Exercises week 4

November 2, 2017

Please submit your work before the following class (name the script file as your_name_problems-week4.m) at the following e-mail address francesca.marchetti@uam.es.

1 Exercise:

Evaluate both numerically and analytically the area enclosed between the two curves $f_{1}(x)=x^{2}-x-2$ and $f_{2}(x)=|x|$ (i.e., above $f_{1}(x)$ and below $\left.f_{2}(x)\right)$ and compare the results.

2 Exercise:

Demonstrate both numerically and analytically that, for a generic natural number n,

$$
F(n)=\int_{0}^{\infty} d x x^{n} e^{-x}=n!
$$

Evaluate the integral numerically for a real number n and plot $F(n)$ for $n \in[0,5]$.

3 Exercise:

Find the crossing points between a circle centered in $\left(x_{0}, y_{0}\right)=(2,-3)$ and radius $R=5$ and the exponential function $f(x)=e^{-x / 2}-4$ (answer: $x_{1} \simeq-2.42$ and $x_{2} \simeq 6.91$). Plot both functions and mark the crossing points you have found numerically.

4 Exercise: Maxwell-Boltzmann distribution

The Maxwell-Boltzmann distribution describes the velocity (v) distribution of a classical gas of atoms with mass m at thermal equilibrium at a given temperature T :

$$
\begin{equation*}
f(v)=4 \pi\left(\frac{m}{2 \pi k_{B} T}\right)^{3 / 2} v^{2} e^{-\frac{m v^{2}}{2 k_{B} T}} \tag{1}
\end{equation*}
$$

In SI units the Boltzmann constant is $k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ and let's consider the specific case of Argon atoms, whose mass is $m=67 \times 10^{-27} \mathrm{~kg}$.

1. Numerically evaluate the maximum of this distribution fmax for a temperature $T=300 \mathrm{~K}$ and its corresponding velocity vmax; use the loop for and compare your result with the built-in operation max, taking into account the syntax $[f \max , i \max]=\max (f)$, where imax is the index of the maximum value of the vector f;
2. Assuming the system is kept at a pressure low enough to always remain in its gaseous phase in the temperature range $T \in[1,1000] \mathrm{K}$, plot in two separate subplots fmax and vmax as a function of temperature.

5 Exercise: Minimal distance between two circles

Consider the following two circles,

$$
\begin{equation*}
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=r^{2} \tag{2}
\end{equation*}
$$

one with center $\left(x_{01}, y_{01}\right)=(-3,-0.5)$ and radius $r_{1}=1$ and the other with $\left(x_{02}, y_{02}\right)=(3,2)$ and $r_{2}=2.5$. Numerically evaluate the minimal distance between the two circles, compare the result you get with the exact one, $\sqrt{\left(x_{02}-x_{01}\right)^{2}+\left(y_{02}-y_{01}\right)^{2}}-\left(r_{1}+r_{2}\right)$, and represent graphically your result by plotting the two circles and the segment representing the minimal distance.

6 Exercise:

Write a scripts which plots the following function of two variables $f(x, y)=$ $\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}\right)^{2} / 2$ in the interval $x, y \in[-1,1]$ using the commands meshgrid and mesh ($\mathrm{x}, \mathrm{y}, \mathrm{f}$). Evaluate the maximum value of the function $f(x, y)$, by making use of a loop for and the condition if. Compare the result you find this way with the one found with the command max, and check they match with the exact answer - N.B. For a matrix A, max (A) returns a row vector containing the maximum element from each column. When you have doubts about a command, type help command, e.g. in this case help max.

7 Exercise:

Consider the energy potential $U(x, y)=-\left(x^{2}+y^{2}\right)+\left(x^{2}+y^{2}\right)^{2} / 2$, plot the potential using the commands meshgrid and mesh ($\mathrm{x}, \mathrm{y}, \mathrm{f}$), evaluate the force field $\left(F_{x}, F_{y}\right)=-\left(\partial_{x} U, \partial_{y} U\right)$ and plot it with the command quiver. Describe the motion of a particle under such a vector force field. Use first your routine to evaluate the partial derivatives $\partial_{x} U$ and $\partial_{y} U$, and then use the build-in Matlab routine $[F x, F y]=\operatorname{gradient}(U)$ to calculate the gradient of a given scalar field U.

8 Exercise:

Plot the potential for a system of two point charges in a 2 D plane, one with charge $Q=-1$ positioned at $\mathbf{r}_{0}=(1,1.5)$ and another of charge $Q=+1$ positioned at $\mathbf{r}_{0}=(-1,-1.5)$ - the electric potential for a system of point charges is the sum of the individual potentials.

9 Exercise:

Write a script which plots the electric field \mathbf{E} of two point charges $Q_{1}=1$ located at $\mathbf{r}_{10}=(1,0)$ and $Q_{2}=-1$ located at $\mathbf{r}_{20}=(-1,0)$ (dipole).

