Phase Diagram & Dynamics

F.M. Marchetti

Workshop on BdG & GP equations, Manchester, 29 September 2007

Why atomic gases?

Search for novel phases of quantum coherent matter

- Tuning the interaction strength
- Mixtures of different statistics
- Optical lattices
- ▶ 1D, 2D

Fermi superfluids

Fermi superfluids

Polarised Fermi superfluids

Can superfluidity persist in presence of a population imbalance?

Why interesting?

- Magnetised superconductors (Zeeman)
- Quantum Chromodynamics (and neutron stars)
- Electron-hole bilayers

BEC-BCS crossover in electron-hole systems!

[L.V. Keldysh & Yu V. Kopaev, Sov. Phys. Solid State 6, 2219 (1965)]

[J. Kasprzak et al., Nature 443, 409 (2006)]

n the Solid State

Outline

- BEC-BCS crossover
- 1. Unbalanced populations
 - Homogeneous phase diagram: T=0 & finite T
 - Trap
 - Experiments
- 2. Unequal masses
- 3. Dynamics of phase separation
- Conclusions & prospectives

M.M. Parish A. Lamacraft B.D. Simons

- 1. [M.M. Parish, F.M. Marchetti, A. Lamacraft, & B.D. Simons, Nature Physics 3, 124 (2007)]
- 2. [M.M. Parish, F.M. Marchetti, A. Lamacraft, & B.D. Simons, *Phys. Rev. Lett.* 98, 160402 (2007)]
- 3. [A. Lamacraft & F.M. Marchetti, preprint cond-mat/0701692]
- 4. [F.M. Marchetti, C. Mathy, & M.M. Parish, (related work on BF mixtures!)]

diatomic molecules

• weakly attractive fermionic atoms

At T=0, described by the same ground state

$$e^{\lambda \sum_{\mathbf{k}} \varphi_{\mathbf{k}} c^{\dagger}_{\mathbf{k},\uparrow} c^{\dagger}_{-\mathbf{k},\downarrow} |0\rangle} =$$

$$\prod_{\mathbf{k}} \left(u_{\mathbf{k}} + v_{\mathbf{k}} c_{\mathbf{k},\uparrow}^{\dagger} c_{-\mathbf{k},\downarrow}^{\dagger} \right) |\mathbf{0}\rangle$$

 $\Delta_{BCS} \sim k_B T_{BCS} \ll \varepsilon_F$

 $T_{\mathsf{BFC}} \sim T_F \ll T_{\mathsf{diss}}$

What if not every fermion can pair up?

Single-channel model

$$\widehat{\mathcal{H}} - \sum_{\sigma=\uparrow,\downarrow} \mu_{\sigma} \widehat{N}_{\sigma} = \sum_{\mathbf{k},\sigma} (\epsilon_{\mathbf{k}} - \mu_{\sigma}) c_{\mathbf{k}\sigma}^{\dagger} c_{\mathbf{k}\sigma} + \frac{U}{V} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} c_{\uparrow}^{\dagger} c_{\downarrow}^{\dagger} c_{\downarrow} c_{\uparrow}$$

- Contact interaction $\frac{1}{U} = \frac{m}{4\pi a} \frac{1}{V} \sum_{\mathbf{k}} \frac{1}{2\epsilon_{\mathbf{k}}}$
- Allow for different populations

$$\begin{split} \hat{n}_{\uparrow} &= \frac{1}{V} \sum_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\uparrow} c_{\mathbf{k}\uparrow} \\ \hat{n}_{\downarrow} &= \frac{1}{V} \sum_{\mathbf{k}} c^{\dagger}_{\mathbf{k}\downarrow} c_{\mathbf{k}\downarrow} \end{split}$$

- Averaged chemical potential & 'Zeeman' term [total density & population imbalance (or 'magnetisation')]
 - $$\begin{split} \mu &= (\mu_{\uparrow} + \mu_{\downarrow})/2 & \hat{n} &= \hat{n}_{\uparrow} + \hat{n}_{\downarrow} \\ h &= (\mu_{\uparrow} \mu_{\downarrow})/2 & \hat{m} &= \hat{n}_{\uparrow} \hat{n}_{\downarrow} \end{split}$$

Analogy with magnetised superconductors

 A population imbalance like a Zeeman term in a superconductor

$$H_{\mathsf{BdG}} = \begin{pmatrix} \epsilon_{\mathbf{k}} - \mu - h & -\Delta \\ -\Delta & -(\epsilon_{\mathbf{k}} - \mu) - h \end{pmatrix}$$

Neglect the orbital effect?

T=0 magnetised superconductors

BCS side of the resonance

[G. Sarma, J. Phys. Chem. Solids 24 1029 (1963)]

T≠0 magnetised superconductor

BCS side of the resonance

[G. Sarma, J. Phys. Chem. Solids 24 1029 (1963)]

Analogy with ³He-⁴He mixtures

Molar fraction of He-3 in the mixture (%)

▶ ³He-⁴He = Bose-Fermi mixture...

... and the polarised Fermi gas is a Bose-Fermi mixture on the BEC side of the resonance

Expect the same structure on the BEC side?

Mean-field: excitation spectrum

Paired states start to be depleted when:

$$E_{\mathbf{k},\sigma=\uparrow,\downarrow} = \underbrace{\sqrt{(\epsilon_{\mathbf{k}}-\mu)^2 + \Delta^2}}_{E_{\mathbf{k}}} \pm h$$

Mean-field grand-canonical free energy

$$\Omega^{(0)}(\mu,h) = \min_{\Delta} f^{(0)}(\Delta;\mu,h) \qquad \Longrightarrow \quad f^{(0)}(\frac{\Delta}{|\mu|};\frac{h}{|\mu|})$$

$$\begin{cases} n = -\frac{\partial \Omega^{(0)}}{\partial \mu} \\ m = -\frac{\partial \Omega^{(0)}}{\partial h} \end{cases}$$

$$\stackrel{m}{\longrightarrow} \quad \frac{m}{n}$$
 polarisation

1st order phase transition

(oil&water)

 $\qquad \frac{1}{k_F a} < \left(\frac{1}{k_F a}\right)_{\text{tricrit}}$

and $\frac{T}{\varepsilon_F} < \left(\frac{T}{\varepsilon_F}\right)_{\text{tricrit}}$

1st order phase transition

2nd order phase transition

[W. V. Liu & F. Wilczek, PRL 90 047002 (2003)]

[M. Parish, F.M. Marchetti *et al.*, *Nature Physics* 3, 124 (2007)]
 [M. Parish, F.M. Marchetti *et al.*, *PRL* 98, 160402 (2007)]

Finite T phase diagram

Adding pair fluctuations (finite T)

[P. Nozieres & S. Schmitt-Rink, J. Low temp. Phys. 59, 195 (1985)]

• One loop correction to mean-field T_c ($\Delta = 0$)

$$\Omega(\mu, h) = \Omega^{(0)}(\mu, h) + \Omega^{(1)}(\mu, h)$$

$$n = -\frac{\partial \Omega}{\partial \mu} = n^{(0)} + n^{(1)}$$

$$m = -\frac{\partial \Omega}{\partial h} = m^{(0)} + m^{(1)}$$

$$m = -\frac{\partial \Omega}{\partial h} = m^{(0)} + m^{(1)}$$
condensed pairs + qp's thermal pairs

Finite T phase diagram

Finite T phase diagram

Single- vs. two-channel model

[A. Andreev et al., PRL 93, 130402 (2004)]

$$\hat{\mathcal{H}}_{1C} = \sum_{\mathbf{k},\sigma=\uparrow,\downarrow} \epsilon_{\mathbf{k}} c_{\sigma}^{\dagger} c_{\sigma} + \frac{U}{V} \sum_{\mathbf{k},\mathbf{k}',\mathbf{q}} c_{\uparrow}^{\dagger} c_{\downarrow}^{\dagger} c_{\downarrow} c_{\uparrow}$$

$$\hat{\mathcal{H}}_{2C} = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} c_{\sigma}^{\dagger} c_{\sigma} + \sum_{\mathbf{k}} \left(\frac{\epsilon_{\mathbf{k}}}{2} + \delta_{0} \right) b^{\dagger} b + \frac{g}{\sqrt{V}} \sum_{\mathbf{k},\mathbf{k}'} \left(b c_{\uparrow}^{\dagger} c_{\downarrow}^{\dagger} + \text{h.c.} \right)$$

The single-channel model is recovered in the limit

$$\frac{4\pi a}{m} = \frac{-g^2}{\delta_0 - \frac{g^2}{V} \sum_{\mathbf{k}} \frac{1}{2\epsilon_{\mathbf{k}}}} \equiv \frac{-g^2 \to \infty}{\delta \to \infty} = \text{const}$$

g can be a small parameter (narrow resonances) and controls the fluctuations corrections above mean-field

Single- vs. two-channel model

[A. Andreev et al., PRL 93, 130402 (2004)]

[M. Parish, F.M. Marchetti et al., Nature Physics 3, 124 (2007)]

Trapped Fermi Gases

Phase Diagram for Trapped Gases

Experiments on Imbalanced Fermi Clouds

- $n_{\uparrow}(\mathbf{r}) n_{\downarrow}(\mathbf{r})$
- In-situ imaging of phase separation (3D density distribution $n_{\uparrow,\downarrow}(\mathbf{r})$)

SF

N

N

Experiments on Imbalanced Fermi Clouds

Sharp phase boundary at low temperatures (1st order transition)

 $T < 0.05 T_{F}$ m/n = 0.35

[M. Parish, F.M. Marchetti et al., PRL 98, 160402 (2007)]

Dynamics of Phase Separation

Dynamics of Phase Separation

Spinodal: phase separation starts via a linear instability

Spinodal Decomposition

E.g. Temperature quenches in polymers in solutions,...

[Courtesy of Nigel Clarke, Polymer IRC]

Spinodal Region

Unstable Modes

Matrix response function (to changes of the density)

 $\frac{m}{n}$

Most Unstable Modes

Conclusions

3. Dynamics of phase separation

Some future work

Bose-Fermi mixtures (with a Feshbach resonance)

(with C. Mathy and M. Parish)