Problem set 8

April 16, 2013

to submit by Thursday the $25^{\text {th }}$ of April

1 The one-pair Cooper problem

Consider a pair of electrons with opposite spins and positions \mathbf{r}_{1} and \mathbf{r}_{2}, on top of a Fermi sphere of radius $k_{F}, k>k_{F}$, described by the following pair wavefunction:

$$
\begin{equation*}
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\varphi(\mathbf{r}) \frac{|\uparrow\rangle|\downarrow\rangle-|\downarrow\rangle|\uparrow\rangle}{\sqrt{2}} \quad \varphi(\mathbf{r})=\frac{1}{V} \sum_{\mathbf{k}} \varphi_{\mathbf{k}} e^{i \mathbf{r} \cdot \mathbf{k}} \tag{1}
\end{equation*}
$$

where $\mathbf{r}=\mathbf{r}_{1}-\mathbf{r}_{2}$ and where we have assumed the center of mass wavevector \mathbf{q} to be zero. The Schrödinger equation for the pair relative wavefunction can be written in momentum space as

$$
\begin{equation*}
2 \xi_{\mathbf{k}} \varphi_{\mathbf{k}}+\frac{1}{V} \sum_{\mathbf{k}^{\prime}} U_{\mathbf{k}-\mathbf{k}^{\prime}} \varphi_{\mathbf{k}^{\prime}}=E \varphi_{\mathbf{k}} \tag{2}
\end{equation*}
$$

where $\xi_{\mathbf{k}}=\epsilon_{\mathbf{k}}-\varepsilon_{F}$. We approximate the interaction with

$$
U_{\mathbf{k}-\mathbf{k}^{\prime}}= \begin{cases}U_{0}=-\left|U_{0}\right| & \left|\xi_{\mathbf{k}}\right|,\left|\xi_{\mathbf{k}^{\prime}}\right|<\hbar \omega_{D} \tag{3}\\ 0 & \text { otherwise }\end{cases}
$$

1. Show that the normal gas is unstable towards the formation of a pair bound state, $E<0$, for any value of the attractive interaction strength $U_{0}<0$, and find the expression of E. Give an estimate of E for $N\left(\varepsilon_{F}\right)\left|U_{0}\right| \simeq$ $0.2\left(N\left(\varepsilon_{F}\right)=m^{3 / 2} /\left(\sqrt{2} \pi^{2} \hbar^{3}\right)\right)$ and $T_{D} \simeq 300 \mathrm{~K}\left(\hbar \omega_{D}=k_{B} T_{D}\right)$.
2. Show that a necessary condition for the above situation is the Pauli blocking - i.e., show that for $\varepsilon_{F}=0$, not all values of $U_{0}<0$ imply the existence of a bound state.
3. Estimate the size of the Cooper pair

$$
\begin{equation*}
\sqrt{\left\langle r^{2}\right\rangle}=\left(\frac{\int d \mathbf{r} r^{2}|\varphi(\vec{r})|^{2}}{\int d \mathbf{r}|\varphi(\vec{r})|^{2}}\right)^{1 / 2} \simeq \sqrt{\frac{4}{3} \frac{\hbar v_{F}}{E}} \tag{4}
\end{equation*}
$$

and give an estimate for $v_{F} \simeq 10^{8} \mathrm{~cm} \mathrm{~s}^{-1}$.
4. Explain why the lowest energy Cooper pair is the one obtained from electrons of opposite wavevectors and spins, (\mathbf{k}, \uparrow) and $(-\mathbf{k}, \downarrow)$, i.e., a pair with zero center of mass momentum $\mathbf{q}=0$. (Optional:) Show that

$$
\begin{equation*}
E(\mathbf{q})=E+\frac{\hbar v_{F}}{2} q \tag{5}
\end{equation*}
$$

2 Coherent states versus Fock states

Consider the following coherent state

$$
\begin{equation*}
|\phi\rangle_{c}=e^{-|\phi|^{2} / 2} e^{\phi \hat{b}^{\dagger}}|0\rangle \tag{6}
\end{equation*}
$$

where $\phi \in \mathbb{C}$, and \hat{b}^{\dagger} and \hat{b} are the bosonic creation and annihilation operators, $\left[\hat{b}, \hat{b}^{\dagger}\right]=1$ and $\left[\hat{b}^{\dagger}, \hat{b}^{\dagger}\right]=0=[\hat{b}, \hat{b}]$.
5. Show that the coherent state $|\phi\rangle_{c}$ is normalised, ${ }_{c}\langle\phi \mid \phi\rangle_{c}=1$ and that it is an eigenstate of the annihilation operator

$$
\begin{equation*}
\hat{b}|\phi\rangle_{c}=\phi|\phi\rangle_{c} . \tag{7}
\end{equation*}
$$

In addition, evaluate $\hat{b}^{\dagger}|\phi\rangle_{c}$.
6. Evaluate the product between two coherent states ${ }_{c}\langle\theta \mid \phi\rangle_{c}$.
7. Show that the average number of particles and its variance in a coherent state are give respectively by:

$$
\begin{equation*}
\bar{N}={ }_{c}\langle\phi| \hat{b}^{\dagger} \hat{b}|\phi\rangle_{c}=|\phi|^{2} \quad \frac{\sigma}{\bar{N}}=\frac{1}{\sqrt{\bar{N}}} \tag{8}
\end{equation*}
$$

Now consider the Fock state (for which the number of particles is fixed to $N)$:

$$
\begin{equation*}
\left|\Psi_{N}\right\rangle=\frac{1}{\sqrt{N!}}\left(\hat{b}^{\dagger}\right)^{N}|0\rangle \tag{9}
\end{equation*}
$$

8. Show that the number of particles N and the phase θ are conjugate variables, i.e., that you can write the Fock state $\left|\Psi_{N}\right\rangle$ as a linear superposition of coherent states $\left|e^{i \theta}\right\rangle_{c}$:

$$
\begin{equation*}
\left|\Psi_{N}\right\rangle \propto \int_{0}^{2 \pi} \frac{d \theta}{2 \pi} e^{-i \theta N}\left|e^{i \theta}\right\rangle_{c} \tag{10}
\end{equation*}
$$

Here, the proportionality symbol \propto means we are not going to worry about normalisation terms.
9. Explain in which sense you can interpret (by considering N as a continuous variable):

$$
\begin{equation*}
N \leftrightarrow-i \frac{\partial}{\partial \theta} \quad \theta \leftrightarrow-i \frac{\partial}{\partial N} \tag{11}
\end{equation*}
$$

