
Introduction to BEC, Superfluidity, & Superconductivity Problem set 7

Problem set 7

April 5, 2013

to submit by Monday the 15th of April

1 The homogeneous ideal Fermi gas in 3D and

in 2D

Consider first a homogeneous gas of N free fermions in a single spin state (no
spin degeneracy) in a 3D volume V .

1. Evaluate the Fermi energy

εF =
~
2

2m
(6π2n)2/3 (1)

as a function of the gas density, n = N/V , and the particle mass m.

2. Show that the ground state energy of the system at zero temperature is
given by E(T = 0) = 3

5NεF and evaluate the gas compressibility κ−1 =

−V ∂P
∂V , where the pressure is related to the internal energy by PV = 2

3E.
Compare and comment the result you get with the one you got for an
ideal gas of bosons.

3. Evaluate numerically the expression of the chemical potential µ(T )/kBTF

as a function of the temperature T/TF , where the Fermi temperature is
given by TF = kBεF . Compare the plot you get with the case of a classical
gas of single component particles (here you can do the calculation analyt-

ically), where you define the temperature kBT0 = 2π~2

m n2/3 as nλ3
T0

= 1,
and also with the case of a gas of identical bosons, where the critical tem-

perature for BEC is given by kBTc = 2π~2

m n2/3/[g3/2(1)]
2/3 (you got the

plot in the problem set 1). Your result should look like the one shown
in the figure here below. Comment the results you get. Why the critical
temperature for BEC is the same order of magnitude of the Fermi energy,
Tc ∼ TF ∼ T0?
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4. Show that for fermions, the following low temperature, T ≪ TF , ex-
pansions apply for the chemical potential and the system internal energy
respectively:

µ(T ) ≃ εF

[

1−
π2

12

(

T

TF

)2

+ . . .

]

E(T ) ≃
3

5
NεF

[

1 +
5π2

12

(

T

TF

)2
]

.

5. Optional: Plot the system internal energy E(T ) and heat capacity cv =
∂E(T )
∂T as a function of the temperature T/TF for fermions, bosons and a

classical gas.

6. Consider now the case of 3He atoms (fermions with spin S = 1/2). If near
absolute zero the density times the mass is mn = 0.081 g cm−3, evaluate
the Fermi energy and the Fermi temperature.

7. Consider now a homogeneous gas of identical fermions (single spin state)
in 2D: evaluate the Fermi energy and, at finite temperature, establish that:

εF = µ+ kBT log
(

1 + e−βµ
)

. (2)

Note that in 2D the density of state is constant, and the integral fixing the
number of particles can be evaluated analytically. Invert this expression
and plot µ/kBTF versus T/TF together with the result you get for the
chemical potential of a classical gas in 2D. What happens for a homoge-
neous gas of bosons in 2D?

2 The ideal Fermi gas in a 3D harmonic trap

Consider a gas of N identical fermions (no spin) in a three-dimensional harmonic
trap, Vext(r) =

1
2mω̄2r2.

8. Evaluate the Fermi energy, εF , as a function of the trap frequency ω̄ and
the number of particles N .
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9. Compare the expression you get for the Fermi temperature, kBTF = εF ,
with the one you got for the transition temperature of N identical bosons in
a 3D trap to a BEC state, kBTc ≃ 0.94~ω̄N1/3. What can you conclude?

10. Evaluate the gas internal energy E(T ) and plot the energy per particle
in units of the Fermi energy, E(T )/(NǫF ) as a function of T/TF . Show
that at zero temperature, E(T = 0) = 3

4NεF . Derive explicitly the low
temperature behaviour, T ≪ TF and show that, at high temperatures,
you recover the classical result Ecl(T ) = 3NkBT (note that in a trap you
have 3 rather than 3

2 ).

Let us assume that, in the limit of a large number of fermions N , one can
make use of a semiclassical description, where the properties of the gas at a
given point r of the trap are assumed to be those of a uniform gas having a
density equal to the local density n(r). In this local density approximation the
Fermi distribution function and the local density n(r) are given respectively by

fF (r,p) =
1

exp[β(ǫp + Vext(r)− µ)] + 1
(3)

n(r) =

∫

dp

(2π~)3
fF (r,p) , (4)

where ǫp = p2/2m.

11. Re-obtain the expression of the Fermi energy for a trapped gas you got
previously by requiring that N =

∫

drn(r).

12. Derive the density profile n(r) in the zero temperature limit.
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