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Ultracold atomic Bose-Einstein condensates with tunable interactions have been proved a rich
and very active field of research. The experimental access to the strongly interacting regime has
been limited by the gas short lifetime due to three-body recombination processes. However, recent
experiments [1, 2] have shown that after a sudden quench to unitarity, where the interatomic scatter-
ing length a → ∞, two-body lossless dynamics develops faster than three-body processes, allowing
the gas to attain a degenerate steady state. Furthermore, very recently [3] it has been possible to
isolate the effects of the early-time lossless postquench dynamics, demonstrating the emergence of a
universal prethermal steady state. Here, by making use of a time-dependent Nozières-Saint James
variational formalism, that takes into account excitations out of the condensate in pairs only, we
numerically study the early-time dynamics of a degenerate Bose gas after quenches to several values
of a. We characterise the coherent oscillations between atomic and molecular states as function
of the final scattering length of the gas, showing that after the quench the oscillatory behaviour
becomes negligible as we consider a final a in the weakly interacting regime, while for large enough
a it exhibits a crossover indicating the appearance of the unitary regime. For the largest scattering
lengths we can numerically simulate, we find a universal scaling behaviour of the typical raising time
of the momentum distribution in agreement with [3]. Finally, we discuss some preliminary results
on possible future work.

I. INTRODUCTION

In the last decades ultracold atomic gases have suc-
cesfully emerged as a platform for the study of many-
body quantum physics out of equilibrium. In particular,
the possibility to dynamically change the effective inter-
atomic interaction (a process known as quench) by means
of Feshbach resonances has open the door to investigate
the unitary regime, where interactions are as strong as
allowed by quantum mechanics and new forms of univer-
sality are expected.

At low energies two-body scattering is described by
an s-wave scattering length a that can be controlled by
an external magnetic field taking advantage of Feshbach
resonances [4]. In particular, the unitary regime, where
a→∞, has attracted a growing interest in the last years.
In this situation, even though Efimov physics was suscep-
tible to induce non-universality, the dynamics has been
consistent with the average interparticle distance n−1/3

(written in terms of the gas density n) being the only
relevant length scale [1], therefore showing universality
in units of the Fermi momentum kn = (6π2n)1/3, en-
ergy εn = k2

n/(2m) (where m is the mass of one atom)
and time tn = 1/εn (henceforth we fix ~ = 1). This
regime has been intensively studied in the case of clouds
of fermionic atoms [5, 6], where Pauli exclusion principle
prevents three-body recombination, which is the respon-
sible of the decay of the gas to its truly equilibrium solid
state. However, this statistical blockade is not present
in the case of Bose gases, where the three-body recom-
bination rate scales as n2a4, and therefore in a unitary
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Bose-Einstein condensate (BEC) losses were expected to
dominate.

However, it was found [1] that after a sudden quench
of the interaction to the unitary regime, the timescale for
three-body losses is much larger than that of lossless dy-
namics, allowing the momentum distribution to reach a
steady-state before three-body recombinations take over
the gas. Futhermore, it was measured [7] that after a
quench to unitarity there is an early time window where
the three-body contact C3 (which is a measure of the
strength of short-range, three-body correlations) remains
negligible. These surprising results showed that one path
to study the unitary Bose gas is to perform the measure-
ments dynamically after a rapid quench of the interac-
tion.

More recently, Eigen et al. [3] measured the popula-
tion of individual states with a certain momentum k as
a function of time in a homogenous degenerate Bose gas
quenched to unitarity in an optical-box trap. The dy-
namics is first governed by lossless, two-body processes
and the states evolve towards a prethermal steady state
with a population n̄k in a timescale τgrow, that is later de-
stroyed by long-time heating due to three-body recombi-
nations. When plotting τgrow as function of k, they found
a universal prethermal behaviour, with all the dynamics
being consistent with kn and tn as the only characteris-
tic momentum and time scales. A more striking result is
that n̄k does not decay as 1/k4, as one would expect for
a quantum gas governed by short-range, two-body inter-
actions [8], but rather decays exponentially with k.

In this Master’s thesis, by making use of Nozières-Saint
James variational formalism [9], that takes into account
two-body scattering processes only, we study the early-
time dynamics of homogeneous, degenerate Bose gases
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quenched to different interaction strengths, ranging from
the weakly to the strongly interacting regime. We de-
scribe the short-range, 2-body interactions of the gas
with a δ-like pseudopotential characterised by an s-wave
scattering length, that is renormalised and thus accounts
for the molecular bound state in the repulsive side of the
resonance.

As found by [10], this molecular bound state plays a
crucial role in the post-quench dynamics, producing co-
herent oscillations in the number of particles excited out
of the condensate nex and Tan’s contact C(t). We charac-
terise, as a function of the gas final scattering length, the
behaviour of these oscillations and our results anticipate
the crossover to the unitary regime. We also find an uni-
versal scaling behaviour of the typical raising time τgrow
of the population of individual k states for long enough
interactions, in agreement with [3]. However, our model
is not able to reproduce the exponential decay of the
steady state population n̄k as function of k, but rather
displays the typical 1/k4 behaviour of quantum gases de-
scribed by a two-body, s-wave contact interaction [8].

II. MODEL

We start considering the Hamiltonian describing a
homogeneous gas of N interacting bosons in a three-
dimensional (3D) volume V

Ĥ =
∑
k

εkâ
†
kâk +

UΛ

2V

∑
k1,k2,q

â†k1+qâ
†
k2−qâk1

âk2
, (II.1)

where â†k (âk) creates (annihilates) a boson with mo-
mentum k and mass m (εk = k2/2m). Close to a Fesh-
bach resonance, atom interactions can be modelled via a
short-range psudopotential which, in momentum space,
is constant with strength UΛ up to a momentum cutoff
Λ. The coupling constant and cutoff are related to the
s-wave scattering length a through the T -matrix renor-
malization process [4, 11]:

m

4πa
=

1

UΛ
+

1

V

k<Λ∑
k

1

2εk
=

1

UΛ
+
mΛ

2π2
. (II.2)

The cutoff Λ represents the inverse range of the interac-
tion potential. In the Λ→∞ limit, the contact potential
admits, on the repulsive side of the resonance a > 0, a
single molecular bound state with energy [10, 12]

EB = − 1

ma2
. (II.3)

In order to separate the contribution of the condensed
state k = 0 from the one of the excited states k 6= 0, it is
useful to rewrite the Hamiltonian (II.1) by substituting
âk → â0δk ,0 + âk 6=0 (we henceforth use the notation âk

for âk 6=0). One obtains

Ĥ =
∑
k

εkâ
†
kâk +

UΛ

2V
â†0â
†
0â0â0 + Ĥ2 + Ĥ3 + Ĥ4

(II.4)

Ĥ2 =
UΛ

2V

∑
k

(
â†kâ
†
−kâ0â0 + 2â†kâkâ

†
0â0 + h.c.

)
(II.5)

Ĥ3 =
UΛ

V

∑
k,q

(
â†k−qâ

†
qâkâ0 + h.c.

)
(II.6)

Ĥ4 =
UΛ

2V

∑
k1,k2,q

â†k1+qâ
†
k2−qâk1

âk2
. (II.7)

At zero temperature, we describe the early time dy-
namics of the gas after a quench from an initial scatter-
ing length ai to final value af via the time-dependent
generalisation of the Nozières-Saint James variational
Ansatz [9, 13]:

|ψ(t)〉 =
1

N (t)
exp

[
√
V c0(t)â†0 +

∑̄
k

gk(t)

2
â†kâ
†
−k

]
|0〉 ,

(II.8)
where g−k(t) = gk(t). The factor 1/2 in the momen-
tum sum avoids double-counting and we use the notation∑̄

k =
∑k<Λ

k6=0 . The normalisation constant N (t) ensures

that 〈ψ(t)|ψ(t)〉 = 1.
The complex variational parameters c0(t) and gk(t) are

related to the momentum occupation numbers,

N0(t) = 〈â†0â0〉 = V |c0(t)|2 (II.9)

Nk(t) = 〈â†kâk〉 =
|gk(t)|2

1− |gk(t)|2
, (II.10)

and to the pairing term:

xk(t) = 〈âkâ−k〉 =
gk(t)

1− |gk(t)|2
, (II.11)

where 〈. . . 〉 = 〈ψ(t)| . . . |ψ(t)〉. Note that Nk(t) and xk(t)
are not independent functions, rather are constrained by
|xk(t)|2 = Nk(t) [Nk(t) + 1]. The same Ansatz (II.8)
has already been considered by [10, 14] to describe the
quench dynamics of a Bose gas into the strongly interact-
ing regime. |ψ(t)〉 describes the k = 0 condensed state
as a coherent state, while particles at finite momentum
k 6= 0 are excited out of the condensate in pairs only. For
shallow quenches (na3

f � 1), the condensate depletion is

small, |c0(t)|2 ' n and (II.8) is a controlled approxima-
tion at an early stage of the dynamics, when Beliaev-
Landau scattering processes involving three particles can
be safely neglected [15]. In this limit, one can neglect

the contributions of Ĥ3 and Ĥ4 to the Hamiltonian and
thus the dynamics becomes integrable (see App. A), re-
covering the results obtained by Refs. [16, 17] in within
a time-dependent Bogoliubov approximation.

We use the Ansatz (II.8) to study the crossover of
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the early-time dynamics from shallow na3
f � 1 to deep

na3
f � 1 quenches. The fact that the dynamics of the

condensate depletion cannot now be neglected is included
in the time dependence of the variational parameter c0(t),
in a similar fashion to the self-consistent Bogoliubov ap-
proximation considered by [18].

Further, as explained later, we include the contribu-
tion of 〈Ĥ4〉, thus allowing correlations between non-

condensed atoms. However, as 〈Ĥ3〉 = 0, the Ansatz
for |ψ(t)〉 does not admit neither Beliaev decay nor Lan-
dau damping terms that may be responsible for the loss
of atom-molecule coherence.

One expects that, by increasing the value of the fi-
nal scattering length towards unitarity, the separation of
time scales predicted by [15] between a short-time dy-
namics dominated by pair-wise excitations and a longer-
time dynamics requiring the inclusion of higher-order ex-
ciation terms will get reduced. However, the generalisa-
tion of (II.8) to include three-particle processes is beyond
the scope of this work and will be the subject of future
studies.

A. Equations of motion

As in [10, 14], the equations of motion for the varia-
tional parameters c0(t) and gk(t) can be derived from the
Euler-Lagrange equations [10, 19]:

d

dt

∂L
∂ċ∗0

=
∂L
∂c∗0

d

dt

δL
δġ∗k

=
δL
δg∗k

.

where

L =
i

2

[
〈ψ(t)|ψ̇(t)〉 − 〈ψ̇(t)|ψ(t)〉

]
− 〈Ĥ〉 .

When evaluating the contributions to 〈Ĥ〉, we have that

〈Ĥ3〉 = 0 while

〈Ĥ4〉 =
UΛ

2V

∑̄
k,q

[
2Nk(t)Nq(t) + xk(t)x∗q(t)

]
. (II.12)

Differently from [18], we retain the anomalous expecta-

tion values xk in 〈Ĥ4〉, that lead to coherent, virtual
transitions of pairs of atoms back and forth to a molec-
ular condensate, with the energy of two bound atoms
given by (II.3). Operating, one arrives to the following
equations of motion:

iċ0 = UΛc0n+
UΛ

V

∑̄
k

c0|gk|2 + c∗0gk
1− |gk|2

(II.13)

iġk = 2 [εk + UΛn] gk + UΛ

(
2|c0|2gk + g2

kc
∗2
0 + c20

)
+
UΛ

V

∑̄
q

2gk|gq|2 + g2
kg
∗
q + gq

1− |gq|2
, (II.14)

n = 1012cm−3 na3 ξ(µm) τ(ms) |EB |−1(µs)
a = 100a0 1.48 · 10−7 2.74 20.1 3.74 · 10−2

a = 1000a0 1.48 · 10−4 0.867 2.00 3.74
a = 60000a0 32.0 0.112 3.35 · 10−2 1.35 · 104

TABLE I. Values of the natural system lengthscales and
timescales, as well as of the interaction strength parame-
ter na3, for different scattering lengths, in a gas of 85Rb
with density n = 1012cm−3 (N.B. that k−1

n = 0.257µm and
ε−1
n = 0.176ms independently of the scattering length).

that have to be solved for a set of initial conditions c0(0)
and gk(0). Note that the total density

n = n0(t) + nex(t) = |c0(t)|2 +
1

V

∑̄
k

Nk(t) , (II.15)

written as the sum of the density of condensed (n0) and
non-condensed (nex) atoms, is conserved during the dy-
namics.

For instantaneous quenches ai → af , the equations of
motion (II.13) and (II.14) have to be solved for UΛ =
UΛ,f = (1 − 2afΛ/π)−14πaf/m, while the initial condi-

tions can be found by minimising 〈ψ| Ĥ − µN̂ |ψ〉 (for
UΛ = UΛ,i) at a fixed number of particles with respect
to time-independent variational parameters c0(0) and
gk(0). For example, for an initial weakly interacting gas
na3

i � 1, one has that

|c0(0)|2 = n

(
1− 8

3
√
π

√
na3

i

)
' n (II.16)

gk(0) =

√
εk(εk + 2Uin)− (εk + nUi)

nUi
, (II.17)

where Ui = 4πai/m. For shallow quenches, the dynam-
ics is integrable and, as shown in App. A, Eqs. (II.13)
and (II.14) can be solved exactly. We instead want to
describe the evolution of the system dynamics from shal-
low to deep quenches and to this end we numerically
integrate the dynamics.

B. Parameters

Here we review the relevant system parameters in the
different regimes of interaction strength. For a weakly
interacting gas na3

f � 1, the effect of the resonance is
negligible and the quasiparticle dynamics is governed by
the healing length and mean-field time (i.e., it can be
described with Bogoliubov theory) [20]:

ξ =
1√

8πan
τ =

m

4πan
. (II.18)

For larger scattering lengths the molecular bound state
energy EB becomes relevant, and towards unitarity a→
∞, kn and εn are expected to be the only physically
meaningful scales remaining. Values of these quantities
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for a gas of 85Rb with density n = 1012cm−3 calculated
for three scattering lengths representative of the above
mentioned regimes are shown in Table I.

III. RESULTS

We describe the early-time quench dynamics of a Bose-
Einstein condensate at zero temperature as a function of
the final scattering length af all the way towards unitar-
ity. To this end, we numerically solve the equations of
motion (II.13) and (II.14) for the specific case of instan-
taneous quenches from a non-interacting gas (ai = 0,
c0(0) =

√
n and gk(0) = 0) to a generic value of af .

We assume spherical symmetry for gk(t) = gk(t), use
a Gauss-Legendre quadrature and integrate the equa-
tions of motion using a 4th-order Runge-Kutta routine.
The dynamics has thefore two regularisation parameters,
namely the number of points M on the Gauss-Legendre
momentum grid and the momentum cutoff Λ. As ex-
plained in App. B, we have checked the convergence of
our results with respect to both parameters and extrap-
olated the numerics to M →∞ and Λ→∞.

A. Non-condensed fraction

We plot in Fig. 1 the density of particles in excited
states (II.15) as a function of time and for different values
of the final scattering length af after an instantaneous
quench from a non-interacting gas ai = 0. We rescale
both the non-condensed density nex(t) and the time t by
different parameters depending on the range of the final
scattering length we consider af . In particular, in the
weakly interacting regime (panel (a)) we rescale density
and time using the healing length ξ and mean-field time
τ (II.18). In this regime, the results obtained within a
time-dependent Bogoliubov approximation (see App. A)
are in fact universal in these units and one can easily
solve Eq. (A.7) for the early-time dynamics:

nBogex (t)ξ3 '
t�τ

1

4π3/2

√
t

τ
. (III.1)

As Fig. 1(a) shows, this “universal” (i.e., independent
on the value of the final scattering length af ) behaviour
of nBogex (t) in units of ξ and τ in the weakly interacting
regime is only weakly modified by the inclusion of both
the dynamics of the condesate c0(t) and the correlations
between non-condensed atoms, which our equations of
motion (II.13) and II.14 introduce. In particular, our
description takes into account the presence of the molec-
ular bound state in the repulsive side of the Feshbach
resonance, and therefore coherent oscillations appear in
the density of excited particles due to a virtual transfer
of pairs of atoms to it. Because the molecular binding
energy EB (II.3) decreases by increasing af , the period
of oscilations increases in these units. Also note that the
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FIG. 1. Non-condensed density nex(t) as a function of time
and for different values of the final scattering length af after
an instantaneous quench from a non-interacting gas ai = 0.
In all panels, solid lines are the results of the numerical in-
tegration of the equations of motion (II.13) and (II.14). In
panel (a), the dashed line corresponds to the result obtained
within the Bogoliubov approximation (A.7) [16], while in both
panels (b) and (c), the dashed lines are fittings of the longer
time-scale dynamics, from which we extract the steady-state
mean value n̄ex reported in Fig. 2 (except for af = 1000a0, in
which the dashed line is the prediction of Bogoliubov theory).
Density is fixed at n = 1012cm−3.

mean condensate depletion is always above the predic-
tion obtained within the Bogoliubov approximation and
this discrepancy increases by increasing af .

Fig. 1(b) shows the time evolution of nex/n for larger
final scattering lengths af , with the time rescaled in units
of |EB |. As will be shown later, the period of oscillations
in quenches to af . 1000a0 has an universal value of
T = 2π/|EB |, while for af & 1000a0 it starts decreasing.

The dynamics of nex/n for even larger af can be seen in
Fig. 1(c), with time rescaled in units of εn. As discussed
in App. B, the dynamics convergence slows critically
down when increasing the value of af and af = 60000a0

is the largest we can consider. In this regime, the av-
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FIG. 2. (a) Steady-state mean value of the non-condensed
density at large times n̄ex as a function of af in the crossover
from shallow (na3

f � 1) to deep (na3
f � 1) quenches. The

dashed green line is the steady-state value within Bogoliubov
theory (see (III.4)), while the black dot-dashed line marks
the largest steady-state condensate deplition obtained for the
largest af considered. Density is fixed at n = 1012cm−3. (b)
Amplitude of the oscillations in the non-condensed fraction
∆nex/n as function of af . For af . 1000a0 the values are
very well adjusted to a cubic fit.

erage of the oscillations slowly approaches nex/n = 1,
although this value is never reached in the maxima. In
fact, Fig. 2(a) shows the large-time steady state reached
by the average of the maxima and minima of the oscilla-
tions in nex/n as function of the final scattering length
of the quench af , named n̄ex/n. For af > 1000a0, the
results plotted are obtained extrapolating to t → ∞ the
values of the average between consecutive maxima and
minima using a fit of the shape f(x) = a + becx (see
App. C). The corresponding errors are given by the fit
uncertainty. For af ≤ 1000a0, we would need to cal-
culate the average of the oscillations for larger times in
order to apply the fit. Therefore, in this range of scatter-
ing lengths Bogoliubov approximation has been used to
obtain an order of magnitude estimation of the average
of the oscillations. The errors in the case are estimated
as a 20% of the amplitude of the oscillations. The non-
condensed fraction in Bogoliubov approximation can be
calculated from (A.7), which for t� τ and t� τ reduces
respectively to

nex(t)ξ3 =
1

4π3/2

√
t

τ
, (III.2)

nex(t)ξ3 =
1√
27π

(
1− e−4t/τ

)
. (III.3)

This latter expression can also be written (II.18) as

nex
n

=
(8πan1/3)3/2

√
27π

(
1− e−4t/τ

)
. (III.4)

In general, the average of the oscillations increases as
af increases, slowly approaching nex/n = 1 for large
enough scattering lengths.

In [18] nex(t → ∞) is studied for sudden quenches
from knai = 0.01 (i.e. ai ' 50a0 in a gas of density
n = 1012cm−3) to several values of af , and we see a
good agreement between our variational results and their
self-consistent dynamic field theory. In fact, with both
formalisms the system seems to remain in the superfluid
phase for an arbitrarily large final scattering length. For
knaf . 0.1 (i.e. af . 500a0), their results are consistent
with Bogoliubov approximation.

In the lower panel (b) of Fig. 2 we show the amplitude
of the oscillations ∆nex/n as function of af . They are
calculated by averaging the values of different oscillations
in the large-time regime where the amplitude does not
change appreciably, and their uncertainty is the standard
deviation between them. For af . 1000a0, they exhibit
a cubic decay as we go to smaller scattering lengths. For
af & 1000a0, the average of the oscillations approaches
n̄ex/n = 1 and therefore its amplitude starts to slowly de-
crease. We conclude that whether the gas is in the weakly
interacting regime or not, the oscillatory behaviour is al-
ways present. However, far from the resonance, as the
energy of the molecular state becomes very large, the os-
cillations become very rapid and their amplitude quickly
goes to zero.

In [7] it was found that in quenches to large scatter-
ing lengths (af ≥ 300a0) in an ultracold 39K atomic gas,
three-body processes are not relevant in the first 50µs
after the quench. Since 50/|EB | ' 41µs for af = 700a0,
we expect the oscillations to be measured.

B. Tan’s contact

The momentum distribution of a quantum gas gov-
erned by a two-body, s-wave contact interaction always
decays as 1/k4 for large momenta [8]. The Tan’s contact
is defined as

C(t) = lim
k→∞

k4nk , (III.5)

and it physically represents the strength of two-body,
short range correlations. In Bogoliubov theory this limit
takes the value C0 = 16π2a2n2.

In Fig. 3 we plot C(t) for several quenches of a
non-interacting gas to different scattering lengths
af > 0. The inset shows the 1/k4 tail of the momentum
distribution of the gas a certain time after the quench in
the case of af = 700a0. The Tan’s contact also exhibit
coherent oscillations due to a virtual transfer of pairs of
atoms to the molecular bound state, which as we will see
have a constant period of T = 2π/|EB | for af . 1000a0.
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FIG. 3. Tan’s contact C(t) for quenches from ai = 0 to af >
0 as function of time. The plot is rescaled in units of the
Bogoliubov contact C0 and the energy of the molecular bound
state |EB |. Inset: momentum distribution after a certain time
in a quench from non-interacting to af = 700a0.

N.B. that Bogoliubov C0 remains as a lower limit for the
variational C(t).

This contrasts with the results of [18], where coherent
atom-molecule oscillations are not present in the Tan’s
contact and a time-independent contact is found.

C. Period of the coherent oscillations as function of
the final scattering length

In Fig. 4 we plot the period T of the oscillations
of the non-condensed fraction and the Tan’s contact
after an instantaneous quench to different values of the
scattering length af . The periods are obtained using
fits to extrapolate the values calculated for finite Λ
and M to Λ → ∞ and M → ∞ (see App. B). The
corresponding errors are given by the fit. As shown in
the figure, both periods exhibit a good agreement in the
range where the ones of C(t) were calculated.

In the top panel (a), we observe that below
af ' 1000a0 the period has a constant value of
T = 2π/|EB | independently of af . For larger scattering
lengths, the value of the period starts decreasing. In the
bottom panel (b), for af & 1000a0, T approaches a new
universal value in units of εn, anticipating a crossover to
the unitary regime. However, because accessing larger
values of the interaction requires more computational
power, we are only able to anticipate the crossover, not
completely seeing the new constant value of T .
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FIG. 4. (a) Period T (in units of |EB |) of the oscillations of
nex(t)/n and C(t) after the quench as function of af . (b)
The same in units of εn.

D. Universal prethermal dynamics

In this section we study the dynamics of the popula-
tion of individual k states after instantaneous quenches
from a non-interacting BEC to the strongly interacting
regime. The population Ñk(t) = (Nk(t)/nex(t))k3

n is
rescaled in the same manner as in [3], and we find an
universal behaviour in units of kn and tn above a certain
value of af , indicating the consistency of our results
with the unitary regime.

In Fig. 5 we see that, after the quench, Ñk(t) rapidly
grows, exhibiting coherent oscillations that have a
maximum and later saturate to a steady state. In [3],
a sigmoid fit is employed to calculate the value of the
population in the steady state and the initial growing
time. This can only work with lots of difficulties for our
data at small momenta, due to the oscillations, while
at large momenta the first oscillation is much larger
than the steady state and a sigmoid fit is definitely not
the correct tool to extract those parameters. Therefore
we have used another criterium to calculate the initial
growing time τgrow and the rescaled population of the

steady state Ñstd. We get the position of the global
maximum and calculate the time at which Ñk(t) reaches
1/4 of its value; this will be the time of growth τgrow.

For the steady state Ñstd, we just calculate the average
value of the last oscillations.

As shown in the top panel (a) of Fig. 6, the time of
growth τgrow/tn as function of the momentum k/kn
of the level, rescaled in units of the Fermi time and
momentum, exhibits a crossover from a 1/k decay for
k << kn to a 1/k2 decay for k >> kn, as measured in [3].
This reminds us of the shape of Bogoliubov quasiparticle
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the time at which Ñk reaches 1/4 of its maximum value (both signalised by black dots).

spectrum, where excitations are phonons for kξ << 1
and particle-like for kξ >> 1; only that at unitarity the
natural time and length scales are the Fermi time tn and
the inverse of the Fermi momentum kn. The fact that
we are able to reproduce the results of [3] implies that
this behaviour of the time of growth is completely due to
lossless, two-body dynamics, that are taken into account
in our model. However, in the experiment, oscillations,
if present, are damped. This may be due to Beliaev and
Landau scattering, which are neglected in our model
and induce a loss of atom-molecule coherence that very
likely will damp the oscillations.

The bottom panel (b) of Fig. 6 shows the average
population of the large-time steady state of the oscil-
lations Ñstd as function of the momentum of the level
k/kn, rescaled in units of the Fermi momentum. Rather
than the exponetial decay measured in [3], our calcu-
lation shows the typical 1/k4 decay for a quantum gas
interacting via a two-body, s-wave contact interaction.
It is therefore logical that our model cannot predict such
an exponential decay. The explanation of this behaviour
remains as a theoretical challenge.

IV. CONCLUSIONS

In this Master’s thesis we have employed the NSJ
variational formalism to study the dynamics of a ho-
mogeneous, degenerate Bose gas after instantaneous
interaction quenches from the non-interacting regime
(ai = 0) to final scattering lengths af , ranging from
the weakly to the strongly interacting regime. This
approach accounts for the coherent excitations of pairs
of atoms from the condensate to excited states, as well
as for two-body scattering processes between different
excited states, but it neglects three- and more-body
scattering processes (which is justified in the early-time

after the quench as seen in recent experiments), as well
as the Beliaev and Landau damping. The presence of
a two-atom molecular bound state of energy EB in the
repulsive side of the resonance is also picked including
a regularised contact interaction. This induces coherent
oscillations after the quench due to a virtual transfer of
pairs of atoms to a molecular condensate.

We calculate the equations of motion from the La-
grangian. In the weakly interacting regime, they can
be solved analitically and we recover the expressions
of the time-dependent Bogoliubov approximation if we
use Born approximation. Nevertheless, in general the
equations must be solved numerically.

First, we study the oscillatory behaviour of the non-
condensed fraction nex/n. The oscillations are present
for every af , although their amplitude decreases as a3

f

for small final scattering lengths (af . 1000a0). After
the quench, the average of the oscillations increases up to
a large-time steady state. The average population of this
steady state increases for larger af , slowly approaching
nex/n = 1, but never reaching it. The period of the
oscillations has a universal (i.e. independent of af ) value
of T = 2π/|EB | for af . 1000a0, while for larger af it
changes, reaching a new universal value in units of the
Fermi energy εn, and therefore anticipating a crossover
to the unitary regime, where af → ∞ and the only
meaningful physical scale is the average interparticle
distance n−1/3.

The Tan’s contact C(t) also exhibits coherent oscil-
lations, and its period agrees perfectly with the one
calculated from nex(t)/n in the range of af studied.

Finally, we study the dynamics of the population of
individual states with momentum k after the quench.
Rescaling the population of each level Nk(t) with the
total density of particles in excited states nex and the
Fermi momentum kn, it first shows an initial growth in
a time τgrow. Ñk(t) = (Nk(t)/nex(t))k3

n also exhibits
coherent oscillations, although we discern a large-time
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FIG. 6. (a) Time of growth τgrow/tn of Ñk as function of
k/kn after a quench to the strongly interacting regime, for
several values of af and densities n1 = 1 ·1012cm−3 and n2 =
5 · 1012cm−3. For af & 16000a0, as can be regarded in the
inset, all data falls into the same curve independently of the
values of af and n, indicating the universal behaviour of the
unitary regime. (b) Average population of the steady state

of the oscillations Ñstd reached after a quench to the strongly
interacting regime as function of k/kn. The fit shows the 1/k4

decay expected for a quantum gas with a two-body, s-wave
contact interaction.

steady state in the average of the oscillations Ñstd.
We find that τgrow experiences a crossover from a

1/k decay for k << kn to a 1/k2 decay for k >> kn,
as it was measured in [3], even though in this work
they use a sigmoid fit to calculate the initial time of
growth of the population. Thus, this behaviour must
be a consequence of lossless, two-body dynamics that
is taken into account in our model. However, coherent
oscillations, if present in the experiment, are damped.
This may be due to Beliaev and Landau decays, that
produce a loss of atom-molecule coherence and are not
present in our model.

As for the large-time steady state in the average of
oscillations, Ñstd decays with a 1/k4 tale. We therefore
are not able to see the exponential decay measured in
[3], but this should not be surprising since we consider a
gas with a two-body, s-wave contact interaction.

In future work, it will be interesting to account for
Beliaev and Landau collisions, expanding our ansatz to
include these terms, and see how they affect the coherent
oscillations and the 1/k4 decay of the momentum
distribution.

V. PERSPECTIVES

A. Dynamics of correlations in strongly interacting
Bose gases

For a weakly interacting Bose gas, experiments [23]
have verified that the excitation spectrum is given with
great accuracy by Bogoliubov approximation [20]. How-
ever, in the strongly interacting regime the shape of the
spectrum remains an unaswered question. Beliaev [24]
calculated the first corrections to Bogoliubov dispersion
using quantum field theory, and already suggested the
appearance of a roton minimum similar to that of liquid
helium for large enough scattering lengths. In recent ex-
periments [25] [26] indicators of this backbending have
been measured in the paricle-like (kξ � 1) part of the
dispersion.

The shape of the quasiparticle spectrum is reflected in
the dynamics of density-density correlations

g(r, r ′; t) = 〈ψ(t)| ψ̂†(r)ψ̂(r)ψ̂†(r ′)ψ̂(r ′) |ψ(t)〉 , (V.1)

where the field creation and annihilation operators at a
position r can be written

ψ̂†(r) =
1√
V

∑
k

â†ke
−ik·r , ψ̂(r) =

1√
V

∑
k

âke
ik·r .

(V.2)
The Fourier transform of g(r, r ′; t) is the structure factor

S(k, t) =
1

N

∫
drdr ′g(r, r ′; t)e−ik(r−r ′) . (V.3)

For a homogeneous gas, the spatial dependence reduces
to r ′′ = |r− r ′| → r.

In [16] g(r, t) was calculated after an instantaneous
quench from a non-interacting gas to af > 0 using Bo-
goliubov theory. For a fixed r, correlations exhibit oscil-
lations for small times and after a last maximum they sat-
urate at some final value for large times. The position of
the last maximum as function of time spreads diffusively
for t � τ and ballistically for t � τ , evidencing a close
connection between the dynamics of density-density cor-
relations and the underlying excitation spectrum, as Bo-
goliubov dispersion exhibits an analogous crossover from
a phonon-like regime for kξ � 1 to a particle-like one for
kξ � 1.

Following their idea, we calculate g(r, t) for an instan-
taneous quench using the variational state (II.8). The
structure factor is first obtained from (V.1)-(V.3) to be



9

S(k, t) =
1

N

[
g∗k(t)

1− |gk(t)|2
V c20(t) +

|gk(t)|2

1− |gk(t)|2
(1 + V |c0(t)|2) +

1

1− |gk(t)|2
V |c0(t)|2 +

gk(t)

1− |gk(t)|2
V c∗20 (t)

+
∑
q6=0

|gk+q(t)|2

1− |gk+q(t)|2
1

1− |gq(t)|2
+ 2 Re

∑
q6=0

g∗k+q(t)

1− |gk+q(t)|2
gq(t)

1− |gq(t)|2

] , (V.4)

where the terms of the first line represent correlations
between condensed-condensed and condensed-non con-
densed atoms (i.e., they are also taken into account in
Bogoliubov formalism), while those in the second line
are correlations between non-condensed-non condensed
atoms. N.B. that these last terms are especially hard
to calculate due to the dependence on the momentum
sums k + q of the variational parameters. Now, instead
of Λ and M , we have Λ and other three cut-offs related
with the number of points in the Gauss-Legendre quadra-
tures of the sums: Mk, Mq and Mθ (with θ being the
angle between k and q). This makes extremely hard
to achieve fully-converged results, and therefore here we
only present the preliminary, almost-converged results
for one quench. The density-density correlations are di-
rectly obtained from (V.4) using an inverse Fourier trans-
form. Figure 7(a) shows the non fully-converged g(r, t)
as function of time for a fixed r after a quench from
non-interacting to af = 4000a0. The correlations exhibit
the same coherent atom-molecule oscillations as nex(t)
and C(t), but moreover they have an envelope whose
shape reminds us of the results of [16] for Bogoliubov the-
ory. The position of the last maximum of the envelope
is tracked as function of time and plotted in Figure 7(b).
Because the calculation is not fully-converged, we could
only access a short regime of time where the shape of the
envelope is completely clear. The results obtained with
Bogoliubov theory, also displayed in the figure, belong
to the diffusive regime at short times and later begin to
show a slow crossover towards the ballistic one. The pro-
visional variational results seem to overlap with Bogoli-
ubov prediction for short times and then are renormalised
from below. This demonstrates that the dispersion rela-
tion at this interaction strength lies below the Bogoliubov
spectrum in the particle-like regime, just as measured in
[25] and [26], possibly indicating the presence of a pre-
cursor of a roton minimum. Nevertheless, these results
only allow for a qualitative comparison, since they are
not fully-converged. Once this is solved a further anal-
ysis is needed to quantitative compare the spreading of
correlations with the quasiparticle spectrum.

B. Dynamics of two-component mixtures

It has been predicted [27] that a mixture of bosonic
atoms and molecules in which the energy of the latter

can be tuned via Feshbach resonance exhibits a quantum
phase transition between the atomic superfluid phase
(ASF), in which both atoms and molecules are con-
densed, and a molecular superfluid (MSF), where only
molecules are.

It should be possible to apply the Nozières-Saint James
variational formalism to study the dynamics of a mixture
of two spin components (σ =↑, ↓) that can pair to form
molecules. In this case, the Hamiltonian can be written

Ĥ =
∑
k,σ

εkâ
†
kσâkσ+

1

V

∑
k,k′,q

[∑
σ

U

2
â†kσâ

†
q−kσâq−k′σâk′σ

+ gâ†k↑â
†
q−k↓âq−k′↓âk′↑

]
, (V.5)

where the opposite spin interaction g is attractive and
can be tuned via Feshbach resonance, while the same
spin interaction U is assumed to be weakly repulsive.
For simplicity, both are taken to be contact-like.

As a first approximation to this problem, we calculate
the phase diagram of a binary mixture in the static sit-
uation. The system is assumed to be 2D, as the math
is simpler in this case, and therefore in (V.5) V repre-
sents the system area. Moreover, we restrict ourselves to
the unpolarised situation, where the number of spin-up
and spin-down atoms is the same (i.e. n↑ = n↓). In 2D,
the renormalisation of the contact interaction between
opposite spins

−1

g
=
∑
k

1

|EB |+ 2εk
=
m

4π
ln

(
2εΛ + |EB |
|EB |

)
, (V.6)

introduces a large-energy cut-off εΛ = Λ2/(2m).
In order to obtain the T = 0 phase diagram, we em-

ploy a variational approach like in Section II by consider-
ing a normalised ground state that also includes pairing
between opposite spins (i.e. we want finite expectation

values of 〈â†kσâkσ〉, 〈âk↑â−k↓〉, 〈âkσâ−kσ〉 and 〈â†k↑âk↓〉,
although the two latter averages vanish in the particular
case of an unpolarised gas). With this aim we introduce
the transformation(

â†k↑
â†k↓

)
=

1√
2

(
1 1
−1 1

)(
b̂†ka
b̂†kb

)
, (V.7)
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FIG. 7. (a) Dynamics of density-density correlations g(r, t)

evaluated at a fixed position rn1/3 = 3.47 for an instanta-
neous quench from ai = 0 to af = 4000a0. Apart from an
envelope (green line), whose large-time value g∞ is used to
rescale, they exhibit coherent atom-molecule oscillations. The
position of the last maximum of the envelope is marked with
a red dot. (b) Position of the last maximum of the envelope
of the density-density correlations as function of time. The
blue line corresponds to Bogoliubov theory; the red dots are
our results for a quench to af = 4000a0 using the variational
formalism.

and then write the variational ground state

|ψ〉 =
1

A exp

√V ∑
σ=↑,↓

c0σâ
†
0σ +

∑
k

∑
γ=a,b

tanh θkγ b̂
†
kγ b̂
†
−kγ

 |0〉 ,
(V.8)

where A is the normalisation constant and

tanh 2θkγ =
αγ

εk + βγ
(V.9)

can be written in terms of the variational parameters αγ
and βγ , that must satisfy βγ > 0 and |αγ | ≤ βγ .

In order to obtain cut-off independent results, we min-
imise numerically the expectation value of Hamiltonian
(V.5) with a fixed number of particles Ω = 〈Ĥ − µN̂〉 /V
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FIG. 8. Static phase diagram of an unpolarised two spin
components mixture in 2D. The energies are rescaled in units
of Q = 2|EB |. The normal phase is collapsed at n = 0.

in the state (V.8) with respect to the three variational pa-
rameters c0 ≡ c0↑ = c0↓, α ≡ αa = −αb and β ≡ βa = βb
(these equalities come from the fact that we have an un-
polarised gas) for different values of the cut-off energy
εΛ. As usually, we then plot the values of Ω obtained as

function of ε−1
Λ and interpolate to obtain Ω(ε−1

Λ = 0).
The phase diagram as function of U and the density

of atoms out of the normal phase n is shown in Figure 8.
The normal phase (collapsed at n = 0) is characterised by
the absence of both atomic (χ = |c0|2 = 0) and molecu-

lar (φ = V −1
∑

k 〈â
†
k↑â
†
−k↓〉 = 0) condensates. For large

enough same spin interaction U it can undergo a second
order phase transition to the MSF phase, characterised
by molecular (φ 6= 0) but not atomic (χ = 0) condensa-
tion. The ASF phase, exhibiting both molecular (φ 6= 0)
and atomic (χ 6= 0) condensation, is separated by a first
order phase transition from the other two.

Appendix A: Shallow quenches

For shallow interaction quenches, na3
i,f � 1, the dy-

namics is integrable and one can solve exactly (II.13)
and (II.14), recovering the results of Refs. [16, 17]. In

this limit, the contribution from 〈Ĥ4〉 (II.12) can be ne-
glected and one can use the Born approximation for the
interaction strength Ui,f = 4πai,f/m. Moreover, one
can assume that the condensate depletion is negligible,
|c0(t)|2 ' n, and thus the equations of motion can be
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simplified to:

iċ0 ' Ufc0n (A.1)

iġk = 2 [εk + 2Ufn] gk + Uf
(
g2
kc
∗2
0 + c20

)
. (A.2)

It is easy to show that these equations are solved exactly
by

c0(t) =
√
ne−iUfnt (A.3)

gk(t) = ḡk(t)e−2iUfnt (A.4)

ḡk(t) =
Ekfgk(0)− i tan(Ekf t)[Ufn+ ξkfgk(0)]

Ekf + i tan(Ekf t)[ξkf + Ufngk(0)]
,

(A.5)

where Ekf =
√
εk(εk + 2Ufn) is the quasiparticle exci-

tation spectrum and ξkf = εk + Ufn. This coincides
with the result obtained in Refs. [16, 17] by using a time-
dependent Bogoliubov approximation, where one consid-
ers the Heisenberg equations of motion for the particle
operator âk(t),

i
dâk
dt

= [âk,
∑
k

εkâ
†
kâk + Ĥ2] .

This equation is solved in terms of the Bogoliubov param-

eters, âk = uk(t)b̂k+v∗k(t)b̂†−k, where |uk(t)|2−|vk(t)|2 =
1, giving:

i
d

dt

(
uk(t)
vk(t)

)
=

(
ξkf Ufn
−Ufn −ξkf

)(
uk(t)
vk(t)

)
.

It is easy to show that these coupled equations are solved
by

ḡk(t) =
v∗k(t)

u∗k(t)
|uk(t)| = 1√

1− |ḡk(t)|2
, (A.6)

and one recovers, e.g. for the density of particles in ex-
cited states, the result of [16]

nBogex (t) =
1

V

∑
k

[
|gk(0)|2

1− |ḡk(0)|2

−Uf (Ui − Uf )n2 εk sin2(Ekf t)

E2
kfEki

]
. (A.7)

From the expression above we can perform the same
analysis as in Section III D and study the initial grow-
ing time τgrow and the steady state in the population of
the k-level Nstd. In this case we obtain the analytical
expressions

τgrow
τ

=
π

6

1√
(kξ)2[(kξ)2 + 2]

, (A.8)

Nstd
nex

ξ−3 =

√
25π

(kξ)2[(kξ)2 + 2]
, (A.9)

which exhibit the same universal behaviour for kξ � 1
and kξ � 1 as in Section III D, but in this case in units
of ξ and τ instead of kn and tn.
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FIG. 9. Two-step extrapolation process of the period of oscil-
lations T of the non-condensed density nex(t) with respect to
the two system regularisation parameters, M and Λ. (a) T
(blue dots) as a function of M−1 for a fixed value of Λ. The
M →∞ value TM→∞ is extracted via an exponential fit (red
solid line). (b): Plot of the extracted period TM→∞ with re-
spect to Λ−1 (blue dots). The extrapolated value TM→∞,Λ→∞
is obtained via a linear fit (red solid line).

Appendix B: Convergence of the dynamics

We show here the convergence of our results for the
non-condensed density nex(t) and its oscillation period
T with respect to the number of points M on the Gauss-
Legendre momentum grid and the momentum cutoff Λ.
N.B. that we have followed the same procedure for all
data reported in the text. We have found that the dy-
namics converges exponentially fast with respect to the
number of Gauss-Legendre points M used for quadra-
tures, while it only has a linear dependence on the cutoff
Λ (at least in the range of Λ computationally accessible).
In particular, Fig. 9 shows the dependence of the period
of oscillations with respect to both M (panel (a)) and Λ
(panel (b)). Once we have extracted TM→∞ for different
values of Λ, we can extract the final value TM→∞,Λ→∞
reported in Fig. 4. Our calculations have been limited
by a critical slow down of the convergence for both af
small into the Bogoliubov regime and most importantly
for af →∞, making extremely hard to obtain results for
af > 60000a0 in reasonable times.

Appendix C: Calculation of the steady state in the
average of the oscillations of the non-condensed

fraction

For every quench in which af > 1000a0 we calculate
the average of the coherent oscillations n̄ex/n by making
the mean value of consecutive maxima and minima. The
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FIG. 10. Fit to obtain the large-time steady-state value of
the average of the oscillations (n̄ex/n) for a quench between
two scattering lengths ai = 0 and af = 60000 (red line). The
blue dots are the values of the average between consecutive
maxima and minima, located at their average time.

corresponding time is taken as the mean value of their
temporal locations. These are the blue points of Fig. 10,
which shows the case of a quench to af = 60000a0. To
obtain the value of the large-time steady n̄ex/n, we use
a fit of the form f(x) = a + becx. The uncertainty of
n̄ex/n is given by the maximum difference between one
oscillation average and the value of the fit for the corre-
sponding time.
For quenches to af ≤ 1000a0, it would be necessary to
calculate nex/n for larger times in order to see the steady
state. Thus we have employed the Bogoliubov theory
prediction to obtain an order-of-magnitude estimation to
n̄ex/n, as explained in the main text.
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