Exercises week 6

November 23, 2017

Please submit your work before the following class (name the script file as your_name_problems-week6.m) at the following e-mail address francesca.marchetti@uam.es.

1 Exercise:

Solve both numerically and analytically the following first order differential equation

$$
\frac{d x(t)}{d t}=[3 x(t)+2] e^{-2 t} \quad x\left(t_{0}=0\right)=x 0
$$

for four different initial conditions, $x_{0}=2.1, x_{0}=3.2, x_{0}=-2$, and $x_{0}=-4$ and compare the numerical results with the exact solution by plotting them in an interval $t \in[0,4]$. Find an expression of the asymptotic limit $\lim _{t \rightarrow \infty} x(t)$ and compare it with what you find numerically.

2 Exercise:

Show that the solution of the following first order differential equation

$$
3 x(t) \frac{d x(t)}{d t}+t x^{2}(t)=2 t \quad x\left(t_{0}=0\right)=x 0
$$

is given by

$$
x(t)=\sqrt{2+e^{-t^{2} / 3}\left(-2+x_{0}^{2}\right)} .
$$

Solve numerically the equation in the interval $t \in[0,7]$ for the following different initial conditions, $x_{0}=0, x_{0}=\sqrt{2}, x_{0}=2$, and $x_{0}=3$ and compare the numerical results with the exact solution.

3 Exercise: Planar Pendulum

Solve numerically the planar pendulum

$$
\begin{equation*}
\frac{d^{2} \theta}{d \tilde{t}^{2}}=-\sin \theta \tag{1}
\end{equation*}
$$

with initial condition $\theta_{0}=30^{\circ}$ and $v_{0}=0$ in the interval $\tilde{t} \in[0,12 \pi]$ by making use of both the Euler method and the $2^{\text {nd }}-$ order Runge-Kutta algorithm.

Questions:

1. Plot the numerical solution. Determine for which value of the integration steps N the solution starts not to visibly change any longer;
2. for this value of N, compare by plotting the numerical solution with the exact solution $\theta(\tilde{t})=\theta_{0} \cos (\tilde{t})$ valid for small angles only. Comment the result you get;
3. change the initial condition θ_{0} : for which value of θ_{0} the two curves are approximatively equal? Why?
4. plot the solution in the phase space $\theta, d \theta / d \tilde{t}$.
