Exercises week 3

October 19, 2017

Please submit your work before the following class (name the script file as your_name_problems-week3.m) at the following e-mail address francesca.marchetti@uam.es.

1 Position, velocity and acceleration

Let's suppose that of the motion of a particle in a one-dimensional line, we know its velocity as a function of time

$$
\begin{equation*}
v(t)=v_{0}+V_{a} \cos (\omega t) e^{-t \gamma} \tag{1}
\end{equation*}
$$

where the parameters are: $v_{0}=2.3 \mathrm{~m} / \mathrm{s}, V_{a}=10 \mathrm{~m} / \mathrm{s}, \omega=2 \mathrm{~s}^{-1}$, and $\gamma=0.2 \mathrm{~s}^{-1}-$ careful about the units.

1. Plot the particle velocity $v(t)$ in the interval $t \in\left[t_{\text {min }}, t_{\text {max }}\right]$, where $t_{\text {min }}=0 \mathrm{~s}$ and $t_{\max }=10 \mathrm{~s}$ N.B. label the plot axis with the correct units.
2. Numerically evaluate the particle acceleration $a(t)$ for the same interval of time and plot it (axis labels and units); compare the numerical result you get with the analytical one.
3. Numerically evaluate the particle position $x(t)$ in the same interval of time, by integrating (1) and knowing that $x\left(t_{\min }\right)=x 0=1 \mathrm{~m}$. Plot the position $x(t)$ for $t \in\left[t_{\text {min }}, t_{\text {max }}\right]$.

Hints to solve Exercise 1

- Position $x(t)$, velocity $v(t)$ and acceleration $a(t)$ of a particle that moves on a line (one dimension) are related by

$$
\begin{equation*}
v(t)=\frac{d x(t)}{d t} \quad a(t)=\frac{d v(t)}{d t}=\frac{d^{2} x(t)}{d t^{2}} \tag{2}
\end{equation*}
$$

- Thus, if the velocity is known in a certain interval of time and one wants to evaluate the position at a given time in that interval, one has to evaluate the following integral:

$$
\begin{equation*}
x(t)=x\left(t_{0}\right)+\int_{t_{0}}^{t} d s v(s) \tag{3}
\end{equation*}
$$

where $x\left(t_{0}\right)$ is the position of the particle at the time $t=t_{0}$.

2 Exercise:

The equation of motion for the one-dimensional harmonic oscillator can be derived from the Newton's law $F=m a=m \frac{d^{2} x}{d t^{2}}$ and the Hooke's law, $F=-k x$, describing the motion of an object of mass m which, displaced from its equilibrium position by a distance x, experiences a restoring force proportional to the displacement:

$$
\begin{equation*}
m \frac{d^{2} x(t)}{d t^{2}}+k x(t)=0 \tag{4}
\end{equation*}
$$

This differential equation, with initial conditions $x(t=0)=x_{0}$ and $v(t=$ $0)=v_{0}$, where $v(t)=\frac{d x(t)}{d t}$ is the velocity, admits the exact solution

$$
\begin{equation*}
x(t)=\sqrt{x_{0}^{2}+\frac{v_{0}^{2}}{\omega_{0}^{2}}} \cos \left(\omega_{0} t+\phi\right) \tag{5}
\end{equation*}
$$

where $\omega_{0}=\sqrt{\frac{k}{m}}$ and $\phi=\arccos \frac{x_{0}}{\sqrt{x_{0}^{2}+v_{0}^{2} / \omega_{0}^{2}}}$.

1. Plot the position $x(t)$ in the interval of time $t \in\left[0,4 \pi / \omega_{0}\right]$ (label the plot axis with the correct units) with the initial conditions $x_{0}=$ 3.2 m and $v_{0}=-2 \mathrm{~m} / \mathrm{s}$, and for the following values of the system parameters: mass $m=2 \mathrm{~kg}$ and spring constant $k=4 \mathrm{~kg} / \mathrm{s}^{2}$;
2. evaluate numerically the velocity $v(t)$ and plot the numerical result together with the analytical one;
3. evaluate numerically the acceleration $a(t)$ and plot the numerical result together with the analytical one;
4. evaluate and plot as a function of time the kinetic energy $T=\frac{1}{2} m v^{2}$, the potential $U=\frac{1}{2} k x^{2}$, and the total energy $E=T+U$. Comment the result you get.

3 Exercise:

A mass m, connected to a spring and submerged in a fluid, obeys the Newton equation for a damped harmonic oscillator:

$$
\begin{equation*}
m \frac{d^{2} x(t)}{d t^{2}}+c \frac{d x(t)}{d t}+k x(t)=0 \tag{6}
\end{equation*}
$$

where c is the friction constant and k the elastic spring constant. For initial conditions of motion $x(t=0)=x_{0}$ and $v(t=0)=v_{0}=0$, where $v(t)=$ $\frac{d x(t)}{d t}$ is the velocity, the exact solution of this equations reads as

$$
\begin{equation*}
x(t)=\frac{x_{0}}{\sqrt{1-\zeta^{2}}} e^{-\gamma t} \cos \left(\omega_{0} t \sqrt{1-\zeta^{2}}-\varphi\right) \tag{7}
\end{equation*}
$$

where

$$
\begin{aligned}
\gamma & =\frac{c}{2 m} & \omega_{0} & =\sqrt{\frac{k}{m}} \\
\zeta & =\frac{c}{2 \sqrt{m k}} & \varphi & =\arccos \left(\sqrt{1-\zeta^{2}}\right) .
\end{aligned}
$$

1. Create an external function [position]=dho_position(m, c, k, x 0 , t) for the mass position and plot the solution in the interval $t \in\left[t_{0}, t_{1}\right]=[0,18] \mathrm{s}$ in the underdamped case where $m=1.4 \mathrm{~kg}$, $k=6.5 \mathrm{~N} / \mathrm{m}, c=0.8 \mathrm{~kg} / \mathrm{s}$ and with initial condition $x_{0}=2.8 \mathrm{~m}$;
2. By building an external function routine for derivation, evaluate and plot the velocity $v(t)$ and the acceleration $a(t)$;
3. Check numerically that the equation of motion (6) is satisfied by this solution (7);
4. By building an external function routine for integration, evaluate and plot the work done by the friction against the motion, $W=$ $\int d x(-c v)=-c \int_{t_{0}}^{t_{1}} d t v^{2} ;$
5. Evaluate and plot the kinetic energy $T=\frac{1}{2} m v^{2}$, the potential energy $U=\frac{1}{2} k x^{2}$ and the total energy $E=T+U$;
6. Consider the overdamped case $m=1 \mathrm{~kg}, k=1 \mathrm{~N} / \mathrm{m}, c=4 \mathrm{~kg} / \mathrm{s}$ and with initial condition $x_{0}=0 \mathrm{~m}$ and repeat the above analysis.

4 Exercise:

Write a script that evaluates the factorial n ! of a given natural number n and compare the results with the built-in function factorial(n) - remember that the factorial is defined as $n!=n(n-1)(n-2) \ldots 2 * 1$; Hint: store the result in a variable f that needs to be initialised to $f=1$ prior to the loop.

5 Exercise:

Use the loop while to generate a routine which is able to establish whether a natural number n is a prime number (i.e., a natural number which can only be divided by 1 and itself) or not. Rewrite the same routine with the loop for.

Hints to solve Exercise 5

- You can use the command rem(n,div) (or equivalently the command $\bmod (n, \operatorname{div}))$ to evaluate the rest of a division; if an integer number div exists such that $\bmod (n, \operatorname{div})=0$, then clearly it means that n cannot be a prime number;
- remember the use of if (see previous section);
- you can terminate a loop like while and for with the command break (e.g., once the conditions you are looking for are met, without the need to leave the computer run till the natural end the loop; in this way you shorten the evaluation time);
- once you have established the conditions you are looking for, you can print " n is a prime number" (or " n is not a prime number") with the command disp('n is a prime number').

6 Rotation and shifting of parametric curves

Let's consider the following ellipse

$$
x=a \sin (\theta) \quad y=b \cos (\theta)
$$

where $\theta \in[0,2 \pi]$ and $a=2$ and $b=1$.

1. Plot the ellipse (use the command axis('equal') to have the same axis ranges for both x and y).
2. Plot now the ellipse rotated clockwise by an angle $\theta=\pi / 8$ and shifted by $\left(x_{0}, y_{0}\right)=(2,3)$, i.e., now centered in $\left(x_{0}, y_{0}\right)=(2,3)$.

7 Numerical series and asymptotic limits

The number e can be equivalently defined as

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\sum_{n=0}^{\infty} \frac{1}{n!}
$$

1. Find an estimate of e by using both the definitions given above and compare them with the built-in value of Matlab (or $\exp (1)$) - for summing the vector components you can use the command sum or you can find an equivalent way of doing it by using the multiplication operation of appropriate vectors.
2. Consider the finite sum

$$
e(N)=\sum_{n=0}^{N} \frac{1}{n!}
$$

and plot it in two subplots both as a function of N and N^{-1}, showing that it asymptotically converges to e.

8 Exercise:

Let us consider the geometric series

$$
\begin{equation*}
a_{\text {exact }}=\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x} \quad \text { for }|x|<1 \tag{8}
\end{equation*}
$$

1. Choose a numerical value for x (say $x=1 / 2$) and plot the sum of the first N terms of the geometric series, i.e., it's approximated numerical value

$$
\begin{equation*}
a(N)=\sum_{n=0}^{N} x^{n} \tag{9}
\end{equation*}
$$

as a function of N and check that it converges to $1 /(1-x)$. Compare the values you get for a fixed N with the exact analytical expression $a(N)=\frac{1-x^{N+1}}{1-x}$.
2. Plot now $a(N)$ as a function of N^{-1}.

9 Exercise:

Consider the following numerical series (Leibniz formula) defining π :

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}=\frac{\pi}{4} \tag{10}
\end{equation*}
$$

1. Evaluate the finite sum

$$
\begin{equation*}
f(N)=\sum_{n=0}^{N} \frac{(-1)^{n}}{2 n+1} \tag{11}
\end{equation*}
$$

plot it as a function of N and check that it converges to $\pi / 4$;
2. Consider now the equivalent form

$$
\begin{equation*}
g(N)=\sum_{n=0}^{N} \frac{2}{(4 n+1)(4 n+3)}, \tag{12}
\end{equation*}
$$

plot it and check it converges to the same value $\pi / 4$.

