Problem set 2

February 8, 2013

to submit by Tuesday the $19^{\text {th }}$ of February

1 One-body density matrix and OLRO

Starting from the definition of the one-body density matrix for the case of an ideal gas in a 3 D box,

$$
\begin{equation*}
n^{(1)}\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\sum_{\mathbf{p}} f_{\mathbf{p}} \varphi_{\mathbf{p}}^{*}(\mathbf{r}) \varphi_{\mathbf{p}}\left(\mathbf{r}^{\prime}\right) \tag{1}
\end{equation*}
$$

where the eigenfunctions of $\widehat{\mathcal{H}}=\frac{\widehat{\mathbf{p}}}{2 m}$ are plane waves, $\varphi_{\mathbf{p}}(\mathbf{r})=e^{i \mathbf{p} \cdot \mathbf{r} / \hbar} / \sqrt{V}$, and $f_{\mathbf{p}}=\frac{1}{e^{\beta\left(\epsilon_{\mathbf{p}}-\mu\right)}-1}$,

1. evaluate analytically the behaviour at large distances $\left(s=\left|\mathbf{r}-\mathbf{r}^{\prime}\right| \gg \lambda_{T}\right)$ of $n^{(1)}(s)$ for $T<T_{c}$, and show that $n^{(1)}(s) \simeq n_{0}+1 /\left(\lambda_{T}^{2} s\right)$, where λ_{T} is the de Broglie wavelength and $n_{0}=N_{0} / V$ the condensate density.
2. Repeat the same calculation for $T>T_{c}$ and show that now the decay to zero is of the type of Yukawa-law,
i.e. $n^{(1)}(s) \simeq e^{\beta \mu} e^{-\sqrt{4 \pi\left(1-e^{\beta \mu}\right)} s / \lambda_{T}} /\left(\lambda_{T}^{2} s\right)$.
3. Consider the case of a classical gas, where the distribution function is the Maxwell-Boltzmann one, $f_{\mathbf{p}}=e^{-\beta \epsilon_{\mathbf{p}}}$ and evaluate the one-body density matrix $n^{(1)}(s)$. Show that if you consider the short-distance behaviour $s \ll \lambda_{T}$ of the general quantum case, you get exactly the same result.

2 Second quantisation

Consider the definitions of creation and annihilation operators for bosons (occupation $N_{i}=0,1,2, \ldots$)

$$
\begin{align*}
\hat{a}_{j}^{\dagger}\left|N_{0}, N_{1}, \ldots N_{j}, \ldots\right\rangle & =\sqrt{N_{j}+1}\left|N_{0}, N_{1}, \ldots, N_{j}+1, \ldots\right\rangle \tag{2}\\
\hat{a}_{j}\left|N_{0}, N_{1}, \ldots N_{j}, \ldots\right\rangle & =\sqrt{N_{j}}\left|N_{0}, N_{1}, \ldots N_{j}-1, \ldots\right\rangle, \tag{3}
\end{align*}
$$

and for fermions (occupation $N_{i}=0,1$):

$$
\begin{align*}
& \hat{c}_{j}^{\dagger}\left|N_{0}, N_{1}, \ldots N_{j}, \ldots\right\rangle=(-1)^{\mathcal{P}}\left(1-N_{j}\right)\left|N_{0}, N_{1}, \ldots, N_{j}+1, \ldots\right\rangle \tag{4}\\
& \hat{c}_{j}\left|N_{0}, N_{1}, \ldots N_{j}, \ldots\right\rangle=(-1)^{\mathcal{P}} N_{j}\left|N_{0}, N_{1}, \ldots N_{j}-1, \ldots\right\rangle, \tag{5}
\end{align*}
$$

where $\mathcal{P}=N_{0}+N_{1}+\cdots+N_{i-1}$ and where we indicate with $i=0,1, \ldots$ the energy levels of the single-particle problem $\widehat{\mathcal{H}}\left|\epsilon_{i}\right\rangle=\epsilon_{i}\left|\epsilon_{i}\right\rangle$ and with N_{i} the occupation number of each such a state.
4. Derive the canonical commutation and anticommuation relations

$$
\begin{equation*}
\left[\hat{a}_{i}, \hat{a}_{j}^{\dagger}\right]=\delta_{i j} \quad\left[\hat{a}_{i}, \hat{a}_{j}\right]=0=\left[\hat{a}_{i}^{\dagger}, \hat{a}_{j}^{\dagger}\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\hat{c}_{i}, \hat{c}_{j}^{\dagger}\right\}=\delta_{i j} \quad\left\{\hat{c}_{i}, \hat{c}_{j}\right\}=0=\left\{\hat{c}_{i}^{\dagger}, \hat{c}_{j}^{\dagger}\right\} \tag{7}
\end{equation*}
$$

5. For bosons show that in general one has that

$$
\begin{equation*}
\left[a_{i}, \hat{a}_{j}^{\dagger} \hat{a}_{k}\right]=\delta_{1 j} a_{k} \quad\left[a_{i}^{\dagger}, \hat{a}_{j}^{\dagger} \hat{a}_{k}\right]=-\delta_{i k} a_{j}^{\dagger} \tag{8}
\end{equation*}
$$

6. Consider the following two-state Hamiltonian

$$
\begin{equation*}
\hat{H}=\epsilon\left(\hat{a}_{1}^{\dagger} \hat{a}_{1}+\hat{a}_{2}^{\dagger} \hat{a}_{2}\right)+\Delta\left(\hat{a}_{1}^{\dagger} \hat{a}_{2}^{\dagger}+\hat{a}_{2} \hat{a}_{1}\right) \tag{9}
\end{equation*}
$$

for two boson fields (all operators commute except $\left[\hat{a}_{1}, \hat{a}_{1}^{\dagger}\right]=1=\left[\hat{a}_{2}, \hat{a}_{2}^{\dagger}\right]$) - note that this Hamiltonian does not conserve the number of particles. Show that you can rewrite the Hamiltonian in the form

$$
\hat{H}=\left(\begin{array}{ll}
\hat{a}_{1}^{\dagger} & \hat{a}_{2}
\end{array}\right)\left(\begin{array}{cc}
\epsilon & \Delta \tag{10}\\
\Delta & \epsilon
\end{array}\right)\binom{\hat{a}_{1}}{\hat{a}_{2}^{\dagger}}-\epsilon .
$$

7. Find a general transformation to a new set of operators

$$
\begin{equation*}
\binom{\hat{\gamma}_{1}}{\hat{\gamma}_{2}^{\dagger}}=O\binom{\hat{a}_{1}}{\hat{a}_{2}^{\dagger}} \tag{11}
\end{equation*}
$$

where O is a 2×2 matrix, such that the bosonic canonical transformation relations are preserved for $\hat{\gamma}_{i}$.
8. Choose the parameters of this transformation O such that now the Hamiltonian expressed in terms of these new operators is diagonal, i.e., of the form

$$
\begin{equation*}
\hat{H}=E_{1} \hat{\gamma}_{1}^{\dagger} \hat{\gamma}_{1}+E_{2} \hat{\gamma}_{2}^{\dagger} \hat{\gamma}_{2} \tag{12}
\end{equation*}
$$

