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Abstract

This master thesis focusses on studying and developing the theoretical tools necessary to model
doped bilayer structures in the presence of strong matter-light coupling. In the last years, an
intense research activity was carried towards the search of excitonic superfluidity in semicon-
ductor heterostructures. We briefly review in Chapter 1 the concept of excitons in direct gap
semiconductors such as GaAs, with a particular interest to 2D quantum wells. These structures
have been recently embedded into a cavity, where the strong coupling between light and matter
leads to the formation of new composite strongly coupled matter-light quasiparticles named
exciton polaritons. One of the most promising set-ups for the search of excitonic superfluidity
is given by electron-hole bilayers. In Chapter 2 we shortly summarize the experimental achieve-
ments in this area, describing the most common ways to obtain an electron-hole bilayer. Of
particular interest is the technique to realize bilayers with two GaAs quantum well structures
and the possibility to control the electron and hole populations in each layer independently, via
doping or gating. Novel promising realizations of a similar configuration have also been carried
on in graphene bilayers and other pure 2D materials such as transition metal dichalcogenides
(TMDCs). In Chapter 3 we review the theoretical description of a condensate of excitons in
the limit where the electron and hole densities are the same, and how this description changes
when electrons and holes are strongly coupled to light. In particular we offer a brief review
on the existing theory of the BCS-BEC crossover for excitonic systems, describing the con-
struction of a wavefunction that interpolates between two extreme limits: in the low density
limit, excitons behave as tightly bound bosons and, at low enough temperatures, undergo Bose-
Einstein condensation (BEC). In the high density limit, excitons overlap and their fermionic
composite nature blocks the occupation of electrons and holes up to the Fermi momentum. In
this limit, electron-hole pairs can condense in a form similar to Cooper pairs in conventional
BCS superconductors. In this chapter, we will also show how this description changes when
electrons and holes strongly couple to cavity light. In Chapter 4 we enter the main topic of this
thesis which is about single and double layers of electrons and holes in the extremely imbal-
anced limit. Considering the extreme imbalanced limit, where there is a single particle in one
layer interacting via Coulomb and via the cavity photon field with a Fermi liquid in the other
layer, allows to address the problem in a controlled manner. At the same time, for imbalanced
mixtures, the inter-specie pairing is frustrated, and one expects more exotic pairing scenarios
(such as FFLO spatially modulated phases) to compete with a conventional superfluid phase.
In Chapter 4 we thus re-derive the results found in Ref. [49], and extend them considering
not only the case in which the Coulomb interaction is fully screened via the Random Phase
Approximation (RPA). We also describe in detail the other extreme case where interactions are
unscreened. This is also useful in view of the description of materials such as TMDCs, where
the screening is not so effective. Chapter 5 is the chapter that contains the majority of original
results of this master thesis. The main focus of our research was to characterize the possibility
to achieve an FFLO phase in imbalanced electron-hole 2D structures embedded into an optical
cavity. While long-range Coulomb interactions promote the formation of the finite momentum

iii



FFLO condensed phase, strong coupling to ultra-low mass photons tends to suppress such a
phase (or conversely the formation of an FFLO phase suppresses the coupling to light). The
competition between these two effects leads to interesting results, enhanced by the possibility
to tune the population densities as well as the energy detuning of the photon field. Our study
shows that the FFLO phase survives the coupling to light only at positive detunings and prefer-
entially only for unscreened interations. In presence of screening, the FFLO phase is overtaken
by a phase where the finite momentum coupling between electrons and holes is only mediated
by finite momentum photons. Further, we have been able to show that the strongest mixing
between light and matter only occurs, at intermediated densities, in a small interval of photon
detuning, in a phase where polariton condensation occurs, as expected, at zero center of mass
momentum.
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Chapter 1

Introduction to excitons and
microcavity polaritons

Nowdays, semiconductors have become fundamental in the developing of new technologies.
The optical stimulation of these materials can create interesting new bound states of electrons
and holes. What we will do in the following chapter is to give a brief introduction on this
particular states, especially focusing our attention on a material widely used for the construction
of semiconductors: the Gallium Arsenide. The discussion on the above mentioned bound states
will be furthermore extended to the case in which a semiconductor is confined in a optical
microcavity. We will highlight the presence of new bound states, generated by the interaction
between electrons holes and cavity photons. The interest in these states is motivated by the
rich research activity with the objective to find the ideal candidate to achieve a Bose Einstein
condensation at higher temperatures than the ones obtained until now.

1.1 Direct band gap semiconductor

Semiconductors are a class of materials that have an electrical conductivity value fallin between
that of a conductor and an insulator. The electronic properties of a crystalline material are
generally determined by the electronic band structure of the material. The highest occupied
band, called valence band, is separated from the lowest conduction band by an energy gap.
Electrons can be excited from the valence band to the conduction band via thermal excitation
or by absorption of light. In our study we are not interested in temperature effects, and so
we will focus only on the optical excitation. To schematically describe the optical interaction,
in Fig. 1.1 we represent the energy bands structures in the momentum space. At the highest
energy of the valence band and the lowest energy of conduction band, the band structure can be
locally approximated as εk,c = Eg + ~2k2

2m∗c
and εk,v = −~2k2

2m∗v
with m∗v,c the two effective masses.

When a photon of energy ~ω, greater then the band gap Eg, is incident on a semiconductor,
a free electron is created and an empty state is left in the valence band. This empty state could
be reinterpreted introducing the concept of electron-hole, a quasi-particle positively charged and
with a negative effective mass. So its energy will be εk,h = ~2k2

2m∗h
. It is important to notice that in

a direct gap semiconductor, the optical excitation could happen with low-momentum transition
between electron and photon, this because the minimal-energy state in the conduction band
and the maximal-energy state in the valence band have the same lattice momentum. In the
indirect gap semiconductors instead, the transition from the highest energy-state of the valence
band to the lowest state of the conduction one needs a momentum exchange between photon
and electron, because there is a non null relative lattice momentum between the valence band
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and the conduction band. We will see that in our study we need low-momentum transitions,
and so we will take in account only direct band gap materials.

Figure 1.1: Band structure of bulk GaAs showing the conduction (CB) and valence sub-bands
(VB). The direct band-gap Eg is indicated. A photon with energy E = ~ω can excite an electron,
indicated by the solid circle, from a valence band to the conduction band leaving behind a hole,
indicated by the empty circle, in the valence band. This figure has been adapted from Ref. [1]

1.2 Excitons in bulk semiconductor

The interesting aspect of the optical excitation of GaAs structures is the creation of a bound
quasiparticle state between electron and hole. When the electron is excited into the conduction
band, and the hole appears in the valence band, in GaAs (and also in other semiconductors)
the attractive Coulomb interaction could create a bounded electron-hole pair, known as exciton.
This quasiparticle has an energy equal to the band gap energy minus the binding energy of the
exciton E0. Excitons may be treated in two limiting cases, depending on the properties of the
material. In materials with a small dielectric constant, the Coulomb interaction is strong, thus
the exciton tends to be small. This is the Frenkel exciton, named after Yakov Frenkel, which
studied the effect of Coulomb attraction between electron-hole pair in the same crystal cell [2].
Instead, for a reduced Coulomb interaction, the result is the Wannier exciton [3], that has a
larger radius – of the order of tens of lattices constants – Fig. 1.2. For GaAs, excitons are the
Wannier-Mott type, due to the high dielectric constant.

The wave function ψ(re, rh) of an exciton is the solution of a Schrödinger equation similar
to the hydrogen one, with different masses and dielectric constant[

p̂2
e

2me
+

p̂2
h

2mh
− e2

4πε|re − rh|

]
ψ(re, rh) = (E − Eg)ψ(re, rh) . (1.1)

Changing variables

r = re − rh (1.2a)

R =
mere +mhrh
me +mh

, (1.2b)

Eq. (1.1) becomes[
−~2∇2(R)

2M
− ~2∇2(r)

2µ
− e2

4πεr

]
ψ(r,R) = (E − Eg)ψ(r,R) . (1.3)
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Figure 1.2: Excitons with different radii. On the left the Frenkel exciton, on the right the
Wannier exciton, with bigger radius and lower binding energy. Picture taken from Ref. [4]

with 1
µ = 2

(
1
me

+ 1
mh

)
half of the reduced mass. The new coordinate systems allows to factorize

the wave function into a product of functions depending on R and r. For the center of mass part,
the solution is a planar wave with energy ~2K2/2M . The equation for the relative coordinate
is [

−~2∇2(r)

2µ
− e2

4πεr

]
φ(r) = −E0φ(r) . (1.4)

Solving Eq. (1.4) we obtain the excitonic energy spectrum. For the ground state φ(r) =
ϕ3D

1s (r) = 1√
πa3B

exp(−r/a0) we have

E = Eg +
~2K2

2M
− E0 (1.5)

E0 =
µe4

32π2~2ε2rε
2
0

=
~2

2µa2
0

(1.6)

a0 =
4πεrε0~2

µe2
. (1.7)

For a typical exciton in GaAs, E0 = 4.7 meV and a0 = 115Å [5].

1.3 Excitons in confined systems: quantum wells

Nowadays it is possible to realize low-dimensional semiconductor structures, where electrons
and holes are confined in one or two dimensions [6]. Therefore, it is interesting to explore how
the exciton properties change due to the quantum confinement. Whereas without confinement,
the total energy of the exciton is simply the energy of the free electron-free hole pair (i.e. the
band gap) minus the exciton binding energy E0, in a confined system there are additional
components due to the electron and hole confinement energies. For our purposes, we focus our
attention on a 2D system, realized with a thin layer – a few nanometers thick – of a low band
gap semiconductor, sandwiched between a higher band gap material, which acts as the barrier
[7]. One of the most widely used QW structure is the combination between gallium arsenide
(GaAs) and the alloy AlxGa1−xAs. The name quantum well derives from the quantization of
the light modes introduced by the reduced dimension of the system. In such a geometry, the
translational symmetry is broken along the direction orthogonal to the semiconductor plane. As
a consequence, the total wavevector k is no more conserved in these structures, while the only
conserved quantity is the in-plane component. The effect of confinement becomes meaningful
when the size is comparable to the spatial extent of the exciton [8], and it mainly changes the
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Bohr radius, decreasing it with respect the unconfined case, and consequently increasing the
binding energy of the exciton [9, 10].

To demonstrate this, let’s consider the Schrödinger equation for an exciton in a 2D system[
p̂2
e

2me
+

p̂2
h

2mh
− e2

4πε|re − rh|
+ Ve(ze) + Vh(zh)

]
ψ(re, rh) = (E − Eg)ψ(re, rh) , (1.8)

where Ve(ze) and Vh(zh) are step-like quantum-well confining potentials for electrons and holes
along the z axis. Solving this equation is not easy. It is possible to find different suggestions
in the literature [11, 12]. For example using a variational approach over different trial function
(r = (ρ, z))

ψ(re, rh) = F (R)φ(ρ)χe(ze)χh(zh) , (1.9)

where the exciton centre of mass coordinate R and the relative in-plane radius-vector of electron
and hole ρ are

ρ = ρe − ρh (1.10a)

R =
mere +mhrh
me +mh

. (1.10b)

Eq. (1.9) describes the exciton centre of mass, the relative in-plane and normal to the plane
components of motion. The normalization conditions∫

|χe(ze)|2dze = 1, (1.11)∫
|χh(zh)|2dzh = 1, (1.12)∫ ∞

0
|φ(ρ)|2πρdρ = 1 (1.13)∫ ∞

0
|F (R)|22πRdR = 1 . (1.14)

After substitution of Eq. (1.9) and integration over R, Eq. (1.8) becomes:{
− ~2

2me

∂2

∂z2
e

− ~2

2mh

∂2

∂z2
h

− 1

ρ

∂

∂ρ

(
~2

2µ
ρ
∂

∂ρ

)
−

e2

4πε
√
ρ2 + (ze − zh)2

+ Ve(ze) + Vh(zh)− E + Eg

}
φ(ρ)χe(ze)χh(zh) = 0 . (1.15)

Eq. (1.15) can be transformed into a system of three coupled differential equations. To obtain
the equation for φ(ρ) one have to multiply for U∗e (ze)U

∗
h(zh) and integrating over ze and zh. In

the same way to obtain the equation for χe,h(ze,h) one have to multiply for f∗(ρ)U∗e,h(ze,h) and
then integrate over ρ and ze,h. The resulting coupled equations are

−EQW0 φ(ρ) =

{
−1

ρ

∂

∂ρ

(
~2

2µ
ρ
∂

∂ρ

)
− e2

4πε

∫ ∫
|χe(ze)|2|χh(zh)|2√
ρ2 + (ze − zh)2

dzedzh

}
φ(ρ) (1.16)

Ee,hχe,h(ze,h) =

{
− ~2

2me,h

∂2

∂z2
e,h

+ Ve,h −
e2

4πε

∫ ∫ |φ(ρ)|2|χh,e(zh,e)|2√
ρ2 + (ze − zh)2

2πρdρdzh,e

}
χe,h(ze,h) ,

(1.17)
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where EQW0 is modulus of the exciton binding energy for a quantum well and Ee,h is the
electron/hole confinement energy. In the ideal 2D case |χe,h(ze,h)|2 = δ(ze,h), and so{

− ~2

2µ

1

ρ

∂

∂ρ

(
ρ
∂

∂ρ

)
− e2

ερ

}
φ(ρ) = −E2D

0 φ(ρ) , (1.18)

which is now exactly solvable (the 2D hydrogen atom problem), and it is equivalent to

φ(ρ) = ϕ2D
1s (ρ) =

√
2

π

1

a2D
0

exp(−ρ/a2D
0 ) , (1.19)

with

E2D
0 =

µe4

8π2~2ε2rε
2
0

= 4E0 (1.20)

a2D
0 =

2πεrε0~2

µe2
=
a0

2
. (1.21)

In a more realistic case, without an infinite well, the binding energy could be found using a trial
function

φ(ρ) =

√
2

π

1

a
exp(−ρ/a) , (1.22)

where a is now a variational parameter, and minimizing

EQWX (a) = − ~2

2µa2
+

e2

4πε

∫ ∫ ∫
|φ(ρ)|2|χe(ze)|2|χh(zh)|2√

ρ2 + (ze − zh)2
2πρdρdzedzh , (1.23)

where EQW0 ranges from E0 to E2D
0 .

1.3.1 The electron-hole problem: variational approach

The very same results can be re-obtained by making use of a variational approach. In the
following chapters this method will be generalized to the case of finite density of either electrons
and holes. We now consider the following Hamiltonian in the momentum space (we set ~ = 1)

Ĥ = Ĥ0 + Ĥint (1.24)

Ĥ0 =
∑

k,σ=e,h

εk,σc
†
k,σck,σ (1.25)

Ĥint = − 1

Ω

∑
kk′q

2πe2

εq
c†k,ec

†
k′,hck′+q,hck−q,e , (1.26)

where c†k,e and c†k,h are the creation operators for the electron and the hole and εk,e/h the
respective energy. The variational molecular ground state chosen is

|Ψ〉 =
1√
Ω

∑
k>kF

ϕkc
†
−k,hc

†
k,e |0〉e ⊗ |0〉h , (1.27)

where |0〉e,h are the vacuum states. After the minimization of the expectation value 〈Ψ| (Ĥ −
E) |Ψ〉 with respect to the complex amplitude ϕk, one obtains an eigenvalue equation for the
exciton energy E:

Eϕk = (ε0 − k, h+ εk,e)ϕk −
1

Ω

∑
k′

2πe2

ε(k− k′)
ϕk′ . (1.28)
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Figure 1.3: a) 2D map of the rescaled exciton wavefunction ϕ2D
1s (k) as a function of k. b)

Excitonic eigenfunction ϕ2D
1s (k) as a function of |k| for different values of Nt and Nk = 3Nt/2.

The numerical eigenvectors tend to the expected exact solution (1.29) – dashed line – for an
increasing number of points. In particular, for Nt →∞, the fitted parameter afitted

0 /a0 → 1.003.
c) Convergence of the excitonic energy, measured with respect E0, to the expected value −1, as
a function of Nt.

where for simplicity we set Eg to zero. This is exactly Eq. (1.18) in the momentum space.
In order to solve this eigenvalues problem, we convert this equations into a numerical solvable
matrix equation, through the Gauss-Legendre quadrature, described in Appendix A. In Fig. 1.3
the numerical results of our calculations are shown. In Fig. 1.3 a) the resulting wave function
is depicted

ϕ2D
1s (k) =

2
√

2πa0

(1 + (a0k)2)3/2
(1.29)

However our method depends on the number of points chosen for the Gauss-Legendre quadra-
ture. In 1.3 b) the calculated excitonic wavefunction is plotted as a function of a0k, for different
selected number of points. The numerical eigenvectors tend to the expected exact solution (1.29)
increasing the number of points Nt used. In particular, for Nt → ∞, the fitted parameter
afitted

0 /a0 → 1.003. In Fig. 1.3 c) we show the convergence of the excitonic energy, measured
with respect E0, to the expected value −1 increasing the number Nt of point used for the
Gauss-Legendre quadrature
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1.4 Optical microcavities: distributed Bragg reflectors

The exciton is stable for a short period of time. The excited electron can recombine with the
hole by transferring energy through photon emission. So exciton has a finite lifetime, of the
order of nanoseconds, influenced by many factors including temperature and scattering with
other excitons. In general, emission of light can occur in two distinct regimes, depending on
the coupling between the active medium and the electromagnetic field. In the weak coupling
a photon produced has a negligible probability of being reabsorbed by the medium. Thus
the excitation is dissipated. In the strong coupling, the photon can re-excite the medium and
creating new mixed states, superposition of exciton and cavity photons. This coupling is difficult
to achieve, because the frequency of emission and absorption has to overwhelm damping rates.
For this reason strong coupling is favored as soon as an active medium is inserted inside a cavity.

Optical microcavities (see Fig. 1.4) are optical resonators close to, or below, the dimension
of the wavelength of light. An example is the well-know Fabry-Pérot interferometer [13], a
microcavity in which two high reflectivity mirrors – with a refraction index n – are brought
at a distance L, where the resulting cavity mode are equally spaced in frequency. After each
one-roud trip, the photon beam gain a phase shift of

δ =
2πk⊥
λ

=

(
2π

λ

)
2nL cos θ (1.30)

with respect to the previous beam. If L is equal to a integer number of wavelength λ, the
interference is constructive, and hence the cavity frequency increases. In the ideal case, we can
approximate the Fabry-Pérot interferometer as an infinite well, perfectly confining the photon
mode. Thus in this case k = mπ

L , and the normal modes of the system are

φm(x) =

√
2

L
sin(

mπ

L
x) , (1.31)

where m is an integer number. So now one can rewrite the dispersion relation in the following
way (k = (κ, kz))

ωk,C =
c|k|
n

=
c

n

√
|κ|2 + k2

z =
c

n

√
|κ|2 +

(mπ
L

)2
, (1.32)

where z is the confinement axis. Supposing a strong confinement, kz � |κ|

ωκ,C =
c

n

mπ

L

√
1 +

(
L

mπ

)2

|κ|2 ≈ c

n

mπ

L

[
1 +

1

2

(
L

mπ

)2

|κ|2
]

= ω0,C +
|κ|2

2m∗C
, (1.33)

with

ω0,C =
c

n

mπ

L
=
c2

n2
m∗C (1.34)

m∗C =
n

c

mπ

L
. (1.35)

The dispersion relation is now quadratic with respect to the wavevector, and the photon gain an
effective mass m∗C that depends on the cavity length. Of course there are always possible losses
from the mirror, and so an infinite well approximation is not reliable. To increase the reflection
efficiency, a widely used mirror is the DBR, made of different layers of alternating high and low
refractive indices. The most frequently used design is that of a quarter-wave mirror, where each
optical layer thickness – a and b respectivelly – are chosen so that

naa = nbb =
λ

4
. (1.36)
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Figure 1.4: Schematic representation of a microcavity, using distributed Bragg reflector stacks.
Image taken from Ref. [14]

The light reflections of this layers create a destructively interference, creating a stop band for
transmission [12]. In this configuration, the effective length of the microcavity L̃ is extended
up the stop band. There are some key physical measures that characterize the cavity quality.

The quality factor The quality factor, known as Q-factor, is the ratio of the resonance cavity
wavelength λ and the FWHM of the resonance:

Q =
λ

δλ
(1.37)

This factor measures the number of photon’s travels inside the cavity before going out. So it is
the rate at which optical energy decays from within the cavity. Another related element is the
finesse

F =
π(R1R2)1/4

1− (R1R2)1/2
, (1.38)

that is an intrinsic measure of the confinement ability of the cavity, excluding propagation effects
– R1 and R2 represents the reflectivity of the mirrors. Q and F are related from the following
identity

Q =
neffLC

λ
F , (1.39)

where neff is the effective index of refraction of the cavity, and LC the length [15].

Field enhancement Due to confinement, the strenght of electric field is enhanced compared
to that in free space. If R is the total reflectivity

Ecavity
Efree

≈ 1

1−R
. (1.40)

Tuneability and mode separation We see that the longitudinal modes, and the cavity pho-
ton energy as consequence, is inversely proportional to the cavity length. An useful parameter
to introduce is the cavity detuning, defined as

δ = ω0,C − ω0,X , (1.41)

where ω0,C and ω0,X are respectively the photon and exciton energy, at zero momentum. So
using a cavity with two mirrors, where one is inclined respect an axis (wedged mirror) one
obtains different lengths, and so a different detunings, along the cavity. Through a localized
pump is possible to exactly select the detuning needed.
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Figure 1.5: Refractive-index profile and intensity of electric field of the eigenmode of a typical
planar microcavity. The effective cavity length is extended up to the stop band. Ref. [12]

Purcell effect When an emitter is put inside a microcavity, the spontaneous emission is en-
hanced. The enhancement of a quantum system’s spontaneous emission rate by its environment
is known as the Purcell effect [16]. The emission lifetime in the cavity τ , with respect to the
free space one, τ0 is proportional to the Purcell factor

τ0

τ
∝ FP =

3

4π2

λ3
c

n3

Q

Veff
, (1.42)

with n the refractive index of the cavity, Veff the effective volume, Q the quality factor and λc
the cavity photon wavelength.
The ratio Q/Veff is crucial to allows the emitter to emit much faster then the decay ratio.

Strong coupling Embedding a resonant absorber inside a microcavity, the regime of strong
coupling can be reached. One approach to describe theoretically the strong-coupling effects
is to consider the coupled-oscillators model, where the dielectric polarization generated by the
exciton P and the electric field of the cavity mode E are treated semi.classically, and are assumed
to obey the oscillator like equations

iṖ = (ωX − iγ) P + gE, (1.43)

iĖ = (ωC − iκ) E + gP, (1.44)

where γ and κ are the dampings, respectiveley of the exciton and the cavity photon, g is the
coupling strenght and ωX/C are the exciton and cavity resonances. For the harmonic time
dependence of P,E ∝ e−iωt, the eigenfrequency ω can be found solving the coupled Schrödinger
equations, obtaining

(ω − ωX + iγ) (ω − ωC + iκ) = g2 (1.45)

In the most trivial and instructive case ωC = εX = ω0, and the previous equation can be solved
as

ω± = ω0 − i
γ + κ

2
± ΩR

2
(1.46)

Here ΩR =
√

4g2 − (γ − κ)2 is the Rabi frequency. In the strong coupling g > |γ − κ|/2, and
so ΩR is real, and it is linked with the so called vacuum Rabi splitting ~ΩR [17], the energy
splitting between the two resulting frequencies ω±. In the weak coupling limit is imaginary,
and so the coupling to light affects only the dumping rates, enhancing the emission, and so
generating a Purcell effect.
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Figure 1.6: Dispersion curves of polariton modes at different cavity detunings (a) δ = -5 meV,
(b) δ = 0 meV, and (c) δ = 5 meV. The dotted lines show the cavity photon modes, and the
dashed lines the bare exciton modes. The blue and red solid lines indicate the upper polariton
(UP) and lower polariton (LP) branches, respectively. This figure has been taken from Ref.[15]

1.5 Coupling to light: coupled oscillator model

There are different theoretical approach to study a QW in an optical microcavity. Considering
the exciton as tightly bound boson, the dynamics of photons and excitons in a 2D microcavity
are described by the Hamiltonian (we set ~ = 1)

Ĥ = ĤX + ĤC + ĤX−C

ĤX =

∫
d2k

(2π)2
ωk,Xc

†
k,Xck,X

ĤC =

∫
d2k

(2π)2
ωk,Cc

†
k,Cck,C

ĤX−C =

∫
d2k

(2π)2

ΩR

2
[c†k,Xck,C + h.c.] , (1.47)

where c
(†)
k,C and c

(†)
X (k) are the annihilation (creation) operator for the cavity photon and for

the excitons respectively, ωk,C and ωk,X their energy, and ΩR the Rabi energy. The Hamil-
tonian could be diagonalized through the following orthogonal transformation, called Hopfield
transformation [18],

ck,LP ≡ cos θkck,X − sin θkck,C (1.48)

ck,UP ≡ sin θkck,X + cos θkck,C , (1.49)

with the so-called Hopfield coefficients cos θk and sin θk. The transformation is canonical, and
the operators ck,LP/UP follow a bosonic algebra such as ck,X and ck,C . They are annihilation
operators of two bosonic quasiparticles that are a superposition of an exciton and a photon in
the strong coupling regime, called lower polariton (LP) and upper polariton (UP) [19, 20].
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From the diagonalized Hamiltonian

Ĥ =

∫
d2k

(2π)2

∑
σ

[ωk,LP c
†
k,LP ck,LP + ωk,UP c

†
k,UP ck,UP ] , (1.50)

the upper and lower polariton (see Fig. 1.6) dispersion is

ωk,UP/LP =
ωk,C + ωk,X

2
±
[

Ω2
R

4
+

(ωk,C − ωk,X)2

4

]1/2

. (1.51)

If ωk,C − ωk,X = 0, the Rabi energy ΩR is exactly the Rabi splitting between low and upper
polariton. As seen in Fig. 1.6, the polariton dispersion at small k depends on the detuning,
going from a photon-like behavior with negative detuning, to a more excitonic-like one for
positive detuning. The Hopfield coefficient are related to the mixing angle, and their square
correspond to the photon or exciton fraction of the polariton.

| cos θk|2 =
1

2

1 +
ωk,C − ωk,X√

(ωk,C − ωk,X)2 + Ω2
R

 (1.52)

| sin θk|2 =
1

2

1−
ωk,C − ωk,X√

(ωk,C − ωk,X)2 + Ω2
R

 (1.53)

(1.54)

From the curvatures of the dispersion relations Eq.(1.51), is possible to obtain the effective
masses mLP/UP .

1.5.1 The electron-hole-photon problem

Instead of considering the exciton as a tightly bound boson, let us consider the actual problem
of interacting electron-hole-photon. The Hamiltonian of the problem, in the momentum space,
is

Ĥ = Ĥ0 + Ĥint + Ĥe−h−ph (1.55)

Ĥ0 =
∑

k,σ=e,h

εk,σc
†
k,σck,σ +

∑
q

ωq,Cc
†
q,Ccq,C (1.56)

Ĥint = − 1

Ω

∑
kk′q

2πe2

εq
c†k,ec

†
k′,hck′+q,hck−q,e (1.57)

Ĥe−h−ph =
g√
Ω

∑
k,q

(
c†k,ec

†
q−k,hcq,C + h.c.

)
, (1.58)

where g is the coupling strenght. In this model the interaction between light and matter is
a simple contact interaction. However in principle the sum over k is infinite, and so after a
Fourier transformation of this term in the real space, one expects a UV divergence. A way to
solve this problem is considering a renormalization of the interaction. Taking

Ĥe−h−ph =
g√
Ω

∑
k,q

e−( k
kc

)2
(
c†k,ec

†
q−k,hcq,C + h.c.

)
, (1.59)
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Figure 1.7: a) λ factor as a function of the coupling strenght g, evaluated at δ = 0 kC = 2/a0

using a fixed number of point Nt in the Gauss-Legendre quadrature. b) Photon fraction as
a function of momentum cut-off, for different values of g. δ = 0. c) Comparison between
the photon fraction and the λ factor - now extrapolated for Nt → ∞ (with g = 0.5E0a0 and
kC = 2/a0). d) λ as a function of 1/kc in the photonic regime (δ = −100). It is almost a linear
dependency.

where the momentum cutoff is e−(k/kc)2 . Through the Fourier transformation of Ĥeh−ph

Ĥeh−ph(kc) =
gkc√
2Ω

∫
dx

∫
dx′e

−
[
kc(x−x′)

2

]2
ψ̂†1(x)ψ̂†2(x′)φ̂(x′) , (1.60)

(where ψ̂†(x) =
∑

k e
−ik·xc†k,e is the fermionic wave function and φ̂(x) =

∑
k e

ik·xck,C the
photonic one) we see that the effective photon-matter interaction is now vanishing in the real
space and the UV divergence is healed. This cut-off will depend on the particular geometry
and dimension of the cavity considered. Usually it is smaller or roughly equal to the inverse of
lattice spacing. The Variational molecular ground state considered in our study is

|Ψ(Q)〉 =
1√
Ω

∑
k

ϕk,Qc
†
Q−k,hc

†
k,e |0〉1 ⊗ |0〉2 ⊗ |0〉ph + αQ,Cc

†
Q,C |0〉e ⊗ |0〉h ⊗ |0〉ph , (1.61)

With the normalization condition 1 = 〈Ψ |Ψ(Q)〉 = 1
Ω

∑
k |ϕk,Q|2 + |αQ,C |2.

Minimizing the expectation value 〈Ψ(Q)| (Ĥ−E) |Ψ(Q)〉 with respect to the complex amplitudes
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Figure 1.8: a) Logarithmic divergence of the lower polariton energy with respect to the mo-
mentum cutoff, at g = 1.5E0a0. b) Excitonic wavefunction at g = 1.5E0a0, kc = 2/a0 evaluated
with the Gauss-Legendre method, using a fixed number of point, Nt = 66, fitted by Eq. (1.64).
c, d) Excitonic wavefunction profiles at different value of g in real and momentum space.

ϕk,Q and αQ,C , we obtain two coupled eigenvalue equations for the polariton energy E:

Eϕk,Q = (εQ−k,h + εk,e)ϕk,Q −
1

Ω

∑
k′

2πe2

ε(k− k′)
ϕk′,Q + ge−(k/kc)2αQ,C (1.62)

EαQ,C = ωQ,CαQ +
g

Ω

∑
k

e−(k/kc)2ϕk,Q . (1.63)

As already done for the electron-hole problem, we solve this Schrödinger coupled equations
with the Gauss-Legendre method, obtaining a numerically solvable matrix equation (in detail in
Appendix A). To start with, we consider the case of a zero exciton-photon detuning, δ = 0. The
first interesting things to stress is the important role of the momentum cutoff. In Fig. 1.8(a) we
show the logarithmic divergence of the lower polariton energy with respect to the momentum
cutoff, even at δ = 0. So, considering a renormalized contact interaction in the electron-
hole-photon problem, one avoids problem linked with the logarithmic divergence of polariton
energy. The other open question is about the effect of photons on the exciton wavefunction.
The numerically extracted 2D wavefunction ϕk/

√
1− |α0|2 can be fitted extremely well to the

following expressions in momentum and real space:

ϕ2D
1s (k) =

2
√

2πa∗0(Nt)

(1 + (a∗0(Nt)k)2)3/2
ϕ2D

1s (r) =

√
2

π

1

a∗0(Nt)
e−r/a

∗
0(Nt) . (1.64)

Thus, the coupling to light preserves the same form that the excitonic wavefunction had
without the coupling to light but changes the effective spreading λ(Nt) = a∗0(Nt)/a0, where
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a∗0(Nt) = afitted
0 (Nt) is extracted by fitting the numerical result ϕkQ=0/

√
1− |α0|2 with the

above expression, at a fixed number Nt of points chosen for the Gauss-Legendre method (see
Fig. 1.8 (b)). Interestingly, we find that λ(Nt) < 1 for any finite value of the coupling to light g
and thus the excitonic wavefunction is more spread out in momentum space and more localized
in real space than for g = 0 (see Fig. 1.8(c, d)). Further, λ decreases as a function of g, and
for g � 1 it has a logarithmic dependency (see Fig. 1.7(b)). At the same time, we do find
that, at the fixed detuning δ = 0, the photon fraction of the polaritonic state |α0|2 is not 1/2 as
naively expected for a two-oscillator model, rather numerically we find that |α0|2 > 0.5 for any
value of kca0 > 1 and finite g 6= 0 (see Fig 1.7(c)). To highlight the relationship between the
photon fraction and the factor λ, in Fig. 1.7(c) we plot them as a function of the detuning δ.
For δ � 0, the photon fraction is low, as expected, and λ ≈ 1. In the other limit, for δ � 0, the
high presence of photons implies a smaller radius. It is important to highlight that, when the
photon influence is strong, the exciton radius is of the same order of magnitude as the lattice
constant ≈ 1/kc (see Fig. 1.7(d)). This shorter radius, that clearly implies a stronger binding
energy, will be important in the study of the polaritons problem, presented in the next chapters.

1.5.2 Rabi splitting

From the results above we have seen that, as a consequence of a strong coupling to light, the
effective exciton spreading is smaller than in absence of photons, i.e., a∗0 < a0, and the effective
photon fraction is |α0|2 > 0.5 even at zero detuning. Thus we expect that the coupled oscillator
model will not give an accurate approximation of the real electron+hole+photon problem, at
negative detunings, and thus we have to re-define an effective Rabi splitting and, for fixed values
of g and kc, see how it varies as a function of δ. As shown by MacDonald et al. [21], the effective
Rabi splitting is related to the coupling to light g, the cut-off kc and the excitonic wavefunction
by:

Ωeff
R = 2g

∫
dk

(2π)2
e−(k/kc)2 ϕkQ=0√

1− |α0,C |2
. (1.65)

We evaluated it numerically with the Gauss-Legendre method, for different fixed values of Nt

and then sending Nt →∞. We compare this expression of an effective Rabi splitting with those
obtained by comparing the lowest energy E evaluated numerically with the expression of the
lower polariton:

ωq,LP =
ωq,X + ωq,C

2
− 1

2

√
(ωq,C − ωq,X)2 + Ω2

R . (1.66)

14



evaluated at zero momentum; from this we obtain the real Rabi splitting of the problem

ΩR =
√

(2ω0,X + δ − 2ω0,LP )2 − δ2 , (1.67)

where ωLP0 = E is the eigenvalue we evaluate numerically. We compare in Fig 1.9 the exact
Rabi splitting ΩR evaluated according to (1.67) and the effective Rabi splitting Ωeff

R (Nt) evalu-
ated numerically according to (1.65) as a function of detuning and for fixed values of Nt, g and
kc. We can appreciate that, as expected, the two definitions agree when δ � E0, and instead,
at smaller detuning, the Rabi coupling is stronger, due to the reduced matter-excitation size in
presence of photons.
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Chapter 2

Doped structures and gating

Over the past years, different studies on excitonic systems were carried on, with particular at-
tention on the search for an excitonic Bose Einstein condensate. Even though there are not
definitive proofs of excitonic condensation so far, notable advances in this direction have been
made for indirect excitons in coupled quantum wells. Indirect excitons are coupled electron-hole
pairs, where electrons and holes are separated in different wells. Spatial separation prevents
recombination and the reduced overlap of the carrier wave functions enhances the exciton life-
time up to hundreds of ns. In this chapter we illustrate the different experimental realizations
of electron-hole bilayers. We mainly focus on GaAs quantum well structures, describing the
different configurations as well as the techniques that nowdays allow to independently control
the populations of electrons and holes in the two layers. However we will briefly introduce
new type of semiconductor structures, such as graphene and transition metal dichalcogenide
(TMDC) structures, which are both strictly 2D systems offering new opportunities in this field.

2.1 GaAs heterostructures

Gallium arsenide (GaAs) is a compound of the elements gallium and arsenic. The use of
GaAs compounds is multiple. For example complex layered structures of gallium arsenide in
combination with aluminum arsenide (AlAs) or the alloy AlxGa1−xAs are used to implement
heterostructure devices, where a layer of low band gap material (GaAs) is sandwiched between
two high band gap layers (i.e. AlAs). If the middle layer is made thin enough, a quantum well
can be fabricated due to the difference in the band structures of the two different semiconductors.
The advantage of a this devices is in the greater quantity of electron-hole pairs in the active
region, where free electrons and holes exist simultaneously confined to the thin middle layer.

2.2 GaAs bilayers

An important application of the GaAs materials is in the creation of separate quantum well,
where electrons and holes can be confined separately. This structures are called e-h bilayers.
At low densities of carriers, one electron in one layer can form a bound state with one hole
in the other layer, leading to the formation of what is called indirect exciton. As we will see
in the following sections, there are different ways to achieving this regime. Further, when the
distance between the layers is comparable to the average separation between particles in the
same layer, the combination of interlayer and intralayer Coulomb interaction is predicted to led
to new phenomena with no counterpart in the single-layer case , such as a supersolid Wigner
crystal in one or both layers [23, 24], as well as a condensate of indirect excitons displaying
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Figure 2.1: Left panel: schematic representation of two parallel layers filled with a 2D electron
gas (2DEG) (a). When the magnetic field B is applied orthogonally to the layers, the kinetic
energy is quantized into Landau energy levels (b). This state are highly degenerate, but if
the field is strong enough, all electrons reside in the lowest Landau level, and only occupy a
fraction of the other levels. A particle-hole transformation applied in the lower layer replaces the
unoccupied states with the concept of electron-holes (c). An electron-electron bilayer system
in a strong magnetic field is equivalent to an electron-hole bilayer. Right panel: schematic
reproduction of the expected Hall voltage measurement. The red and blue traces represent the
Hall voltage in the two layers as a function of the magnetic field, with an opposite sign because
the current is opposite directions. But, when the magnetic field is such that the number of
particles is nearly equal in the two layers (ν = 1/2), the exciton condensation can occur and
the current in the two layers is carried by uniform flow of excitons in one direction. Due to
the charge neutrality no Lorentz force is present, and so the Hall voltage is expected to vanish.
Figures taken by Ref. [26].

superfluid properties [25]. We describe in the following three sections the three experimental
realization of electron-hole bilayers.

2.2.1 Double quantum well in a strong magnetic field

One way to realize an effective e-h bilayers in GaAs structures is by considering the case where
GaAs quantum wells are embedded in a strong perpendicular magnetic field B. Due to the
Lorentz force, the electron trajectories are bended into circles – cyclotron orbits. In a 2D
system these orbits are quantized, and the set of orbits with same energy are called Landau
levels. These levels are usually highly degenerate. However with an high magnetic field, it is
possible to enter a regime where the total number of electrons or holes is less then the number
of states contained in the lowest Landau level. The filling factor ν represents the ratio between
the number of particles and the number of available states.

To easily figure out the creation of exciton condensation in bilayers filled with a 2D electron
gas (2DEG), is convenient to make particle-hole transformation in one of the two layers. For
instance, if one layer, containing electrons, is characterized by a filling factor ν, in the other one
we can keep track of only the empty states, changing the sign of the carrier charge, the sign of
the kinetic energy of the valence-band holes, and with a filling factor of 1−ν (see Fig. 2.1). This
transformation is equivalent to the more familiar mapping of unoccupied valence-band electron
states in holes. In this way, we are now considering a electron-hole bilayers, with attraction

18



interaction between particles.
An excitonic BEC occurs when holes bind together with electrons, and this is most likely

possible when the populations of electrons and holes are nearly the same. Experimentally it
was proved that in the case ν = 1/2 in each layer, the system exhibit a quantized Hall effect.
In particular the Hall resistance measured when a current flows in one layer is quantized and
equal to h/e2 [27]. This effects depends on a complex combination of Landau quantization and
Coulomb interaction. One way to detect the presence of a bound state is through an Hall voltage
measurement. In the right panel of Fig. 2.1 a schematic representation is shown. In the two
layers a current, with different sign, is flowing. When in the two layers is not present an equal
filling factor, or when the distance is too high, no condensation is seen. But when the system
has the right conditions, one expects a vanishing Hall-voltage, due to the creation of neutral
charged pairs. This prediction was tested in different publications, with strong evidences for
condensation into a macroscopic quantum state at very low temperatures [28, 26] .

2.2.2 Zero magnetic field: induced electron-hole bilayer

Even though there has been evidence of exciton condensation in electron-electron bilayer struc-
tures in presence of strong magnetic field, for the zero magnetic field case, exciton condensation
and superfluidity still remain elusive. Another possibility to achieve exciton condensation comes
from considering actual electron and hole bilayers, where electrons and holes are confined in
two different parallel quantum wells. By confining electrons and holes in separate layers, tun-
neling through the barrier is suppressed when the thickness is large enough and the tunneling
suppression leads to increased lifetimes of the so called indirect excitons, formed by interlayer
pairs, with a consequent increasing in the possibility to observe collective phenomena in almost
equilibrium conditions. One way to create a stable electron-hole bilayer is by electrical genera-
tion. Through two separate gate, is possible to control independently the electron-hole densities,
applying a gate voltage. The steps to obtain this situation are explained here. In an intrinsic
semiconductor (with no doping), the Fermi level is lying exactly in the middle of the energy
band gap – we are considering the case of low temperatures. In this situation, electrons (holes)
do not have enough energy to occupy the conduction band (valence band) (see Fig. 2.2a)).
When a voltage V top

G is applied on the top gate (see Fig. 2.2 b)) the Fermi level is shifted
towards the conduction band. The presence of an electric field also modified the valence and
conduction band dependency on the direction perpendicular to the wells. When the potential
exceeds a threshold value, the Fermi level crosses the conduction energy band of the nearest
quantum well, and the electrons start to populate that well. In the same way, applying a volt-
age with a reversed sign on the other gate V back

G (see Fig. 2.2 c)) is possible to let the Fermi
level overcome the valence energy band, and so the holes start to populate it. The final step
to reach a population of electrons in the first well and of holes in the other one, is obtained by
introducing an external bias, Ve−h, to keep the two layers at different electrochemical potential.
In this way the Fermi level goes from the valence band of one layer to the conduction band of
the other (see Fig. 2.2 d)).

Another method employed to obtain stable e-h bilayers is by introducing doped materials,
where instead of applying a voltage, the introduction of impurities changes the Fermi level,
resulting in the same final stable situation, where electrons and holes result confined in two
separate quantum wells.

Both approaches allow to study transport phenomena in electron-hole bilayers while keeping
control of population densities in both layers. In general, it was seen that electrical transport
measurements in this structures give information about the state of the system. A widely used
technique is the one of the Coulomb drag. Here long-range Coulomb interaction between charge
carriers in two closely spaced but electrically isolated conductors induces a voltage in one of
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Figure 2.2: a) In an intrinsic semiconductor, the Fermi level is lying exactly in the middle of
the energy band gap for low temperatures. b) When a voltage V top

G is applied on the top gate,
the Fermi level is shifted towards the conduction band. The presence of an electric field also
modified the valence and conduction band dependency respect the direction perpendicular to
the wells. So the electrons start to populate it. c) Applying a voltage with a reversed sign on
the back gate is possible to let the Fermi level overcome the valence band energy, and so the
holes start to populate it. d) Introducing an external bias, Ve−h, the two layers are kept at
different electrochemical potential. In this way the Fermi level goes from the valence band of
one layer to the conduction band of the other.

the conductors when an electrical current is passed through the other (see Fig. 2.3). The drag
resistivity, defined as

Rdrag = Vdrag/Idrive , (2.1)

represents a direct measurement of the interlayer scattering. This means that, for a weakly
coupled Fermi liquid, the drag resistance decreases with the temperature, due to the vanishing
phase space for scattering. However it was reported in Ref. [30, 31] an anomalous increase of
the drag at low temperatures, suggesting the emergence of a non-Fermi liquid phase. Despite
different theoretical works predicted unambiguously this anomaly to occur at the onset of an
excitonic condensation [32, 33], some doubts and unanswered questions still exist about the
nature of this effect.

2.2.3 Optically generated indirect excitons

In absence of doping and gate contacting, indirect excitons can be generated optically. In this
set up, there are several experiments on indirect excitons in GaAs structures with and without
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Figure 2.3: Schematic representation of a Coulomb drag experiment. A current flows through
one layer: the carriers interact, exchanging momentum and energy, with the particles of the
other layer. As a result is an open-loop voltage forms across the second layer. Picture taken
from Ref. [29]

a cavity confining the photons. How indirect excitons can be generated via an optical pump is
schematically explained in Fig. 2.4. We have seen in the previous section that applying a gate
voltage across the quantum wells, and thus generating an electric field perpendicular to the
growth direction, results in a tilting of the conduction and valence bands. This creates different
energy gaps weather we consider valence and conduction bands in the same or in different wells.
When an optical pump is injected in the system, one generates an equal population of electron
and holes in each well, thus creating direct excitons (DXs) as well as indirect excitons (IXs).
However direct excitons, which belongs to the same well, do recombine quickly. Because of
the band tilting, only electrons in the lowest energy conduction band and holes in the higher
energy valence band are left. Because they belong to different wells, only indirect excitons
are left behind after direct ones have recombined. If now one confines this quantum system
in a microcavity (see Fig. 2.4 c)), one can describe the system via a three-coupled oscillator
model: direct excitons are optically coupled to cavity photons via the Rabi coupling Omega; at
the same time, direct and indirect excitons are coupled via tunneling J. A simple Hamiltonian
model coupling these states |DX〉, |IX〉, |C〉 is

Ĥ = ~

 ωIX −J/2 0
−J/2 ωDX −Ω/2

0 −Ω/2 ωC

 , (2.2)

where ωIX,DX,C are respectively the energies of indirect exciton, direct exciton and cavity

photon. Diagonalization of Ĥ yields to three different modes

|MP 〉 = α [Ω|IX〉 − J |C〉] (2.3)∣∣∣∣UPLP
〉

= β
[
J |IX〉+ Ω|C〉+ (δ ±

√
Ω2 + J2 + δ2)|DX〉

]
, (2.4)

with δ the cavity detuning. The resulting quasiparticles which are a superposition of a DX, and
IX and a cavity photon are similar to the exciton polaritons formed out of DXs only, with the
difference that now posses a large dipole moment inherited from the IX component [37]. In these
structures is not possible to control independently the electron and hole density. Nevertheless,
it is possible to tune the dipolariton interaction strength by increasing the density of indirect
excitons, i.e., by optically pumping stronger the system. [35, 38].
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Figure 2.4: a), b) Schematic representation of the optical creation of an electron-hole bilay-
ers. On the quantum wells a perpendicular electrical filed is applied. This field changes the
geometry of the valence and conduction band. When an optical pump is injected in the system,
direct excitons (DXs) and indirect excitons (IXs) are created. Figures taken from Ref. [34]. c)
Schematic representation of bilayers confinement. The application of the electric field – green
arrow – allows the creation of indirect excitons (IX) coupled with direct excitons (DX) via the
tunneling rate J . The DBR mirrors confine the cavity photons, that result coupled with the
direct excitons via Rabi frequency Ω. Picture taken from Ref. [35]

2.3 2D materials: graphene and TMDC monolayers

Novel technical advances in exfoliation, deposition and irradiation techniques, has led to the
ability to produce 2D atomic layers materials. The most well-known is graphene, a single layer
of carbon atoms in a honeycomb lattice. Thinking about bilayers structures, graphene offers a
stronger interlayer interaction, thanks to a small dielectric constant and the possibility to reduce
the distance between layers of an order of magnitude smaller than the one achieved in GaAs
structures. This favours for example Coulomb drag measurements not only when the distance
d between layer is greater or nearly equal to the characteristic distance L between carriers, such
as in GaAs, but also in the limit of d/L � 1, exploring the Fermi liquid regime – EF larger
than kBT – as well as the less explored Boltzmann regime – EF < kBT [39].

With graphene, also other 2D materials are actually used in optical devices. An example are
the layered transition metal dichalcogenides (TMDC), thin direct band gap semiconductors of
the type MX2, with M a transition metal atom (Mo, W, etc.) and X a chalcogen atom (S, Se, or
Te). One layer of M atoms is sandwiched between two layers of X atoms. The direct band gap
allows the optical excitation of excitonic state, and the reduced dielectric screening joined by the
quantum size effect present in these ultra-thin material make the binding energy of resulting
excitons much stronger than those in traditional semiconductors (like GaAs). This is a key
prerequisite for an ideal material system in polariton research, and jointly with the electrical
injection, highly desirable for any practical optoelectronic device into atomic monolayers, that
is proven more feasible in TMDC respect in quasi 2D materials, and an absorption of light
up to 20% per monolayer, nowdays exciton-polaritons in cavity structures with atomic TMDC
monolayers are preferred to the conventional quasi-two-dimensional semiconductors like GaAs.

One of the first steps in the investigation of new physics involving TMDC structures was
made by Sidler, Imamoglu et et al. [40], where they use gate- tunable monolayer MoSe2 em-
bedded in a microcavity. In their research they stress out the important of this materials not
only for the physics of exciton-polaritons, but also other kind of optical response of embadded
semiconductor, like trions and polarons. Their findings represent one of the first step in the
investigation of new physics involving degenerate Bose-Fermi mixtures.
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Chapter 3

Theory of exciton and polaritons
condensation

In Chapter 1, we have discussed the formation of an electron hole bound pair, i.e., an exciton,
in a direct gap semiconductor. One expects that, at low densities, excitons behave as bosonic
particles and thus, at sufficiently low temperatures, undergo Bose-Einstein condensation. By
increasing the exciton density, however, their composite fermionic nature becomes relevant,
the occupation of the low momentum states is blocked by the Pauli exclusion principle, and,
condensation is reminiscent of the BCS theory for superconductors. Because, differently from
a superconductor, pairing is between particles of opposite charge, this phase takes the name of
exciton insulator. In this chapter we review the existing theory about the BEC-BCS crossover
for excitonic systems. In particular, we review how to construct an appropriate wavefunction
interpolating between a BEC of excitons at low densities and an exciton insulator at higher
densities [41, 45, 42]. Further, we describe how the crossover changes when a 2D exciton gas in
embedded in a microcavity confining the photon [43, 44, 21].

3.1 From exciton condensation to the exciton insulator

The starting point of our study is the ”d exciton gas. In 2D there is no condensate at finite
temperature for a non interacting gas of boson, whereas in presence of interaction the super-
fluid transition is a Berezinskii-Kosterlitz-Thouless and not a Bose-Einstein condensation. In
our work we consider T = 0 where BEC can occur again. We didn’t consider the effects of
temperature. The Hamiltonian of the electron-hole system is

Ĥ = Ĥ0 + Ĥint , (3.1)

where

Ĥ0 =
∑
k

[
εk,ec

†
k,eck,e + εk,hc

†
k,hck,h

]
(3.2)

and

Ĥint =
1

2

∑
q

[
U eeq ρ

e
qρ

e
−q + Uhhq ρhqρ

h
−q − 2U ehq ρeqρ

h
−q

]
, (3.3)

The creation operators c†k,e and c†k,h are respectively for electrons and holes, and the density

operators are defined as ρeq =
∑

k c
†
k+q,eck,e and ρhq =

∑
k c
†
k+q,hck,h. Uq is the Coulomb

interaction, and for an homogeneous 2D system U eeq = Uhhq = U ehq = 2π/εΩq, with Ω being
the system volume. If one instead is considering the confinement of electrons and holes in two
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different layers, U eeq = Uhhq = 2π/εΩq, U ehq = 2πe−qd/εΩq, where d is the inter-layer distance.
Finally we remind that for parabolic bands εk,e = ~2k2/2me and εk,h = Eg + ~2k2/2mh. At
extremely low electron and hole densities, one recover the two-body problem already discussed
in Chapter 1. We have seen that the exciton Bohr radius a2D

0 (see Eq. (1.21)) and Rydberg
energy E2D

0 (see Eq. (1.20)) represent the natural units of the problem, and it is convenient to
measure the densities of the system as a function of that radius, by defining the dimensionless
parameter rs

1

n
= π(rsa

2D
0 )2 , (3.4)

where n = ne = nh = 1
Ω

∑
k c
†
k,eck,e. The Hamiltonian discussed is a simply model to describe

dynamics regarding possible phase transitions, with only few relevant parameters, such as the
density, the mass ratio between the two Fermi species and, for the 2D bilayer, the distance.

What we want to do now is to write down a wavefunction that, in the low density limit,
could describe a BEC of bound excitons. The exciton operator is just a wavepacket of one
electron hole pair, i.e. an exciton, at finite center of mass momentum Q

ΦQ =
∑
k

ϕk,Qck,ecQ−k,h , (3.5)

composed of electron and hole annihilation operators ck,e and cQ+k,h. Eq. (3.5) describes an
exciton with center of mass momentum Q, and ϕk,Q is the Fourier transform of the internal
exciton wavefunction. A possible state with N condensed excitons has a wave function

|ΨN
0 〉 = Φ0|0〉 (3.6)

We expect that the occupancy number of kth fermionic state is nk = 〈ΨN
0 |c
†
k,eck,e|Ψ

N
0 〉 =

N |ϕk,0|2, and so for rs ∝ 1
Na20
� 1, and so Na2

0 � 1, one obtains nk � 1. Furthermore it is

possible to show that[
ΦQ,Φ

†
Q′

]
= δQ,Q′ − ϕk,Qϕ

†
k,Q′c

†
Q′+k,hcQ+k,h − ϕk,Qϕ

†
k,Q,Q′c

†
Q+k−Q′,eck,e ≈ δQ,Q′ − O(Na2

0)

(3.7)
We can conclude that at low densities it is possible to neglect the exclusion principle, and the
exciton behave as a boson.

When the interparticle spacing becomes smaller than the exciton Bohr radius, a2D
0 = 2πεrε0

µe2
,

then excitons cannot be considered as structurless bosons, rather their fermionic nature start
to dominate. In particular, the occupation of the low momentum states becomes blocked by
Pauli exclusion principle. Now pairing can only occur for those states close to the Fermi surface
in a form similar to Cooper pairing in conventional superconductors. The resulting BCS-like
state of condensed electron-hole Cooper pairs is usually called exciton insulator. This is because
electrons and holes form neutral pairs and thus this condensed phase corresponds to a insulating
phase rather than a conducting one.

The interpolating wavefunction between a BEC condensate of tightly bound excitons and a
higher density exciton insulator state was build for the first time by Keldysh and Kopaev [45].
In particular, in the low density limit, excitons can be described as tightly bound bosons and
we can write a BCE-like coherent ground state

|ΨGS
0 〉 = eλΦ†0 |0〉 =

∏
k

eλϕk,0c
†
k,ec
†
−k,h |0〉 . (3.8)

The number of particles in the condensate is fixed by the modulus of λ

〈ΨGS
0 |Φ

†
0Φ0|ΨGS

0 〉 = |λ|2 (3.9)
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Figure 3.1: Increasing the electron-hole density, the system changes from a Bose-Einstein
condensate to an excitonic insulator. In the low density limit the e-h pairs are tightly bound,
with the occupancy v2

k ∝ 1/(1+k2)3 and the condensate wavefunction ukvk ≈ vk ∝ 1/(1+k2)3/2.
In the high density limit the e-h pairs are dilute and weakly bounded, with an occupancy that
approach a step function up to a Fermi momentum kF , and a condensate wavefunction that is
peaked at kF .

Expanding the exponential and remembering that electrons and holes are fermions (
(
c†k,ec

†
−k,h

)n
=

0 for each n > 1), one can rewrite the coherent state in an equivalent form as

|ΨGS
0 〉 =

∏
k

[1 + λϕk,0c
†
k,ec
†
−k,h]|0〉 , (3.10)

After the normalization, this equation reads as

|ΨGS
0 〉 =

∏
k

[uk + vkc
†
k,ec
†
−k,h]|0〉 , (3.11)

where

uk =
1√

1 + |λϕk,0|2
(3.12)

vk =
λϕk,0√

1 + |λϕk,0|2
, (3.13)

that is the typical BCS wavefunction, describing a Bose condensation of dilute excitons (see Fig.
3.1). The interesting parameters are now the occupancy |vk|2 and the condensate wavefunction
ukvk. In Fig. 3.1 they are sketched as a function of k, both in the high and low density limit.
In the low density regime uk ≈ 1 and vk ≈ λϕk,0 ∝ λ/(1 + k2)3/2, and so the occupancy is not
saturated and spreads over k – so the BEC approximation is reliable – as well as the condensate
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fraction. Instead, in high density limit the saturation is reached – |vk|2 is a step function with
respect to kF – and ukvk is peaked in |k| = kF . Because the same wavefunction (3.10) describes
both the low and high density limit at T=0, we can use it to describe the intermediate density
regime, revealing a crossover between the BEC and the BCS limits. We can conclude that
this is a good wavefunction to describe the exciton problem. Now, introducing the chemical
potential µ to fix the particle number, and minimizing the free energy – where we are fixing
Ne = Nh = N =

∑
k c
†
k,eck,e

F = 〈H〉 − µ〈N〉 (3.14)

with respect to the variational parameter vk, one finds a set of self-consistent equations, similar
to the BCS case [41]:

ξk = εk − µ− 2
∑
k′

U eek−k′nk′

= εk − µ−
∑
k′

U eek−k′

(
1− ξk′

Ek′

)
, (3.15)

∆k = 2
∑
k′

U ehk−k′〈c
†
k,ec
†
−k,h〉

=
∑
k′

U ehk−k′
∆k′

Ek′
, (3.16)

E2
k = ξ2

k + ∆2
k (3.17)

ξk is the renormalized single pair energy. ∆k is the gap-function and is also the order parameter
of the BCS theory. Ek is the energy cost of taking one pair out from the condensate. Simple
algebra yields to

ukvk =
∆k

2Ek
(3.18)

|vk|2 =
1− ξk/Ek

2
(3.19)

|uk|2 =
1 + ξk/Ek

2
, (3.20)

and so we linked the condensate wavefunction to the BEC-BCS crossover order parameter ∆k.

3.2 Theory of polariton condensation

We now want to describe the condensation of electrons and holes when their density increases,
in presence of a strong coupling to light confined in a microcavity. In the very low density
limit, we have already introduce in Chapter 1 the electron-hole-photon problem, where the
photon contribution enhances the electron-hole coupling. This leads to the formation of a
new quasiparticle, namely the polariton. When the electron-hole density increases, we want to
resume here how the form of the condensate changes. Recent papers have already suggested
how to address this problem, such as Ref. [43, 44, 21]. We will give a short overview on these
work.

The starting point is the Hamiltonian

Ĥ = Ĥ0 + Ĥint + Ĥph + Ĥe−h−ph , (3.21)

where Ĥ0 and Ĥint are the same as before and

Ĥph =
∑
q

ωq,Cc
†
q,Ccq,C (3.22)
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Ĥe−h−ph = g
∑
k,q

e−( k
kc

)2
[
c†k,ec

†
q−k,hcq,C + h.c.

]
, (3.23)

with cq,C the annihilation operator of for the cavity photon, ωq,C the photon energy, g the
coupling strength of cavity photon and electron-hole pairs and kc the momentum cut-off. The
chemical potential µ is used to fix the density, where N = c†CcC + 1

2

∑
k[c
†
k,eck,e + c†k,hck,h].

Minimizing F = 〈Ĥ〉 − µ〈N〉, using a BCS ground state ansatz of the form

|ΨGS〉 = eαCc
†
0,C

∏
k

[uk + vkc
†
k,ec
†
−k,h]|0〉 , (3.24)

where one considers the coherent state of exciton condensate and of the emitted photon. Again,
minimizing the free energy, is possible to obtain the self consistent-field equations [21]

ξk = εk − µ−
∑
k′

U eek−k′

(
1− ξk′

Ek′

)
, (3.25)

∆k =
∑
k′

U ehk−k′
∆k′

Ek′
− ge−( k

kc
)2αC (3.26)

E2
k = ξ2

k + ∆2
k (3.27)

This equations are identical to those that appear in the exciton case, apart from the contribution
of g exp(−k2/k2

c )αC to the gap equation and the gap energy. Now the variational parameters
uk and vk satisfy

〈c†k,eck,e〉 = v2
k =

1

2

(
1− ξk

Ek

)
(3.28)

〈c†k,ec−k,h〉 = ukvk =
∆k − ge−( k

kc
)2αC

2Ek
(3.29)

In Fig. 3.2 we report the results obtained by Byrnes et al. [35], where the occupancy v2
k

is plotted with respect to wavevector k. In their system the number of particles is defined
as N = c†CcC +

∑
k[c
†
k,eck,e + c†k,hck,h], and the coupling to light is renormalized differently,

However these changes are likely not to cause qualitative changes. In the low density limit the
momentum distribution coincides with the one expected without the coupling to light, where
vk ≈ 1

(1+k2)3/2
. The BEC limit is recovered. When the density is increased, for an BCS state

without coupling, we expect a moment distribution that approaches a step function. However,
in the coupled case Byrnes et al. [44] found that for high densities the moment distribution
spreads out to higher momenta. One may ask what is the origin of this effect. The explanation
is in the different particles statistics. Photons are bosons, hence any number of them can occupy
the ground state with a constant energy ω0,C . Excitons are instead composite bosons. To excite
more fermionic particles, electrons and holes with greater momenta must be generated. So we
expect a jump in the photon number when the density is greater than a critical one, because is
favorable to excite photons rather than excitons to minimize the energy. So, when αC is big,
the photon operator could be substituted by a c-number, and the Hamiltonian is reduced to

Ĥ ≈ gαC
∑
k

[
c†k,ec

†
−k,h + h.c.

]
+ |αC |2ω0,C , (3.30)

where we neglected the terms that do not contain the factor αC . In this limit, the BCS gap
equation is ∆k ≈ Emink ≈ 2g exp(−k2/k2

c )αC . Thus with increasing density, also the gap
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Figure 3.2: Top panel: occupancy number |k|2 as a function of k, in the coupling to light case.
In the low-density limit – small µ – the occupancy is low, as expected in the BEC state. In the
other limit – higher µ – |k|2 spreads out to higher momenta, precisely the opposite behavior
expected for the BEC-BCS crossover. Bottom panel a: pair wavefunction Ψ = ukvk as a
function of k, in the coupling to light case, with a zero detuning (ω0,C = ω0,X). The low density
limit gives what expected in the case where there is no coupling to light. When increasing the
chemical potential µ the momentum peak is at a non-zero value of k, but the pair wavefunction
in these case is broader and not sharper as in the purely excitonic BCS-state. Bottom panel b:
pair wavefunction Ψ = ukvk as a function of k, in the polariton case, with positive detuning. In
the high density limit the pair wavefunction starts to resembles the expected behavior. Figures
taken from [43]

energy increases, contrarily to what expected in the standard BCS case, and, from Eq. (3.28),
|vk|2 → 1/2.

The other interesting parameter in the BEC-BCS theory is ukvk. In the exciton BCS state,
it is peaked near the Fermi momentum. In the case where there is coupling to cavity photons,
as shown in Fig. 3.2, the non zero momentum peak is present, but instead to be sharper with
increasing density, here the function becomes broader. However, increasing the cavity detuning,
is possible to obtain something more ”BCS-like”. This is because by increasing the photon
energy, the photon number is decresed and polaritons have a more excitonic-like nature.

We are now able to describe the typical and expected phase diagram. In Fig. 3.3 we show
the result obtained by Kamide et al. [43], where they considered a GaAs based semiconductor
confined in a microcavity, with a coupling strength g = E0a0 and a momentum cut-off of kca0 =
30 – in their paper the momentum cut-off represents simply a restriction on the momentum of the
contributing electronic states to polariton formation. Clearly the phase diagram depends on the
detuning. For large value of detuning the system shows four different phases: exciton BEC in the
low density limit, e-h BCS when we are approaching the high density, e-h polariton BEC when
the density is so high to allow the mixing between e-h pairs and the great quantity of photons
generated, and the photonic BEC, in the extreme high density limit, where is energetically
more convenient to excite only photons. Instead for low values of detuning, only two phases
are present: the polariton BEC, where the e-h pairs and photons are mixed, with a dominant
presence of exciton for high values of rs – exciton polariton BEC, and the photonic BEC, already
described. The shaded pink region represent the area in which the interaction is a Coulomb
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Figure 3.3: Phase diagram at zero temperature as a function of the detuning and the mean
separation. g = E0a0 and kca0 = 30. The pink region shows the area in which the interaction
is mostly a Coulomb attraction, changing into a photon-mediated attraction increasing the
density. Ref. [43]

attraction, changing to a photon-mediated attraction when the density is increased.
We have analyzed the crossover between low and high density limits of exciton-polariton

condensates, using a BCS-like wavefunction approach. The main differences between excitonic
and polaritonic case is that, in the latter, the cavity photon influence allows in the high density
limit state with a non saturated occupancy, where is still possible to identify a condensate of
bosonic quasiparticles.
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Chapter 4

Electron-hole bilayer with large
density imbalance

Previously, we discussed experimental systems in which to explore pairing phenomena, par-
ticularly in the context of electron-hole systems. The possibility to independently control the
densities of electrons and holes in the two separate quantum wells allows to explore the richer
scenario of possible ground states, when the densities of the two interacting fermionic species
are imbalanced, and so their pairing is frustrated. One of the most interesting possible ground
states is the one in which the electron and hole generate a bound state having a finite center
of mass momentum. This state is analogous to the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO)
phase [46, 47], a spatially modulated state predicted for the first time in a superconducting sys-
tems. The 2D bilayer represents the ideal condition for FFLO, because the reduced dimension
of the system limits the normal phase, and the intra-layer Coulomb repulsion avoid macroscopic
phase separation. Recent papers provide strong evidence for the existence of this exotic pairing
in electron-hole bilayers, such as Varley et al. [48], who investigates FFLO superfluidity in
imbalanced electron-hole systems via a Ginzburg-Landau model. However, we will focus our
attention on the extremely imbalanced case, with only one particle in one of the quantum well
layer, as already done by M.M. Parish et al [49]. As a first step, we are going to re-derive the
results obtained in that paper, and then extend the results considering two different situation:
the RPA screened Coulomb interaction and the unscreened one. The interest in considering the
extreme imbalanced limit is that it allows to address the problem in a controlled manner.

4.1 Model

We start writing the basic Hamiltonian for a 2D electron-hole bilayer – ~ = 1 and Ω is the
system area:

Ĥ = Ĥ0 + Ĥint (4.1)

Ĥ0 =
∑
k,σ

εk,σc
†
k,σck,σ (4.2)

Ĥint = − 1

Ω

∑
kk′q

Vqc
†
k,1c

†
k′,2ck′+q,2ck−q,1 +

1

2Ω

∑
kk′qσ

Uqc
†
k,σc

†
k′,σck′+q,σck−q,σ , (4.3)

where, σ = 1, 2 indicates the different species of fermions (either electrons or holes) and, in
case of bilayers, also indicates the different 2D layers (Fig. 4.1). Both particles have quadratic
dispersion with masses m1 and m2, εk,σ = k2/2mσ. The electron-hole gap energy Eg is set
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Figure 4.1: Schematic representation of an electron-hole bilayer in the fully imbalanced limit.
The majority particles 1 are confined in the bottom layer, while the minority particle 2 is
confined in the top layer. The distance between layers is d, and the majority particles interact
repulsively between them via Coulomb interaction U and attractively via Coulomb interaction
V with the minority particle.

to zero. The bare Coulomb intra- and inter-layer interactions are respectively given by Uq =
2πe2/εq and Vq = Uqe

−qd, where d is the bilayer distance, and reducing d → 0, we can easily
switch from bilayers to single layer case.

In order to have useful measurement units to study our system, introducing twice the reduced
mass m = 2(1/m1 +1/m2)−1, we can define the exciton Bohr radius a0 and the exciton Rydberg
E0 as

a0 =
ε

me2
E0 =

e2

εa0
=

1

ma2
0

. (4.4)

The other important parameter for the theory is the density, and in the extremely imbalanced
case, where fermion 1 is the majority particle and forms a Fermi liquid of density n1, we define
the dimensionless density as:

rs ≡
2

kFa0
, (4.5)

where kF = 2
√
πn1 is the Fermi wavevector. The minority particle 2 can be either a hole or

an electron, and the two cases can be obtained by inverting the mass ratio α = m2/m1 – for
example in GaAs the electron-hole mass ratio is 4, and so if the minority particle is the electron
α = 0.25, and if it is the hole α = 4. In terms of this mass ratio α, the free particle 1 and 2
dispersion reads as

εk,1 =
α

1 + α

k2

2m
εk,2 =

1

1 + α

k2

2m
. (4.6)

4.2 Variational molecular ground state

To establish the system phase diagram, we consider a variational ground state approach. To
start with, the variational state for an excitonic quasi-particle generated by the interaction of
a minority particle with a Fermi sea of majority particles is :

|Ψ(Q)〉 =
1√
Ω

∑
k>kF

ϕk,Qc
†
Q−k,2c

†
k,1 |FS〉1 ⊗ |0〉2 , (4.7)
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where |FS〉1 represents the Fermi sea of 1-particles filled up to wave vector kF , and we use the
notation

∑
k>kF

≡
∑

k θ(|k− kF |). The normalization condition requires

1 = 〈Ψ(Q) |Ψ(Q)〉 =
1

Ω

∑
k>kF

|ϕk,Q|2 . (4.8)

This variational state coincides in the low-density limit with the two-body state, already treated
in Chapter 1, and in the high density one expects to find the non interacting state

|ΨN 〉 = c†0,2c
†
kF k̂,1

|FS〉1 ⊗ |0〉2 , (4.9)

corresponding to ϕk,Q = δk,kF
δQ,kF

. In this case the particles barely interact and the minority
particle is not bound, occupying a state with zero momentum.

As already said, we are describing the extremely imbalanced limit. The only information
about ground state that we can obtain is if particle 2 is bound to the Fermi sea of particles 1
or not. In particular we are interest in the momentum Q of the possible bound state. Nothing
in this limit can condensate. What we expect is that, in the case there is a small density of
particles 2, and thus now there can be condensation of excitons, there is a 1 to 1 correspondence
with the ground states found in the extremely imbalanced limit. So in our case, if the minimum
occurs for Q = 0, then the ground state would be an ordinary SF state, while if Q 6= 0, it
will be interpret as the analogous of the FFLO state, because these are the expected phase if
one slightly increase the minority particle density. To achieve these information, we need to
minimize the expectation value 〈Ψ(Q)| Ĥ − E |Ψ(Q)〉 with respect to the complex amplitude
ϕk,Q, obtaining an eigenvalue equation for the exciton energy E:

Eϕk,Q =

εQ−k,2 + εk,1 −
1

Ω

∑
k′<kF

Uk−k′

ϕk,Q −
1

Ω

∑
k′>kF

Vk−k′ϕk′,Q . (4.10)

However, the minimum energy found have to be compared with the energy related to the normal
state

EN = ε0,2 + εkF ,1 −
1

Ω

∑
k′<kF

UkF−k′ , (4.11)

to detect the presence of an unbound ground state. This energy could be calculated analytically
when the interaction considered is Uq = 2πe2/εq, and expressing it in dimensionless variables

EN
E0

=
α

1 + α
(

2

rs
)2 − 4

πrs
(4.12)

4.2.1 Screening

The expected ground states of (4.1) in the extreme limits of high (rs → 0) and low density
(rs →∞) are the following: in the high density limit the fermionic species are expected to barely
interact, while in the low density limit, the electron-hole pair form an exciton. To interpolate
between this two regimes, one could start to add particle-hole excitations directly in the ground
state. But, if for cold atoms is possible to consider only one excitation above the Fermi sea,
because the inter species interaction is short-range and the Fermi sea is non-interacting, in our
system the Coulomb interaction will generate an infinite number of particle-hole excitations and
any perturbative approach is bound to fail due to the long-range interaction. Thus instead of
considering a finite number of excitations in the wavefunction, we include an infinite number
of them considering an RPA approximation. In this approximation the Coulomb interaction is
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Figure 4.2: Dyson’s equation for the photon propagator (a) where the Coulomb interactions is
RPA screened (b).

dressed with an infinite number of electron-hole excitations. The screened interaction (Fig. 4.2
a)) is obtained considering the so called Dyson’s equation, that expressed in the momentum
representation is

U scq = Uq + UqΠqU
sc
q , (4.13)

where the polarization Πq gives the RPA approximation, containing all the possible first order
excitations (see Fig. 4.2 b)). The polarization function is given by the Lindhard equation

Πq =
Nsm1

2π


√
q2 − 4k2

F

q
θ(q − 2kF )− 1

 , (4.14)

whit the number of particles flavours Ns = 1 for the spin polarised case. So the screened
Coulomb potential will be

U scq =
Uq

1− UqΠq
V sc
q = U scq e

−qd , (4.15)

In our work we will consider not only the extreme case of full RPA approximation, but also the
other one, the unscreened case, switching between them changing Ns = 1 into Ns = 0. The
interest in this is because in some materials, like TMDC, the screening is not so effective, and
so it is good to have the case without screening implemented.

A perspective for future researches is the comparison of the unscreened and RPA screened
limits results with the calculation where the interaction is unscreened while we dress molecular
state with a single particle-hole excitation. The variational state in this case will be

|Ψ(Q)〉 =
∑
k>kF

ϕk,Qc
†
Q−k,2c

†
k,1 |FS〉1 ⊗ |0〉2 +

+
1

2Ω

∑
k,k′,q

ϕk,k′,q,Qc
†
Q+q−k−k′,2c

†
k,1c

†
k′,1cq,1 |FS〉1 ⊗ |0〉2 , (4.16)

4.3 Phase diagram

In order to get the phase diagram of the fully imbalanced bilayer system, we convert the eigen-
value equation Eq. (4.10) into a matrix equation and numerically solving it for the lowest energy
eigenvalue. To do so we use Gauss-Legendre quadrature method, in detail in the Appendix A.
To establish the minimal number of parameters we need to describe the diagram, we rescale
energies by the exciton Rydberg E0 and wave-vectors by the inverse exciton Bohr radius a0 and
introduce the dimensionless variables:

k̃ = ka0 d̃ =
d

a0
ε̃k,1 =

εk,1
E0

=
α

1 + α
k̃2 ε̃k,2 =

k̃2

1 + α
. (4.17)
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4.3.1 Numerical implementation

The symmetric matrix equation obtained via Gauss-Legendre quadrature method is solved
writing a Python code, with the aim of calculate the minimum eigenvalue for a fixed Q, and
then found Qmin at which the energy is the lowest possible. The code idea is quite simple.

First we define the matrix equation for a fixed number of point Nt and Nk, used for the
discretization described in the Gauss method, and for a fixed value of Q. Then we solve
the problem using a routine of Python that calculates the eigenvalues and eigenvectors of the
matrix, selecting the minimum. The value found will depend on the number of point used
to approximate the integrals with the quadrature method. So what we do is to repeat this
procedure for different values of Nt and Nk, fitting them for Nt, Nk → ∞ with a polynomial
function – for an explanation on the choice of Nt, Nk and the grade of the polynomial function,
we remind at the Appendix B. The last step is to repeat this procedure for different values of Q,
selected using a bisection method, to reveal the one corresponding to the state with minimum
energy.

4.3.2 Bilayer with RPA screening

To be able to compare our Python simulations with existing and known results, we start con-
sidering a situation with two layers at a distance d = a0, using RPA screened interactions, the
same configuration considered in Ref. [49]. Results are plotted in Fig 4.3. We fix the electron-
hole mass ratio to 1 (α = 1) and to 4, that is approximately the value in GaAs structures
(α = {0.25, 4}).

In the low density limit rs →∞ we trivially recover the two-body limit, with a bound state
at Q = 0. We refer to this state as superfluid state (SF). In the other limit, with small rs,
the screened interaction cause the exciton to unbind, and so we talk about normal phase (N)
(see Eq. (4.9)). The interesting aspect is that, at intermediate densities, the phase diagram
shows a ground state characterized by a bound state with finite momentum, exactly what we
called FFLO state. From Fig. 4.5, the FFLO region is enhanced and shifted to larger rs if the
minority particle is lighter (α = 4) than the other. The reason is that, to maintain a molecular
state with Q = 0, the minority particle have to sit above the Fermi sea. This implies a kinetic
cost that is bigger if α is smaller. This favours the FFLO state, with the minority particle that
now sits below the Fermi level. The FFLO region is also enhanced and shifted towards bigger
value of rs increasing the bilayer distance, because increasing d, the large momentum scattering
is suppressed by V sc

k−k′ . Finally we note that, in each case, the transitions are second order (see
Fig. 4.4).
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Figure 4.3: Left panels: Momentum Qmin minimizing the exciton’s energy as a function of rs
for α = 0.25 (top), α = 1 (center), α = 4 (bottom). d = a0 and the interaction considered is an
RPA screened Coulomb interaction (Ns = 1). The dashed black line correspond to the Fermi
momentum Q = kF ≡ 2/rsa0. Three different phases are present: the normal (N) unbound
phase, the bound state with Q 6= 0 (FFLO), and the superfluid phase (SF). Qmin evolves
continuously from 0 to kF , with always a second order transition through the three phases
(see Fig. 4.4). Right panels: values of the energy at Qmin as a function of rs, rescaled respect
the energy EQ=0 = E(Q = 0) for intermediate values of rs, and respect the normal energy
EN = E(Q = kF ) for smaller value of rs.
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Figure 4.4: Energy of the ground state as a function of Q, for values of rs before and after
the FFLO-SF transition. d = a0 and the interaction considered is an RPA screened Coulomb
interaction (Ns = 1). In each case the transition is a second order.
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4.3.3 Single layer without RPA screening (Ns = 0)

We now treat the unscreened case, describing as an example the single layer case, and then
extending the results at different values of d and α. What one expects is that the FFLO region
depends on the particular screening considered. To understand this it is useful to note that
the eigenvalue equation (4.10) coincides with the mean-field gap equation of the BEC-BCS
crossover theory ∆k,Q = 1

Ω

∑
k′>kF

V sc
k−k′ϕk′,Q. Neglecting the intra-layer Coulomb interaction,

we obtain

∆k,Q = − 1

Ω

∑
k′>kF

V sc
k−k′

∆k′,Q

E − εQ−k′,2 − εk′,1
. (4.18)

In the unscreened case, writing it in a continuous form, one obtains

∆k,Q =

∫
k′> 2

rs

dk′

2π

e−d|k−k
′|

|k− k′|
∆k′,Q

−E + εQ−k′,2 + εk′,1
. (4.19)

At the unbinding transition we have Q = k = k′ = 2/rs and E = EN = 4α/r2
s(1 + α) (see

Appendix A). In this case the integral in Eq. (4.19) is logarithmically divergent, and we must
take rs = 0 to avoid it. So, for the unscreened interaction, the FFLO phase occupies the high
density region, having always an energy lower than the N phase. Note that this is not the
case when the interaction is screened, where the singularity at k′ = k is removed, leaving an
integrable singularity at Q = k′ = 2

rs
k̂. This phenomenon is well represented in Fig. 4.6, where

we plot the phase diagram for α = 0.25, 1, 4, where the FFLO phase suppress completely the
normal phase. The only transition in the system is the FFLO-SF, and studying its behavior,
we found that for α = 0.25 it is second order, whereas for α = 4 and α = 1 the transition is
first order (see Fig. 4.7).

Let’s now compare the effects of unscreened and screened interaction . In Fig. 4.8 we
report the phase diagrams for the unscreened case, with also the screened FFLO-SF transition
threshold – dashed lines. For α = 0.25 we found very similar results. As already said the normal
phase is completely suppressed, and the FFLO phase is preferred over the SF phase increasing
the bilayer distance. The motivation is the same as before, with now a slightly shift for lower
rs, because the interlayer Coulomb attraction is greater, and can better balance the kinetic cost
of the minority particle. In both case the transition is second order. For α = 4 the FFLO again
is enhanced increasing the distance, but now is strongly frustrated with respect the screened
case. This because the low energy cost of the minority particle to occupy a state with k 6= 0
is efficiently balanced by the stronger Coulomb inter-layer attraction, allows SF state for lower
rs then in the screened case. The other significant difference is in the transition behavior, that
now is first order. The last panel of Fig. 4.8 shows a brief recap of what seen, with the two
different behavior of the transition in the unscreened case, and with the transition threshold
that, decreasing α, tends to the one calculated for the screened case.
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Figure 4.6: Left panels: Momentum Qmin that minimize the exciton’s energy as a function
of rs for α = 0.25 (top), α = 1 (center), α = 4 (bottom). The distance d is fixed at 0 and
the interaction considered is a unscreend Coulomb interaction (Ns = 0). The dashed black line
correspond to Q = kF ≡ 2/rsa0, the Fermi momentum. Two different phases are present: the
bound state with Q 6= 0 (FFLO), and the superfluid phase (SF). Qmin evolves continuously
from 0 to kF only for α = 0.25, with a second order transition through the three phases. For
different α first order transitions appear. Right panels: For great rs, the exciton energy at
Q = Qmin (red line) and at Q = kF (black dashed line) are rescaled respect to the exciton’s
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Figure 4.7: Energy of the ground state as a function of Q, for values of rs before and after
the FFLO-SF transition. The distance d is fixed at 0 and the interaction considered is an
unscreened Coulomb interaction (Ns = 0). For α = 0.25 the transition is second order, whereas
for α = {1, 4} first order
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4.4 Summary of results and conclusions

We have studied the full density imbalanced electron-hole layers and bilayers, considering both
screened and unscreened Coulomb interactions. As predicted the elusive FFLO state was found
in each case, and through the phase diagrams is possible to characterized its behavior. First of
all we saw that the screening plays an important role. If the interaction considered is unscreened,
the FFLO state is the dominant state in the high density regime. But in presence of screened
interaction the FFLO phase for low values of rs is suppressed by the unbound state. In the high
density limit the situation is different, where an FFLO state in the screened case is preferred
over the superfluid phase for higher values of rs with respect the unscreened case, where the
FFLO-SF transition is slightly shifted towards smaller rs. The other interesting dependence is
on the layers distance. The greater it is, the wider is the FFLO region, because now the less
effective inter-layer Coulomb interaction allows states with Qmin = 0 only for lower values of
density. In the screened case also the normal phase is shifted towards greater rs, but at fixed
α the overall effect increasing the distance is to increase the range in which the FFLO state
appears. The last aspect to consider is the dependence on the mass ratio. When the minority
particle is lighter than the majority, the FFLO is allowed for greater values of rs. This because
lighter particles have a greater energy cost occupying a state with momentum kF , and so state
with Q 6= 0 are preferred over superfluid state. As in the previous discussion, in the screened
case the normal phase have the same low density shifting, and the overall effect is that for lower
values of α the FFLO region is greater.

In conclusion, we have shown that peculiar pairing phenomena like FFLO state are possible
when the electron-hole bilayers are prepared with a density imbalance, giving also an overview
on the behavior of this phase changing the typical tunable parameters of the system.
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Chapter 5

Electron-hole layer and bilayer with
large density imbalance coupled to
light

The interesting and peculiar pairing phenomena found studying the electron-hole bilayers with
large density imbalance are now analyzed for a case where the system is embedded into a
microcavity. Again, in our study we consider the extreme imbalance case, whit only one minority
particle, to address the problem in a more controlled manner and to allow the formation of exotic
scenario, like FFLO states. The confinement also enhances the experimental detection of these
states. In fact one way to observe signatures of the finite-momentum pairing , is through the
angular emission of photon after the electron-hole recombination. Photon that is now confined
and coupled with the exciton itself.

5.1 Model

The Hamiltonian we use to describe the electron-hole layer and bilayers confined in a cavity is
– ~ = 1 and Ω is the system volume:

Ĥ = Ĥ0 + ĤC + Ĥint + Ĥeh−ph (5.1)

ĤC =
∑
q

ωq,Cc
†
q,Ccq,C (5.2)

Ĥeh−ph =
g√
Ω

∑
k,q

e−(k/kc)2
(
c†k,1c

†
q−k,2cq,C + h.c.

)
, (5.3)

where Ĥ0 and Ĥint are the same as in the case without confinement, Eqs. (4.2) and (4.3), cq,C
is the annihilation operator of the photon and ωq,C its energy. Again, we consider both the
unscreened and RPA screened interaction. The cavity photon dispersion relation is

ωq,C = ω0,C +
q2

2mC
ω0,C = δ − E0 , (5.4)

with the photon mass being typically mC = 10−4mX, and we measure the lowest photon energy
with respect the lowest excitonic one by introducing the cavity-photon detuning δ. Finally,
for the matter-light coupling, we use the same renormalized contact interaction discussed in
Chapter 1, where g is the coupling strength and kc is the momentum cut-off.
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5.2 Variational molecular ground state

Our purpose is to obtain information about the ground state at different densities and different
values of the detuning δ, and to describe the resulting phase diagram. We do so using a
variational approach. The variational state for an excitonic quasi-particle on top of a Fermi sea
of majority particles, confined in a microcavity, is :

|Ψ(Q)〉 =
1√
Ω

∑
k>kF

ϕk,Qc
†
Q−k,2c

†
k,1 |FS〉1 ⊗ |0〉2 ⊗ |0〉ph + αQc

†
Q,C |FS〉1 ⊗ |0〉2 ⊗ |0〉ph , (5.5)

similar to Eq. (4.7), where now we add a photonic coherent state. The normalization condition
requires 1 = 〈Ψ(Q) |Ψ(Q)〉 = 1

Ω

∑
k>kF

|ϕk,Q|2 + |αQ|2. Though the minimization of the expec-

tation value 〈Ψ(Q)| (Ĥ −E) |Ψ(Q)〉 with respect to the complex amplitudes ϕk,Q and αQ, one
obtains two coupled eigenvalue equations for the polariton energy E:

Eϕk,Q =

εQ−k,2 + εk,1 −
1

Ω

∑
k′<kF

U
(sc)
k−k′

ϕk,Q −
1

Ω

∑
k′>kF

V
(sc)
k−k′ϕk′,Q + ge−(k/kc)2αQ (5.6)

EαQ = ωQ,CαQ +
g

Ω

∑
k>kF

e−(k/kc)2ϕk,Q . (5.7)

where the interaction between particles can be unscreened or screened. The minimum energy
of the bound state have to be compared with the one of the possible normal states.

In this case one expects three different possibilities. The first two are related with the situ-
ation in which the exciton is in an unbound state and the photon is non interacting, occupying
a zero momentum state

|ΨN 〉1 = c†0,2c
†
kF k̂,1

|FS〉1 ⊗ |0〉2 ⊗ |0〉ph (5.8)

|ΨN 〉2 = c†0,C |FS〉1 ⊗ |0〉2 ⊗ |0〉ph . (5.9)

The energy E1
N related to the first normal state is exactly Eq. (4.11), whereas E2

N = ω0,C .

The other expected normal state, instead, is characterized by the exciton in its normal state,
with a relative momentum kF , interacting with the photon. Of course the photon needs to have
a finite momentum kF .

|ΨN 〉3 = ξc†0,2c
†
kF k̂,1

|FS〉1 ⊗ |0〉2 ⊗ |0〉ph +
√

1− ξ2c†
kF k̂,C

|FS〉1 ⊗ |0〉2 ⊗ |0〉ph . (5.10)

The energy EN3 can be found analytically, solving the coupled eigenvalue equations Eqs. (5.6)
and (5.7) for k = q = kF k̂, without the inter-layer Coulomb interaction contribution

Eξ =

ε0,2 + εkF ,1 −
1

Ω

∑
k′<kF

U
(sc)
kF−k′

 ξ +
g√
Ω
e−(kF /kc)2

√
1− ξ2 (5.11)

E
√

1− ξ2 = ωkF ,C

√
1− ξ2 +

g√
Ω
e−(kF /kc)2ξ . (5.12)

These coupled equations are now symmetric and can be diagonalized

E

(
ξ√

1− ξ2

)
=

(
ε0,2 + εkF ,1 − 1

Ω

∑
k′<kF

U
(sc)
kF−k′

g√
Ω
e−(kF /kc)2

g√
Ω
e−(kF /kc)2 ωkF ,C

)(
ξ√

1− ξ2

)
, (5.13)
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The solution will be something very similar to the lower and upper polariton energy

E3
N =

ωkF ,C + E1
N

2
−

[(
g√
Ω
e−(kF /kc)2

)2

+
(ωkF ,C − E1

N )2

4

]1/2

, (5.14)

where E1
N = ε0,2 + εkF ,1 − 1

Ω

∑
k′<kF

U
(sc)
kF−k′ . In the high-density limit (rs � 1) or when the

detuning is very high, the photon energy is much more bigger then the other energies, and so
the previous equation can be approximated as

EN3
ωkF ,C�g,EN

1−−−−−−−−−→ EN1 −
(ge−(kF /kc)2)2

ΩωkF ,C
, (5.15)

that implies EN3 ≤ EN1 .

In conclusion, what we have to do is to calculate the minimum energy from Eqs. (5.6)
and (5.7), comparing it with the normal energy EN3 and EN2 . To solve the eigenvalue equations,
we convert them into a matrix equation and numerically solving it for the lowest energy eigen-
value. We use Gauss-Legendre quadrature method, described in the Appendix A, where we also
simplify the notation with dimensionless variables, rescaling energies by the exciton Rydberg
E0 and wave-vectors by the inverse exciton Bohr radius a0 and introduce

k̃ = ka0 d̃ =
d

a0
δ̃ =

δ

E0
ε̃k,1 =

εk,1
E0

=
α

1 + α
k̃2 ε̃k,2 =

k̃2

1 + α
g̃ =

g

E0a0
. (5.16)

5.2.1 Unscreened interaction

To start with, we present in this section the unscreened Coulomb interaction case (Ns = 0) for
both single layer and bilayers.

In the left panels of Figs. 5.1 5.2 we show the value of the momentum Qmin, related with
the energy E(Qmin) that minimize Eqs. (5.6) and (5.7), as a function of detuning and the
dimensionless density. In the resulting maps we clearly see a region, in the pictures delimited
by a grey line, where the values of Qmin is not zero. Above each map, a section is shown at
a fixed detuning. In the range of rs at which the mentioned region is present, Qmin values
are the same found in the previous chapter. If now we plot the photon fraction as a function
of δ and rs (see right panels of Figs. 5.1 and 5.2) one sees that the above mentioned region
is characterized by a very low value of |αQ|2. We will refer at this region as excitonic region,
because the behavior of the ground state inside it will be the same found in the not confined
case.

Outside, Qmin = 0 and the photon fraction starts to increase. We identify this state as a
polariton superfluid. However, we already seen in Chapter 3 that the polariton changes with
respect photon presence. Looking at the map section for fixed rs at the side of each map, we see
how fast is the transition between |αQ|2 = 0 and |αQ|2 = 1 changing δ. So, we decide to make
a distinction between mostly excitonic polariton superfluid, when |αQ|2 < 0.1 (SF), polariton
superfluid, when 0.1 < |αQ|2 < 0.9 (SFpol), and mostly photonic polariton superfluid (SFph).

In Fig. 5.3 we summarize together the results mentioned above in an inclusive phase diagram.
First of all, as expected for the unscreened case, there is no normal state in both single layer
and bilayers configurations. The excitonic region, that is always below the FFLO-SF transition
threshold founded in the previous chapter – dashed lines in the pictures, is characterized by an
excitonic FFLO phase. One expects to recover, for δ →∞, the limit studied before, and so the
FFLO-SF transition represents the asymptotically limit of the right side of the region. Outside
we have only superfluid phase. Differently from the excitonic case, now the photon influence
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allows superfluid phase also for very high density, due to the enhancement of the electron-hole
interaction. Finally, on the right side of each diagram we plot the value of Rabi splitting for
rs → ∞, using both Eq. (1.65) – red line – and Eq. (1.67) -black line. This energy splitting
represents the effective experimental control on the strength of the coupling in the cavity. From
this one can re-obtain the values of g and kc. So knowing the magnitude of the splitting gives
important information of the system.

Summary of results and conclusion

What we can conclude is that the photon presence changes the ranges of rs in which is possible
to detect an FFLO state. While long-range Coulomb interactions promote the formation of the
finite momentum FFLO condensed phase, the mixing with a low-mass photon suppress that
phase, or contrariwise the coupling to light is inhibited by the formation of an FFLO state.
The competition between these two effects leads to interesting results. In particular, when δ
is negative the FFLO is completely eliminated, and only a mostly photonic polariton region is
present. For very high values of δ one expect to recover exactly the same case studied before,
with an FFLO state that, in the unscreened case, is extended until very small values of rs.
Instead for small positive values of the detuning the FFLO region shape depends strictly on
α and d. From Fig. 5.3 we can see that, considering the single layer case in the high density
limit, the FFLO region is more suppressed for bigger values of α. Contrarily, for higher value
of rs, the SF phase suppresses the FFLO region more when α = 0.25 than for α = 4. The
frustrated FFLO phase is a signature of the enhanced interaction between electron and hole,
mediated by the photon, that permits bound state with Q = 0 for value of rs not allowed
without confinement. In the SFph the photon contribution is maximal, allowing superfluid state
in the very high density limit. In the SFpol phase there is a strongest mixing between light and
matter, but only occurs at intermediated densities, in a small interval of photon detuning, in
a phase where polariton condensation occurs, as expected, at zero center of mass momentum.
In the SF state the interaction is mainly Coulomb attraction, but the photon presence is such
that the FFLO-SF transition is slightly shifted towards lower values of rs with respect the case
studied before. To conclude, the overall effect of increasing the distance is to favours the SF
state over the FFLO one in the low density regime.
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Figure 5.1: For the production of these maps we set the light-matter strength g = E0a0 and the
momentum cut-off at kc = 2/a0, considering the unscreened Coulomb interaction between the
two fermionic species contained in a single layer. Left panels: minimum value of the momentum
Qmin relative to the minimum energy of the system as a function of detuning δ and rs. The
grey line delimits the excitonic region.. Below each map, we show a section at fixed δ. Right
panels: photon fraction as a function of δ and rs. In the excitonic region its value is very low.
Outside the photon fraction increase. Next to each graphs we plot a section for fixed rs. The
dashed lines indicate the area in which the value of photon fraction is between 0.1 and 0.9

47



α=0.25  d=a0  Ns=0

-2

 0

 2

 4

 6

 8

 10

 12

δ
/E

0

 0

 1

 2

 3

 4

a
0  Q

m
in

 0

 1

 2

 0  2  4  6  8  10  12  14  16

a
0
 Q

m
in

rs

δ/E0=8

α=0.25  d=a0  Ns=0

 1  2  3  4  5  6  7  8  9  10  11  12  13

rs

-2

 0

 2

 4

 6

 8

 10

 12

δ
/E

0

1e-06

1e-04

1e-02

1e+00

|α
Q

| 2

 0  0.5  1

|αQ|
2

rs=13

α=1  d=a0  Ns=0

-2

 0

 2

 4

 6

 8

 10

 12

δ
/E

0

 0

 1

 2

 3

 4

a
0  Q

m
in

 0
 1
 2
 3

 0  1  2  3  4  5  6  7  8  9

a
0
 Q

m
in

rs

δ/E0=8

α=1  d=a0  Ns=0

 1  2  3  4  5  6  7  8

rs

-2

 0

 2

 4

 6

 8

 10

 12

δ
/E

0

1e-06

1e-04

1e-02

1e+00

|α
Q

| 2

 0  0.5  1

|αQ|
2

rs=8

α=4  d=1  Ns=0

-2

 0

 2

 4

 6

 8

 10

 12

δ
/E

0

 0

 1

 2

 3

a
0  Q

m
in

 0

 1

 2

 0  1  2  3  4  5  6

a
0
 Q

m
in

rs

δ/E0=8

α=4  d=a0  Ns=0

 1  2  3  4  5  6

rs

-2

 0

 2

 4

 6

 8

 10

 12

δ
/E

0

1e-06

1e-04

1e-02

1e+00

|α
Q

| 2

 0  0.5  1

|αQ|
2

rs=5

Figure 5.2: Same figure as Fig. 5.1, with now d = a0.
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Figure 5.3: Outside the region the three different polaritonic states are shown: mostly excitonic
polariton superfluid phase (SF), polariton superfluid (SFpol) and mostly photonic polariton
superfluid phase (SFph). On the left of each diagram the Rabi splitting for rs = ∞ is shown,
calculated with Eq. (1.65) – red line – and Eq. (1.67) – black dashed line.
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5.2.2 Screened case

The discussion on Figs. 5.5 and 5.6 for the screened case is the same as before, where again is
possible to detect the presence of an excitonic region where |αQ|2 is very low. Now we need to
be aware of the possible presence of a normal state, and in Fig. 5.7 we show the comparison
between the energy of the ground state E(Qmin) and the normal energy EN3 , obtaining the
definitive phase diagrams for the single layer and bilayers confined into a microcavity. In each
diagram we show the threshold of the N-FFLO transition – dotted line – and of the FFLO-
SF transition – dashed line – for the unconfined system. In the single layer case, we see that
the normal phase N3 is slightly shifted towards greater values of rs respect the normal phase
founded in the unconfined case, reducing the FFLO phase. In order to re-obtain the case treated
in the previous chapter for δ → ∞, one expects this transition threshold asymptotically tends
to the old one. However in our diagrams the N3-FFLO transition appears not depending on
δ, because in the range chosen EN3 doesn’t change significantly. The superfluid phase remain
mainly untouched. If now one considers the bilayers system, the normal state start to have a
greater impact. In Fig. 5.7 the normal phase completely suppress the FFLO state, influencing
also the excitonic polariton superfluid state, that result frustrated. However, as already said,
we expect to recover the result found previously when δ → ∞. So we expect a re-entrance of
the normal phase, with the consequent re-appearance of the FFLO state for greater value of δ.
As an example, in Fig. 5.4, we show that for α = 4 and rs = 6 the re-appearance of the FFLO
state is expected for a value of the detuning of the order of ≈ 400E0.
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Figure 5.4: Comparison between the energy of the FFLO state – black line – with respect EN3
– red line, when α = 4 and rs = 6. The re-appearance of the FFLO state is expected for a value
of the detuning of the order of ≈ 400E0
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Figure 5.5: Same figure as Fig. 5.1 where now the Coulomb interaction considered is screened.
The dot-dashed line is the N-FFLO transition threshold found in Chapter 4.
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Figure 5.6: Same figure as Fig. 5.5 where now d = a0.
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Figure 5.7: Same figure as Fig. 5.3, where now the interaction is screened, and normal phase
is present.
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Summary of results and conclusions

The conclusions in this case are quite similar to the ones previously highlighted. However, the
most important result obtained studying the screened case is that now, not only the coupling
to light is limiting the FFLO state, favouring the SF phase, but also the appearance of a phase
where the finite momentum coupling between electrons and holes is only weakly mediated by
finite momentum photons. In the single layer case the two effects allows the presence of an FFLO
region, which, as in the unscreened case, at low density results more inhibited for α = 0.25 than
for α = 4. However, more drastic effects happen when we consider bilayer structures, with a
distance d = a0. Here the normal phase completely suppress the FFLO, that can reappear only
increasing the detuning. In this case the normal phase have an energy lower than the SF phase
too, that again will reappear for greater δ, as clearly shown for α = 0.25.
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Appendices

A Gauss-Legendre method

Gauss-Legendre quadrature is a numerical integration method, which tries to solving the fol-
lowing function ∫ 1

−1
f(x)dx =

∞∑
i=1

wif(xi) ≈
n∑
i=1

wif(xi) (17)

by picking approximate value of n, wi and xi. While defined for the interval [-1,1], it is quite
easy to convert the limits of the integration for an interval [a, b]:∫ b

a
f(x)dx =

b− a
2

∫ 1

−1
f

(
b− a

2
xi +

b+ a

2

)
dx ≈

n∑
i=1

wif

(
b− a

2
xi +

b+ a

2

)
. (18)

The summation function is called Legendre-Gauss quadrature because the abscissae are defined
as the n-roots of the n-order Legendre polynomial.

We choose to implement this method in our Python code, in order to solve the complex
integrals in our study. The main advantage of this method is that it is an open integration,
because doesn’t integrate over the integration limits, and so this is pretty good to handle
integrals with infinite range, especially when one expects a smooth function. Let’s suppose to
have ∫ ∞

a
f(x)dx . (19)

Changing the integration variable x = tanβ, we have now an integral on a limited interval
β ∈ (atan(a), π/2). Applying the quadrature method, the function will be evaluated in equally
spaced abscissae, that, after reconversion to the original integration variable x, will result more
accumulated near a then for greater values of x.

A.1 Electron-hole bilayer with large density imbalance

The problem that we want to solve is the following eigenvalue equation

Eϕk,Q =

εQ−k,2 + εk,1 −
1

Ω

∑
k′<kF

U sck−k′

ϕk,Q −
1

Ω

∑
k′>kF

V sc
k−k′ϕk′,Q . (20)

In this form this equations is not symmetric, and can not be transformed in a diagonalized
matrix equation, solvable with a numerical approach.

To start with, we rescale energies by the exciton Rydberg E0 and wave-vectors by the inverse
exciton Bohr radius a0 and introduce the dimensionless variables:

k̃ = ka0 d̃ =
d

a0
ε̃k,1 =

εk,1
E0

=
α

1 + α
k̃2 ε̃k,2 =

k̃2

1 + α
. (21)
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In dimensionless units, changing from discrete to continuum, Eq. (20) becomes

Ẽφk,Q =

 α

1 + α
k̃2 +

(
Q̃2 + k̃2 − 2Q̃k̃cosθ

)
1 + α

−
∫
k′<kF

d2k′

(2π)2
Uk̃−k̃′

φk,Q+

+

∫
k′>kF

d2k′

(2π)2
Vk̃−k̃′φk′,Q . (22)

We can now solve the integrals using the Gauss-Legendre quadrature, obtaining again a discrete
eigenvalue problem. To start, we want the eigenvector to be normalized.

1 =
1

2π

∫ 2π

0
dθ

1

2π

∫ ∞
2/rs

dk̃k̃|ϕkQ|2 =

Nt∑
i2

wti2
1

2π

Nk∑
i1

w̃ki1 k̃i1 |ϕi1i2Q|
2 =

Nt∑
i2

Nk∑
i1

|ϕ̃i1i2Q|2 , (23)

where we change the integration variables θ and k̃ to

t =
θ

2π
t ∈ [0, 1]

k̃ = tanβ β ∈
[
atan(

2

rs
),
π

2

)
w̃k =

wβ

cos2 β
,

with the transformation of k̃ useful to integrate over an infinite range. We also rescale

ϕ̃i1i2Q =

√
wti2w̃

k
i1
k̃i1

2π
ϕi1i2Q . (24)

Nk and Nt represent the number of point used in the approximation of the integral, and w̃k

and wt are the weights. We can rewrite Eq. (20) as

Ẽϕ̃i1i2Q =

(
k̃2
i1 +

Q̃2

1 + α
− 2

1 + α
Q̃k̃i1 cos(2πti2)− intra(i1)

)
ϕ̃i1i2Q (25)

−
Nk∑
j1

Nt∑
j2


√
wti2w̃

k
i1
k̃i1w

t
j2
w̃kj1 k̃j1 q̃i1i2j1j2e

−q̃i1i2j1j2 d̃

q̃2
i1i2j1j2

+Ns
1+α
2α [q̃i1i2j1j2 −

√
q̃2
i1i2j1j2

− 16
rs

Θ(q̃i1i2j1j2 − 4
rs

)]

 ϕ̃j1j2Q (26)

where q̃i1i2j1j2 =
√
k̃2
i1

+ k̃2
j1
− 2k̃i1 k̃j1 cos[2π(ti2 − tj2)]. The intra-layer interaction term is given

by

intra(i1) =

∫ 1

0
dt′
∫ 2/rs

0
dk̃′k̃′

q̃i1,t′

q̃2
i1,t′

+Ns
1+α
2α [q̃i1,t′ −

√
q̃2
i1,t′
− 16

rs
Θ(q̃i1,t′ − 4

rs
)]

(27)

q̃i1,t′ =

√
k̃2
i1

+ k̃′
2 − 2k̃i1 k̃

′ cos(2πt′)] .

Following the same procedure, the dimensionless energy ẼN of the normal state |ΨN 〉 is given
by

Ẽ1,N =
α

1 + α
(

2

rs
)2 − intra(

2

rs
) . (28)

Note that, for an unscreened interaction, the intra-layer interaction term evaluate at kF can be
evaluated analytically:

intraunsc(k̃i1 =
2

rs
) =

∫ 1

0
dt′
∫ 2/rs

0
dk̃′k̃′

1

4
r2s

+ k̃′
2 − 4

rs
k̃′ cos(2πt′)

=
4

πrs
. (29)
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A.2 Electron-hole bilayer confined in a microcavity

Now we want to solve the coupled eigenvalue equations (5.6) and (5.7). Introducing the dimen-
sionless variables

k̃ = ka0 d̃ =
d

a0
δ̃ =

δ

E0
ε̃k,1 =

εk,1
E0

=
α

1 + α
k̃2 ε̃k,2 =

k̃2

1 + α
g̃ =

g

E0a0
. (30)

and following the same procedure as before

Ẽϕ̃i1i2Q =

(
k̃2
i1 +

Q̃2

1 + α
− 2

1 + α
Q̃k̃i1 cos(2πti2)− intra(i1)

)
ϕ̃i1i2Q+

−
Nk∑
j1

Nt∑
j2


√
wti2w̃

k
i1
k̃i1w

t
j2
w̃kj1 k̃j1 q̃i1i2j1j2e

−q̃i1i2j1j2 d̃

q̃2
i1i2j1j2

+Ns
1+α
2α [q̃i1i2j1j2 −

√
q̃2
i1i2j1j2

− 16
rs

Θ(q̃i1i2j1j2 − 4
rs

)]

 ϕ̃j1j2Q+

+

√
wti2w̃

k
i1
k̃i1

2π
g̃e
−(

k̃i1
k̃c

)2
αQ (31)

ẼαQ =

(
δ̃ − 1 +

Q̃2

2(mC/m)

)
αQ +

Nk∑
j1

Nt∑
j2

√
wtj2w̃

k
j1
k̃j1

2π
g̃e
−(

k̃j1
k̃c

)2
ϕ̃j1j2Q , (32)

where now the considered normalization condition is

1 =
1

2π

∫ 2π

0
dθ

1

2π

∫ ∞
2/rs

dkk|ϕk,Q|2 + |αQ|2

=

Nt∑
i2

wti2
1

2π

Nk∑
i1

wki1ki1 |ϕi1i2Q|
2 + |αQ|2

=

Nt∑
i2

Nk∑
i1

|ϕ̃i1i2Q|2 + |αQ|2 , (33)
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Figure 8: Left panel: lowest rescaled eigenvalue E/E0 (black dots) for α = 0.25, d = a0, Ns = 0,
rs = 1 and Q = kF , as a function of 1/Nt for Nk = 3Nt/2. The solid line represents a fit with
a cubic polynomial from which we extract the y-intercept giving the minimum relative error.
It is clearly convergent for Nt →∞ Right panel: relative error obtained for the y-intercept for
the same data on the left panel by using a fitting polynomial of different degrees.

B Convergence with respect to Nt and Nk

We numerically solve the discretized eigenvalue coupled equation (25) and find the lowest eigen-
value E for a finite number of points Nt (angle) and Nk (momentum). For the intra-layer
term (27) we also use a Gauss-Legendre quadrature for both angular t ∈ [0, 1] and momentum
k̃′ ∈ [0, 2

rs
] integrals with a fixed number of points Nt and Nk. The choice of both Nt and

Nk doesn’t affect significantly the result and we have chosen Nt = Nk = 100. The numerical
convergence of this term can be tested by comparing it with the analytical result obtained for
unscreened interactions (29).

We have then studied the convergence of the lowest eigenvalue with respect to both Nk and
Nt. We have find faster convergence by fixing Nk = 3Nt/2 and extracted the Nt → ∞ limit
of the lowest eigenvalue by fitting the data as a function of 1/Nt with a cubic polynomial and
extracting the y-intercept. An example is shown in the left panel of Fig. 8, where we have plotted
the lowest rescaled eigenvalue E/E0 (black dots) for α = 0.25, rs = 1.0, Q = kF and unscreened
interactions Ns = 0 as a function of 1/Nt for Nk = 3Nt/2. We extrapolate the Nt → ∞
eigenvalue by fitting the data with polynomials of different degrees (right panel). We obtain
that the lowest relative error of the y-intercept is given by the fit with a cubic polynomial. The
error obtained in the extrapolation procedure is generally very low (never higher than ≈ 0.01%)
but it depends on the specific choice of the system parameters.

We have implemented an automatic extrapolation procedure in our code so that to eliminate
the dependence on the two cut-offs Nk and Nt.
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[50] P. Noziéres. Some comments on Bose-Einstein condensation, chapter 2, pages 15–19. Cam-
bridge University Press, 1995.

61



[51] S. N. Bose. Z. Phys., 26.

[52] A. Einstein. Sitzungberichte, Pressische Akademie der Wis- senshaften, 1, 1925.

[53] L. Landau. Theory of the superfluidity of helium ii. Phys. Rev., 60:356–358, 1941.

[54] Oliver Penrose and Lars Onsager. Bose-einstein condensation and liquid helium. Phys.
Rev., 104:576–584, 1956.

[55] C. N. Yang. Concept of off-diagonal long-range order and the quantum phases of liquid he
and of superconductors. Rev. Mod. Phys., 34:694–704, 1962.

[56] A. Griffin, D. W. Snoke, and S. Stringari. Bose-Einstein condensation. Cambridge Uni-
versity Press, 1995.

[57] A. J. Leggett. Modern trends in the theory of condensed matter. Springer, 1980.

[58] P. Senellart and J. Bloch. Nonlinear emission of microcavity polaritons in the low density
regim. Phys. Rev. Lett., 82, 1999.
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