Introduction to experiments in ultracold atomic gases – part 2

Introduction to BEC & superfluidity

Francesca Maria Marchetti

UAM, May 2012

Memo: Dilute & ultracold

Memo: Alkali atoms & magnetic trapping

Cooling to BEC

- ⇒ Typilcal multistage cooling process
 - Gas temperature is reduced by a factor 10⁹!!!
 - in each step the ground state population increases by 10⁶!!

$$\rho = n\lambda_T^3 = n\left(\frac{2\pi\hbar^2}{mkT}\right)^{3/2}$$

	Temperature	Density (cm^{-3})	Phase-space density
Oven Laser cooling Evaporative cooling BEC	500 K 50 μK 500 nK	$ \begin{array}{r} 10^{14} \\ 10^{11} \\ 10^{14} \end{array} $	$ \begin{array}{r} 10^{-13} \\ 10^{-6} \\ 1 \\ 10^{7} \\ \end{array} $

⇒ Several steps of laser cooling are applied before the cloud is transferred into a magnetic trap

⇒ Last cooling step to reach a BEC is the evaporative cooling technique

Laser cooling & Optical traps

• The interaction of the atoms with laser fields provides another possibility of confinement, as well as laser cooling

- If the intensity of the electric field varies with the position, the atoms are subjected to a force $-\nabla U({\bf r})$
- 1. Attractive: if the laser is red-detuned (an electronic transition in the atom)
- 2. Repulsive: if the laser is blue-detuned

Nobel prize 1997 (Chu, Cohen-Tannoudji, Phillips): "for development of methods to cool and trap atoms with laser light"

Laser cooling

Laser cooling

Link to animation 1 Link to animation 2 Link to animation 3

Evaporative cooling

- 1. Remove from the trap the high-energy tail of the thermal distribution
- 2. Remaining atoms rethermalise to a lower temperature (i.e., high energy tail is repopulated by collisions)

Evaporative cooling

- 1. Remove from the trap the high-energy tail of the thermal distribution
- 2. Remaining atoms rethermalise to a lower temperature (i.e., high energy tail is repopulated by collisions)

 $\overline{\epsilon}'$

 ϵ

Evaporative cooling

Link to animation

- 1. Remove from the trap the high-energy tail of the thermal distribution
- 2. Remaining atoms rethermalise to a lower temperature (i.e., high energy tail is repopulated by collisions)

Probe the atomic cloud

⇒ Optical diagnostics: atoms are illuminated with a laser beam and images of the shadow cast by the atoms are recorded on a CCD

⇒ Absorptive or dispersive imaging

2. Time of flight: momentum distribution

1.

Quantitative analysis of images

- ⇒ Probing consists in providing density distributions of the atomic cloud, either trapped or in ballistic expansion
 ⇒ All properties of the condensate and thermal cloud are inferred from these density distributions and the comparison with theoretical modeling
- ⇒ Distribution in space determined by the trap potential
- 1. High temperatures $T \geq T_{\mathcal{C}}\,$: the distribution can be evaluated in the semi-classical approximation

$$n(\mathbf{r}) = n_T(\mathbf{r}) \simeq \lambda_T^{-3} g_{3/2}(e^{\beta[\mu - V_{\text{ext}}(\mathbf{r})]})$$

1. Low temperatures (pure condensates) $T \ll T_c$

$$n(r) = n_0(\mathbf{r}) \cdot \left\{ \begin{array}{l} \text{Ideal gas} \\ \text{Tomas-Fermi limit} \end{array} \right.$$

2. Intermediate regime: bimodal distribution $T \lesssim T_c$ $n(r) = n_0(\mathbf{r}) + n_T(\mathbf{r})$

Time of flight measurements

Time of flight measurements

First realisation of a BEC in ultracold atoms

• <u>1995</u> BEC in alkali atoms (87Rb, 23Na, 7Li, ...)

$$\label{eq:tau} \begin{split} T &\sim 500 \mathrm{n}\mathrm{K} - \mu\mathrm{K} \\ n &\sim 10^{11} - 10^{13} \mathrm{cm}^{-3} \end{split}$$

Carl Wieman & Eric Cornell Wolfgang Ketterle

First BEC in ⁸⁷Rb (Boulder, June 1995)

 $|F=2,m_F=2
angle$

⇒ evaporative cooling in TOP trap

 $T_c \simeq 170 \mathrm{nK}$ $n \simeq 2.6 \ 10^{12} \mathrm{cm}^{-3}$

expansion & probe

[M. H. Anderson et al. Science 269, 198 (1995)]

oven $T\simeq 300 {\rm K}$ laser cooling $T\simeq 90 \mu {\rm K}$ $n\simeq 2\ 10^{10}\ {\rm cm}^{-3}$

BEC in ²³Na (MIT, September 1995)

$$|F=1,m_F=-1
angle$$

⇒ evaporative cooling in optical plug trap

$T_c\simeq 2.0\mu{ m K}$ $n\simeq 1.5~10^{14}~{ m cm}^{-3}$

- Bimodal distribution
- Non-isotropic velocity distribution

BEC in ²³Na (MIT, September 1995)

$$|F=1,m_F=-1
angle$$

⇒ evaporative cooling in optical plug trap

$$T_c\simeq 2.0\mu{
m K}$$

 $n\simeq 1.5~10^{14}~{
m cm}^{-3}$

- Bimodal distribution
- Non-isotropic velocity distribution

Extracting static quantities

1. Temperature: determined by the shape of the spatial wings of the distribution (thermal cloud)

2. Chemical potential: given by the size of the condensate (Thomas-Fermi approximation)

3. Total number of atoms: integral of either the space or momentum distribution

4. Condensate fraction: bimodal distribution

Condensate fraction

⇒ condensate fraction in a BEC of Rubidium ultracold atoms (rather good agreement with predictions for a trapped ideal Bose gas model)

Following lectures

Interference between two condensates

Following lectures

Interference between two condensates

(time of flight evolution)

Following lectures

Following lectures

Spectrum of excitations

$$E_{p} = \sqrt{\epsilon_{p}(\epsilon_{p} + 2gn)}$$

[Steinhauer et al. PRL (2002)]

UA

 $v < v_c$ moving defect - \longrightarrow

 $v > v_c$

[from E. Cornell's group]

Quantised vortices in rotating condensates

$$\oint \mathbf{v}_s \cdot d\mathbf{I} = 2\pi \frac{\hbar}{m} (0, \pm 1, \dots)$$

ground state is flowless & vortices need external driving

vortices are unstable solutions if rotation is halted

Metastable persistent flow

BEC-BCS crossover

• Tune the interaction strength (Feshbach resonances)

BEC-BCS crossover

• Tune the interaction strength (Feshbach resonances)

Imbalanced Fermi mixtures

