Problem set 5

March 5, 2013

to submit by Thursday the $21^{\text {st }}$ of March

0.1 Second and first order phase transitions

Let us consider the following phenomenological free energy density of a given system described in terms of a real homogeneous order parameter m (Landau's mean-field theory):

$$
\begin{equation*}
\frac{f(m)}{V}=f_{0}+a\left(T-T_{c}\right) m^{2}+\frac{b}{2} m^{4} \tag{1}
\end{equation*}
$$

where $a>0$ and $b>0$ are two constant positive parameters.

1. If the state that minimises the free energy is the physically realised state, describe the second order phase transition across $T=T_{c}$ and find how the minimum m_{0} changes with the temperature.
2. Now let's immagine that a system is instead described by the following free energy

$$
\begin{equation*}
\frac{f(m)}{V}=f_{0}+a\left(T-T_{c}\right) m^{2}+\frac{b}{2} m^{4}+\frac{c}{3} m^{6} \tag{2}
\end{equation*}
$$

where the coefficient $c>0$ for stability, but the coefficient of the fourth order term, b, can now change sign (as before $a>0$). Show that, for $T>T_{c}$, two (symmetric) secondary minima develop in the free energy density at finite values of the order parameter m and that, for a critical temperature $T=T_{\text {first }}>T_{c}$, a first order transition can be indentified where the minimum for $m=0$ and the one for $m \neq 0$ have the same energy. Describe the system phase diagram as a function of the system parameters.

1 Two-component condensates

Let us consider the case of a gas formed by a mixture of two types of bosons of equal densities. We indicate with ψ_{\uparrow} and ψ_{\downarrow} the BEC order parameter for each boson - we can think of them as, e.g., the same boson in two different spin state. Now the system is characterised by an intra-species interaction strength $U_{\uparrow \uparrow}=U_{\downarrow \downarrow}=U_{0}$ (which we are assuming to be the same for the two species and repulsive) and an inter-species interaction strength, which we indicate as
$U_{\uparrow \downarrow}=U_{0}-2 U_{1}$, and that can be either attractive or repulsive. The free energy of the system can be thus written as:

$$
\begin{align*}
E\left[\psi_{\uparrow}, \psi_{\uparrow}^{*}, \psi_{\downarrow}, \psi_{\downarrow}^{*}\right]= & \int d \mathbf{r}\left[\sum_{\sigma=\uparrow, \downarrow} \psi_{\sigma}^{*}\left(-\frac{\hbar^{2} \nabla^{2}}{2 m_{\sigma}}-\mu\right) \psi_{\sigma}\right. \\
+ & \left.\frac{U_{0}}{2}\left(\left|\psi_{\uparrow}\right|^{4}+\left|\psi_{\downarrow}\right|^{4}\right)+\left(U_{0}-2 U_{1}\right)\left|\psi_{\uparrow}\right|^{2}\left|\psi_{\downarrow}\right|^{2}\right] \\
& =\int d \mathbf{r}\left[\sum_{\sigma=\uparrow, \downarrow} \psi_{\sigma}^{*}\left(-\frac{\hbar^{2} \nabla^{2}}{2 m_{\sigma}}-\mu\right) \psi_{\sigma}\right. \\
& \left.+\frac{U_{0}-U_{1}}{2}\left(\left|\psi_{\uparrow}\right|^{2}+\left|\psi_{\downarrow}\right|^{2}\right)^{2}+\frac{U_{1}}{2}\left(\left|\psi_{\uparrow}\right|^{2}-\left|\psi_{\downarrow}\right|^{2}\right)^{2}\right] \tag{3}
\end{align*}
$$

3. Evaluate the two coupled Gross-Pitaevskii equations associated to (3).
4. Consider now the case of uniform field solutions. Show that the the free energy (3) has a minimum for $\left|\psi_{\uparrow}\right|=\left|\psi_{\downarrow}\right|$ if $U_{1}>0$, while the minimum occurs for either $\left(\left|\psi_{\uparrow}\right| \neq 0,\left|\psi_{\downarrow}\right|=0\right)$ or $\left(\left|\psi_{\uparrow}\right|=0,\left|\psi_{\downarrow}\right| \neq 0\right)$ when $U_{1}<0$ - Note that, for stability, one has to require that $U_{0}>0$ and $U_{0}-U_{1}>0$. Discuss what happens when either $U_{0}<0$ or $U_{0}-U_{1}<0$. Find the values of the minima in terms of the chemical potential. Plot the system phase diagram in the $\left(U_{0}, U_{1}\right)$ space.
5. Evaluate the Bogoliubov spectra of excitation separately for both cases $U_{1}>0$ and $U_{1}<0$ and discuss your results - now assume that $U_{0}>0$ and $U_{0}-U_{1}>0$.

2 Vortex line solutions

We have derived in class that a solution of the time-independent Gross-Pitaevskii equation (GPE) is the one describing a vortex line of charge j :

$$
\begin{equation*}
\Psi_{v}(\mathbf{r})=e^{i j \varphi}\left|\Psi_{v}(r)\right| \tag{4}
\end{equation*}
$$

where (r, φ, z) are the cilindrical coordinates, i.e. φ is the azymuthal angle.
6. Show that, by parametrising the amplitude of the vortex solution $\left|\Psi_{v}(r)\right|$ in terms of a dimensionless function of $\tilde{r}=r / \xi$, where $\xi=\hbar / \sqrt{2 m U_{0} \bar{n}}$ is the healing length and $\bar{n} \simeq \mu / U_{0}$ is the uniform density solution,

$$
\begin{equation*}
\left|\Psi_{v}(r)\right|=\sqrt{\bar{n}} f(\tilde{r}) \tag{5}
\end{equation*}
$$

the GPE can be equivalently rewritten as

$$
\begin{equation*}
\frac{1}{\tilde{r}} \frac{d}{d \tilde{r}}\left(\tilde{r} \frac{d f(\tilde{r})}{d \tilde{r}}\right)+\left(1-\frac{j^{2}}{\tilde{r}^{2}}\right) f(\tilde{r})-f^{3}(\tilde{r})=0 \tag{6}
\end{equation*}
$$

7. Show that (in a cilindrical container of height L and radius R, thus with volume $V=L \pi R^{2}$) the free energy of the vortex solution minus the free
energy of the homogeneous solution $\left(E_{0}^{\prime}=V\left(\frac{U_{0} \bar{n}^{2}}{2}-\mu \bar{n}\right)=-\frac{L \pi R^{2}}{2} U_{0} \bar{n}^{2}\right)$ can be written as

$$
\begin{equation*}
E_{v}^{\prime}-E_{0}^{\prime}=\frac{\pi L n \hbar^{2}}{m} \int_{0}^{R / \xi} d \tilde{r} \tilde{r}\left[\left(\frac{d f}{d \tilde{r}}\right)^{2}+\frac{j^{2}}{\tilde{r}^{2}} f^{2}+\frac{1}{2}\left(f^{2}-1\right)^{2}\right] \tag{7}
\end{equation*}
$$

Note that we use the notation $E^{\prime}=E-\mu N$.
8. For the case of a vortex of charge $|j|=1$, consider the following variational solution

$$
\begin{equation*}
f(\tilde{r})=\frac{\tilde{r}}{\sqrt{\alpha+\tilde{r}^{2}}}, \tag{8}
\end{equation*}
$$

and use it as a trial form for the real solution $f(\tilde{r})$ of (6), i.e., substitute (8) into (7) and minimise the energy expression with respect to the parameter in the trial function α. Show that the optimal value is $\alpha=2$.
9. (Optional:) Show that for the optimal solution, one gets

$$
\begin{equation*}
E_{v}^{\prime}-E_{0}^{\prime}=\frac{\pi L n \hbar^{2}}{m} \ln \left(\frac{1.497 R}{\xi}\right) \tag{9}
\end{equation*}
$$

which is very close to the exact (numerical) result $E_{v}^{\prime}-E_{0}^{\prime}=\frac{\pi L n \hbar^{2}}{m} \ln (1.464 R / \xi)$.

