

1 1.5 2 2.5 3
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

x

y

Figure 2: Plot of the two vectors x=[1 2 3] and y=[5.1 2.2 6.9], obtained
with the command plot(x,y).

shown in Fig. 2. The visual result is therefore the graph of the segmented line
representing the function y = y(x) in the interval x ∈ [x1, xN]; the more points
N you put, the less segmented the line will look like. You can also choose to
represent the line with symbols of different shape and colors rather that with
a segmented line. Use the command help plot in order to learn more about
plotting functions and its various options.

For example, if you want to plot the function y = cos(x) in the interval
x ∈ [0, 2π], you can write:

a=0; b=2*pi; N=100;

x=linspace(a,b,N);

y=cos(x);

plot(x,y)

You can plot two functions on the same graph, use different colors and line
types, add legends, axis labels, a title to the plot,

a=0; b=2*pi; N=100;

x=linspace(a,b,N);

y1=cos(x);

y2=sin(x);

hold on

plot(x,y1,’b--’)

plot(x,y2,’r-’,’LineWidth’,2)

title(’Sine and Cosine functions’)

legend(’cos’,’sin’)

xlabel(’x’,’fontsize’,16)

ylabel(’y(x)’,’fontsize’,16)

hold off

11 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

You can generate different figures in different windows

figure(1)

hold on

plot(x,y1,’r-’,’LineWidth’,2)

title(’Cosine function’)

xlabel(’x’,’fontsize’,16)

ylabel(’y(x)’,’fontsize’,16)

hold off

figure(2)

hold on

plot(x,y2,’r-’,’LineWidth’,2)

title(’Sine function’)

xlabel(’x’,’fontsize’,16)

ylabel(’y(x)’,’fontsize’,16)

hold off

Note that while figure(i) opens a new window for a plot, the command
close(i) will close such a window. The command close all closes all previ-
ously opened windows.

The axis range can be fixed with axis — e.g., in the previous examples, try
axis([0 pi -1 1]) for figure(1) and axis([0 pi 0 1]) for figure(2).

4.0.4 Exercise:

Write a script which plots the function f(x) = x exp(−x) in the interval
[a, b] = [0, 10] with N = 200 equally spaced points both with a solid con-
tinuous line and with symbols. Add the axis labels. Where are the parts
of the curve where the symbols are less dense and where are more dense?
Why?

Error bars can be added in the plot by making use of the command
errorbar(x,y,error). Here, x and y are, as above, the vectors (of the same
length) we want to plot as pair of variables, i.e., as symbols associated to the
coordinates (x(i), y(i)), while the vector error (which also has the same
length as x and y) contains the error error(i) associated to each pair (x(i),
y(i)) and will be plotted as a bar of length 2*error(i) around each symbol.
Try the following example (the function randn() is used to return a matrix of
random numbers and will be introduced later in unit 4):

12 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

x = linspace(0,10,10);

y = x.*exp(-x);

e=0.1*ones(1,length(x));

x1=linspace(0,10,100);

y1=x1.*exp(-x1);

figure(1)

hold on

errorbar(x,y,e,’or’)

plot(x1,y1)

hold off

e = 0.05*randn(1,length(x));

figure(2)

hold on

errorbar(x,y,e,’or’)

plot(x1,y1)

hold off

In addition, subplot generates multiple plots in one window. This work
with the syntax subplot(M, N, i), i.e., it generates an M ×N matrix of sub-
plots and plot the i-th one (ordered by fixing the raw first).

4.0.5 Exercise:

Write a script which plots x(t) = vt + A cos(ωt) and y(t) = A sin(ωt) as a
function of t ∈ [0, 10π] (fixing the frequency to ω = 1) on the same subplot.
Generate 4 sublots for different values of the coefficients A (amplitude) and
v: in two subplots fix A and change v and in the other two subplots fix v
and change A. Generate a second figure with 4 subplots where you plot the
trajectories y(x) using the same parameters values of the previous subplots.
Comment about the role of the parameters A and v.

13 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

0 1 2 3 4 5 6 7 8 9
t [s]

0

10

20

30

40
x

[m
]

Figure 3: Graphical representation of Zeno’s paradox of “Achilles and the Tor-
toise”. Achilles trajectory is plotted in blue and the tortoise one is plotted in
orange.

4.0.6 Exercise: “Achilles and the Tortoise” (Zeno’s paradox)

“In a race, the quickest runner can never overtake the slowest, since the

pursuer must first reach the point whence the pursued started, so that the

slower must always hold a lead.”

Zeno’s paradox about “Achilles and the Tortoise” can be formulated in the
following way: Achilles and the Tortoise compete in a race. The Tortoise
(which position as a function of time is plotted as an orange line in Fig. 3)
starts (at a lower speed) 20 m ahead of Achilles (who will run at a higher
speed). Achilles reaches the 20 m distance after 4 s, but at that time the
Tortoise is at a 30(= 20+10) m distance; Achilles reaches the 30 m distance
after 6(= 4+2) s, when the Tortoise reaches the 35(= 20+10+5) m distance.
Will Achilles and the Tortoise ever meet? According how the problem is
formulated the answer is paradoxically no.

1. Formulate mathematically the problem above, complete the (geomet-
rical) series and find an estimate of time and distance at which Achilles
finally meets the Tortoise;

2. evaluate the velocity at which Achilles and Tortoise respectively run
(not very realistic for the Tortoise!);

3. create a plot similar to Fig. 3 and find graphically the point at which
the two trajectories meet and compare it with your numerical estimate.

Moral: paradoxes might be solved by introducing the concept of limit.

14 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

Figure 4: Schematic figure showing the meaning of first derivative of a function
f(x) at a given point x0 and its first approximated value.

4.0.7 Exercise:

It is in general convenient to plot power-laws (f(x) = xn) in logarithmic
scale, as in the following example

x=logspace(log10(1), log10(1000), 100)

plot(log10(x), log10(x.∧3), ’o’)

loglog(x,x.∧3,’+’)

1. What is the difference between plot() and loglog()?

2. Can you determine the power-law exponent from the plots in logarith-
mic scale?

3. What happens if you use linspace() rather than logspace()?

5 Numerical differentiation

The derivative of a single variable function, f(x), at a given point x0 is defined
as the following limit

df(x)

dx

∣

∣

∣

∣

x=x0

≡ f ′(x0) ≡ lim
δx→0

f(x0 + δx)− f(x0)

δx
, (1)

i.e., is the slope of the tangent of f(x) in x0. If we want evaluate the derivative
of a function at a given point we can thus, as a first approximation, use the
finite difference approximations, i.e., compute the slope of a nearby secant line
passing through the points (x0, f(x0)) and (x0 + δx, f(x0 + δx)) (see Fig. 4):

f ′(x0) ≃ ±f(x0 ± δx)− f(x0)

δx
+O(δx) . (2)

15 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

The slope of the secant line differs from the slope of the tangent line at x0 by
an amount that is approximately proportional to δx: this is the meaning of
the symbol O(δx) , i.e., by using Eq. (2) in order to estimate numerically the
derivative of the function f(x) in x0, we are making an error of the order of the
increment δx — for smaller and smaller increments this error will be smaller
and smaller and the slope of the secant line approaches the slope of the tangent
line, which is the exact derivative.

How the definition (2) is implemented in practice? Let us consider the fol-
lowing example, where we evaluate the derivative of the function f(x) = x2+5x
at x0 = 2:

% Example

% derivative of f(x)=x∧2+5x at x0=2

x0=2;

deltax=0.1;

f2=(x0+deltax)∧2+5*(x0+deltax);

f1=(x0)∧2+5*(x0);

% approximated numerical value

fpx0=(f2-f1)/deltax

% compare with exact value

fpx0exact=2*x0+5

5.0.8 Exercise:

Plot the value of the numerical derivative of the function f(x) = x2 + 5x
at x0 = 2 for different values of the increment δx; establish how fast the
numerical value converges to the exact one, f ′(2) = 9 and comment the
result you get.

As well as evaluating the numerical derivative of a function f(x) in one par-
ticular point, we can also evaluate it in a given interval and plot it. Note that,
if a function is defined on the interval [a, b] on a grid of N points, as in Fig. 1,
then the numerical derivative will be defined on a grid with N − 1 points cor-

responding to either the interval [a, b− b− a

N − 1
] or [a+

b− a

N − 1
, b]. Consider the

following example:

% Example

% derivative of f(x)=x∧2+5x defined on the interval [a,b]

a=0; b=10; N=10;

x=linspace(a ,b, N);

f=x.∧2+5*x;

il=(1:1:N-1); ir=(2:1:N);

deltax=x(ir)-x(il);

deltaf=f(ir)-f(il);

fp=deltaf./deltax;

plot(x(il),fp,’ro’, x(ir),fp,’gx’, x,2*x+5,’b’)

legend(’approx 1’, ’approx 2’, ’exact’,’Location’,’NorthWest’)

xlabel(’x’), ylabel(’f’)

16 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

5.0.9 Exercise:

Understand the example above and repeat it for the function f(x) = ex in
the interval [0, 10] and compare the numerical approximate derivative with
the exact result.

6 Higher order approximations

One can do better than using the approximation (2) and instead consider

f ′(x0) =
f(x0 + δx)− f(x0 − δx)

2δx
+O(δx2) , (3)

where it can be shown that now the error made is smaller than in the previous
approximation in (2) — note that, for δx < 1 then δx2 < δx!

In fact in your analysis course you will study the Taylor expansion

f(x0 + δx) ≃ f(x0) + f ′(x0)δx+
f ′′(x0)

2
(δx)2 +O(δx3)

f(x0 − δx) ≃ f(x0)− f ′(x0)δx+
f ′′(x0)

2
(δx)2 +O(δx3) .

From these expressions, by taking the difference, and dividing by δx, you can
obtain the expression (3) and the demonstration that, by evaluating the approx-
imated first derivative f ′(x0) the error is of order O(δx2).

This higher order approximation is implemented as the following

% Example on higher order approximation for

% the derivative of f(x)=x∧2+5x at x0=2

clear all

close all

clc

x0=2;

deltax=0.1;

f2=(x0+deltax)∧2+5*(x0+deltax);

f1=(x0)∧2+5*(x0);

f3=(x0-deltax)∧2+5*(x0-deltax);

% approximated numerical value

fpx0=(f2-f1)/deltax

% higher order: comment: why now is already exact?

fp2x0=(f2-f3)/(2*deltax)

% compare with exact value

fpx0exact=2*x0+5

6.0.10 Exercise:

Comment why in the case of the function f(x) = x2 + 5x, the higher order
approximation (3) to the derivative, already gives the exact result.

17 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

6.0.11 Exercise:

Plot the value of the numerical derivative of the function f(x) = x3 + 5x2

at x0 = 2 for different values of the increment δx; establish how fast the
numerical value converges to the exact one f ′(2) = 32 by using both the
approximations of Eqs. (2) and (3), and comment the result you get.

Similarly to what seen before in the linear approximation, if we want to plot
the derivative in the higher order approximation (3) in a given interval we can
do the following:

% Example: derivative of f(x)=x∧2+5x

% defined on the interval [a,b]

clear all

a=0; b=10; N=10;

x=linspace(a ,b, N);

f=x.∧2+5*x;

il=(1:1:N-1); ir=(2:1:N);

deltax=x(ir)-x(il);

deltaf=f(ir)-f(il);

fp=deltaf./deltax;

plot(x(il),fp,’ro’, x(ir),fp,’gx’, x(il)+deltax/2,fp,’ks’,

x,2*x+5,’b’)

legend(’approx 1’, ’approx 2’, ’approx 3’,

’exact’,’Location’,’NorthWest’)

xlabel(’x’), ylabel(’f’)

Note that in the case of the derivative of functions which are polynomial of
degrees 2 or less (such as f(x) = x2 + 5x), the definition (3) will coincide with
the correct answer. This will be clear once you will understand the Taylor
expansion.

6.0.12 Exercise:

Evaluate the derivative of f(x) = x2+5x5 in the interval [a, b] = [0, 10], with
a grid of N = 20 points equally spaced. Use both definitions (2) and (3),
plot the derivative obtained both ways and compare the results.
Questions:

1. If the function f(x) is defined on a grid of N points, i.e., is a vector
with N elements, how many elements will contain its derivative?

2. Describe the difference between the definitions (2) and (3);

3. How does the command diff() work?

Hints to solve Exercise 6.0.12

• Remember the command linspace(a ,b, N) to define the vector x; if
instead you use x=a:?:b what do you have to choose for ? in order to
have the same vector as before? (see Fig. 1);

18 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

• In order to define the derivative, you can define index vectors
ileft=(1:1:N-1)

iright=(2:1:N) for example to address x(ileft) and x(iright) and
define the derivative.

7 Application: Taylor expansion

7.0.13 Exercise:

Taylor expand analytically the function f(x) = ex around x0 = 0 up to
the first, second, and third order; plot the original function and the various
Taylor polynomial you have obtained, Pn(x), in the interval x ∈ [−2, 2] and
discuss the result you get. Repeat the exercise by expanding around the
point x0 = 1.
Do the same exercise for the following functions and expansion points (and
plot the results in the interval indicated):

f(x) = sin(x) x0 = 0 x ∈ [0, 2π]

f(x) = sin(x) x0 = π/2 x ∈ [0, 2π]

f(x) =
1

1− x
x0 = 0 x ∈ [−1, 1)

f(x) = log(1 + x) x0 = 0 x ∈ (−1, 1]

N.B. you can get acquainted with the build-in function taylor(), but, for
your own benefit, first always do the expansions analytically.

7.0.14 Exercise:

A one-dimensional energy potential landscape is given by U(x) = x4 −
2x2 − 1. Find the two minima of the potential and do a Taylor expansion
around one of them to second order. Show the original function and the
approximated one.

19 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

7.0.15 Exercise: Lennard-Jones potential

The Lennard-Jones potential

V (r) =
a

r12
− b

r6
, (4)

is a model potential describing the interaction between a pair of neutral
atoms or molecules. Assuming that the typical bond energy V0 ∼ 150 kBT ≃
6 × 10−19 J corresponds to the depth of the potential and that the typical
bond length r0 ∼ 0.15 nm corresponds to its equilibrium position:

1. Derive the expressions and values of the parameters a and b.

2. For these values of a and b, plot the dimensionless expression of the
potential

r120
a

V (r̃r0) ,

in the interval r̃ ∈ [0.8, 2].

3. Apply a Taylor expansion around the equilibrium position and deter-

mine the effective spring constant k = d2V (r)
dr2

∣

∣

∣

r=r0
.

8 Numerical integration

We can consider different numerical approximations of the definite integral

I =

∫ b

a

dxf(x) . (5)

By using the same notation used in Fig. 1 (which is realised in Matlab by the
command x=linspace(a,b,N)), if xi = a + (i − 1)δx, with i = 1, 2, . . . , N
and a + (N − 1)δx = b (i.e., δx = (b − a)/(N − 1)), then one can use the
following approximated values to the integral (5) (see Fig. 5 for the graphical
representation of each of these integrals):

Il =

N−1
∑

i=1

f(xi)δx (6)

Ir =

N
∑

i=2

f(xi)δx (7)

Ic =
N−1
∑

i=1

f

(

xi + xi+1

2

)

δx (8)

Itr =

N−1
∑

i=1

f(xi) + f(xi+1)

2
δx (9)

20 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

Figure 5: Graphical representations of the various approximations Il, Ir, Ic, and
Itr of the definite integral

∫ xN

x1
dxf(x).

8.0.16 Exercise:

Evaluate the numerical integral of f(x) = ex between [a, b] = [0, 1], for
N = 100, using all four definitions given above. Compare the four results
with the exact one (N.B. use format long is order to see the difference).
Questions:

1. what is the order of the error for Il, Ir, Ic, and Itr? O(δx)? O(δx2)?

2. Which result is the closest to the exact one?

3. Why?

4. What happens if you choose N larger or smaller?

Hints to solve Exercise 8.0.16

• Define two vector indices i1=(1:1:N-1) and i2=(2:1:N);

• Use sum to sum the elements of the vectors f(xi)δx,

Matlab has a built-in function for numerical integration trapz(x,y). Repeat
the previous exercise using this function and comment about which of the four
numerical integration methods Il, Ir, Ic, or Itr this is equivalent to.

A useful Matlab built-in function for evaluating indefinite integrals is cumsum(x).
Given a vector x with N= length(x) components, y = cumsum(x) generates a
new vector y with the same length N, whose elements are given by:

y(i) =

i
∑

k=1

x(k) where i = 1, 2, . . . , N .

21 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

This function allows thus to evaluate indefinite integrals (or primitive functions)
such as

F (x)− F (a) =

∫ x

a

dsg(s) ,

where
dF (x)

dx
= g(x).

8.0.17 Exercise:

Consider the following function

f(x) =

∫ x

π/2

ds cos(s) ,

evaluate it numerically, plot it in the interval x ∈ [π/2, 5π], together with
the analytical expression for f(x).

Hints to solve Exercise 8.0.17

• Define x on a grid in the interval [π/2, 5π];

• note that f(π/2) = 0;

• choose one formula for integration, for example Itr, and combine it to-
gether with the function cumsum in order to evaluate f(x).

8.0.18 Exercise:

Consider the following function

f(x) =

∫ x

0

dse−s2 cos(3s) ,

evaluate it and plot it in the interval x ∈ [0, 2π].

8.0.19 Exercise:

Consider the following function

f(x) =

∫ x

0

ds
sin(s)

s
,

evaluate it and plot it in the following interval x ∈ [0, 6π]. By choosing larger

and larger intervals, can you guess the value of the integral
∫

∞

0
ds

sin(s)

s
(=

π

2
)?

22 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

9 Application: position, velocity and accelera-

tion

9.0.20 Exercise

Let’s suppose that of the motion of a particle in a one-dimensional line, we
know its velocity as a function of time

v(t) = v0 + Va cos(ωt)e
−tγ , (10)

where the parameters are: v0 = 2.3 m/s, Va = 10 m/s, ω = 2 s−1, and
γ = 0.2 s−1 — careful about the units.

1. Plot the particle velocity v(t) in the interval t ∈ [tmin, tmax], where
tmin = 0 s and tmax = 10 s N.B. label the plot axis with the correct
units.

2. Numerically evaluate the particle acceleration a(t) for the same inter-
val of time and plot it (axis labels and units); compare the numerical
result you get with the analytical one.

3. Numerically evaluate the particle position x(t) in the same interval of
time, by integrating (10) and knowing that x(tmin) = x0 = 1 m. Plot
the position x(t) for t ∈ [tmin, tmax].

Hints to solve Exercise 9.0.20

• Position x(t), velocity v(t) and acceleration a(t) of a particle that moves
on a line (one dimension) are related by

v(t) =
dx(t)

dt
a(t) =

dv(t)

dt
=

d2x(t)

dt2
. (11)

• Thus, if the velocity is known in a certain interval of time and one wants to
evaluate the position at a given time in that interval, one has to evaluate
the following integral:

x(t) = x(t0) +

∫ t

t0

dsv(s) , (12)

where x(t0) is the position of the particle at the time t = t0.

23 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

9.0.21 Exercise

The equation of motion for the one-dimensional harmonic oscillator can be

derived from the Newton’s law F = ma = md2x
dt2 and the Hooke’s law,

F = −kx, describing the motion of an object of mass m which, displaced
from its equilibrium position by a distance x, experiences a restoring force
proportional to the displacement:

m
d2x(t)

dt2
+ kx(t) = 0 . (13)

This differential equation, with initial conditions x(t = 0) = x0 and v(t =

0) = v0, where v(t) = dx(t)
dt is the velocity, admits the exact solution

x(t) =

√

x2
0 +

v20
ω2
0

cos(ω0t+ φ) , (14)

where ω0 =
√

k
m and φ = arccos

x0
√

x2
0 + v20/ω

2
0

.

1. Plot the position x(t) in the interval of time t ∈ [0, 4π/ω0] (label
the plot axis with the correct units) with the initial conditions x0 =
3.2 m and v0 = −2 m/s, and for the following values of the system
parameters: mass m = 2 kg and spring constant k = 4 kg/s2;

2. evaluate numerically the velocity v(t) and plot the numerical result
together with the analytical one;

3. evaluate numerically the acceleration a(t) and plot the numerical re-
sult together with the analytical one.

10 External function routines

We have already seen that Matlab has built-in functions, such as

• sin()

• asin()

• sinh()

• acos()

• cos()

• cosh()

• tan()

• atan()

• tanh()

24 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

• exp()

• log()

• log10()

• sqrt()

• abs()

• sign()

• factorial()

• . . .

which are ready to use. As explained in the following, there are also other ways
to create your-own function in Matlab.

11 Anonymous functions

An anonymous function can be defined at any point in a script and it is a way of
defining a mathematical function rather than a block of operations. For example

f=@(x)(x.∧3-exp(-0.5*x).*x)

x=linspace(-2,2,100);

plot(x, f(x))

Note that you can have functions with more than one argument, such in the
following example

g=@(x,a)(x.∧3-exp(-0.5*x).*x+a*x.∧3)

x=linspace(-3,3,100);

plot(x, g(x,0.1))

Do not get confused between indices and arguments of a function, i.e., put
great attention about what you put in parenthesis after a vector or a function.
If we define

x=linspace(0,1,10);

f=2*x-x.∧2

then f is a vector whose values f(1), f(2), . . . can be accessed only for integer
values of the indices, i.e. f(i), where the index i can only be a natural
number i=1, 2, ..., 10. Clearly, if you type f(0.5), it will give you an error
message:

??? Attempted to access f(0.5); index must be a positive

integer or logical

In this case, if we want to plot the function f, we use the command plot(x,f).
If we instead define an anonymous function via the command f=@(x)(...), i.e.,

25 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

x=linspace(0,1,10);

f=@(x)(2*x-x.∧2)

then f(x) is an anonymous function that can be used to evaluate f at any given
real value of x, exactly as you would do with Matlab built-in functions. Here,
if we want to plot the function, we will use the command plot(x,f(x)).

11.0.22 Exercise:

Write a script which plots x(t) = vt + A cos(ωt) and y(t) = A sin(ωt) as a
function of t ∈ [0, 10π] by making use of anonymous functions. Generate
4 subplots for different values of the coefficients A (amplitude) and v: in
two subplots fix A and change v and in the other two subplots fix v and
change A. Generate a second figure with 4 subplots where you plot the
trajectories y(x) using the same parameters values of the previous subplots.
N.B. Remember you already solved this problem in Unit 1 so already have
the script for it, to which you only have to make the necessary (small)
changes.

12 Script functions

Script functions require that you write a separate file.m with the name of the
file being the same as the one of the function. The important advantage of
script functions is that they can contain a block of certain operations that you
plan to do repeatedly in another script, or later in time in a different script
— i.e., you can create your own script functions for differentiating at a given
order, integrate at a given order, or any other operation that we will see in the
following units, such as evaluating zeros of functions with a certain precision
and with a given method, solving differential equations, and so on.

Let’s consider the following example which evaluates the first derivative of
a given function. We will see other examples of script functions all along the
course.

26 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

clear all

close all

clc

% script to evaluate the first derivative of a function

% in a given interval

% and compare the numerical result with the exact one

a=0; b=1; N=20;

fun=@(x)(x.∧2+5*x.∧5);

df exact=@(x)(2*x+25*x.∧4)

% call the external script function diff first.m

% a, b, N, fun are INPUTs given above

% x, fp, deltax, il, ir are OUTPUTs

[x, fp, deltax, il, ir]=diff first(a, b, N, fun);

hold on

plot(x,fun(x),’b-’,’Linewidth’, 2)

plot(x(il),fp,’r-s’)

plot(x(ir),fp,’g-s’)

plot(x(il)+deltax/2,fp,’ks’)

plot(x,df exact(x),’k--’)

legend(’function’, ’approx 1’, ’approx 2’, ’approx 3’,

’exact’,’Location’,’NorthWest’)

hold off

In the same directory where you run this script, you have to create the fol-
lowing file named diff first.m:

%--%

% diff first(): evaluates the derivative of f %

%--%

% INPUTs: to be provided

% a --- scalar: lower bound of the interval

% b --- scalar: upper bound of the interval

% N --- number of point in the grid

% fun --- anonymous function

function [x, fp, deltax, il, ir] = diff first(a, b, N, fun)

x=linspace(a ,b, N);

f=fun(x);

il=(1:1:N-1); ir=(2:1:N);

deltax=x(ir)-x(il);

deltaf=f(ir)-f(il);

fp=deltaf./deltax;

end

Thus, summarising, to create a function,

[a, b, c] = your function(x, y, z, t)

27 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

you need to write a separate script file and name it your function.m. In this
file, x, y, z, t are INPUT variables, while a, b, c are OUTPUT variables,
i.e., what the function returns. To use this function in a script, you then call
the function by [a, b, c] = your function(x,y,z,t). Note that the names
of the variables inside the function do not need to be the same as the names of
the variables you pass to the function! Also note that before you can be able
to use an external function, you must set the path to tell Matlab where that
function can be found (we will see this in class).

13 Some old exercises redone with the use of

external function routines

13.0.23 Exercise:

By making use of an external function routine, plot the value of the numer-
ical derivative of the function f(x) = x2 + 5x at x0 = 2 for different values
of the increment δx with first and second order approximation schemes; es-
tablish how fast the numerical value converges to the exact one, f ′(2) = 9
and comment the result you get.

13.0.24 Exercise:

By writing an external function routine for the integral (in different approx-
imations schemes), consider the following function

f(x) =

∫ x

0

dse−s2 cos(3s) ,

evaluate it and plot it in the interval x ∈ [0, 2π] — remember the use of the
command cumsum().

13.0.25 Exercise:

By writing an external function routine for the integral (choose one approx-
imation scheme, for example the trapezoidal one), consider the following
function

f(x) =

∫ x

0

ds
sin(s)

s
,

evaluate it and plot it in the following interval x ∈ [0, 6π]. By choosing larger

and larger intervals, can you guess the value of the integral
∫

∞

0
ds

sin(s)

s
(=

π

2
)?

28 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

13.0.26 Exercise

The equation of motion for the one-dimensional harmonic oscillator can be

derived from the Newton’s law F = ma = md2x
dt2 and the Hooke’s law,

F = −kx, describing the motion of an object of mass m which, displaced
from its equilibrium position by a distance x, experiences a restoring force
proportional to the displacement:

m
d2x(t)

dt2
+ kx(t) = 0 . (15)

This differential equation, with initial conditions x(t = 0) = x0 and v(t =

0) = v0, where v(t) = dx(t)
dt is the velocity, admits the exact solution

x(t) =

√

x2
0 +

v20
ω2
0

cos(ω0t+ φ) , (16)

where ω0 =
√

k
m and φ = arccos

x0
√

x2
0 + v20/ω

2
0

.

1. Create an external function [x] = harm oscill(k, m, x0, v0, t)

that evaluates the position of the harmonic oscillator on the time
interval specified by the input time vector t.

2. Plot the position x(t) in the interval of time t ∈ [0, 4π/ω0] (label
the plot axis with the correct units) with the initial conditions x0 =
3.2 m and v0 = −2 m/s, and for the following values of the system
parameters: mass m = 2 kg and spring constant k = 4 kg/s2;

3. by writing an external function routine for differentiating, evaluate
numerically the velocity v(t) and plot the numerical result together
with the analytical one;

4. by using the same external function routine generated previously, eval-
uate numerically the acceleration a(t) and plot the numerical result
together with the analytical one.

14 Loops and conditions: Loop for

The loop for allows to repeat certain commands a specified number of times
and it is useful when one wants to repeat a certain action in a predetermined
way. All loop structures are started with a keyword, in this case for, and end
with the word end. After the for command a loop vector is given and Matlab
will loop through for each value of the vector. For example

for j=1:10

j

end

In this simple example the loop goes around 10 times, each time changing the
value of the variable j and printing it. Compare the example above with the

29 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

following one and explain the difference:

for j=1:10

x(j)=j

end x

Note that in certain simple cases Matlab provides short-cuts to the loop for,
i.e., Matlab does the loop on its own automatically; for example, imagine to
have defined a certain vector x = linspace(0,10,21) and you want to store in
another vector f of the same length the values of

√
x, then you just have to type

f = sqrt(x). This means that for this simple case this operation is equivalent
to

for i=1:21

f2(i)=sqrt(x(i));

end

Try it and compare the two vectors f and f2. Clearly there are cases where
Matlab does not provide this short-cut and you have no other ways than to use
the loop for.

14.0.27 Exercise:

Define the following vector y

x=linspace(0,1,5);

for i=1:5

y(i)=x(i)∧i;

end

Now define an identical vector z without using the loop for.

14.0.28 Exercise:

Define the following matrix

M =









1 9 2 23
2 8 13 2
−2 9 7 1
45 2 82 −11









and, by making use of a loop for, redefine a new 4 × 4 matrix, M2, where,
starting from the second row its elements are obtained by subtracting the
previous row (and the first row is left unchanged), i.e.:

M2 =









1 9 2 23
1 −1 11 −21
−4 1 −6 −1
47 −7 75 −12









30 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

14.0.29 Exercise:

After having defined the vector x=linspace(0,2,20), use the loop for in
order to find an equivalent way of defining the vector f=x.*x.

14.0.30 Exercise:

Write a script that, by making use of the loop for

1. generates five different figures: sin(1*x) in figure(1), sin(2*x) in
figure(2), and so on;

2. repeat the exercise of “Achilles and the Tortoise” of Unit 1 — part 2

(Ex. 2.0.4); in particular use the loop for in order to find an estimate
of time and distance at which Achilles finally meets the Tortoise; also
use the loop for in order to generate some of the various vertical and
horizontal segments of Fig.1 of that exercise.

14.0.31 Exercise:

Write a script that evaluates the factorial n! of a given natural number n and
compare the results with the built-in function factorial(n) — remember
that the factorial is defined as n! = n(n− 1)(n− 2) . . . 2 ∗ 1; Hint: store the
result in a variable f that needs to be initialised to f=1 prior to the loop.

14.0.32 Exercise:

Given two matrices A and B, we have seen in the previous unit the two
possible multiplication operations we can use:

C = A ∗ B mathematical multiplication (row × column)

D = A . ∗ B′ component-wise multiplication

In particular, define the following two matrices

A =





1 4
2 5
3 6



 B =

(

1 3 5
2 4 6

)

; .

1. Use the loop for rather than explicitly the * operation in order to
evaluate the matrix C = A * B and compare the two results — re-
member the formula for the mathematical multiplication of matrices
Cij =

∑

k AikBkj ;

2. use the loop for rather than the .* operation in order to evaluate the
matrix D = A .* B’ and compare the two results — remember that
now you are multiplying component-wise, thus A and B’ have to have
the same dimension, in this case 3× 2.

31 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

14.0.33 Exercise:

By making use of the loop for N=10:100, evaluate the numerical integral
of f(x) = ex between [a, b] = [0, 1] for different values of the number of
points on the grid N . Observe how the result converges to the exact one
by plotting the numerical integral first as a function of N and then as a
function of 1/N .

15 Loops and conditions: Command if

When one needs a statement to be executed only in limited circumstances, the
command to use is if. This command executes a statement if the stated con-
dition is met — as usual, you can familiarise yourself with this command by
typing help if and doc if. For example you can compare two numbers with
the following script:

x=input(’type x’);

y=input(’type y’);

if x>y

disp(’x greater than y’)

elseif x<y

disp(’x smaller than y’)

else

disp(’x equal to y’)

end

The conditions are comparisons which include:

• < (less than)

• > (greater than)

• <= (less or equal than)

• >= (greater or equal than)

• == (equal)

• ∼= (not equal).

There are two possible formulations of the if command:

% case 1: if-then-formulation

if condition

command

end

% case 2: if-then-else-formulation

if condition

command

else

some other command

end

32 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

15.0.34 Exercise: the half-wave rectifier

Consider the function f(x) = sin(x) in the interval x ∈ [−2π, 2π] and rede-
fine a new function g(x) which is zero in the interval where f(x) is negative.
Plot both functions.

16 Loops and conditions: Loop while

Another command that executes loops is the while ...end construct. This
command will repeat the command which is contained in between while ...end

an indefinite number of times until some logical condition is satisfied. You can
find more information about it by typing either help while or doc while. For
example we can define a vector n with ten components from 1 to 10 by using
the command while:

i=1;

while i<=10,

n(i)=i;

i=i+1;

end

n

In many cases using the loop while can make for a more efficient algorithm
than using the loop for, even though the particular example above is not the
case. We will see many examples later on, when numerically solving differential
equations.

As for the case of the condition if, also for the loop while you can use the
following logical conditions:

• < (less than)

• > (greater than)

• <= (less or equal than)

• >= (greater or equal than)

• == (equal)

• ∼= (not equal).

Let’s consider the following simple example

f=64;

n=0;

while f>1

f=f/2

n=n+1;

end

n

This is a way of determining how often a number can be divided by 2, and you
can check that 2∧n gives you the initial number 64 — of course there is a better
and faster way to do the same, which is evaluating log2(64)!

33 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

16.0.35 Exercise:

Use the loop while to generate a routine which is able to establish whether
a natural number n is a prime number (i.e., a natural number which can
only be divided by 1 and itself) or not. Rewrite the same routine with the
loop for.

Hints to solve Exercise 16.0.35

• You can use the command rem(n,div) (or equivalently the command
mod(n,div)) to evaluate the rest of a division; if an integer number div
exists such that mod(n,div)=0, then clearly it means that n cannot be a
prime number;

• remember the use of if (see previous section);

• you can terminate a loop like while and for with the command break

(e.g., once the conditions you are looking for are met, without the need
to leave the computer run till the natural end the loop; in this way you
shorten the evaluation time);

• once you have established the conditions you are looking for, you can print
“n is a prime number” (or “n is not a prime number”) with the command
disp(’n is a prime number’).

17 Application: Vector rotations

Let us consider a two-dimensional vector r1 = (x1, y1), whose components in
polar coordinates can be written as x1 = r cosφ1 and y1 = r sinφ1. And now
let us suppose we want to rotate r1 anti-clockwise by an angle θ (see Fig. 6) so
that to get a new vector r2 = (x2, y2) = (r cosφ2, r sinφ2), where φ2 = φ1 + θ.
Thus the new component of the rotated vector can be written as

x2 = r cos(φ1 + θ) = r(cosφ1 cos θ − sinφ1 sin θ) = x1 cos θ − y1 sin θ

y2 = r sin(φ1 + θ) = r(sinφ1 cos θ + cosφ1 sin θ) = y1 cos θ + x1 sin θ .

Thus, the rotation can be written as the following matrix operation acting on
the vector r1:

r2 =

(

x2

y2

)

=

(

cos θ − sin θ
sin θ cos θ

)(

x1

y1

)

=

(

cos θ − sin θ
sin θ cos θ

)

r1 . (17)

You can easily show that both vectors r1 and r2 have the same norm, i.e., length:
|r1| = r2 = r.

34 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

y
r
1

r
2

θ=π/4

Figure 6: Rotating anti-clockwise the vector r1 = (x1, y1) = (1.5, 0.5) by an
angle θ = π/4.

17.0.36 Exercise: Rotation

Consider a vector in two-dimensions r1 = (x1, y1) = (1.5, 0.5) as in Fig. 6.

1. Rotate r1 anti-clockwise around the z-axis by an angle θ = π/4, and
find the coordinates of the rotated vector r2 = (x2, y2) = Ar1:

(

x2

y2

)

= A

(

x1

y2

)

A =

(

cos θ − sin θ
sin θ cos θ

)

.

2. What do you have to change if you would like to rotate r1 clockwise?

3. Which matrix is the inverse of the rotation matrix A, i.e., A−1? (the
command in Matlab is inv(A)).

4. Which operation are you doing by considering either A * inv(A) or
inv(A) * A and what do you get?

35 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

17.0.37 Exercise: Rotation and shifting of parametric curves

Let’s consider the following ellipse

x = a sin(θ) y = b cos(θ) ;

where θ ∈ [0, 2π] and a = 2 and b = 1.

1. Plot the ellipse (use the command axis(’equal’) to have the same
axis ranges for both x and y).

2. Plot now the ellipse rotated clockwise by an angle θ = π/8 and shifted
by (x0, y0) = (2, 3), i.e., now centered in (x0, y0) = (2, 3).

18 Application: numerical series and asymptotic

limits

18.0.38 Exercise:

The number e can be equivalently defined as

e = lim
n→∞

(

1 +
1

n

)n

=
∞
∑

n=0

1

n!
.

1. Find an estimate of e by using both the definitions given above and
compare them with the built-in value of Matlab (or exp(1)) — for
summing the vector components you can use the command sum or
you can find an equivalent way of doing it by using the multiplication
operation of appropriate vectors.

2. Consider the finite sum

e(N) =

N
∑

n=0

1

n!
,

and plot it in two subplots both as a function of N and N−1, showing
that it asymptotically converges to e.

36 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

18.0.39 Exercise:

Let us consider the geometric series

aexact =

∞
∑

n=0

xn =
1

1− x
for |x| < 1 . (18)

1. Choose a numerical value for x (say x = 1/2) and plot the sum of the
first N terms of the geometric series, i.e., it’s approximated numerical
value

a(N) =
N
∑

n=0

xn , (19)

as a function of N and check that it converges to 1/(1− x). Compare
the values you get for a fixed N with the exact analytical expression

a(N) = 1−xN+1

1−x .

2. Plot now a(N) as a function of N−1.

18.1 Application: Binding polynomials and polymeriza-

tion

(From K. Dill and S. Bromberg, Molecular Driving Forces, Garland Science,
2011.)
Many cellular processes involve polymerization, where a bunch of monomers
bind together to form a polymer. Here we consider a simple model of poly-
merization where each monomer is added to the growing chain with the same
equilibrium binding constant K. This situation is described by the following set
of chemical equations:

X1 +Xn−1
K
⇋Xn n = 2, 3, 4, (20)

The symbol Xn denotes a polymer n monomers in size. In equilibrium, there
will be polymers of all different sizes. We use this model to compute the av-
erage polymer size, and how it depends on the concentration of monomers.

37 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

18.1.1 Exercise:

1. By applying recursively the formula Xn = KX1Xn−1 = KxXn−1,
evaluate analytically an expression for the probability that a polymer
is n monomers in length

P (n) =
Xn

∑

∞

n=1 Xn
, (21)

in terms of K and x = [X1], the concentration of free monomers.

2. Compare the analytical expression P (n) found above with an approx-
imate numerical one Pnum(n), by plotting both P (n) and Pnum(n)
as a function of n for a fixed value of Kx (figure(1)), as well as by
plotting both P (n) and Pnum(n) as a function of Kx for a fixed value
of n (figure(2)). Comment the results you get.

3. Use the analytical result for P (n) to get an analytical expression for
the average polymer size 〈n〉 = ∑

∞

n=1 nP (n) and compare it with an

approximated numerical one 〈n〉num =
∑N

n=1 nP (n) by plotting both
〈n〉 and 〈n〉num as a function of Kx.

4. Show that 〈n〉 diverges as Kx approaches 1 from below — Note that,
as Kx → 1 the average polymer size goes to infinity. In fact, Kx =
Xn/Xn−1, and thus it if it equals 1, the equilibrium concentration of
longer polymers is not smaller than that of shorter ones, which would
imply infinite polymers.

19 Some additional exercise

19.0.2 Exercise

Find the crossing points between a circle centered in (x0, y0) = (2,−3)
and radius R = 5 and the exponential function f(x) = e−x/2 − 4 (answer:
x1 ≃ −2.42 and x2 ≃ 6.91). Plot both functions and mark the crossing
points you have found numerically.

38 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

x
-2 0 2 4

y

-1

0

1

2

3

4

Figure 7: Minimal distance between two circles.

19.0.3 Exercise: Maxwell-Boltzmann distribution

The Maxwell-Boltzmann distribution describes the velocity (v) distribution
of a classical gas of atoms with mass m at thermal equilibrium at a given
temperature T :

f(v) = 4π

(

m

2πkBT

)3/2

v2e
−

mv
2

2kBT . (22)

In SI units the Boltzmann constant is kB = 1.38 × 10−23 J/K and let’s
consider the specific case of Argon atoms, whose mass is m = 67×10−27 kg.

1. Numerically evaluate the maximum of this distribution fmax for a
temperature T = 300 K and its corresponding velocity vmax; use the
loop for and compare your result with the built-in operation max,
taking into account the syntax [fmax,imax]=max(f), where imax is
the index of the maximum value of the vector f;

2. Assuming the system is kept at a pressure low enough to always remain
in its gaseous phase in the temperature range T ∈ [1, 1000] K, plot in
two separate subplots fmax and vmax as a function of temperature.

19.0.4 Exercise: Minimal distance between two circles

Consider the following two circles,

(x− x0)
2 + (y − y0)

2 = r2 , (23)

one with center (x01, y01) = (−3,−0.5) and radius r1 = 1 and the other
with (x02, y02) = (3, 2) and r2 = 2.5. Numerically evaluate the minimal
distance between the two circles, compare the result you get with the exact
one,

√

(x02 − x01)2 + (y02 − y01)2−(r1+r2), and represent graphically your
result by plotting the two circles and the segment representing the minimal
distance (see Fig. 7).

39 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

x
0 0.5 1 1.5

y
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 8: Rotating anti-clockwise the vector r1 = (x1, y1) = (1.5, 0.5) by an
angle θ = π/4: representation with the command quiver(x,y,vx,vy).

20 Advanced plotting: scalar fields

In order to plot functions of two variables, such as f(x, y) = x2 + y2, one needs
to generate a two-dimensional grid of points with the commands

xmesh=linspace[a,b,N];

ymesh=linspace[c,d,M];

[x,y]=meshgrid(xmesh,ymesh);
f=x.∧2+y.∧2;

One can then choose one of the following options for the plotting of the surface:
contour(x,y,f), mesh(x,y,f), surf(x,y,f), surfc(x,y,f), surfl(x,y,f).
By using the help and by trying the various options, find out what these com-
mands corresponds to.

20.0.5 Exercise:

Write a scripts which plots the following function of two variables f(x, y) =
(x2 + y2) − (x2 + y2)2/2 in the interval x, y ∈ [−1, 1] using the commands
meshgrid and mesh(x,y,f). Evaluate the maximum value of the function
f(x, y), by making use of a loop for and the condition if. Compare the
result you find this way with the one found with the command max, and
check they match with the exact answer — N.B. For a matrix A, max(A)
returns a row vector containing the maximum element from each column.
When you have doubts about a command, type help command, e.g. in this
case help max.

21 Advanced plotting: vector fields

Matlab can plot vectors with the command quiver(x,y,vx,vy), which plots
velocity vectors as arrows with components (vx,vy) at the points (x,y). Here,
x, y, vx, and vy must be matrices all of the same size — x and y can also be
vectors to specify a uniform grid. N.B. Quiver automatically scales the arrows

40 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

to fit within the grid. Use the version quiver(x,y,vx,vy,S) with S=0 to plot
the arrows without the automatic scaling. Consider the following two examples.

In the first one we reproduce the exercise of Fig. 6; the result is plotted in
Fig. 8.

r1=[1.5; 0.5];

theta=pi/4;

A=[cos(theta) -sin(theta); sin(theta) cos(theta)];

r2=A*r1;

S=0;

hold on

quiver(0,0,r1(1),r1(2),S)

quiver(0,0,r1(2),r2(2),S)

xlabel(’x’)

ylabel(’y’)

axis image

hold off

In the second example we plot a two-dimensional random vector field on a grid:

N=10; range=2;

xmin=-range; xmax=range;

ymin=-range; ymax=range;

xmesh=linspace(xmin,xmax,N);

ymesh=linspace(ymin,ymax,N);

[x,y]=meshgrid(xmesh,ymesh);

vx=rand(N,N)-0.5;

vy=rand(N,N)-0.5;

quiver(x,y,vx,vy)

axis image

21.0.6 Exercise:

Consider the energy potential U(x, y) = −(x2 + y2)+ (x2 + y2)2/2, plot the
potential using the commands meshgrid and mesh(x,y,f), evaluate the
force field (Fx, Fy) = −(∂xU, ∂yU) and plot it with the command quiver.
Describe the motion of a particle under such a vector force field. Use first
your routine to evaluate the partial derivatives ∂xU and ∂yU , and then
use the build-in Matlab routine [Fx, Fy] = gradient(U) to calculate the
gradient of a given scalar field U.

41 Francesca Maria Marchetti

Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part I

22 Application: Charge distribution

The electric (Coulomb) potential of a point charge Q at a distance |r− r0| from
the charge position r0 is given, in SI units, by

U(r) =
Q

4πǫ0|r− r0|
, (24)

where ǫ0 is the vacuum permittivity — in the CGS units, one can fix 1/(4πǫ0) =
1.

22.0.7 Exercise:

Plot the electric potential for an electric charge Q = −1 positioned at r0 =
(1, 1.5) in a two-dimensional (2D) plane r = (x, y) — generate a 2D mesh
covering an interval around r0 and use the command meshgrid(); plot the
potential using contour(), mesh(), surf(), either in multiple figures (using
figure()) or in one figure (using subplot()).

22.0.8 Exercise:

Plot the potential for a system of two point charges in a 2D plane, one with
charge Q = −1 positioned at r0 = (1, 1.5) and another of charge Q = +1
positioned at r0 = (−1,−1.5) — the electric potential for a system of point
charges is the sum of the individual potentials.

The electric field of a single point charge located at the origin is given by

E =
Q

4πǫ0

r̂

r2
. (25)

22.0.9 Exercise:

Imposing 1/(4πǫ0) = 1, write a script which plots the electric field E of a
point charge Q = 1 located at (x0, y0) = (1, 0) and plot E in the interval
x ∈ [0, 2] and y ∈ [−1, 1] on a grid of 10 points for each axis.

The electric field due to a collection of charges Q1, Q2, . . . , is obtained using
the principle of superposition, E = E1 +E2 + . . . , thus at a given position r,

E(r) =
1

4πǫ0

∑

i

Qi
r− ri0

|r− ri0|3
. (26)

22.0.10 Exercise:

Write a script which plots the electric field E of two point charges Q1 = 1
located at r10 = (1, 0) and Q2 = −1 located at r20 = (−1, 0) (dipole).

42 Francesca Maria Marchetti

