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BEC: from 1925 to 1995

Introduction to experiments in ultracold atomic gases

“…A separation is affected; 
some part condenses, the rest 
remains a ‘saturated ideal 
gas’…” 

“…condensation without 
attractive forces…” 

Satyendranath Bose Albert Einstein

•   1924/1925  
Following the work of Bose on the statistical description of light quanta, Einstein 
predicted that a gas of non-interacting massive bosons, below a critical 
temperature, undergoes a phase transition associated with the condensation of 
the atoms in the lowest energy state: Bose-Eistein condensation (BEC) 

Link to animation  



Macroscopic occupation of the ground state
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High temperatures: billiard balls

Quantum-statistical phase transition 
(it occurs even in absence of 

interactions)



BEC
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⇒   macroscopic quantum 
phenomena

⇒   paradigm of quantum statistical 
mechanics

•   indistinguishability
•   wave nature of particles
•   thermal equilibrium

•   macroscopic wavefunction 
(many-body ground state wf is 
the product of N indentical single-
particle ground-state wfs)
•   similarly for weak interactions 
(quantum depletion = 1% for 
alkali condensates)

NON INTERACTING 
IDEAL  BOSE GAS



BEC                               vs.                 Superfluidity
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⇒   paradigm of quantum statistical 
mechanics

⇒   macroscopic quantum 
phenomena

•   indistinguishability
•   wave nature of particles
•   thermal equilibrium

•   macroscopic wavefunction 
(many-body ground state wf is 
the product of N identical single-
particle ground-state wfs)
•   similarly for weak interactions 
(quantum depletion = 1% for 
alkali condensates)

NON INTERACTING 
IDEAL  BOSE GAS



BEC: from 1925 to 1995
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Peter L. Kapitza•   1938  Discovery of superfluidity in liquid helium 4He 
(Allen & Misener; Kapitza).

Jack Allen

Don Misener

What’s the relation between BEC & 
superfluidity?



BEC: from 1925 to 1995
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•   1938  Discovery of superfluidity in liquid helium 4He 
(Allen & Misener; Kapitza).

Fritz London

•   controversial issue for decades

•   Immediately after, London suggested the connection 
between the superfluidity of 4He and BEC

⇒   first to bring out the idea of BEC 
displaying quantum behaviour on a 
macroscopic scale

What’s the relation between BEC & 
superfluidity?

The theory of superfluidity of Landau does 
not explicitly mention BEC!

•   E.g., Landau’s criterion



Condesate fraction
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[J. R. Ensher et al., PRL 77, 4984 (1996)] 

condensate fraction in a BEC of Rubidium 
ultracold atoms (rather good agreement 
with predictions for an ideal Bose gas 

model)

Ultracold gases of bosonic atoms

[W.M. Snow et al., Europhys. Lett 19, 403 (1992)] 

condensate fraction in superfluid 
4He at constant density

Superfluid 4He



BEC: from 1925 to 1995
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•   1947  microscopic theory of interacting Bose gases 
(Bogoliubov)

Nikolai N. Bogoliubov

…provides the microscopic picture behind Landau’s 
theory



BEC: from 1925 to 1995
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•   1947  microscopic theory of interacting Bose gases 
(Bogoliubov)

•   1951  off-diagonal long range order (Landau&Lifshitz; 
Penrose)

•   and much more theoretical work…

Nikolai N. Bogoliubov

Lev D. Landau

QUEST TO REALISE A BEC:
Search of weakly interacting Bose gases

…provides the microscopic picture behind Landau’s 
theory



BEC                               vs.                 Superfluidity
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⇒   paradigm of quantum statistical 
mechanics

⇒   macroscopic quantum 
phenomena

•   indistinguishability
•   wave nature of particles
•   thermal equiibrium

•   macroscopic wavefunction 
(many-body ground state wf is 
the product of N indentical single-
particle ground-state wfs)
•   similarly for weak interactions 
(quantum depletion = 1% for 
alkali condensates)

NON INTERACTING 
IDEAL  BOSE GAS

INTERACTING 
BOSE GAS

IDEAL BECs ARE NOT SUPERFLUID

•   superfluidity is possible even 
with few% of atoms in the ground 
state (see 4He)

LINK BETWEEN BEC & 
SUPERFLUIDITY: ORDER 
PARAMETER and ODLRO

⇒   mainly related to transport 
phenomena (flow without friction)

•   interactions are essential 
(change the dispersion to 
phonon-like)

•   is essential the form of the 
dispersion of the elementary 
excitations (Landau criterion)



BEC                               vs.                 Superfluidity
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NON INTERACTING 
IDEAL  BOSE GAS

INTERACTING 
BOSE GAS

LINK BETWEEN BEC & 
SUPERFLUIDITY: ORDER 
PARAMETER and ODLRO

Ideal Bose-Einstein condensates are not superfluid, but 
also there are superfluid systems that do not display Bose-

Einstein condensation (e.g., 2D)

IDEAL BECs ARE NOT SUPERFLUID



BEC in other systems
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•   BEC is involved in several macroscopic quantum phenomena
    (even if some systems are not ideal Bose gases):

⇒   4He (but is a strongly interacting system)

⇒   superconductors (BEC of Cooper pairs)

⇒   3He (also fermions)

⇒   lasers (but out of equilibrium: requires 
inversion of the population)

⇒   …

(the BEC-BCS crossover)
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QUEST TO REALISE A BEC:
Search of weakly interacting Bose gases



Searching for weakly interacting Bose gases

Why so hard?

BEC
⇒ At very low T most 
substances are solid (or 
liquid) & interaction becomes 
large

•   The pressure versus 
temperature phase transition line 
for BEC falls into the region where 
the equilibrium phase is a solid

A BEC (in the true chemical 
thermal equilibrium) is unstable

Introduction to experiments in ultracold atomic gases



Why dilute and why ultracold

BEC
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1.   metastable equilibrium

( 3-body recombination rate << 
2-body scattering rate)

•   Towards the formation of a solid: 
of the three atoms colliding, two 
form a molecule and the third one 
can carry away the residual energy

•   Still 2-body interactions can guarantee kinetic thermal equilibrium

possible at very low densities



Why dilute and why ultracold
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1.   metastable equilibrium: requires the gas to be diluted

⇒   the gas has a finite lifetime of the order between seconds and minutes, 
after which it becomes a solid

From 1925 to 1995:
it took 70 years to realise a BEC in dilute atomic gases

2.  quantum degeneracy: requires the gas to be ultracold

⇒   Necessity of very sophisticated cooling and trapping techniques

3.  Trapping (atoms must be thermally isolated from all material walls)



BEC: from 1925 to 1995
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Carl Wieman & Eric Cornell Wolfgang Ketterle

•   1995 BEC in alkali atoms (87Rb, 23Na, 7Li, …)

Nobel prize (2001)

Coolest system in the universe!



Hierarchy of energy and length scales

Introduction to experiments in ultracold atomic gases

⇒   Simplifies the description of BECs



New window into the quantum world
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⇒   At first, interest was to realise a BEC as close as possible to the ideal case

⇒   rapid development since the achievement of the first BEC (1995) has been 
breathtaking

⇒   Ultracold atoms became ideal model systems for a host of phenomena:
•   Diluteness = absence of not well understood interactions
•   Control
•   Manipulation
•   Precise probe

   Tune the interaction strength (e.g., Feshbach resonances)
   Bosons, fermions, mixtures
   Simulate crystals (optical lattices)
   Reduced dimensions (2D, 1D, 0D)
   Disorder
  …

⇒   Special role of cold atom experiments: perform “quantum simulations” of 
condensed matter systems



Ultracold atoms today
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[Bloch Nature Physics (2005)] 
Simulate solid state systems 

(with advantage of external control)

•   Bosons, Fermions, mixtures

•   Optical lattices

•   Disorder

•   Reduced dimensions (2D, 1D, 0D)

•   Tune the interaction strength
    (Feshbach resonances)



Dilute ultracold atomic gases: Experiments
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•   1959  spin-polarized (by a magnetic field) hydrogen 
proposed as a good candidate for a weakly interacting 
Bose gas

pe

•   ’80  Developments in magnetic trapping, laser and 
evaporative cooling of alkali atoms



Alkali atoms

Introduction to experiments in ultracold atomic gases

Z

e-
   Electronic spin S=J=1/2, nuclear spin I

•   A=Z+N odd   for bosons (N even)
•   A=Z+N even for fermions (N odd)

bosons      85Rb   I=5/2
                           87Rb   I=3/2
                           23Na   I=3/2
                             7Li     I=3/2
fermions     40K     I=4
                   6Li     I=1

   Z odd (neutral atoms =  same number of   
    electrons and protons)
   N determines the statistics

At very low temperatures atoms are in 
their electronic ground state 

(             ).
The internal states are the hyperfine 

states



Hyperfine levels and Zeeman splitting
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   Electronic spin S=J=1/2, nuclear spin I

Z

e-

   Hyperfine levels

   I=3/2 (87Rb, 23Na, 7Li)

F=2
F=1

mF=
+2
+1
  0
 -1

 -2
 -1
  0
  1



Hyperfine levels and Zeeman splitting
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•   I=4 (40K)

[J. L. Bohn et al. PRA 59, 3660 (1999)] 
[T. Loftus et al. PRL 88, 173201 (2002)] 

1.  Control the populations of atoms in different hyperfine 
states

2.  Magnetic trapping
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Trapping the atoms magnetically
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•                    high-field  seeking states

•                    low-field  seeking states

magnetic field B
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 I=3/2

•   Atoms moving slowly follow the direction of the local field adiabatically

Atoms in an inhomogeneous field experience a spatially-varying potential 



Trapping the atoms magnetically
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•                    high-field  seeking states

•                    low-field  seeking states

magnetic field B
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 I=3/2

⇒   N.B. if the magnetic field is too small, atoms can flip their spin to a high-filed 
seeking state and become untrapped (trap loss region)



Trapping the atoms magnetically
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[W. Ketterle et al., Varenna (1998)] 

⇒   Full optical access
⇒   Coils can be placed outside a vacuum chamber



Optical traps
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•   The interaction of the atoms with laser fields provides another possibility of 
confinement (as well as laser cooling).
•   Dipolar approximation

dipole              electric field        

•   Second order (time-dependendent) perturbation theory

dynamic polarisability        time average

•   If the intensity of the electric field varies with the position, the atoms are 
subjected to a force 

1.  Attractive: if the laser is red-detuned (from an atomic resonance frequency)
2.  Repulsive: if the laser is blue-detuned



Cooling to BEC
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⇒   Typilcal multistage cooling process
•   Gas temperature is reduced by a factor 109!!!
•   in each step the ground state population increases by 106!!

⇒   Several steps of laser cooling are applied before the cloud is transferred into 
a magnetic trap

⇒   Last cooling step to reach a BEC is the evaporative cooling technique 


