Computacion I (Subgroup 5165) Unit 3

Unit 3

November 9, 2015

1 System of linear equations

Summary of definitions A system of linear equations is a set of M equations
involving N variables, x = (1, 22,...,7x)7 (unknowns). In general a system
of linear equations can be written as a matrix equation of the form:

Ax=Db, (1)
where Aj1, Aio,...,Ayn are the coefficients of the system (A is a M x N
matrix) and b = (by, ba, ..., bar)T are the constant terms:
A Aig ... AN 1 by
Sl Bl Bl Bl @
Apn Aye ... Aun TN by

Clearly, Egs. (1) and (2) can be equivalently written in terms in its components:

Ajyxy + Agze + -+ Ainey = by
Aoy + Agexo + -+ -+ Aoy = by

Annnzr + Apaxe + -+ Aunen = bar .

A system can either have infinitely many solutions, or one unique solution or
else no solution. If the solution to the system exists, then it is given by

x=A"b, (3)

where A™! is the inverse matrix of A (note that if A is a M x N matrix, then
A~lis a N x M matrix), i.e., is such that A='A =T (where I is here the N x N
identity matrix) and AA™! = I (while I is here the M x M identity matrix).
Note also that the elements of A=!, (A71),;, are not the inverse of each element
of A, A;jl. Show that explicitly!

For example let’s consider the simplest case of M = N = 2, a system of 2
equations with two unknowns:

Az + Areza = by
Ag1x1 + Agexa = bo .

Each equation is a line in the plane (x1,x2), therefore is clear that the solution
will be the intersection of these two lines: this can either be a line (infinitely

1 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

many solutions), a point (one unique solution) or else the two lines never meet
(no solution).

Matlab has built-in commands to solve systems of linear equation and cal-
culate inverse matrices

x=mldivide(A,b)
x=A\b
x=inv(A)*b

1.0.1 Exercise:

Consider the system of linear equations (1) with

]

find the solution using the command mldivide(A,b) (or equivalently A\b)
and compare it with the exact solution you find analytically as well as with
inv(A)*b. Plot the two lines A1121 + Aiox2 = by and As121 + Asgxs = bs
in the plane (1, z2) and check they intersect at the point previously found.

3 x1+x2:3

4*x. 1+2*’X 2:4

Figure 1: Plotting the two lines Aj1x1 + A1ox0 = by and As1x1 + Agsxo = by in
the plane (z1,z2) of the Ex. 1.0.1.

Similarly in the case of N variables, each equation of the system describes
a hyper-plane in the N-dimensional space (x1,...,2y) and the solution to the
system is the intersection of these hyper-planes.

2 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

1.0.2 Exercise:

Consider the system of linear equations (1) with
1 5 4 3
A=17 9 3 b= (4],
4 5 2 9

find the solution using the command mldivide (A,b) and compare it with
inv(A)*b — setting format long.

1.0.3 Exercise:

Find the solution of the system of linear equations x” A = b”, where A and
b are given in the Ex. 1.0.1. Compare the solution with the one obtained
by plotting the lines defined by each one of the two equations of the system.
Check that (b/A)’=A"\b’,ie. (bTAHT = (A~H)Th.

In general, for M linearly independent equations! (i.e. none of the equa-
tions can be derived from the others) we can have the following situations

1. Undetermined system: If M < N there are less equations than un-
knowns and the system has infinitely many solutions. For example when
N = 2 and M = 1, the solutions lie on the line defined by the single
equation in two variables. In this case the dimension of the solution is
equal to 2 —1 =1 — and in general by N — M;

2. There is a unique solution when N = M and when the square matrix
A has an inverse A~!; the solution is given by x = A~!b;

3. Overdetermined system: There are no solutions when instead M >
N, i.e. there are more equations than unknowns. For example, if N = 2
and M = 3, then each equation of the system describes different lines and
they can meet in three different points.

1.0.4 Exercise:

Consider the system of linear equations (1) with

1 -2 5
N)
Discuss why there are no solutions to this system of linear equations. What
does it mean that det(A) = 07?

1 One can make sure this is the case by checking that det(A) is finite. For a singular matrix
A, i.e. det(A) =0, at least two equations of (1) are linearly dependent.

3 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

1.0.5 Exercise:

Consider the system of linear equations (1) with

1 2 5)
3 2 8

Explain why there is no solution to such a system of linear equations by plot-
ting the three lines it describes. What happens if you evaluate A\b? What
is Matlab finding? What does it minimise? (Hint: type help mldivide
and doc mldivide).

Solving systems of linear equations can also be useful for non-linear functions,
as long as these functions have the same structure, as in the following exercise.

Figure 2: Plotting the two functions f1(z) = [3 — (34 8z — #?)] /2 and f2(z) =
[4—2(3+ 8z —a?)] /5 of the Ex. 1.0.6.

4 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

1.0.6 Exercise:
Consider the following non-linear system of two equations in two unknowns:
2y + (34 8z —2%) =3
5y—|—2(3—|—8x—x2) =4.
1. Plot the two functions y = fi(z) = [3— (3+8z—2?)] /2 and y =

fa(z) = [4—2(3+8x —2?)] /5 and establish graphically the values
of the two intersection points (z1,yo) and (z2,yo);

2. introduce a new variable, z = 3 + 82 — 22 and solve the system of two
linear equations for yy and zg:

20+ 2=3
5y +2z=4.

3. Now solve zp = 3+8x12— xiQ and verify that the solutions you found
above, (x1,y0) and (22, yo) coincide with the intersection points found
in the first point 1. Plot the two points on the graph as in Fig 2.

2 Application: Electrical circuits

Currents I; and potential differences Vj in electrical circuits are ruled by the
Kirchhoff’s circuit laws. The first (current) law states that, at any node in an
electrical circuit, the sum of currents flowing into that node is equal to the sum
of currents flowing away from that node:

E I, = E Iy .
i€into the node k€out from the node

This law reflects the principle of conservation of electric charge. On the contrary,
Kirchhoff’s second law applies to closed loops in an electrical circuit and states
that the sum of the electrical potential differences (i.e., the voltages) around
any closed network is zero,

Y vi=0.

j€E€network

This law follows from the principle of conservation of energy.

5 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

2.0.7 Exercise:

Applying the two Kirchhoff’s circuit laws, find the three currents, I, Is,
and I3, of the following electric circuit:

—>
5l

R, —> =1,
V=R, 1,+R,,
(] V=R, |, +R,l,

+|3
R,

WW
—

by knowing the values of the voltage V' = 10 V, and the resistances Ry = 2 (2,
Ry = 4 Q, and Rz = 3 2. By assuming that R3 is a variable electric
resistance, plot the three currents as function of R3 € [0,100] .

2.0.8 Exercise:

Applying the two Kirchhoff’s circuit laws, find the six currents, Iy, ..., g
of the following electric circuit:

Plot all currents knowing the values of the voltages V4 =3V, Vg =2V,
and Vo = 3V, and the resistances Ry =2 Q, R, =10, R3 =2Q, Ry =21,
Rs =1, as a function of the variable resistance Rg € [0, 3] Q.

3 Zeros of a function: bisection method

Summary of definitions The bisection method is the easiest algorithm one
can think of that finds the root of a function, f(z) = 0, in a given interval [a, b].
The interval has to be chosen so that one knows for sure in advance that one
of the zeros lies inside it. The algorithm repeatedly divides the interval in half
and selects the subinterval in which the root must lie. Despite its simplicity this
method is quite slow.

The structure of the algorithm (see Fig. 3) is the following one:

6 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

b a+b
) iy = 25 FOO i =
m 2 | m 2
no yes | iyes no
a_i
redefine a = xm redefine b = xm

Figure 3: Schematic representation of the way the bisection method works.

a=...; b=...; fa=...; fb=...;
while b-a>small number
xm=(a+b)/2; fm=...;
if (faxfm)>0
a=xm
else
b=xm
end
end

For the small number you can choose whatever number you want the accu-
racy of your answer to be in the . Type help eps and doc eps.

3.0.9 Exercise:

Find the two zeros of the function U(z) = —322 + 2* 4+ 2°/10 in the two
intervals [1,2] and [—3, —1] by writing a bisection algorithm. Compare the
results you find in this way with the ones you obtain graphically by plot-
ting the function (see Fig. 2). Finally find the zeros of U(x) by using the
built-in Matlab routine fzero (£, [1,2]) — N.B. you need to first write an
anonymous function, i.e. £ = @(x)-3*x%+x%+x°/10.

3.0.10 Exercise:

Use the bisection method in order to find the zero of the function f(z) =
x3 — 72% 4+ 142 — 6 in within the interval [0, 1], with an accuracy of 1072.

4 Roots of a function: Newton-Raphson method

A better (i.e., converging faster) algorithm to find the zeros (or roots) of a
function than the bisection method is the Newton-Raphson method. In the
root-finding process, this method uses not only the actual values of the function
but also its first derivatives. It is based on the fact that, if we Taylor expand
the function f(z) up to the first order term at the point xo, which is close to

7 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

U(x)=—3x2+x4+x5/10

15-

Ux)

Figure 4: Plot of the function U(z) = —3z2 + z* + 2°/10.

the root of f(x),
f(@) = f(z0) + f'(z0)(x — x0) + O((x — w0)*) , (4)

as we are looking for the solution to f(x1) = 0, then, ignoring higher order
terms, we get that
f(zo)

0~ Fla) ()

The point x; found as described above is not the real root of f(x) because we
have truncated the Taylor expansion, but if we apply iteratively this formula,
expanding now around z; and so on and so fort, we can converge quickly to the
real zero of the function. This method can converge very quickly, and faster
than the bi-section method, if the initial guess of the root is quite close to the
one we are looking for. In addition, the derivative of f(x) should neither be
zero nor infinite in the region of interest.

The implementation of the method is quite easy. Let’s suppose we want to
find numerically the root of the function f(z) = exp(z) — z — 4. By plotting
f(x) (see Fig. 3), we can see the root is around x ~ 1.7. We start giving a first
guess of the root, say o = 2.5; evaluating the tangent line to f(z) at g = 2.5,

1 =T

f(z) = (e?5 = 1)(z —2.5) + 25— 2.5 — 44 O((z — 2.5)?) , (6)

we can find an approximation of the root of f(x) better than xg = 2.5 by finding
the root x1 of f(x) approximated as in the above expression around xg = 2.5,
which is z; ~ 1.99 (see Fig. 3). If we now implement to the next step the
above procedure, by defining as new initial guess x¢o = z1 ~ 1.99, then the new
approximated value of the zero will give x; ~ 1.78, which is already very close
(after two steps only!) to the real zero of the function f(z) = exp(z) —x — 4,
which is ~ 1.75 (check this yourself).

8 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

f(x)=exp(x)-x—4

12r-

10-

Figure 5: Function f(z) = exp(z) — x — 4 and first step of the Newton-Raphson
method if we use as initial guess zg = 2.5.

4.0.11 Exercise

Write a routine which reproduces Fig. 3 for f(z) = exp(z) — x — 4, plot
fi(z) for xg = 2.5 and find z7. (Optional: Export the figure into an .eps
file).

4.0.12 Exercise

Find the zero of f(z) = exp(z) — x — 4 by using the built-in Matlab routine
fzero(f,2) — N.B. you need to first write an anonymous function, i.e. £
= @(x)exp(x)-x-4.

4.0.13 Exercise

Find the zero of the function f(z) = exp(z) — x — 4 by writing a Newton-
Raphson algorithm. Use as initial guess zyp = 2.5. Set format long and
compare the result obtained in this exercise with the one obtained in the
previous exercise.

Hints to solve Exercise 4.0.13

e Given the initial guess zq, evaluate the derivative of f(z) in xo, f'(x¢) ~
[f(zo) — f(zg — 0x)]/dx, where dz is a small number;

e once you know the derivative, use Eq. (5) to find the next guess x1;

e build a while loop which runs until the condition f(x1) > eps is satisfied.

9 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

4.0.14 Exercise

Solve the previous exercise by writing a bisection algorithm. Set format
long and compare the result obtained in this exercise with the ones obtained
in the previous two exercises.

4.0.15 Exercise

Count the number of times the loop while is called in the Newton-Raphson
algorithm you developed in Ex. 4.0.13 and how many times instead is called
in the bisection algorithm you developed in Ex. 4.0.14. For the particular
case of the function f(x) = exp(z) —x — 4, which algorithm is more efficient
and why?

4.0.16 Exercise

Write a routine using the Newton-Raphson algorithm which evaluates the
minimum of the function f(x) = =322 + 2% + 25/10 (shown, together with
its derivative in Fig. 4) close to o = 1. Compare the result you get this
way with the one you obtain by writing a bisection method. Indicate which
method is more efficient and why.

Hints to solve Exercise 4.0.16

e Remember that at the maximum or at a minimum of a function, f'(x¢) =0
— and in this specific case, f/(z) = —6x + 423 + 2/2;

e apply the Newton-Raphson algorithm to find the root of f'(z) close to
xo =1 —1i.e., Eq. (5) now reads x1 = o — f'(x0)/f"(x0), where f"(z) =
—6 + 1222 + 223,

30

f(x)=73x2+x4+x5/10

O approximate derivative|
25 H A (x)

A (x)

-15 L I

Figure 6:

10 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

4.0.17 Exercise

Find the crossing points between a circle centered in (zo,y0) = (2,—3)
and radius R = 5 and the exponential function f(z) = e=%/2 — 4 (answer:
x1 ~ —2.42 and x5 ~ 6.91).

circle
exp(-x/2)-4|

5 Application: energy conservation

In mechanics, the conservation of energy means that the sum of the kinetic
energy T and the potential energy U is a constant, E. In case of a particle
moving in one dimension, the conservation of energy reads:

1 (dz\®

E=T+U@) ==-m(Z) 1U@), (7)
2 dt

where v = dz/dt is the velocity of the particle and m its mass. As a consequence,

the velocity of the particle can be evaluated as a function of the position only,

1 dz\”

which means that the motion is restricted only to the region where U(z) < E.

At the points x; for which E = U(x;), the particle has zero velocity — points

of motion inversion. Finally, the force in terms of the potential energy reads:
dU (x)

F(z) = T (8)

5.0.18 Exercise

Consider the case of the energy potential U(z)/E. = —3z% + 2* + 25/10
plotted in Fig. 5. Evaluate the points of motion inversion 7 and z9 for the
total energy E/E, = —1.

11 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

251

URVE =3+ +x°/10

U(X)/E

Figure 7:

6 Example of external function routine for the
bisection method

We remember that in order to create an external function script we have to use
the following syntax,

[a,b, c] = your_function(x,y,z,t)

and that you need to write a separate script file and name it your_function.m.
In this file, x, y, z, t are INPUT variables, while a, b, ¢ are OUTPUT
variables, i.e., what the function returns. To use this function in a script, you
then call the function by [a, b, c] = your_function(x,y,z,t). Note that
the names of the variables inside the function do not need to be the same as the
names of the variables you pass to the function!

The following example (see Fig. 8) creates a function script zero_bisection.m
that evaluates the zero of a function in a given interval (a, b) and with a given
accuracy err. Thus a, b, err are input values, while x 0, fx_0, iter are
output values: x_0 is the approximated value of the zero, £x_0 the value of the
function at this point, iter the number of iterations the programme needed to
find the zero with the accuracy err initially required. This external function
can be used in the following script

12 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

f(x)

Figure 8: Result of the script that uses the function script zero_bisection.m,
finding the zero of the function f(z) = 23 — 722 + 14z — 6.

clear all

close all

clc

% example on how to use the external function zero_bisection.m
fun=0(x) (x.A3-7*x.A2+14*x-6) ;

a=-1; b=1.5; err=2%eps;

[x.0, fx 0, iter | = zero_bisection(fun, a, b, err);
x_0

fx 0

iter

a=-1; b=b5; N=100;

x=linspace(a, b, N);

hold on
plot(x,fun(x),’Linewidth’, 2)
plot(x,zeros(length(x),1),’k--")
plot(x0,fx 0,’sr’)

hold off

13 Francesca Maria Marchetti

Computacion I (Subgroup 5165) Unit 3

function [x.0, fx 0, iter] = zero_bisection(fun, a, b, err)
% bisection method in order to find the root of the function f
% INPUT

% fun function

% a

% b interval [a, b]

% OUTPUT

% x_0 root

% £x_0 value of the function at x.0

% iter number of iterations used

fa=fun(a);
fb=fun(b);
i=0
while b-a>2*err
%define the middle point
x=(a+b)/2;
fx=fun(x);
if (faxfx)>0
%eliminate left half interval
a=x;
else
%eliminate right half interval
b=x;
end
i=i+1;
end
x_0=x;
fx 0=fun(x.0);
iter=i;
end

6.0.19 Exercise

By writing external function routines for both the bisection method as
well as the Newton-Raphson method, find the zero of the function f(z) =
exp(z) — x — 4 with both methods.

6.0.20 Exercise

By writing an external function routine, find the crossing points between a
circle centered in (zo,y0) = (2, —3) and radius R = 5 and the exponential
function f(z) = e~%/? — 4 (answer: z; ~ —2.42 and x5 ~ 6.91).

14 Francesca Maria Marchetti

