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Problem set 9

April 22, 2013

to submit before the 10th of May

1 T = 0: BCS ground state

Let us consider a balanced (same density) mixture of N fermionic atoms (we can
equivalently think of electrons in a metal), N/2 with spin σ =↑ and N/2 with
spin σ =↓, described by the creation (annihilation) single particle operators in

momentum (or wavevector k = p/~) space ĉ†kσ (ĉkσ):

{ĉ†kσ, ĉk′σ′} =δσ,σ′δk,k′ {ĉ†kσ, ĉ†k′σ′} =0 = {ĉkσ, ĉk′σ′} . (1)

Let us consider the pair operator

b̂†
k

= ĉ†
k↑ĉ

†
−k↓ b̂k = ĉ−k↓ĉk↑ . (2)

1. Evaluate the commutators [b̂k, b̂k′ ], [b̂†k, b̂†k′], and [b̂k, b̂†k′ ] and comment if

the operator b̂k has bosonic statistics or not. Establish if a limit does exist

in which you can describe it as a bosonic operator — N.B. pairs ĉ†k↑ĉ
†
−k↓

form a tightly bound molecule when average occupation numbers nkσ are
overall small and spread in momentum.

Let us now consider the following two ground states describing a superposi-
tion of N/2 pairs. The first is a Fock state, a state with a definite number of
particles, N :

|ΨN〉 =
∑

k1

· · ·
∑

kN/2

N/2
∏

i=1

ϕki b̂
†
ki
|0〉 , (3)

2. Describe which form the wavefunction ϕki needs to have in order that the
Fock state |ΨN 〉 describes a (non-interacting) Fermi sea at T = 0 filled up
to the Fermi energy εF = ~

2k2
F /2m.

The second state, is the BCS ground state, i.e., a coherent superposition of pairs
all with the same phase:

|Ψφ〉 =
∏

k

(

uk + eiφvkb̂†k

)

|0〉 =
∏

k

(

cos θk + eiφ sin θkb̂†k

)

|0〉 . (4)

3. Show that |Ψφ〉 is a normalized (i.e., 〈Ψφ|Ψφ〉 = 1) coherent state of pairs
condensed in the zero center of mass momentum. Evaluate the average
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number of particles in the BCS ground state N̄ = 〈Ψφ|N̂ |Ψφ〉 and the

variance σ =
√

〈Ψφ|N̂2|Ψφ〉 − 〈Ψφ|N̂ |Ψφ〉2, and show that σ/N̄ → 0 in

the thermodynamic. Finally, show that the Fock state can be written as
the following linear superposition of the BCS coherent state:

|ΨN 〉 = (norm)

∫ 2π

0

dφ

2π
|e−iφN/2Ψφ〉 . (5)

2 Variational calculation

Consider the following Hamiltonian describing the interacting Fermi gas (in
this simplified description, interactions are included only between fermions with
opposite spins):

Ĥ − µN̂ =
∑

kσ

ξkĉ†kσ ĉkσ +
1

V

∑

k1k2q

Uk1−k2
ĉ†
k1+

q

2
↑
ĉ†
−k1+

q

2
↓
ĉ−k2+

q

2
↓ĉk2+

q

2
↑ , (6)

where ξk = ǫk − µ.

4. Evaluate the Hamiltonian expectation value 〈Ψφ|Ĥ−µN̂ |Ψφ〉 (without loss
of generality you can assume the phase to be zero, φ = 0) and show that
the functions uk = cos θk and vk = sin θk that minimise this expectation
value have to satisfy the following equation:

0 = 2ξk tan 2θk − 2∆k (7)

∆k = − 1

2V

∑

k′

Uk−k′ sin 2θk′ = − 1

V

∑

k′

Uk−k′〈Ψφ|ĉ−k′↓ĉk′↑|Ψφ〉 . (8)

Show that for a model interaction

Uk−k′ =

{

−|U0| |ξk|, |ξk′ | < ~ωD

0 otherwise
(9)

the gap equation can be solved, giving ∆ = ~ωD/ sinh(1/N(εF )|U0|).
What do the coefficients u2

k, v2
k, and ukvk represent physically? Plot

them as a function of the wavevector k in the weak-coupling limit ∆ ≪
~ωD ≪ εF .

5. Evaluate the ground state energy of the superconducting state with respect
to the energy of the normal state.

6. Show that the very same results obtained above can also be obtained by
diagonalising the mean-field Bogoliubov Hamiltonian,

Ĥ =
∑

k

(

ĉ†k↑ ĉ−k↓

)

(

ξk −∆k

−∆∗
k −ξk

) (

ĉk↑
ĉ†−k↓

)

+
∑

k

(

ξk + ∆∗
k〈b̂k〉

)

,

(10)
by means of the following canonical transformation

(

γ̂k1

γ̂†
−k2

)

=

(

cos θk sin θk

sin θk − cos θk

) (

ĉk↑
ĉ†−k↓

)

. (11)
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Evaluate the gap equation at finite temperature and evaluate numerically
the finite temperature gap ∆(T )/∆(0) as a function of the temperature
T/Tc (where ∆(Tc) → 0). Optional: Show that the following asymptotic
limits are verified:

∆(T ) ≃











∆(0) − (2π∆(0)kBT )1/2 e−β∆(0) T ≪ Tc

1.74∆(0)

(

1 − T

Tc

)1/2

T → T−
c .

(12)

3 Gap and number equations in the BEC-BCS

crossover

We will see in the last two classes that, for a gas of fermionic atoms with a
simplified contact interaction potential

Uk = U0
m

4π~2a
=

1

U0
+

1

V

∑

k

1

2ǫk
, (13)

gap and number equations can be respectively written in the following form (in
terms of dimensionless parameters):

1

kF a
=

2

π

√

|µ|
εF

∫ ∞

0

dy
√

y





1

2y
− 1

2
√

(y ∓ 1)2 + (∆
µ )2



 (14)

4

3
=

( |µ|
εF

)3/2 ∫ ∞

0

dy
√

y



1 − y ∓ 1
√

(y ∓ 1)2 + (∆
µ )2



 , (15)

where εF = (~kF )2/2m is the Fermi energy, a the scattering length and the
sign ∓ refers to respectively the case of positive µ > 0 (BCS side) and negative
µ < 0 (BEC side) chemical potential.

7. Solve gap (14) and number (15) equations in the BEC limit ( 1
kF a ≫ 1),

using the following approximations εF ≪ ∆ ≪ |µ|. Find µ
εF

and ∆
εF

as

functions of 1
kF a and check a posteriori that the εF ≪ ∆ ≪ |µ| is satisfied

when 1
kF a ≫ 1.

8. Solve the number equation (15) in the BCS limit (a < 0 and 1
kF |a| ≫ 1)

and find an approximate expression of the chemical potential µ.

9. Optional: Solve numerically the two coupled equations (14) and (15)
across the BEC-BCS crossover and plot both µ/εF and ∆/εF as a function
of 1/kF a.
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