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BEC: from 1925 to 1995
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“…A separation is affected; 
some part condenses, the rest 
remains a ‘saturated ideal 
gas’…” 

“…condensation without 
attractive forces…” 

Satyendranath Bose
 Albert Einstein


•   1924/1925  

Following the work of Bose on the statistical description of light quanta, Einstein 
predicted that a gas of non-interacting massive bosons, below a critical 
temperature, undergoes a phase transition associated with the condensation of 
the atoms in the lowest energy state: Bose-Eistein condensation (BEC) 


Link to animation  



Macroscopic occupation of the ground state
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High temperatures: billiard balls


Quantum-statistical phase transition 

(it occurs even in absence of 

interactions)




BEC
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⇒   macroscopic quantum 
phenomena


⇒   paradigm of quantum statistical 
mechanics


•   indistinguishability

•   wave nature of particles

•   thermal equilibrium


•   macroscopic wavefunction 
(many-body ground state wf is 
the product of N indentical single-
particle ground-state wfs)

•   similarly for weak interactions 
(quantum depletion = 1% for 
alkali condensates)


NON INTERACTING 

IDEAL  BOSE GAS




BEC                               vs.                 Superfluidity
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⇒   paradigm of quantum statistical 
mechanics


⇒   macroscopic quantum 
phenomena


•   indistinguishability

•   wave nature of particles

•   thermal equilibrium


•   macroscopic wavefunction 
(many-body ground state wf is 
the product of N identical single-
particle ground-state wfs)

•   similarly for weak interactions 
(quantum depletion = 1% for 
alkali condensates)


NON INTERACTING 

IDEAL  BOSE GAS
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Peter L. Kapitza
•   1938  Discovery of superfluidity in liquid helium 4He 
(Allen & Misener; Kapitza).


Jack Allen


Don Misener


What’s the relation between BEC & 
superfluidity?
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•   1938  Discovery of superfluidity in liquid helium 4He 
(Allen & Misener; Kapitza).


Fritz London


•   controversial issue for decades


•   Immediately after, London suggested the connection 
between the superfluidity of 4He and BEC


⇒   first to bring out the idea of BEC 
displaying quantum behaviour on a 
macroscopic scale


What’s the relation between BEC & 
superfluidity?


The theory of superfluidity of Landau does 
not explicitly mention BEC!


•   E.g., Landau’s criterion




Condesate fraction


Introduction to experiments in ultracold atomic gases


[J. R. Ensher et al., PRL 77, 4984 (1996)] 

condensate fraction in a BEC of Rubidium 
ultracold atoms (rather good agreement 
with predictions for an ideal Bose gas 

model)


Ultracold gases of bosonic atoms


[W.M. Snow et al., Europhys. Lett 19, 403 (1992)] 

condensate fraction in superfluid 
4He at constant density


Superfluid 4He




BEC: from 1925 to 1995
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•   1947  microscopic theory of interacting Bose gases 
(Bogoliubov)


Nikolai N. Bogoliubov


…provides the microscopic picture behind Landau’s 
theory




BEC: from 1925 to 1995
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•   1947  microscopic theory of interacting Bose gases 
(Bogoliubov)


•   1951  off-diagonal long range order (Landau&Lifshitz; 
Penrose)


•   and much more theoretical work…


Nikolai N. Bogoliubov


Lev D. Landau


QUEST TO REALISE A BEC:

Search of weakly interacting Bose gases


…provides the microscopic picture behind Landau’s 
theory




BEC                               vs.                 Superfluidity
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⇒   paradigm of quantum statistical 
mechanics


⇒   macroscopic quantum 
phenomena


•   indistinguishability

•   wave nature of particles

•   thermal equiibrium


•   macroscopic wavefunction 
(many-body ground state wf is 
the product of N indentical single-
particle ground-state wfs)

•   similarly for weak interactions 
(quantum depletion = 1% for 
alkali condensates)


NON INTERACTING 

IDEAL  BOSE GAS


INTERACTING 

BOSE GAS


IDEAL BECs ARE NOT SUPERFLUID


•   superfluidity is possible even 
with few% of atoms in the ground 
state (see 4He)


LINK BETWEEN BEC & 
SUPERFLUIDITY: ORDER 
PARAMETER and ODLRO


⇒   mainly related to transport 
phenomena (flow without friction)


•   interactions are essential 
(change the dispersion to 
phonon-like)


•   is essential the form of the 
dispersion of the elementary 
excitations (Landau criterion)
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NON INTERACTING 

IDEAL  BOSE GAS


INTERACTING 

BOSE GAS


LINK BETWEEN BEC & 
SUPERFLUIDITY: ORDER 
PARAMETER and ODLRO


Ideal Bose-Einstein condensates are not superfluid, but 
also there are superfluid systems that do not display Bose-

Einstein condensation (e.g., 2D)


IDEAL BECs ARE NOT SUPERFLUID




BEC in other systems


Introduction to experiments in ultracold atomic gases


•   BEC is involved in several macroscopic quantum phenomena

    (even if some systems are not ideal Bose gases):


⇒   4He (but is a strongly interacting system)


⇒   superconductors (BEC of Cooper pairs)


⇒   3He (also fermions)


⇒   lasers (but out of equilibrium: requires 
inversion of the population)


⇒   …


(the BEC-BCS crossover)
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QUEST TO REALISE A BEC:

Search of weakly interacting Bose gases




Searching for weakly interacting Bose gases


Why so hard?


BEC

⇒ At very low T most 
substances are solid (or 
liquid) & interaction becomes 
large


•   The pressure versus 
temperature phase transition line 
for BEC falls into the region where 
the equilibrium phase is a solid


A BEC (in the true chemical 
thermal equilibrium) is unstable
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Why dilute and why ultracold


BEC
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1.   metastable equilibrium


( 3-body recombination rate << 

2-body scattering rate)


•   Towards the formation of a solid: 
of the three atoms colliding, two 
form a molecule and the third one 
can carry away the residual energy


•   Still 2-body interactions can guarantee kinetic thermal equilibrium


possible at very low densities




Why dilute and why ultracold
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1.   metastable equilibrium: requires the gas to be diluted


⇒   the gas has a finite lifetime of the order between seconds and minutes, 
after which it becomes a solid


From 1925 to 1995:

it took 70 years to realise a BEC in dilute atomic gases


2.  quantum degeneracy: requires the gas to be ultracold


⇒   Necessity of very sophisticated cooling and trapping techniques


3.  Trapping (atoms must be thermally isolated from all material walls)




BEC: from 1925 to 1995
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Carl Wieman & Eric Cornell
 Wolfgang Ketterle


•   1995 BEC in alkali atoms (87Rb, 23Na, 7Li, …)


Nobel prize (2001)


Coolest system in the universe!




Hierarchy of energy and length scales
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⇒   Simplifies the description of BECs




New window into the quantum world
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⇒   At first, interest was to realise a BEC as close as possible to the ideal case


⇒   rapid development since the achievement of the first BEC (1995) has been 
breathtaking


⇒   Ultracold atoms became ideal model systems for a host of phenomena:

•   Diluteness = absence of not well understood interactions

•   Control

•   Manipulation

•   Precise probe


   Tune the interaction strength (e.g., Feshbach resonances)

   Bosons, fermions, mixtures

   Simulate crystals (optical lattices)

   Reduced dimensions (2D, 1D, 0D)

   Disorder

  …


⇒   Special role of cold atom experiments: perform “quantum simulations” of 
condensed matter systems




Ultracold atoms today
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[Bloch Nature Physics (2005)] 
Simulate solid state systems 


(with advantage of external control)


•   Bosons, Fermions, mixtures


•   Optical lattices


•   Disorder


•   Reduced dimensions (2D, 1D, 0D)


•   Tune the interaction strength

    (Feshbach resonances)




Dilute ultracold atomic gases: Experiments


Introduction to experiments in ultracold atomic gases


•   1959  spin-polarized (by a magnetic field) hydrogen 
proposed as a good candidate for a weakly interacting 
Bose gas


p
e


•   ’80  Developments in magnetic trapping, laser and 
evaporative cooling of alkali atoms




Alkali atoms
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Z


e-

   Electronic spin S=J=1/2, nuclear spin I


•   A=Z+N odd   for bosons (N even)

•   A=Z+N even for fermions (N odd)


bosons      85Rb   I=5/2

                           87Rb   I=3/2

                           23Na   I=3/2

                             7Li     I=3/2

fermions     40K     I=4

                   6Li     I=1


   Z odd (neutral atoms =  same number of   

    electrons and protons)

   N determines the statistics


At very low temperatures atoms are in 
their electronic ground state 


(             ).

The internal states are the hyperfine 

states




Hyperfine levels and Zeeman splitting
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   Electronic spin S=J=1/2, nuclear spin I


Z


e-


   Hyperfine levels


   I=3/2 (87Rb, 23Na, 7Li)


F=2

F=1


mF=

+2

+1

  0

 -1


 -2

 -1

  0

  1




Hyperfine levels and Zeeman splitting
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•   I=4 (40K)


[J. L. Bohn et al. PRA 59, 3660 (1999)] 
[T. Loftus et al. PRL 88, 173201 (2002)] 

1.  Control the populations of atoms in different hyperfine 
states


2.  Magnetic trapping
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Trapping the atoms magnetically
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•                    high-field  seeking states


•                    low-field  seeking states


magnetic field B
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 I=3/2


•   Atoms moving slowly follow the direction of the local field adiabatically


Atoms in an inhomogeneous field experience a spatially-varying potential 




Trapping the atoms magnetically
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•                    high-field  seeking states


•                    low-field  seeking states


magnetic field B


en
er

gy



 I=3/2


⇒   N.B. if the magnetic field is too small, atoms can flip their spin to a high-filed 
seeking state and become untrapped (trap loss region)




Trapping the atoms magnetically
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[W. Ketterle et al., Varenna (1998)] 

⇒   Full optical access

⇒   Coils can be placed outside a vacuum chamber




Optical traps
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•   The interaction of the atoms with laser fields provides another possibility of 
confinement (as well as laser cooling).

•   Dipolar approximation


dipole              electric field        


•   Second order (time-dependendent) perturbation theory


dynamic polarisability        time average


•   If the intensity of the electric field varies with the position, the atoms are 
subjected to a force 


1.  Attractive: if the laser is red-detuned (from an atomic resonance frequency)

2.  Repulsive: if the laser is blue-detuned




Cooling to BEC
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⇒   Typilcal multistage cooling process

•   Gas temperature is reduced by a factor 109!!!

•   in each step the ground state population increases by 106!!


⇒   Several steps of laser cooling are applied before the cloud is transferred into 
a magnetic trap


⇒   Last cooling step to reach a BEC is the evaporative cooling technique 


