Introducción a la Superconductividad y Supefluidez

Curso de Mecánica Estadística Avanzada

Macroscopic occupation of the ground state

• <u>1924/1925</u>

Following the work of Bose on the statistical description of light quanta, Einstein predicted that a gas of non-interacting massive bosons, below a critical temperature, undergoes a phase transition associated with the condensation of the atoms in the lowest energy state: Bose-Einstein condensation (BEC)

Satyendranath Bose Albert Einstein

"...A separation is affected; some part condenses, the rest remains a 'saturated ideal gas'..."

"...condensation without attractive forces..."

BEC

NON INTERACTING IDEAL BOSE GAS

⇒ paradigm of quantum statistical mechanics

- indistinguishable particles
- wave nature of particles
- thermal equilibrium
- ⇒ macroscopic quantum phenomena
 - macroscopic wavefunction (many-body ground state wavefunction is the product of N identical single-particle groundstate wavefunctions)

• <u>1938</u> Discovery of superfluidity in liquid helium ⁴He (Allen & Misener; Kapitza).

• <u>1938</u> Discovery of superfluidity in liquid helium ⁴He (Allen & Misener; Kapitza).

What's the relation between BEC & superfluidity?

 Immediately after, London suggested the connection between the superfluidity of ⁴He and BEC

⇒ first to bring out the idea of BEC displaying quantum behaviour on a macroscopic scale

- It was a source of debate for decades
- e.g., the Landau's criterion for superfluidity does not explicitly mention the notion of BEC
- it is now recognised that superfluidity in ⁴He is related to BEC (though, because of strong interactions in ⁴He, there is a strong reduction of the lowest energy state occupancy)

Peter L. Kapitza

Fritz London

• <u>1947</u> microscopic theory of interacting Bose gases (Bogoliubov)

...provides the microscopic picture behind Landau's theory

- <u>1951</u> off-diagonal long range order (Landau&Lifshitz; Penrose)
- and much more theoretical work...
 (which we are going to see in class)

Nikolai N. Bogoliubov

Lev D. Landau

BEC	VS.	Superfluidity	
NON INTERACTING IDEAL BOSE GAS		INTERACTING BOSE GAS	
 ⇒ paradigm of quantum statistical mechanics indistinguishable particles wave nature of particles thermal equilibrium 	⇒ pł	 mainly related to transport nenomena (flow without friction) is essential the form of the dispersion of the elementary excitations (Landau criterion) 	
 ⇒ macroscopic quantum phenomena • macroscopic wavefunction (many-body ground state wavefunction is the product of N identical single-particle ground- state wavefunctions) 		 interactions are essential (change the dispersion from quadratic to phonon-like) superfluidity is possible even with few% of atoms in the ground state (see ⁴He) 	
IDEAL BECs ARE NOT SUPERFLUID		LINK BETWEEN BEC & SUPERFLUIDITY: ORDER PARAMETER and ODLRO	
UAM Introduction to experiments in ultracold atomic gases			

BEC in other systems

• BEC is involved in several macroscopic quantum phenomena (even if some systems are not ideal Bose gases):

Introduction to BEC & superfluidity

Searching for weakly interacting Bose gases

Why so hard?

⇒At very low T most substances are in the solid (or liquid) phase & interaction becomes strong

- BEC in its ideal form can be realised only in conditions of metastability
- Thermal equilibrium but the gas has a finite lifetime

70 years to realise a BEC in dilute atomic gases

very sophisticated cooling and trapping techniques

Dilute ultracold atomic gases: Experiments

- <u>1959</u> spin-polarized (by a magnetic field) hydrogen proposed as a good candidate for a weakly interacting Bose gas
- <u>'80</u> Developments in magnetic trapping, laser and evaporative cooling of alkali atoms

Group→

Period

1

1

н

3

Гi

11

Na

19

К

37

Rb

55

Cs

87

Fr

3

2

First realisation of a BEC in ultracold gases

• <u>1995</u> BEC in alkali atoms (87Rb, 23Na, 7Li, ...)

$$\label{eq:tau} \begin{split} T &\sim 500 \mathrm{n}\mathrm{K} - \mu\mathrm{K} \\ n &\sim 10^{11} - 10^{13} \mathrm{cm}^{-3} \end{split}$$

Carl Wieman & Eric Cornell Wolfgang Ketterle

BEC & superfluidity

BEC & superfluidity

- Landau criterion
- Macroscopic phase coherence
- Quantised vortices
 (rotating condensates)

[Abo-Shaeer et al. Science (2001)]

[Andrews et al. Science (1997)]

0.5 Absorption

BEC & superfluidity

- Landau criterion
- Macroscopic phase coherence
- Quantised vortices
- Metastable persistent flow
- [Abo-Shaeer et al. Science (2001)]

[Andrews et al. Science (1997)]

[Ryu et al. PRL (2007)]

UAM

Ultracold atoms today

Synopsis for the first half of the course

- 1. BEC: ideal Bose gas & weak interactions
- 2. BEC & superfluidity (Landau criterion and response to a moving defect)
- 3. Gross-Pitaevskii equation (non uniform condensates)
- 4. experiments in ultracold atoms (elements)
- 5. Applications: interference between two BECs
 ⇒ Josephson coupling & oscillations: analogy with superconductors
- Applications: rotating BEC & vortices
 ⇒ vortex lattices

....

7.

List of possible topics for the presentation

- 1. How to measure the speed of sound in a superfluid (ultracold atomic BEC)
- 2. Defect moving through a superfluid and Cherenkov radiation
- 3. Interference between two expanding condensates and the Josephson effect
- 4. Rotating superfluids and vortices
- 5. ...
- 6. BEC-BCS crossover
- 7. Imbalanced Fermi mixtures and analogy with a BCS superconductor in a Zeeman magnetic field
- 8. Your proposals!

 $v < v_c$

 $v > v_c$

[from E. Cornell's group]

BEC-BCS crossover

• Tune the interaction strength (Feshbach resonances)

BEC-BCS crossover

• Tune the interaction strength (Feshbach resonances)

a

Imbalanced Fermi mixtures

