Problem set 3

February 21, 2013

to submit by Monday the $4^{\text {th }}$ of March

1 The weakly-interacting Bose gas

Starting from the Hamiltonian

$$
\begin{equation*}
\hat{H}=-\int d \mathbf{r} \hat{\Psi}^{\dagger}(\mathbf{r}) \frac{\hbar^{2} \nabla^{2}}{2 m} \hat{\Psi}(\mathbf{r})+\frac{1}{2} \int d \mathbf{r} d \mathbf{r}^{\prime} \hat{\Psi}^{\dagger}(\mathbf{r}) \hat{\Psi}^{\dagger}\left(\mathbf{r}^{\prime}\right) U\left(\mathbf{r}^{\prime}-\mathbf{r}\right) \hat{\Psi}(\mathbf{r}) \hat{\Psi}\left(\mathbf{r}^{\prime}\right) q \tag{1}
\end{equation*}
$$

for a system of interacting bosons, where $U\left(\mathbf{r}^{\prime}-\mathbf{r}\right)=\int d \mathbf{q} /(2 \pi \hbar)^{3} U_{\mathbf{q}} e^{i \mathbf{q} \cdot\left(\mathbf{r}^{\prime}-\mathbf{r}\right) / \hbar}$ is the two-body potential,

1. rewrite the Hamiltonian in terms of the creation and annihilation operators, $\hat{a}_{\mathbf{p}}$ and $\hat{a}_{\mathbf{p}}^{\dagger}$, in momentum space \mathbf{p} :

$$
\begin{equation*}
\hat{\Psi}(\mathbf{r})=\frac{1}{\sqrt{V}} \sum_{\mathbf{p}} \hat{a}_{\mathbf{p}} e^{i \mathbf{p} \cdot \mathbf{r} / \hbar} \tag{2}
\end{equation*}
$$

2. Check that the bosonic commutation relations, $\left[\hat{a}_{\mathbf{p}}, \hat{a}_{\mathbf{p}^{\prime}}\right]=0=\left[\hat{a}_{\mathbf{p}}^{\dagger}, \hat{a}_{\mathbf{p}^{\prime}}^{\dagger}\right]$ and $\left[\hat{a}_{\mathbf{p}}, \hat{a}_{\mathbf{p}^{\prime}}^{\dagger}\right]=\delta_{\mathbf{p}, \mathbf{p}^{\prime}}$ are preserved by the Bogoliubov transformation (canonical transformation)

$$
\binom{\hat{b}_{\mathbf{p}}}{\hat{b}_{-\mathbf{p}}^{\dagger}}=\left(\begin{array}{cc}
\cosh \theta_{p} & -\sinh \theta_{p} \tag{3}\\
-\sinh \theta_{p} & \cosh \theta_{p}
\end{array}\right)\binom{\hat{a}_{\mathbf{p}}}{\hat{a}_{-\mathbf{p}}^{\dagger}} .
$$

3. Show that instead, for fermionic operators, $\left\{\hat{c}_{\mathbf{p} \sigma}, \hat{c}_{\mathbf{p}^{\prime} \sigma^{\prime}}\right\}=0=\left\{\hat{c}_{\mathbf{p} \sigma}^{\dagger}, \hat{c}_{\mathbf{p}^{\prime} \sigma^{\prime}}^{\dagger}\right\}$ and $\left\{\hat{c}_{\mathbf{p} \sigma}, \hat{c}_{\mathbf{p}^{\prime} \sigma^{\prime}}^{\dagger}\right\}=\delta_{\mathbf{p}, \mathbf{p}^{\prime}} \delta_{\sigma, \sigma^{\prime}}$ (where $\sigma=\uparrow, \downarrow$), the anti-commutation relations are preserved by the following canonical transformation:

$$
\binom{\hat{\gamma}_{\mathbf{p} \uparrow}}{\hat{\gamma}_{-\mathbf{p} \downarrow}^{\dagger}}=\left(\begin{array}{cc}
\cos \theta_{p} & \sin \theta_{p} \tag{4}\\
\sin \theta_{p} & -\cos \theta_{p}
\end{array}\right)\binom{\hat{c}_{\mathbf{p} \uparrow}}{\hat{c}_{-\mathbf{p} \downarrow}^{\dagger}} .
$$

4. Show that the canonical transformation (3) diagonalises the reduced Hamiltonian:

$$
\hat{H}_{\text {red }}=\frac{1}{2} \sum_{\mathbf{p} \neq 0}\left(\begin{array}{ll}
\hat{a}_{\mathbf{p}}^{\dagger} & \hat{a}_{-\mathbf{p}}
\end{array}\right)\left(\begin{array}{cc}
\frac{p^{2}}{2 m}+U_{0} n & U_{0} n \tag{5}\\
U_{0} n & \frac{p^{2}}{2 m}+U_{0} n
\end{array}\right)\binom{\hat{a}_{\mathbf{p}}}{\hat{a}_{-\mathbf{p}}^{\dagger}},
$$

find the expression for $\cosh \theta_{p}, \sinh \theta_{p}$, and for the quasi-particle energy $E_{p}=\sqrt{\frac{U_{0} n p^{2}}{m}+\left(\frac{p^{2}}{2 m}\right)^{2}}$.

2 Landau criterion

According to the Landau criterion for superfluidity, quasi-particles can be excited in a fluid where a small defect is moving at a constant velocity $\mathbf{v}=(v, 0)$ (let's consider the 2 D case here) if the condition

$$
\begin{equation*}
E_{\mathbf{p}}^{\prime} \equiv E_{p}-\mathbf{p} \cdot \mathbf{v}=\sqrt{\frac{U_{0} n p^{2}}{m}+\left(\frac{p^{2}}{2 m}\right)^{2}}-\mathbf{p} \cdot \mathbf{v}<0 \tag{6}
\end{equation*}
$$

is satisfied.
5. Show that the defect critical velocity for quasi-particles excitation with a Bogoliubov dispersion $E_{p}=\sqrt{\frac{U_{0} n p^{2}}{m}+\left(\frac{p^{2}}{2 m}\right)^{2}}$ is given by the speed of sound

$$
\begin{equation*}
v_{c}=\min _{\mathbf{p}} \frac{E_{p}}{p}=c_{s}=\sqrt{U_{0} n / m} \tag{7}
\end{equation*}
$$

6. In 2D $\left(p^{2}=p_{x}^{2}+p_{y}^{2}\right)$ find the closed curve Γ in the $\left(p_{x}, p_{y}\right)$-plane for which $E_{\mathbf{p}}^{\prime}=0$ is satisfied and plot it - N.B. the curve reduces to a point if $v \leq v_{c}=c_{s}$.
7. The sound waves propagate from the defect into the fluid when $v>c_{s}$ with a group velocity $\mathbf{v}_{g}=\nabla_{\mathbf{p}} E_{\mathbf{p}}^{\prime}$, the direction of \mathbf{v}_{g} corresponding to the outward normal direction to the curve Γ found above. Show that for $v>c_{s}$ the curve Γ has a singularity at $\mathbf{p}=0$ with a jump in the normal direction given by an angle 2θ such that $\sin \theta=c_{s} / v$ (see Fig. 1).
8. Explain qualitatively the origin and shape of the Cherenkov-like waves observed in real space for supersonic velocities shown in the bottom panels of Fig. 1: For example, why is the period of the waves (in the x-direction of flow) becoming shorter for larger values of v / c_{s} ?
9. Find the critical velocity v_{c} for a system which spectrum of excitations is gapped, i.e. described by $E_{\mathbf{p}}=\Delta+\frac{p^{2}}{2 m}$ with $\Delta>0$.
10. Repeat the same exercise now for another gapped spectrum described by $E_{\mathbf{p}}=\sqrt{\left(\epsilon_{\mathbf{p}}-\delta\right)\left(\epsilon_{\mathbf{p}}-\delta+2 U_{0} n\right)}$, where $\delta<0$. Show that now the critical velocity is always larger than the speed of sound if the "detuning" δ is finite (and negative), and that the limit $v_{c}=c_{s}$ is recovered when $\delta \rightarrow 0$ - Answer: $v_{c}=c_{s} \sqrt{1-\delta^{\prime}+\sqrt{-\delta^{\prime}\left(-\delta^{\prime}+2\right)}}$, where $\delta^{\prime}=\delta / U_{0} n$.

Figure 1: Top row: Tilted spectrum of excitation (i.e., in the reference frame K^{\prime} of the moving defect), in dimensionless units, $E_{\mathbf{p}} / U_{0} n=\sqrt{p^{\prime 2} / 2\left(p^{\prime 2} / 2+2\right)}-$ $\mathbf{v}^{\prime} \cdot \mathbf{p}^{\prime}$, where $p^{\prime}=p / m c_{s}, v^{\prime}=v / c_{s}$, and where we have assumed that the defect moves in the positive x-direction, $\hat{\mathbf{v}}=(1,0)$. The defect motion is subsonic $v / c_{s}=0.5$ in the left panel and supersonic $v / c_{s}=1.5$ in the middle and $v / c_{s}=3$ in the right panel. Middle row: "Rayleigh" curve Γ in the \mathbf{p}-plane such that $E_{\mathbf{p}}-\mathbf{p} \cdot \mathbf{v}=0$; the arrows in the middle and right panel indicate the direction of emission of phonons, indicating the existence of a Mach cone because of the singularity at the origin of the curve Γ. Bottom row: Condensate density profiles around the defect in the three cases.

