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1 System of linear equations

Summary of definitions A system of linear equations is a set ofM equations
involving N variables, x = (x1, x2, . . . , xN )T (unknowns). In general a system
of linear equations can be written as a matrix equation of the form:

Ax = b , (1)

where A11, A12, . . . , AMN are the coefficients of the system (A is a M × N
matrix) and b = (b1, b2, . . . , bM )T are the constant terms:









A11 A12 . . . A1N
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. . . . . . . . . . . .
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


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



x1

x2

. . .
xN









=









b1
b2
. . .
bM









. (2)

Clearly, Eqs. (1) and (2) can be equivalently written in terms in its components:

A11x1 +A12x2 + · · ·+A1NxN = b1

A21x1 +A22x2 + · · ·+A2NxN = b2

. . .

AM1x1 +AM2x2 + · · ·+AMNxN = bM .

A system can either have infinitely many solutions, or one unique solution or
else no solution. If the solution to the system exists, then it is given by

x = A−1b , (3)

where A−1 is the inverse matrix of A (note that if A is a M ×N matrix, then
A−1 is a N ×M matrix), i.e., is such that A−1A = I (where I is here the N ×N
identity matrix) and AA−1 = I (while I is here the M × M identity matrix).
Note also that the elements of A−1, (A−1)ij , are not the inverse of each element
of A, A−1

ij . Show that explicitly!
For example let’s consider the simplest case of M = N = 2, a system of 2

equations with two unknowns:

A11x1 +A12x2 = b1

A21x1 +A22x2 = b2 .

Each equation is a line in the plane (x1, x2), therefore is clear that the solution
will be the intersection of these two lines: this can either be a line (infinitely
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many solutions), a point (one unique solution) or else the two lines never meet
(no solution).

Matlab has built-in commands to solve systems of linear equation and cal-
culate inverse matrices

x=mldivide(A,b)

x=A\b
x=inv(A)*b

1.0.1 Exercise:

Consider the system of linear equations (1) with

A =

(

3 1
4 2

)

b =

(

3
4

)

,

find the solution using the command mldivide(A,b) (or equivalently A\b)
and compare it with the exact solution you find analytically as well as with
inv(A)*b. Plot the two lines A11x1 + A12x2 = b1 and A21x1 + A22x2 = b2
in the plane (x1, x2) and check they intersect at the point previously found.
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Figure 1: Plotting the two lines A11x1 +A12x2 = b1 and A21x1 +A22x2 = b2 in
the plane (x1, x2) of the Ex. 1.0.1.

Similarly in the case of N variables, each equation of the system describes
a hyper-plane in the N -dimensional space (x1, . . . , xN ) and the solution to the
system is the intersection of these hyper-planes.
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1.0.2 Exercise:

Consider the system of linear equations (1) with

A =





1 5 4
7 9 3
4 5 2



 b =





3
4
9



 ,

find the solution using the command mldivide(A,b) and compare it with
inv(A)*b — setting format long.

1.0.3 Exercise:

Find the solution of the system of linear equations xTA = bT , where A and
b are given in the Ex. 1.0.1. Compare the solution with the one obtained
by plotting the lines defined by each one of the two equations of the system.
Check that (b/A)’=A’\b’, i.e. (bTA−1)T = (A−1)Tb.

In general, for M linearly independent equations1 (i.e. none of the equa-
tions can be derived from the others) we can have the following situations

1. Undetermined system: If M < N there are less equations than un-
knowns and the system has infinitely many solutions. For example when
N = 2 and M = 1, the solutions lie on the line defined by the single
equation in two variables. In this case the dimension of the solution is
equal to 2− 1 = 1 — and in general by N −M ;

2. There is a unique solution when N = M and when the square matrix
A has an inverse A−1; the solution is given by x = A−1b;

3. Overdetermined system: There are no solutions when instead M >
N , i.e. there are more equations than unknowns. For example, if N = 2
and M = 3, then each equation of the system describes different lines and
they can meet in three different points.

1.0.4 Exercise:

Consider the system of linear equations (1) with

A =

(

1 −2
2 −4

)

b =

(

5
6

)

.

Discuss why there are no solutions to this system of linear equations. What
does it mean that det(A) = 0?

1 One can make sure this is the case by checking that det(A) is finite. For a singular matrix
A, i.e. det(A) = 0, at least two equations of (1) are linearly dependent.
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1.0.5 Exercise:

Consider the system of linear equations (1) with

A =





1 2
3 −4
3 2



 b =





5
6
8



 .

Explain why there is no solution to such a system of linear equations by plot-
ting the three lines it describes. What happens if you evaluate A\b? What
is Matlab finding? What does it minimise? (Hint: type help mldivide

and doc mldivide).

Solving systems of linear equations can also be useful for non-linear functions,
as long as these functions have the same structure, as in the following exercise.
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Figure 2: Plotting the two functions f1(x) =
[

3−
(

3 + 8x− x2
)]

/2 and f2(x) =
[

4− 2
(

3 + 8x− x2
)]

/5 of the Ex. 1.0.6.
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1.0.6 Exercise:

Consider the following non-linear system of two equations in two unknowns:

2y +
(

3 + 8x− x2
)

= 3

5y + 2
(

3 + 8x− x2
)

= 4 .

1. Plot the two functions y = f1(x) =
[

3−
(

3 + 8x− x2
)]

/2 and y =

f2(x) =
[

4− 2
(

3 + 8x− x2
)]

/5 and establish graphically the values
of the two intersection points (x1, y0) and (x2, y0);

2. introduce a new variable, z = 3+8x− x2 and solve the system of two
linear equations for y0 and z0:

2y + z = 3

5y + 2z = 4 .

3. Now solve z0 = 3+8x1,2−x2
1,2 and verify that the solutions you found

above, (x1, y0) and (x2, y0) coincide with the intersection points found
in the first point 1. Plot the two points on the graph as in Fig 2.

2 Application: Electrical circuits

Currents Ii and potential differences Vj in electrical circuits are ruled by the
Kirchhoff’s circuit laws. The first (current) law states that, at any node in an
electrical circuit, the sum of currents flowing into that node is equal to the sum
of currents flowing away from that node:

∑

i∈into the node

Ii =
∑

k∈out from the node

Ik .

This law reflects the principle of conservation of electric charge. On the contrary,
Kirchhoff’s second law applies to closed loops in an electrical circuit and states
that the sum of the electrical potential differences (i.e., the voltages) around
any closed network is zero,

∑

j∈network

Vj = 0 .

This law follows from the principle of conservation of energy.
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2.0.7 Exercise:

Applying the two Kirchhoff’s circuit laws, find the three currents, I1, I2,
and I3, of the following electric circuit:

by knowing the values of the voltage V = 10 V, and the resistancesR1 = 2 Ω,
R2 = 4 Ω, and R3 = 3 Ω. By assuming that R3 is a variable electric
resistance, plot the three currents as function of R3 ∈ [0, 100] Ω.

2.0.8 Exercise:

Applying the two Kirchhoff’s circuit laws, find the six currents, I1, . . . , I6
of the following electric circuit:

Plot all currents knowing the values of the voltages VA = 3 V, VB = 2 V,
and VC = 3 V, and the resistances R1 = 2 Ω, R2 = 1 Ω, R3 = 2 Ω, R4 = 2 Ω,
R3 = 1 Ω, as a function of the variable resistance R6 ∈ [0, 3] Ω.

3 Zeros of a function: bisection method

Summary of definitions The bisection method is the easiest algorithm one
can think of that finds the root of a function, f(x) = 0, in a given interval [a, b].
The interval has to be chosen so that one knows for sure in advance that one
of the zeros lies inside it. The algorithm repeatedly divides the interval in half
and selects the subinterval in which the root must lie. Despite its simplicity this
method is quite slow.

The structure of the algorithm (see Fig. 3) is the following one:
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Figure 3: Schematic representation of the way the bisection method works.

a=...; b=...; fa=...; fb=...;

while b-a>small number

xm=(a+b)/2; fm=...;

if (fa*fm)>0

a=xm

else

b=xm

end

end

For the small number you can choose whatever number you want the accu-
racy of your answer to be in the . Type help eps and doc eps.

3.0.9 Exercise:

Find the two zeros of the function U(x) = −3x2 + x4 + x5/10 in the two
intervals [1, 2] and [−3,−1] by writing a bisection algorithm. Compare the
results you find in this way with the ones you obtain graphically by plot-
ting the function (see Fig. 2). Finally find the zeros of U(x) by using the
built-in Matlab routine fzero(f,[1,2]) — N.B. you need to first write an
anonymous function, i.e. f = @(x)-3*x2+x4+x5/10.

3.0.10 Exercise:

Use the bisection method in order to find the zero of the function f(x) =
x3 − 7x2 + 14x− 6 in within the interval [0, 1], with an accuracy of 10−2.

4 Roots of a function: Newton-Raphson method

A better (i.e., converging faster) algorithm to find the zeros (or roots) of a
function than the bisection method is the Newton-Raphson method. In the
root-finding process, this method uses not only the actual values of the function
but also its first derivatives. It is based on the fact that, if we Taylor expand
the function f(x) up to the first order term at the point x0, which is close to
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U(x)=−3x2+x4+x5/10

Figure 4: Plot of the function U(x) = −3x2 + x4 + x5/10.

the root of f(x),

f(x) = f(x0) + f ′(x0)(x− x0) +O((x− x0)
2) , (4)

as we are looking for the solution to f(x1) = 0, then, ignoring higher order
terms, we get that

x1 = x0 −
f(x0)

f ′(x0)
. (5)

The point x1 found as described above is not the real root of f(x) because we
have truncated the Taylor expansion, but if we apply iteratively this formula,
expanding now around x1 and so on and so fort, we can converge quickly to the
real zero of the function. This method can converge very quickly, and faster
than the bi-section method, if the initial guess of the root is quite close to the
one we are looking for. In addition, the derivative of f(x) should neither be
zero nor infinite in the region of interest.

The implementation of the method is quite easy. Let’s suppose we want to
find numerically the root of the function f(x) = exp(x) − x − 4. By plotting
f(x) (see Fig. 3), we can see the root is around x ≃ 1.7. We start giving a first
guess of the root, say x0 = 2.5; evaluating the tangent line to f(x) at x0 = 2.5,

f(x) = (e2.5 − 1)(x− 2.5) + e2.5 − 2.5− 4 +O((x− 2.5)2) , (6)

we can find an approximation of the root of f(x) better than x0 = 2.5 by finding
the root x1 of f(x) approximated as in the above expression around x0 = 2.5,
which is x1 ≃ 1.99 (see Fig. 3). If we now implement to the next step the
above procedure, by defining as new initial guess x0 = x1 ≃ 1.99, then the new
approximated value of the zero will give x1 ≃ 1.78, which is already very close
(after two steps only!) to the real zero of the function f(x) = exp(x) − x − 4,
which is x ≃ 1.75 (check this yourself).
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Figure 5: Function f(x) = exp(x)−x− 4 and first step of the Newton-Raphson
method if we use as initial guess x0 = 2.5.

4.0.11 Exercise

Write a routine which reproduces Fig. 3 for f(x) = exp(x) − x − 4, plot
f1(x) for x0 = 2.5 and find x1. (Optional: Export the figure into an .eps
file).

4.0.12 Exercise

Find the zero of f(x) = exp(x)− x− 4 by using the built-in Matlab routine
fzero(f,2) — N.B. you need to first write an anonymous function, i.e. f

= @(x)exp(x)-x-4.

4.0.13 Exercise

Find the zero of the function f(x) = exp(x) − x − 4 by writing a Newton-
Raphson algorithm. Use as initial guess x0 = 2.5. Set format long and
compare the result obtained in this exercise with the one obtained in the
previous exercise.

Hints to solve Exercise 4.0.13

• Given the initial guess x0, evaluate the derivative of f(x) in x0, f
′(x0) ≃

[f(x0)− f(x0 − δx)]/δx, where δx is a small number;

• once you know the derivative, use Eq. (5) to find the next guess x1;

• build a while loop which runs until the condition f(x1) > eps is satisfied.
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4.0.14 Exercise

Solve the previous exercise by writing a bisection algorithm. Set format

long and compare the result obtained in this exercise with the ones obtained
in the previous two exercises.

4.0.15 Exercise

Count the number of times the loop while is called in the Newton-Raphson
algorithm you developed in Ex. 4.0.13 and how many times instead is called
in the bisection algorithm you developed in Ex. 4.0.14. For the particular
case of the function f(x) = exp(x)−x−4, which algorithm is more efficient
and why?

4.0.16 Exercise

Write a routine using the Newton-Raphson algorithm which evaluates the
minimum of the function f(x) = −3x2 + x4 + x5/10 (shown, together with
its derivative in Fig. 4) close to x0 = 1. Compare the result you get this
way with the one you obtain by writing a bisection method. Indicate which
method is more efficient and why.

Hints to solve Exercise 4.0.16

• Remember that at the maximum or at a minimum of a function, f ′(x0) = 0
— and in this specific case, f ′(x) = −6x+ 4x3 + x4/2;

• apply the Newton-Raphson algorithm to find the root of f ′(x) close to
x0 = 1 — i.e., Eq. (5) now reads x1 = x0 − f ′(x0)/f

′′(x0), where f ′′(x) =
−6 + 12x2 + 2x3.
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Figure 6:
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4.0.17 Exercise

Find the crossing points between a circle centered in (x0, y0) = (2,−3)
and radius R = 5 and the exponential function f(x) = e−x/2 − 4 (answer:
x1 ≃ −2.42 and x2 ≃ 6.91).
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5 Application: energy conservation

In mechanics, the conservation of energy means that the sum of the kinetic
energy T and the potential energy U is a constant, E. In case of a particle
moving in one dimension, the conservation of energy reads:

E = T + U(x) =
1

2
m

(

dx

dt

)2

+ U(x) , (7)

where v = dx/dt is the velocity of the particle andm its mass. As a consequence,
the velocity of the particle can be evaluated as a function of the position only,

1

2
m

(

dx

dt

)2

= E − U(x) ,

which means that the motion is restricted only to the region where U(x) ≤ E.
At the points xi for which E = U(xi), the particle has zero velocity — points
of motion inversion. Finally, the force in terms of the potential energy reads:

F (x) = −dU(x)

dx
. (8)

5.0.18 Exercise

Consider the case of the energy potential U(x)/Ec = −3x2 + x4 + x5/10
plotted in Fig. 5. Evaluate the points of motion inversion x1 and x2 for the
total energy E/Ec = −1.
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Figure 7:

6 Example of external function routine for the

bisection method

We remember that in order to create an external function script we have to use
the following syntax,

[a, b, c] = your function(x, y, z, t)

and that you need to write a separate script file and name it your function.m.
In this file, x, y, z, t are INPUT variables, while a, b, c are OUTPUT
variables, i.e., what the function returns. To use this function in a script, you
then call the function by [a, b, c] = your function(x,y,z,t). Note that
the names of the variables inside the function do not need to be the same as the
names of the variables you pass to the function!

The following example (see Fig. 8) creates a function script zero bisection.m
that evaluates the zero of a function in a given interval (a, b) and with a given
accuracy err. Thus a, b, err are input values, while x 0, fx 0, iter are
output values: x 0 is the approximated value of the zero, fx 0 the value of the
function at this point, iter the number of iterations the programme needed to
find the zero with the accuracy err initially required. This external function
can be used in the following script
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Figure 8: Result of the script that uses the function script zero bisection.m,
finding the zero of the function f(x) = x3 − 7x2 + 14x− 6.

clear all

close all

clc

% example on how to use the external function zero bisection.m

fun=@(x)(x.∧3-7*x.∧2+14*x-6);

a=-1; b=1.5; err=2*eps;

[ x 0, fx 0, iter ] = zero bisection( fun, a, b, err );

x 0

fx 0

iter

a=-1; b=5; N=100;

x=linspace(a, b, N);

hold on

plot(x,fun(x),’Linewidth’, 2)

plot(x,zeros(length(x),1),’k--’)

plot(x 0,fx 0,’sr’)

hold off
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function [ x 0, fx 0, iter ] = zero bisection( fun, a, b, err )

% bisection method in order to find the root of the function f

% INPUT

% fun function

% a

% b interval [a, b]

% OUTPUT

% x 0 root

% fx 0 value of the function at x 0

% iter number of iterations used

fa=fun(a);

fb=fun(b);

i=0

while b-a>2*err

%define the middle point

x=(a+b)/2;

fx=fun(x);

if (fa*fx)>0

%eliminate left half interval

a=x;

else

%eliminate right half interval

b=x;

end

i=i+1;

end

x 0=x;

fx 0=fun(x 0);

iter=i;

end

6.0.19 Exercise

By writing external function routines for both the bisection method as
well as the Newton-Raphson method, find the zero of the function f(x) =
exp(x)− x− 4 with both methods.

6.0.20 Exercise

By writing an external function routine, find the crossing points between a
circle centered in (x0, y0) = (2,−3) and radius R = 5 and the exponential
function f(x) = e−x/2 − 4 (answer: x1 ≃ −2.42 and x2 ≃ 6.91).
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7 Ordinary differential equations

An ordinary differential equation of order n is an equation involving a single
independent variable x, a function f(x) and the derivative of such a function
up to the nth–derivative,

g

(

dnf(x)

dxn
,
dn−1f(x)

dxn−1
, . . .

df(x)

dx
, f(x), x

)

= 0 , (9)

where g is some arbitrary function. The order of the equation is set by the

highest derivative, dnf(x)
dxn . In addition, the differential equation (9) is called

ordinary because there is only one independent variable, x. The form of (9) is
implicit, but in some cases it can be rewritten in an explicit form:

dnf(x)

dxn
= h

(

dn−1f(x)

dxn−1
, . . .

df(x)

dx
, f(x), x

)

. (10)

The example we are going to use the most through this unit is the one of
the Newton’s second law of motion for a particle of mass m moving under the
influence of a force F . The force in general can be a function of the position
x(t) of the particle, but it can also be a function of it’s velocity v(t) = dx(t)/dt
(like in the case when a particles suffers friction) and time t (like for other
non-conservative forces, such as time–dependent driving forces):

m
d2x(t)

dt2
= F

(

x(t),
dx(t)

dt
, t

)

. (11)

This is a second order explicit ordinary differential equation. Most of equations
in physics are differential equations telling us how certain quantities change as
functions of others; in the case of the Newton equation (11), it tells us how the
position x(t) of a particle of mass m changes with time t.

7.1 Reduction of order

Any ordinary differential equation of order n can be rewritten as a system of n
ordinary differential equations of order 1. For example, in the case of Newton’s
second law of motion (11), we can introduce the velocity field v(t),











v(t) =
dx(t)

dt

m
dv(t)

dt
= F (x(t), v(t), t) ,

(12)

and thus, rather than a second order explicit ordinary differential equation for
the position x(t) (11), we have now two explicit first order differential equations
for both the position x(t) and the velocity v(t). Therefore we will first intro-
duce numerical techniques for solving 1st–order ordinary differential equations
and later on we will see how to apply such techniques in order to solve the
system (12).
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8 First order ordinary differential equations: Eu-

ler method

The simplest method for numerical integration of a first order ordinary differ-
ential equation is given by the Euler method. As we will see later, as well as
very simple, this method is also not very ‘accurate’ and we will consider bet-
ter methods later on. Let us suppose we want to solve the following 1st–order
ordinary differential equation, with a given initial condition for t = t1:

dx(t)

dt
= f (x(t), t) x(t1) =x1 . (13)

Basically we know the value of the function at a given point (i.e., x1 = x(t1)) and

the slope of the tangent to x(t) at the same point (i.e., dx(t)
dt

∣

∣

∣

t=t1
= f(x1, t1)) and

from this information we want to reconstruct the entire solution x(t). Starting
from the initial condition, x(t1) = x1, we can evaluate the solution at a point
t2 close to t1 by approximating the derivative to the first order,

x2 − x1

t2 − t1
≃ f(x1, t1) ⇒ x2 ≃ x1 + δtf(x1, t1) ,

where x2 = x(t2) and δt = t2 − t1. The smaller δt, the more accurate the
approximation we are doing is. How to find x2 is also schematically plotted in
Fig. 1.

x(t)

t(N) t

x(1)

x(2)

x(3)

t(3)t(2)t(1)

Figure 9: Schematic representation of the Euler method. The exact solution to
a given differential equation satisfying the initial condition x(t1) = x1 is plotted
in red and in blue is instead plotted the approximated solution obtained by
using the Euler method.

Generalising this expression to the case in which we consider a grid of N
points in the interval [t1, tN ] in which we want to evaluate the solution to the
first order differential equation (13), we can write that (see Fig. 1):

xi+1 − xi

ti+1 − ti
≃ f(xi, ti) ⇒ xi+1 ≃ xi + δtf(xi, ti) , (14)
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where xi = x(ti), xi+1 = x(ti+1), and δt = ti+1− ti. A schematic representation
of the Euler method is shown in Fig. 1. The structure of the Euler algorithm
can be written as follows

t1= ...; tN= ...; N=...;

t=linspace(t1, tN, N);

dt=t(2)-t(1);

% initial condition:

x E(1)=...

% anonymous function f(x,t):

f=@(x,t)(...);

% loop for the Euler method:

for i=1:N-1

x E(i+1)=x E(i) + dt*f(x E(i), t(i));

end
Alternatively you can evaluate the values of the function f(i)=... inside the
loop. Once you have become familiar with the method, you are invited to write
an external script function routine for the Euler method, as in the following
example:

%-----------------------------------------------%

% Euler method %

%-----------------------------------------------%

% INPUTs (to be provided):

% t1 = starting point

% x1 = initial condition

% tN = end point

% N = number of steps

% xp = anonymous function containing the first derivative

% OUTPUTs:

% xt E = vector solution x(t)

% t = grid of point t where x(t) has been evaluated

function [xt E, t] = Euler method(t1, x1, tN, N, xp)

xt E(1)=x1;

t=linspace(t1,tN,N);

dt=t(2)-t(1);

for i=1:N-1

xt E(i+1)=xt E(i) + dt*xp(xt E(i),t(i));

end

end
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8.0.1 Exercise

Consider the following first order differential equation

dx

dt
= −2

(

t− 5

2

)

,

with the initial condition x(1) = −9/4. Solve the equation exactly and
compare the exact solution with the approximated one obtained with the
Euler method. The approximated solution evaluated on a grid of N = 5
points within the interval [1, 4] is shown in Fig. 2.

Questions:

1. if x(t) is the position of a particle (of mass m = 1kg) in meters,
t the time in seconds, evaluate the acceleration of the particle and
describe its motion — N.B. a freely falling body on the moon has an
acceleration of 1.6m/s2.

After you have completed the exercise, solve it again by writing an external
function routine for the part containing the numerical integration via the
Euler method.

Hints to solve Exercise 8.0.1

• In order to find the exact solution you have to evaluate

∫ t

t1=1

dt′
dx(t′)

dt′
= x(t)−x(t1) =

∫ t

1

dt′
[

−2

(

t′ − 5

2

)]

= −
(

t− 5

2

)2

+

(

1− 5

2

)2

.

Thus the exact solution is x(t) = −
(

t− 5
2

)2
.

8.0.2 Exercise

Consider the following first order differential equation

dx

dt
= −3x , (15)

with the initial condition x(0) = 1. Solve the equation exactly and com-
pare the exact solution with the approximated one obtained with the Euler
method. Describe the motion in time t of a particle with position x(t) —
N.B. a force proportional to the velocity of a particle and with opposite
direction,

F = m
d2x

dt2
= −|α|dx

dt
,

describes the friction on the particle. The solution you get should look like
the one plotted in Fig. 3.
After you have completed the exercise, solve it again by using the very same
external function routine for the Euler method that you have written for
the previous exercise 8.0.1.
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t
1 1.5 2 2.5 3 3.5 4

x(
t)

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

exact solution
Euler approximation

Figure 10: Solutions of the of the differential equation dx/dt = −2(t−5/2) with
initial condition x(1) = −9/4: exact solution (red) and approximated solution
(blue) obtained with the Euler method on a grid of N = 5 points in the interval
[1, 4].

Hints to solve Exercise 8.0.2

• An exact solution of (15) can be found by evaluating
∫ x

x(0)

dx′

x′ = ln

(

x(t)

x(0)

)

= −3

∫ t

0

dt′ = −3t .

8.0.3 Exercise

Solve numerically the following first order differential equation

dx(t)

dt
= −(3t2 − 2t+ 5)[x(t)− 1] x(0) = x0 ,

for three different initial conditions, x(0) = 0, x(0) = 1, and x(0) = 2 and
compare the numerical results with the exact solution.

9 Second order ordinary differential equations:

Euler method

Let us consider the particular case of the differential equation for an harmonic
oscillator, like the one describing the motion of a particle of mass m, which, dis-
placed from its equilibrium position, experiences a restoring force proportional
to the displacement x, F = −κx (Hooke’s law):

m
d2x

dt2
+ κx = 0 , (16)
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Figure 11: Solutions of the of the differential equation dx/dt = −3x with initial
condition x(0) = 1: exact solution (red squares) and approximated solution
(blue crosses) obtained with the Euler method on a grid of N = 20 points in
the interval [0, 1].

As already explained previously in Sec. 7.1, we can rewrite this second order
ordinary differential equation as a system of two coupled first order differential
equations:











dx

dt
= g1(x, v, t) = v

dv

dt
= g2(x, v, t) = − κ

m
x .

(17)

In this way, we can solve the initial problem by making use of the Euler method,
as in the following exercise.
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9.0.4 Exercise: the harmonic oscillator

Consider the second order differential equation describing an harmonic os-
cillator:

m
d2x

dt2
= −κx .

This equation can be rewritten in terms of the dimensionless time t̃ = ω0t,
where ω0 =

√

κ/m, as
d2x

dt̃2
= −x . (18)

Solve this equation with the following initial conditions

x(0) = 1 v(0) =
dx

dt̃

∣

∣

∣

∣

t̃=0

= 0 ,

applying the Euler method.
Questions:

1. How the numerical result compares with the exact one in the interval
t̃ ∈ [0, 4π]?

2. roughly how many points N do you need to consider in the interval
t̃ ∈ [0, 4π] so that to have a good numerical approximation to the
exact solution?

3. in a separate figure, plot the velocity v(t̃) as a function of the position
x(t̃) (phase space). Why the exact solution gives a closed trajectory?
Why the numerical solution is not a closed trajectory?

Hints to solve Exercise 9.0.4

• The exact solution of the harmonic oscillator in dimensionless units is
given by

x(t) =
√

x2(0) + v2(0) sin(t̃+ δ) δ = arctan

(

x(0)

v(0)

)

. (19)

Note that if v(0) = 0, then δ = π/2;

• the 2nd–order ordinary differential equation (18) can be written as a sys-
tem of two 1st–order ordinary differential equations:











dx

dt̃
= v

dv

dt̃
= −x .

In this case the Euler method reads
{

xi+1 = xi + δtvi

vi+1 = vi + δt(−xi) .
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9.1 Error in the Euler method

At each step in the Euler method (14) we are neglecting terms of the order of
δt2, therefore we say the ‘local’ error is of the order (δt)2. However, each step
is iterated N − 1 times, where N is the number of points on the grid. Therefore
the magnitude of the ‘global’ Euler error is given by

error ∼ (δt)2 × (N − 1) . (20)

As N is of the order of 1/δt then the Euler method global error is of the order of
δt. For this reason, the Euler method is a first order method. As the following
exercise shows, the convergence to the exact solution is quite slow.

9.1.1 Exercise about the error in the Euler method

Evaluate the error done with the Euler method in the previous three exer-
cises by using the estimate (20) and compare this error with the one you
obtained evaluating the maximum distance of the approximated solution
from the exact one. Choosing one of the three previous exercises, evaluate
the behaviour of the error (20) with increasing the number of points N on
the grid. How fast is the convergence to the exact solution reached with the
Euler method?

10 First order differential equations: modified

Euler method

In the previous classes, we have seen how to solve a 1st–order differential equa-
tion with an assigned initial condition,

dx(t)

dt
= f (x(t), t) x(t1) =x1 . (21)

via the Euler method. In particular, if we consider a grid of N points in the
interval [t1, tN ] where we want to evaluate the solution, the solution at the time
ti+1, xi+1 = x(ti+1), can be evaluated approximatively (to the first order) start-
ing from the solution at the time ti, xi = x(ti) and adding to it the derivative
of such a solution in ti, f(xi, ti), times the increment in time δt = ti+1 − ti:

xi+1 ≃ xi + δtf(xi, ti) . (22)

We have seen that the Euler method is a first order method, which means the
error made is of the order of δt — note that δt ∼ (δt)2 × (N − 1), where N
is the number of times the method is iterated (the error accumulates at each
iteration step). For this reason this method converges slowly, and is, in some
cases, unstable.

A better accuracy could be obtained by considering a higher order approx-
imation to the derivative, i.e., instead of using the slope f(xi, ti), we use the
average slope [f(xi, ti) + f(xi+1, ti+1)]/2:

xi+1 ≃ xi + δt
f(xi, ti) + f(xi+1, ti+1)

2
. (23)
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However, the problem is that on the right-hand side of this formula it appears
xi+1 that we don’t know yet, because at each step we only know xi and ti. To
solve this problem, the modified Euler method first calculates the intermediate
value x̃i+1 by means of the Euler method, and then uses this value for the final
approximation xi+1 at the next integration point, in other words:

x̃i+1 = xi + δtf(xi, ti) (24)

xi+1 = xi + δt
f(xi, ti) + f(x̃i+1, ti+1)

2
. (25)

11 First order differential equations: Runge-Kutta

method

Another second order method is given by the 2nd–order Runge–Kutta method.
The idea this method is based on is similar to the one of the modified Euler
method explained before. In fact, an equivalent way of using a better approxi-
mation than (22) consists in replacing the derivative evaluated at the left–point
of the interval [ti, ti+1], f(xi, ti), with the derivative evaluated at the middle–
point, f(xi+1/2, ti+1/2):

xi+1 ≃ xi + δtf(xi+1/2, ti+1/2) . (26)

The notation in this expression means ti+1/2 ≡ ti+δt/2 and xi+1/2 ≡ x(ti+1/2).
The problem with the expression (26) is that the algorithm cannot be applied in
the form (26) since it requires the knowledge of the derivative evaluated at the
middle–point, f(xi+1/2, ti+1/2), which we don’t know because at each step we
only know xi and ti. We can however approximate xi+1/2 by again using (22),
i.e., the Euler method:

xi+1/2 ≃ xi +
δt

2
f(xi, ti) .

Therefore the 2nd–order Runge–Kutta algorithm reads as:

xi+1 ≃ xi + δtf(xi +
δt

2
f(xi, ti), ti + δt/2) . (27)

We will see later in Sec. 9.1 why this method is second order rather than first.

23 Francesca Maria Marchetti



Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part II

1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

t

x(
t)

 

 

exact solution
2nd order Runge−Kutta
modified Euler
1st order Euler

Figure 12: Solutions of the of the differential equation dx/dt = −2(t − 5/2)
with initial condition x(t = 1) = −9/4. Exact solution (red) and approximated
solutions: in blue the one obtained with the 1st–order Euler method, in cyan
the one obtained with a 2nd–order Runge-Kutta method, and in black dashed
line the one obtained with the modified Euler method (it gives exactly the same
result as the 2nd–order Runge-Kutta method) on a grid of N = 5 points in the
interval [1, 4].

12 Exercises

12.0.2 Exercise

Consider the following first order differential equation

dx

dt
= −2

(

t− 5

2

)

,

with the initial condition x(t = 1) = −9/4. Evaluate the approximated
solutions obtained with the Euler method, the modified Euler method and
with the 2nd–order Runge–Kutta method and compare them with the exact
solution x(t) = −(t − 5/2)2. One example is shown in Fig. 1 for a grid of
N = 5 points within the interval [1, 4].
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Figure 13: Solutions of the of the differential equation dx/dt = −3x with initial
condition x(t = 0) = 1. Exact solution (red) and approximated solutions:
in blue the one obtained with the 1st–order Euler method, in cyan the one
obtained with a 2nd–order Runge-Kutta method, and in black dashed line the
one obtained with the modified Euler method on a grid of N = 7 points in the
interval [0, 1].

12.0.3 Exercise

Consider the following first order differential equation

dx

dt
= −3x , (28)

with the initial condition x(t = 0) = 1. Compare the exact solution to this
equation with the approximated ones obtained with the Euler method, the
modified Euler method and the second order Runge-Kutta method — see
Fig. 2.
After you have completed this and the previous exercise, solve them again
by building two external function routines for the modified Euler method
and the second order Runge-Kutta method, respectively.
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12.0.4 Exercise:

Solve the following differential equation

dx

dt
= 5x− x2 x(t = 0) = 1 , (29)

with the three approximated methods we have so far introduced (Euler,
modified Euler, and second order Runge-Kutta) and compare the approxi-
mated solutions you get with the exact one:

x(t) =
5e5t

4 + e5t
. (30)

12.0.5 Exercise

Solve numerically the following first order differential equation with the
second order Runge-Kutta method

dx(t)

dt
= −(3t2 − 2t+ 5)[x(t)− 1] x(0) = x0 ,

for three different initial conditions, x(0) = 0, x(0) = 1, and x(0) = 2 and
compare the numerical results you obtain with the exact solution.

12.1 Error in the Runge–Kutta method

It easy to understand why, by taking the middle point, the approximation we
do is now second order rather than first. Let us consider for simplicity the case
in which f(x, t) = f(t) therefore the solution of the differential equation can
now be obtained by direct integration,

x(t)− x(t0) =

∫ t

t0

dt′f(t′) ,

and the solution at the point tn+1 can be exactly derived by the one at tn by

xn+1 = xn +

∫ tn+1

tn

dt′f(t′) . (31)

If, in the interval [tn, tn+1] we approximate the function f(t′) by it’s middle
point f(t′) ≃ f(tn+1/2) + (t′ − tn+1/2)f

′(tn+1/2) + O(δt2), we can notice that
substituting back into the expression (31) the term

∫ tn+1

tn

dt′(t′ − tn+1/2) = 0 ,

is zero. Therefore automatically by considering the middle point, we are doing
an error in the solution xn+1 which is of the order of δt2.
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13 Application: Harmonic oscillator, friction,

and external drive

13.0.1 Exercise: the harmonic oscillator

Consider the equation of motion for an undamped spring–mass,

d2x

dt̃2
= −x , (32)

and solve this equation with the following initial conditions

x(0) = 1 v(0) =
dx

dt̃

∣

∣

∣

∣

t̃=0

= 0 ,

applying the Runge–Kutta method.

Questions:

1. Compare the Runge–Kutta numerical solution with the solution ob-
tained with the Euler algorithm and with the exact one, x(t) = cos(t̃);

2. for a given number of points N in the interval t̃ ∈ [0, 4π] which ap-
proximations is closer to the exact one?

3. evaluate the errors for the Euler method, max(abs(xRK-xexact)), and
the one for the Runge–Kutta method, max(abs(xE-xexact)) with
increasing the number of points N and observes which method gives
the fastest convergence — you need to plot the error versus N in a
log-log scale to see which curve has the steepest slope.

Hints to solve Exercise 13.0.1

• You can write a 2nd–order differential equation,

d2x

dt2
= g(x,

dx

dt
) ,

as a system of two 1st–order differential equations:











dx

dt
= v

dv

dt
= g(x, v) ;

• for such equations the 2nd–order Runge–Kutta method writes

{

xi+1 ≃ xi + δtvi+1/2

vi+1 ≃ vi + δtg(xi+1/2, vi+1/2) ;

27 Francesca Maria Marchetti



Métodos exp. y comp. de Biof́ısica (ME) Course Notes — part II

• the middle–point values, vi+1/2 and xi+1/2 can be approximated as:











vi+1/2 ≃ vi +
δt

2
g(xi, vi)

xi+1/2 ≃ xi +
δt

2
vi .

The damped harmonic oscillator, such as a mass m, connected to a spring
and submerged in a fluid, experiences a frictional force, which can be modeled
as a force proportional, and opposite in direction, to the oscillator velocity:

d2x(t)

dt2
+ 2ζω0

dx(t)

dt
+ ω2

0x(t) = 0 v(0) = v0 x(0) = x0 , (33)

where ω0 =

√

k

m
and ζ =

c

2
√
mk

.

13.0.2 Exercise

Solve numerically the damped harmonic oscillator (33) in the interval t ∈
[t0, t1] = [0, 18] s for the underdamped case where m = 1.4 kg, k = 6.5 N/m,
c = 0.8 kg/s and with initial conditions x0 = 2.8 m and v0 = 0 and compare
the numerical result with the exact one

x(t) =
x0

√

1− ζ2
e−γt cos(ω0

√

1− ζ2 − ϕ) ,

where γ =
c

2m
and ϕ = arccos(

√

1− ζ2).

In presence of an external drive F (t), the equation of motion of a damped
harmonic oscillator reads as:

d2x(t)

dt2
+ 2ζω0

dx(t)

dt
+ ω2

0x(t) =
F (t)

m
v(0) = v0 x(0) = x0 . (34)

13.0.3 Exercise

Consider the case of an external sinusoidal drive, F (t) = F0 sin(ωt), and
solve numerically the driven damped harmonic oscillator (34) in the time
interval t ∈ [t0, t1] = [0, 80] s for ω0 = 1 s−1, 2ζω0 = 0.2 s−1, F0/m = 0.1 m
s−2, and ω = 1.2 s−1, and with initial conditions x0 = 0.2 m and v0 = 0.8 m
s−1.
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Figure 14: Schematic representation of a phase line diagram and critical points

of a differential equation with a form dx(t)
dt = f(x). Left panel: The critical

points a and c are stable, while the critical point b is unstable. Right panel:
phase line diagram of exercise 15.0.5.

14 Application: Planar Pendulum

14.0.4 Exercise:

Solve numerically the planar pendulum

d2θ

dt̃2
= − sin θ . (35)

with initial condition θ0 = 30◦ and v0 = 0 in the interval t̃ ∈ [0, 12π]
by making use of both the Euler method and the 2nd–order Runge–Kutta
algorithm.
Questions:

1. Plot the numerical solution. Determine for which value of the integra-
tion steps N the solution starts not to visibly change any longer;

2. for this value of N , compare by plotting the numerical solution with
the exact solution θ(t̃) = θ0 cos(t̃) valid for small angles only. Com-
ment the result you get;

3. change the initial condition θ0: for which value of θ0 the two curves
are approximatively equal? Why?

4. plot the solution in the phase space θ, dθ/dt̃.

15 Critical points and phase lines

The qualitative behaviour of an ordinary differential equation of the form

dx(t)

dt
= f(x) x(0) = x0 , (36)

can be deduced by the phase line diagram (see the schematic Fig. (14)), where
one can identify the critical points, i.e. the points where f(x) = 0, and their
stability. In the particular example of the left panel of Fig. 14, the critical points
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Figure 15: Left: Critical points and phase lines of the logistic equation (38);
solutions of the equation for different initial conditions.

a and c are stable and thus act as sinks: all the solutions with initial conditions
x0 < b tend asymptotically to a, while the solutions with x0 > b tend to c:

lim
t→+∞

x(t) =

{

a− x0 < a

a+ a < x0 < b
lim

t→+∞
x(t) =

{

c− b < x0 < c

c+ x0 > c .

15.0.5 Exercise:

Solve both numerically and analytically the differential equation (see right
panel of Fig. 14):

dx(t)

dt
= x2 x(0) = x0 ,

with initial conditions x0 < 0 and x0 > 0 and compare the solutions you
get.

15.0.6 Exercise:

Find the phase lines, critical point and stability of the differential equation

dx(t)

dt
= 1− x(t) .

Solve it exactly and numerically for x(0) = x0 > 1 and x0 < 1.

15.0.7 Exercise:

Find the phase lines, critical point and stability of the differential equation

dx(t)

dt
= log[x(t)] + x(t)1/3 − 0.2x(t)2 .

Solve it numerically for different initial conditions x0.
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16 Application: Logistic equation

Equations of the form

dN(t)

dt
= κN(t) N(0) = N0 , (37)

describe either the exponential growth or the exponential decay of a population
at a rate proportional to the size of the population, N(t), with a rate constant
κ. If κ > 0, N(t) grows exponentially, N(t) = N(0)eκt, while if κ < 0, the
population decays exponentially, N(t) = N(0)e−|κ|t.

A more accurate model assumes that the relative growth start decreasing
when N(t) approaches a fraction of the carrying capacity Nc of the environ-
ment — population growth in a constrained environment. The corresponding
equation is called logistic differential equation, and, for Nc = 1 and κ = 1, reads
as:

dN(t)

dt
= N(t) [1−N(t)] N(0) = N0 . (38)

As explained in the previous section, there is no need to explicitly solve this
equation to understand the behaviour of the population N(t) with the time t
for different initial conditions N0, rather one has to understand the phase lines
and the stability of the two critical points N = 0 and N = 1 — see left panel
of Fig. 15. Nevertheless, Eq. (38) can be solved exactly by variable separation,
giving:

N(t) =
N0

N0 + (1−N0)e−t
. (39)

Different solutions can be seen in the right panel of Fig. 15.

16.0.8 Exercise:

Numerically solve the logistic equation (38) for different values of the initial
population N0 and compare the numerical result you get with the exact
one of Eq. (39). Linearise the problem around the critical points N = 0
(unstable) and N = 1 (stable), and compare the solutions you get in terms
of an exponential function with the general solution. When can you use the
linearised ones?

16.0.9 Exercise:

Consider the following modified logistic equation

dN(t)

dt
= aN2(t) [1− bN(t)] N(0) = N0 .

Where a = 2 and b = 50. Find the critical points and their stability. Study
the numerical solutions for different initial populations N0, as well as close
to the stable critical point, comparing your results with the ones of the usual
logistic equation.
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Figure 16: Solutions of the prays and predators problem (41) with parameters
a = b = c = d = 1 and initial conditions: x0 = 1.2 and y0 = 1.1 (left panel);
x0 = 2 and y0 = 5 (right panel).
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Figure 17: Orbits in the phase space of the pray and predator problems for the
following parameters a = b = c = d = 1 and different initial conditions x0 and
y0.
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17 Application: Prays and predators

Volterra-Lotka equations are differential equations that can be used to model
predator-prey interactions. The original system discovered by both Volterra
and Lotka independently consisted of two entities. Vito Volterra developed
these equations in order to model a situation where one type of fish is the prey
for another type of fish. The model was simplified by the following assumptions:

1. The prey population increases exponentially in the absence of predators.

2. The predator population decreases exponentially in the absence of prey.

3. The prey population decreases relative to the frequency with which preda-
tors meet prey as a result of predation.

4. The predator population increases relative to the frequency with which
predators meet prey as a result of predation.

Using these assumptions, the Volterra-Lotka equations for the two-dimensional
predator-prey system with exponential growth is defined by the following system
of differential equations:

dx(t)

dt
= ax− bxy x(0) = x0 (40)

dy(t)

dt
= dxy − cy y(0) = y0 . (41)

The critical points, dx(t)
dt = 0 = dy(t)

dt are given by (x, y) = (0, 0) and (x, y) =
(ab ,

c
d ). By evaluating the Jacobian

J(x, y) =

(

a− by −bx
dy dx− c

)

(42)

it can shown that the first is unstable, while the second is a stable center — see
Fig. 16.

17.0.10 Exercise:

Numerically solve the prays and predators equations (41) for a = 4, b = 2,
c = 3, and d = 3 and for different initial conditions x0 and y0 far and
close to the critical points. Plot the corresponding orbits as in Fig. 16 —
plot also the flow lines. Linearise the equations close to the stable critical
point, evaluate analytically the solutions and plot them together with the
numerical ones for the full problem.
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17.0.11 Exercise:

Numerically solve the following equations describing two competing popu-
lations

dx(t)

dt
= 60x− 4x2 − 3xy

dy(t)

dt
= 42y − 2y2 − 3xy

for different initial conditions x0 and y0. Evaluate the critical points and
their stability. Linearise close to one of the stable critical points, evaluate
analytically the solutions and plot them together with the numerical ones
for the full problem.

18 Statistical analysis: basic notions

The statistical analysis deals with the organisation and interpretation of set of
data, which are the result of either an experiment, or, for example, a survey.

18.1 Descriptive statistics: Mean, Variance, Standard de-

viation

Given a somehow large set of data {x} = {x1, x2, . . . , xN} (which can be the
results of either measurements, or a survey, etc. etc.), the descriptive statistics
quantify in few parameters some of the main features of such a collection of data.
In addition, these parameters may enable us to make comparison with a different
set of data describing, say, a similar experiment taken at different conditions
and allowing to draw some important conclusions about the physics behind the
experiment. Given {x} = {x1, x2, . . . , xN}, the statistical parameters that can
be defined are — in Matlab, we can store {x} in a vector (e.g., a row vector),
therefore from now onwards we will write x = [x1 x2 . . . xN]):

Mean — the arithmetic mean is the sum of the data divided by the total data
number:

x =
1

N

N
∑

i=1

xi . (43)

Standard deviation — the standard deviation is a measure of the data vari-
ability and shows how much dispersed the data are from their mean x: A smaller
value of the standard deviation σ means the data are more closely distributed
around the mean than if the standard deviation is larger, meaning the data are
more spread out from the mean:

σ =

√

√

√

√

1

N − 1

N
∑

i=1

(xi − x)
2

(44)
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18.1.1 Example:

Let us consider the two sets of data x = [2 9 3 12 9] and y = [5 6 7 8 9];
though it is clear they have the same average (x = 7 = y), the data in x are
more spread out (σx = 4.3) then the ones in y, which standard deviation is
given by σy = 1.6 (check it).

Variance — squared value of the standard deviation:

σ2 =
1

N − 1

N
∑

i=1

(xi − x)
2

(45)

Median — the median x1/2 is the data that separates the higher half of the
data set, from the lower half, when the data are ordered from the lowest value
to the highest one. In the cases considered in the example 18.1.1, x1/2 = 9 and
y1/2 = 7. Note that if one has an even number of data, then the median is
defined as the mean of the two middle values. Therefore in general:

x1/2 =







xN−1
2 +1 if N is odd

xN
2
+ xN

2 +1

2
if N is even .

N.B. the command floor(a) rounds the elements of a to the nearest integer —
towards minus infinity, i.e., floor(4.2) = floor(4.8) = 4 and floor(-4.8)

= floor(-4.2) = -5.

18.1.2 Example:

The following set of data z = [13 0 7 10 8 7 2 9 20 11] has 10 elements,
therefore the median is given by (sort(z) = [0 2 7 7 8 9 10 11 13 20])
z1/2 = (z5 + z6)/2 = (8 + 9)/2 = 8.5 (check it).
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18.1.3 Exercise:

Consider the following data representing the monthly average rainfall (in
millimeters) in respectively Spain, Madrid, and London, where the data are
ordered from January to December:

rsp = [50 48 55 44 47 13 8 18 39 78 60 55]

rma = [62 42 70 35 35 4 1 3 32 94 71 56]

rlo = [58 39 51 49 54 53 48 56 58 62 61 63] .

This means that for example in January in Spain, on average, 50 mm of
water have fallen (rsp(1) = 50), 62 mm in Madrid, and 58 mm in London,
and so on.

• Evaluate mean, standard deviation and median of the monthly average
rainfall in Spain, Madrid and London; compare your results with the
ones obtained by making use of the built-in functions mean(), std(),
and median();

• what can you deduce from the values you have obtained of mean and
standard deviation? And what can you say about the generic be-
haviour of rainfall in the three different locations?

Hints to solve Exercise 18.1.3

• Remember to use the commands sum(), length(), and sort().

Data binning — It might be sometimes useful to group together the data
that belong to the same interval of values, i.e., to bin the data, and to separately
consider their mean and standard deviation in each bin. For example in the case
of the exercise 18.1.3, it might be useful to bin the data in four different intervals,
depending on the season rather than on the specific month:

spring = March, April, May

summer = June, July, August

autumn = September, October, November

winter = December, January, February ,

so that one can compare behaviours of rainfall in a specific season.
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Figure 18: The figure shows the averaged monthly rainfall in millimeters in
respectively Spain, Madrid , and London, where the data have been binned into
the four seasons (1=spring, 2=summer, 3=autumn, 4=winter): Data are mean
values and error bars the associated standard deviations.

18.1.4 Exercise:

Consider the same data of exercise 18.1.3:

rsp = [50 48 55 44 47 13 8 18 39 78 60 55]

rma = [62 42 70 35 35 4 1 3 32 94 71 56]

rlo = [58 39 51 49 54 53 48 56 58 62 61 63] .

• Bin the data about the rainfall in Spain, Madrid, and London, into
the four seasons;

• plot the mean in each bin as a function of the season;

• use the standard deviation in each bin as error bars, so that your plot
should look like the one in Fig.1;

• what can you conclude from this analysis?

Hints to solve Exercise 18.1.4

• Use the command errorbar() to plot the means with their errors (doc
errorbar).
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18.2 Histograms and probability distributions

We have seen that descriptive statistics offers an important summary of a large
set of data, allowing the comparison of different sets. However, describing a
large set of data with few parameters it is only an approximation and might
lead to the risk of distorting or loosing important details of the original data.
Probability distributions, p(x), will give us a more complete information, telling
us the probability to find the value x within a given interval [xmin, xmax] when
we perform an experiment.

18.2.1 Histograms

A previous step in order to determine the probability distribution, is the one of
constructing an histograms with the data.

18.2.2 Example:

Let us consider the following data comprised of natural numbers between
[1, 10]:

data = [9 2 8 7 1 3 4 8 3 2 3 10 9 3 8 9] .

For example, we can automatically bin the elements of the vector data into
10 containers centered on the values stored in x = [1 2 3 4 5 6 7 8 9 10],
with the command hist(data, x) (see the figure below and try to reproduce
it).

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
histogram of the example 1.2.1

x

no
t n

or
m

al
is

ed
 p

(x
)

If we define [p x] = hist(data, x), then we can check that the vector p con-
tains length(x) elements specifying how many times the number x(1) = 1

is repeated in data (i.e., p(1)=1), how many time the number x(2) = 2 is
repeated in data (i.e., p(2)=2), and so on (p= [1 2 4 1 0 0 1 3 3 1]).
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18.2.3 Exercise:

Consider the data of exercise 18.1.3 and plot an histogram for each set of
data for the intervals of rainfall millimeters x=(0:20:80).
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18.2.4 Probability distributions

The probability distribution can be obtained by normalising the histogram. For
a discrete variable x, then normalising means dividing by the total number
of data. For a continuous variable x, defined in an interval [xmin, xmax], its
normalised probability distribution satisfies the condition

∫ xmax

xmin

dxp(x) = 1 . (46)
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18.2.5 Exercise:

Considering the same data of the example 18.2.2

data = [9 2 8 7 1 3 4 8 3 2 3 10 9 3 8 9] .

normalise the histogram with a binning vector x = [1 2 3 4 5 6 7 8 9 10].
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Compare your result with the one obtained with the command
normalize().
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18.2.6 Exercise:

1. Use the function randn() to generate N Gaussian-distributed random
numbers centered on x = 0 with a standard deviation equal to 1;

2. Use the function hist() in order to produce an histogram with the
data obtained above; try with different values of N ;

3. Normalise the histogram in order to obtain the probability distribution
p(x);

4. Compare what you obtain with the analytical expression p(x) =
1√
2π

e−
x2

2 .
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• Use the function rand() to generate N random numbers uniformly-
distributed on the interval [0, 1] and repeat the same steps 1–4 above.
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18.2.7 Exercise:

Plot the (normalised) Gaussian distribution obtained in the exercise 18.2.6
with the command randn() with different numbers of point N and different
numbers of bins Nbins and compare them.

−4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

x

p(
x)

 

 
N=1000, N

bins
=50

N=10000, N
bins

=100

N=1000000, N
bins

=100

19 Data Fitting: Introduction

There are cases where we want to compare the data y = (y1, y2, y3, . . . , yN )
we have obtained as the result of an experiment to a theoretical model and
therefore to fit the model to the data. Let us consider for examples the coldest
and hottest average temperatures per month in Madrid (see Fig. 1):

Tmin = (2.6, 3.7, 5.6, 7.2, 10.7, 15.1, 18.4, 18.2, 15.0, 10.2, 6.0, 3.8)◦C

Tmax = (9.7, 12.0, 15.7, 17.5, 21.4, 26.9, 31.2, 30.7, 26.0, 19.0, 13.4, 10.1)◦C ,

(47)

where the first data refer to January, the second to February and so on (in
each case we have N = 12 data). And let us suppose that a theoretical model
foresee that both minimum and maximum temperatures vary like a 3rd order
polynomial, i.e., like

f(x,a) = a1 + a2x+ a3x
2 + a4x

3 =

Np=4
∑

j=1

ajx
j−1 , (48)

where Np = 4 is the number of free parameters of our model that we have
to determine via fitting. The question is what is the best choice for a =
(a1, a2, a3, a4), i.e., how do we obtain the values of the parameters a1, a2, a3,
and a4 that are best fitting of respectively either Tmin or Tmax? (see Fig. 1).

19.1 Least-square fitting

One of the different possible methods to optimise a fit is the least-square fitting.
The best fitting parameters obtained according to the least-square method are
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Figure 19: The figure shows the averaged monthly maximum (dashed
line) and minimum (dot-dashed line) temperatures in Madrid, where x =
(x1, x2, . . . , xN=12) = (1, 2, . . . , 12) are the months starting from January. Con-
tinue lines represent the best fitting 3rd order polynomial curves obtained with
a linear least-square fitting.

the ones that minimise the sum of the squared distances between the data
y = (y1, y2, y3, . . . , yN ) and the fitting function obtained from a certain model,
f(x,a), where a = (a1, a2, a3, . . . , aNp

). Therefore one has to minimise the
following quantity:

F(a) =
N
∑

i=1

[yi − f(xi,a)]
2
. (49)

Here, we indicate with x = (x1, x2, x3, . . . , xN ) the values of the parameter xi

which corresponds to the data yi, i.e., yi = y(xi) — in the previous example,
x = (1, 2, 3, . . . , 12) are the months of the year starting from January. Let us
for the moment consider the general case where f(x,a) is a generic function of
the variable x and of the Np parameters a — later, in Sec. 19.2, we will see the
specific case of the linear least-square fitting. So let us keep in mind that Np is
the number of parameters of our model (in our notation a is a vector with Np

components), while N is the number of data points (in our notation both y and
x are vectors with N components). Clearly the more parameters one uses, the
better the fit will be, however the less parameters one uses, the better will be
the model.

The distances between the fitting curve and the data are plotted in Fig. 2
for Tmax given in Eq. (47) .

In order to minimise F(a), one has to solve the following Np coupled equa-
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Figure 20: The figure shows the averaged monthly maximum (dashed line)
temperature in Madrid and the best fitting 3rd order polynomial curve (solid
line) obtained with a linear least-square fitting like in Fig. 1. In green are plotted
the distances between the data points yi and the fitting function f(xi,a), for
each value of x = (x1, x2, . . . , xN=12) = (1, 2, . . . , 12).

tions:

∂F(a)

∂a1
= 0 = −2

N
∑

i=1

[yi − f(xi,a)]
∂f(xi,a)

∂a1

∂F(a)

∂a2
= 0 = −2

N
∑

i=1

[yi − f(xi,a)]
∂f(xi,a)

∂a2

. . . . . .

∂F(a)

∂aNp

= 0 = −2

N
∑

i=1

[yi − f(xi,a)]
∂f(xi,a)

∂aNp

.

(50)

In general, this is a system of Np non-linear equations for the NP parameters
a.

19.2 Linear least-square fitting

In this particular case the fitting function of our model f(x,a) contains a linear
combination of the Np fitting parameters a:

f(x,a) =

Np
∑

j=1

ajϕj(x) , (51)

where the Np functions ϕj(x) can be arbitrary functions of x. Now, we can
find the solution a of the least-square minimisation by solving a linear system
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of equations for the vector a = (a1, a2, . . . , aNp
). In fact, the system (50) now

becomes:

N
∑

i=1

[yi − f(xi,a)]ϕ1(xi) = 0

. . . . . .

N
∑

i=1

[yi − f(xi,a)]ϕNp
(xi) = 0 ,

(52)

which can also be written as

N
∑

i=1



yi −
Np
∑

k=1

akϕk(xi)



ϕj(xi) = 0 ∀j = (1, 2, . . . , Np) . (53)

Defining the N ×Np matrix Aij = ϕj(xi), i.e.,

A =









ϕ1(x1) ϕ2(x1) . . . ϕNp
(x1)

ϕ1(x2) ϕ2(x2) . . . ϕNp
(x2)

. . . . . . . . . . . .
ϕ1(xN ) ϕ2(xN ) . . . ϕNp

(xN )









, (54)

then Eq. (53) reads as:

N
∑

i=1



yi −
Np
∑

k=1

akAik



Aij = 0 ∀j = (1, 2, . . . , Np) ,

or equivalently as

N
∑

i=1

Np
∑

k=1

(

AT
)

ji
Aikak =

N
∑

i=1

(

AT
)

ji
yi ,

or in other words ATAa = ATx. This system of linear equations admits as a
solution:

a =
(

ATA
)−1

ATy . (55)
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19.2.1 Example:

As a specific case let us consider the fitting to a 3rd order polynomial function
f(x,a) =

∑Np=4
j=1 ajx

j−1 like in Eq.(48). Let us indicate generically the
data with y = (y1, y2, . . . , yN ) and the corresponding x-values with x =
(x1, x2, . . . , xN ), where N ≫ Np = 4. In this case the matrix A can be
written as:

Aij = ϕj(xi) = xj−1
i A =









1 x1 x2
1 x3

1

1 x2 x2
2 x3

2

. . . . . . . . . . . .
1 xN x2

N x3
N









, (56)

where i = (1, 2, . . . , N) and j = (1, 2, 3, Np = 4). Therefore, a script defining
the matrix A is very easy to write:
for i=1:N

for j=1:Np
A(i,j)=x(i)∧(j-1)

end

end

In the specific case considered in Eqs. (47), one has

A =









10 = 1 11 12 13

20 = 1 21 22 23

. . . . . . . . . . . .
120 = 1 121 122 123









; . (57)

N.B. In the notation of Eq. (55), y is a column vector, therefore if you
have defined it as a row vector, you will have to consider its transpose (y′).
Also note that in general A is not a squared matrix, but ATA in Eq. (55)
certainly is, so we can consider its inverse.

19.2.2 Exercise:

Consider the data given in Eqs. (47) and fit both data with a 3rd order

polynomial function f(x,a) =
∑Np=4

j=1 ajx
j−1 using the linear least-square

fitting.

• Determine the best fitting parameters a = (a1, a2, a3, a4) (note that
in this case x = (1, 2, 3, . . . , 12);

• reproduce both Figs. 1 and 2;

• evaluate the value of F(a) that you obtain with the best set of pa-
rameters a evaluated above.
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19.2.3 Exercise:

Repeat the same exercise 19.2.2 but with a function f(x,a) that gives a
better fitting, i.e., a 4th order polynomial function. Evaluate F(a) for
both the exercise 19.2.2 and this one. Then try with a sinusoidal func-
tion, f(x, a1, a2, a3) = a1 sin(a2x+ a3) — start from the definition (49) and
try to minimise this function for different values of the parameters a1, a2,
and a3.

Hints to solve Exercise 19.2.3

• When you try with a sinusoidal function, remember you have to minimise
Eq. (49).

19.2.4 Exercise:

Consider the probability distribution function that you can obtained nu-
merically by making use of the command randn() and hist() — do not
forget to normalise your distribution! Fit the data you get with a Gaussian
probability distribution

p(x) =
1√
2πσ

e−
(x−x)2

2σ2 , (58)

with zero mean, x = 0.

• If you use a fitting function p(x) = a1e
−a2x

2

, what values of σ do you
get separately from a1 and from a2? Do these values agree and what
value for σ do you expect?

• Try different fittings by varying the values of N (number of the data
point) and the number of bins used to evaluate the normalised his-
togram.

Hints to solve Exercise 19.2.4

• you can perform a linear least-square fit on ln p(x) = ln a1 − a2x
2 =

ã1 − a2x
2.
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