Introduction to experiments in ultracold atomic gases

Introduction to BEC & superfluidity

Francesca Maria Marchetti

UAM, May 2012

• <u>1924/1925</u>

Following the work of Bose on the statistical description of light quanta, Einstein predicted that a gas of non-interacting massive bosons, below a critical temperature, undergoes a phase transition associated with the condensation of the atoms in the lowest energy state: Bose-Eistein condensation (BEC)

Satyendranath Bose Albert Einstein

"...A separation is affected; some part condenses, the rest remains a 'saturated ideal gas'..."

"...condensation without attractive forces..."

Link to animation

Macroscopic occupation of the ground state

BEC

NON INTERACTING IDEAL BOSE GAS

- ⇒ paradigm of quantum statistical mechanics
 - indistinguishability
 - wave nature of particles
 - thermal equilibrium
- ⇒ macroscopic quantum phenomena
 - macroscopic wavefunction (many-body ground state wf is the product of N indentical singleparticle ground-state wfs)
 - similarly for weak interactions (quantum depletion = 1% for alkali condensates)

Superfluidity

NON INTERACTING IDEAL BOSE GAS

⇒ paradigm of quantum statistical mechanics

- indistinguishability
- wave nature of particles
- thermal equilibrium

⇒ macroscopic quantum phenomena

- macroscopic wavefunction (many-body ground state wf is the product of N identical singleparticle ground-state wfs)
- similarly for weak interactions (quantum depletion = 1% for alkali condensates)

• <u>1938</u> Discovery of superfluidity in liquid helium ⁴He (Allen & Misener; Kapitza).

What's the relation between BEC & superfluidity? 6 5 Solid Pressure (MPa) (hcp) 4 Jack Allen 3 (bcc)-Normal Liquid 2 Superfluid 1 Gas 0 0 2 3 6 Temperature (K) Don Misener

UA

Introduction to experiments in ultracold atomic gases

Peter L. Kapitza

• <u>1938</u> Discovery of superfluidity in liquid helium ⁴He (Allen & Misener; Kapitza).

What's the relation between BEC & superfluidity?

 Immediately after, London suggested the connection between the superfluidity of ⁴He and BEC

⇒ first to bring out the idea of BEC displaying quantum behaviour on a macroscopic scale

• controversial issue for decades

The theory of superfluidity of Landau does not explicitly mention BEC!

• E.g., Landau's criterion

$$v_c = min \frac{E_p}{p}$$

Fritz London

Condesate fraction

• <u>1947</u> microscopic theory of interacting Bose gases (Bogoliubov) $F_{n-1} = \sqrt{c_n(c_n + 2\alpha n)}$

 $E_{p} = \sqrt{\epsilon_{p}(\epsilon_{p} + 2gn)}$

...provides the microscopic picture behind Landau's theory

Nikolai N. Bogoliubov

• <u>1947</u> microscopic theory of interacting Bose gases (Bogoliubov) $E_p = \sqrt{\epsilon_p(\epsilon_p + 2gn)}$

...provides the microscopic picture behind Landau's theory

- <u>1951</u> off-diagonal long range order (Landau&Lifshitz; Penrose)
- and much more theoretical work...

QUEST TO REALISE A BEC: Search of weakly interacting Bose gases

Nikolai N. Bogoliubov

Lev D. Landau

	BEC	VS	S.	Superfluidity	
	NON INTERACTING IDEAL BOSE GAS			INTERACTING BOSE GAS	
	 ⇒ paradigm of quantum statistical mechanics indistinguishability wave nature of particles thermal equiibrium ⇒ macroscopic quantum phenomena macroscopic wavefunction (many-body ground state wf is the product of N indentical single particle ground-state wfs) similarly for weak interactions (quantum depletion = 1% for alkali condensates) 	Ð-	⇒ mainly rephenomena • is ess disperse excitation $E_p = \sqrt{\epsilon_p}$ • interation (change phonom • super with few state (s	elated to transport (flow without friction) sential the form of the sion of the elementary ons (Landau criterion) $\overline{(\epsilon_p + 2gn)}$ $v_c = min \frac{E_p}{p}$ actions are essential the dispersion to n-like) rfluidity is possible even w% of atoms in the ground see ⁴ He)	· · · · · · · · · · · · · · · · · · ·
Γ	IDEAL BECs ARE NOT SUPERFLUID		LINK SUPE PARAI	C BETWEEN BEC & RFLUIDITY: ORDER METER and ODLRO	
	Introduction to experiments in ultracold atomic gase		s in ultracold atomic gases	_	

BEC	VS.	Superfluidity
NON INTERACTING IDEAL BOSE GAS		INTERACTING BOSE GAS

Ideal Bose-Einstein condensates are not superfluid, but also there are superfluid systems that do not display Bose-Einstein condensation (e.g., 2D)

IDEAL BECs ARE NOT SUPERFLUID

LINK BETWEEN BEC & SUPERFLUIDITY: ORDER PARAMETER and ODLRO

BEC in other systems

• BEC is involved in several macroscopic quantum phenomena (even if some systems are not ideal Bose gases):

Searching for weakly interacting Bose gases

Why so hard?

- ⇒At very low T most substances are solid (or liquid) & interaction becomes large
- The pressure versus temperature phase transition line for BEC falls into the region where the equilibrium phase is a solid

$$P = \frac{2E}{3V} \simeq \left(\frac{m}{2\pi}\right)^{3/2} (k_B T)^{5/2}$$

A BEC (in the true chemical thermal equilibrium) is unstable

Why dilute and why ultracold

1. metastable equilibrium

 $\tau_3 \ll \tau_2$

(3-body recombination rate << 2-body scattering rate)

• Towards the formation of a solid: of the three atoms colliding, two form a molecule and the third one can carry away the residual energy

$$au_3 \sim n^3 \ll au_2 \sim n^2$$
 possible at very low densities

• Still 2-body interactions can guarantee kinetic thermal equilibrium

Why dilute and why ultracold

1. metastable equilibrium: requires the gas to be diluted

$$n\sim 10^{13}-10^{15}{
m cm}^{-3}$$

⇒ the gas has a finite lifetime of the order between seconds and minutes, after which it becomes a solid

2. quantum degeneracy: requires the gas to be ultracold

$$\frac{T \sim 100 \text{nK} - \mu \text{K}}{n \lambda_T^3} = n \left(\frac{2\pi \hbar^2}{m k_B T}\right)^{3/2} > 2.61$$

3. Trapping (atoms must be thermally isolated from all material walls)

⇒ Necessity of very sophisticated cooling and trapping techniques

From 1925 to 1995:

it took 70 years to realise a BEC in dilute atomic gases

• <u>1995</u> BEC in alkali atoms (87Rb, 23Na, 7Li, ...)

$$\label{eq:transform} \begin{split} T &\sim 500 \mathrm{n}\mathrm{K} - \mu\mathrm{K} \\ n &\sim 10^{11} - 10^{13} \mathrm{cm}^{-3} \end{split}$$

Coolest system in the universe!

Nobel prize (2001)

Carl Wieman & Eric Cornell Wolfgang Ketterle

Hierarchy of energy and length scales

\Rightarrow Simplifies the description of BECs

 $n\sim 10^{14} \mathrm{cm}^{-3}$

Energy Scale E	$=h^2/2ml^2$]	Length Scale	
limiting temperature for s-wave scattering	$1 \mathrm{mK}$	scattering length	$a = l/2\pi$	= 3 nm
BEC transition temperature T_c	$2\mu\mathrm{K}$	separation between atoms	$n^{-1/3} = l/\sqrt{\pi}(2.612)^{1/3}$	= 200 nm
I	I			
temperature T	$1\mu\mathrm{K}$	thermal de Broglie wavelength	$\lambda_{dB} = l/\sqrt{\pi}$	= 300 nm
mean field energy μ	300 nK	healing length	$\xi = l/2\pi$	= 200 nm
harmonic oscillator level spacing $\hbar\omega$	0.5 nK	oscillator length ($\omega \simeq 2\pi \cdot 10 \text{Hz}$)	$a_{HO} = l/\sqrt{2}\pi$	$= 6.5\mu{ m m}$

New window into the quantum world

- ⇒ At first, interest was to realise a BEC as close as possible to the ideal case
- \Rightarrow rapid development since the achievement of the first BEC (1995) has been breathtaking
- \Rightarrow Ultracold atoms became ideal model systems for a host of phenomena:
 - Diluteness = absence of not well understood interactions
 - Control
 - Manipulation
 - Precise probe
 - ✓ Tune the interaction strength (e.g., Feshbach resonances)
 - ✓ Bosons, fermions, mixtures
 - ✓ Simulate crystals (optical lattices)
 - ✓ Reduced dimensions (2D, 1D, 0D)
 - ✓ Disorder
 - ✓ ...

⇒ Special role of cold atom experiments: perform "quantum simulations" of condensed matter systems

Ultracold atoms today

Dilute ultracold atomic gases: Experiments

- <u>1959</u> spin-polarized (by a magnetic field) hydrogen proposed as a good candidate for a weakly interacting Bose gas
- <u>'80</u> Developments in magnetic trapping, laser and evaporative cooling of alkali atoms

Alkali atoms

- Electronic spin S=J=1/2, nuclear spin I
- Z odd (neutral atoms = same number of electrons and protons)
- N determines the statistics
 - A=Z+N odd for bosons (N even)
 - A=Z+N even for fermions (N odd)

bosons	⁸⁵ Rb	I=5/2
	⁸⁷ Rb	I=3/2
	²³ Na	I=3/2
	⁷ Li	I=3/2
fermions	⁴⁰ K	I=4
	⁶ Li	l=1

At very low temperatures atoms are in their electronic ground state $(\ell = 0)$. The internal states are the hyperfine states

Hyperfine levels and Zeeman splitting

Hyperfine levels and Zeeman splitting

Magnetic trapping

[J. L. Bohn et al. PRA 59, 3660 (1999)]

[T. Loftus et al. PRL 88, 173201 (2002)]

1. Control the populations of atoms in different hyperfine states

$$\Delta E_{\mathrm{hyp}} \gg k_B T$$

2.

Trapping the atoms magnetically

- $\mu_{lpha} > 0$ high-field seeking states
- $\mu_{lpha} < 0$ low-field seeking states

• Atoms moving slowly follow the direction of the local field adiabatically

Atoms in an inhomogeneous field experience a spatially-varying potential

Trapping the atoms magnetically

- $\mu_{lpha} > 0$ high-field seeking states
- $\mu_{lpha} < 0$ low-field seeking states

 \Rightarrow N.B. if the magnetic field is too small, atoms can flip their spin to a high-filed seeking state and become untrapped (trap loss region)

Trapping the atoms magnetically

- ⇒ Full optical access
- \Rightarrow Coils can be placed outside a vacuum chamber

Optical traps

- The interaction of the atoms with laser fields provides another possibility of confinement (as well as laser cooling).
- Dipolar approximation H=-

• Second order (time-dependendent) perturbation theory

$$U(\mathbf{r}) = -\frac{1}{2}\alpha(\omega)\overline{E^2(\mathbf{r},t)}$$
dynamic polarisability time average

- If the intensity of the electric field varies with the position, the atoms are subjected to a force $-\nabla U({\bf r})$
- 1. Attractive: if the laser is red-detuned (from an atomic resonance frequency)
- 2. Repulsive: if the laser is blue-detuned

Cooling to BEC

- ⇒ Typilcal multistage cooling process
 - Gas temperature is reduced by a factor 10⁹!!!
 - in each step the ground state population increases by 10⁶!!

$$\rho = n\lambda_T^3 = n\left(\frac{2\pi\hbar^2}{mkT}\right)^{3/2}$$

	Temperature	Density (cm^{-3})	Phase-space density
Oven Laser cooling Evaporative cooling BEC	500 K 50 μK 500 nK	$ \begin{array}{c} 10^{14} \\ 10^{11} \\ 10^{14} \end{array} $	$ \begin{array}{r} 10^{-13} \\ 10^{-6} \\ 1 \\ 10^{7} \\ \end{array} $

⇒ Several steps of laser cooling are applied before the cloud is transferred into a magnetic trap

⇒ Last cooling step to reach a BEC is the evaporative cooling technique

