Control 2 - Computación I (curso 2015-2016)

February 7, 2016

Please send your your scripts (name the main script file as your_name_control2-CI.m and don't forget to also send the external functions files.m if you use them) at both the following e-mail addresses francesca.marchetti@uam.es and fabrice.laussy@gmail.com. Before leaving the classroom, wait for a confirmation from Fabrice Laussy that he has received your scripts.

A mass of $m=50 \mathrm{~g}$ can move in one direction only, specified by the coordinate x, and is coupled to an anharmonic spring which follows the force law $F(x)=-k_{1} x-k_{3} x^{3}$, with values of the constants $k_{1}=3 \mathrm{~N} / \mathrm{m}$ and $k_{3}=0.9 \mathrm{~N} / \mathrm{m}^{3}$.

1. Solve the equation of motion (Newton's law) in an interval of time $t \in$ $[0,4] \mathrm{s}$ for the initial condition $x_{0}=x(t=0)=50 \mathrm{~cm}$ and $v_{0}=v(t=$ $0)=-8 \mathrm{~ms}^{-1}$ by writing an external function routine which uses a secondorder Runge-Kutta method. Use the number of points N necessary to reach convergence (i.e., for larger values of N the result does not change). Plot in figure(1) the position $x(t)$, the velocity $v(t)$ and the acceleration $a(t)$ in three separate subplots as a function of time $t \in[0,4] \mathrm{s}$ ($\mathbf{3}$ points).
2. Evaluate and plot in figure(2) the kinetic energy $T(v)=\frac{1}{2} m v^{2}$, the energy potential $U(x)$, and the total energy $E=T(v)+U(x)$ of the mass as a function of time. Use three different colors for the three curves. Check that the value of the total energy is constant in time and coincides with $E=\frac{1}{2} m v_{0}^{2}+U\left(x_{0}\right)(1.5$ points) .
3. Plot in figure(3) the energy potential $U(x)$ and the total energy E as a function of the position x and write an external function routine which evaluates the points where the motion inverts, i.e., $E-U\left(x_{1,2}\right)=0$, via a root-finding Newton-Raphson method. Mark those points in figure(3) and compare the values you obtain for x_{1} and x_{2} with the ones obtained previously by solving the equation of motion (2 points).
4. Plot in figure(4) the numerical solution of the equation of motion in phase space, i.e., plot the velocity v versus the position x, and compare it with the exact solution $v_{\mathrm{ex}}(x)= \pm \sqrt{\frac{2}{m}[E-U(x)]}$ (1.5 points).
5. Find the period of oscillations by evaluating numerically the following integral

$$
T=\sqrt{2 m} \int_{x_{1}}^{x_{2}} \frac{d x}{\sqrt{E-U(x)}}
$$

Compare the result you find this way with the one you find by solving the equation of motion numerically (2 points).

For each plot and subplot, do not forget to label both axis, assigning the correct units.

