Exercises week 1

September 28, 2017

Please submit your work before the following class (name the script file as your_name_problems-week1.m) at the following e-mail address francesca.marchetti@uam.es.

1 Exercise:

Consider the following matrices

$$
A=\left(\begin{array}{ccc}
4 & 2 & 1 \\
5 & 9 & 12
\end{array}\right) \quad B=\left(\begin{array}{ccc}
4 & 2 & -7 \\
9 & 2 & 0
\end{array}\right) \quad C=\left(\begin{array}{cc}
2 & 5 \\
-3 & 2 \\
5 & -9
\end{array}\right)
$$

1. Consider the following operations A. *B, A. $* \mathrm{C}, \mathrm{A} \cdot * \mathrm{C}^{\prime}, \mathrm{B} \cdot * \mathrm{C}, \mathrm{B} \cdot * \mathrm{C}^{\prime}, \mathrm{A} * \mathrm{C}$, $\mathrm{C} * \mathrm{~A}, \mathrm{~A} * \mathrm{~B}, \mathrm{~A} * \mathrm{~B}^{\prime}$, and determine which of these operations is valid and explain the result;
2. explain what is the difference between the operation $*$ and.$*$. When can you use one and when the other?
3. evaluate $A . \wedge^{\wedge} 2$ and explain the result; why you cannot consider $A^{\wedge} 2$?

2 Exercise:

Define two row vectors a and b of 4 elements each: a has the first even numbers $(2,4,6,8)$ and b the first odd numbers in reverse order $(7,5,3,1)$ use a different definition than the trivial one!

1. Find two equivalent ways to define the vector dot product between the two vectors $\left(\sum_{i=1}^{4} a(i) b(i)\right)$;
2. Find two equivalent ways to define the modulus of each vector;
3. Evaluate the angle between a and b in radians and degrees;
4. Describe which kind of matrix/vector one gets by considering $\mathrm{a} * \mathrm{~b}$ ', $\mathrm{a}^{\prime} * \mathrm{~b}, \mathrm{a} . * \mathrm{~b},(\mathrm{~b} . * \mathrm{a})^{\prime}$.

3 Exercise:

Plot the following functions in the required intervals:

$$
\begin{array}{ll}
f_{1}(x)=x^{2}+x-4 & x \in[-3,2] \\
f_{2}(x)=e^{x^{2}}-3 x^{2} & x \in[-1.5,1.5] \\
f_{3}(x)=\ln (x+3)-x^{2} & \\
x \in[-1,3] .
\end{array}
$$

For each function and interval find the local extrema (minima and maxima), as well as the global ones, and compare the results you get with the ones you obtain analytically.

4 Exercise:

It is in general convenient to plot power-laws $\left(f(x)=x^{n}\right)$ in logarithmic scale, as in the following example

```
x=logspace(log10(1), log10(1000), 100)
plot(log10(x), log10(x.^3), '0')
loglog(x,x.^3,'+')
```

1. What is the difference between plot() and $\log \log ()$?
2. Can you determine the power-law exponent from the plots in logarithmic scale?
3. What happens if you use linspace() rather than logspace()?

5 Exercise:

The number e can be equivalently defined as

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

Find an estimate of e by using both the definitions given above and compare them with the built-in value of Matlab (or $\exp (1)$) - for summing the vector components you can use the command sum or you can find an equivalent way of doing it by using the multiplication operation between vectors.

6 Exercise:

Write a script that evaluates the factorial n ! of a given natural number n and compare the results with the built-in function factorial(n) - remember that the factorial is defined as $n!=n(n-1)(n-2) \ldots 2 * 1$; Hint: store the result in a variable f that needs to be initialised to $f=1$ prior to the loop.

