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Abstract

The injection of charged carriers in two-dimensional semiconductors, either
through gating or doping, has recently opened numerous novel exciting research
directions and potential applications in the development of high-performing op-
toelectronic devices. A significant benefit is the ability to combine optical and
electrical control of carriers, which forms one of the main focuses of this thesis.
Among two-dimensional semiconductors, transition metal dichalcogenide mono-
layers have been demonstrated to possess exceptional optical properties, such
as a significant exciton resonance even at room temperature, making them ideal
for generating nanophotonic devices. Crucially for this dissertation, transition
metal dichalcogenide monolayers allow for both optical and electrical control of
carriers, offering easy electrical tunability of excitonic properties through Cou-
lomb interactions and Pauli blocking effects. Further, the injection of charges
can lead to the realization of charged exciton complexes, such as trions.

The possibility of achieving strong coupling between matter and light is an-
other essential ingredient in this thesis background. Strong light-matter coup-
ling can be routinely achieved in optical microcavities with embedded quantum
wells or transition metal dichalcogenide monolayers. The interaction between
an exciton and the confined optical cavity mode in these structures can result
in the creation of exciton-polaritons, which are hybrid quasiparticles that com-
bine the properties of both matter and light. The field of cavity polaritons has
seen a remarkable surge in interest over the past few decades, some of the most
notable achievements include the observation of condensation and lasing, the
realization of superfluid phases, and the study of topology.

The focus of this dissertation revolves around exploring the interplay
between the physics of charged semiconductors and strong light-matter coup-
ling. Thanks to recent technological advancements, semiconductor devices can
now be precisely and effectively manipulated, providing a means to explore the
complex interplay between electronic doping and strong light-matter coupling.
This presents an opportunity to generate, control, and detect novel phases
involving photons, electron-hole pairs, and an electron gas.

The thesis is structured into 5 chapters. Chapters 1 and 2 serve as an
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introduction, providing a self-contained overview of the relevant background
material, covering the key theoretical and experimental aspects that are ne-
cessary to understand the research objectives and findings presented in later
chapters. Chapters 3, 4, and 5 present the original results of this thesis, which
have led to the publications listed in the “List of publications”. Conclusions and
perspectives of this work are gathered in the final chapter “General conclusions
and future perspectives”. The subsequent text provides a brief summary of the
primary objectives and implications of the research presented in chapters 3, 4,
and 5.

Chapter 3 of this thesis explores the interplay between temperature and
the optical response of doped two-dimensional semiconductors. By investigat-
ing the problem of a few excitons generated in a Fermi sea of charge carriers,
we employ the Fermi polaron formalism to study how quantum excitations
of the fermionic bath dress the excitonic impurity, resulting in two polaron
quasiparticles, the attractive polaron and the repulsive polaron. We reveal a
crossover between two regimes, the first at low temperatures and high dop-
ing where the attractive branch is a well defined quasiparticle and the second
at high temperatures and low doping where this branch subsumes into the
continuum of trion-hole scattering states, ceasing to be a well-defined quasi-
particle resonance. A recent debate has arisen over how this many-body pic-
ture compares with the standard description of the system in terms of few-body
particles, such as excitons and trions, and which of the two approaches is more
appropriate for describing the optical response of the system in the limit of
strong imbalance of charges. Our research provides a crucial insight into this
debate by demonstrating that the two descriptions are connected only when
the critical role of temperature is considered. The crossover leads to import-
ant changes in the system spectral lineshape that would be overlooked if the
crucial role of temperature would not be properly taken into account. In the
low-doping and/or high-temperature regimes, we use a perturbatively exact
quantum virial expansion and analyze the optical response and discover that
the coherent dressing cloud of the attractive polaron quasiparticle is disrup-
ted by thermal fluctuations. This approach predicts new photoluminescence
features, such as a non-trivial behavior of the attractive peak near the trion
energy that is connected to resonant exciton-electron scattering in two dimen-
sions, and a Lorentzian repulsive peak. The findings of our study are compared
to a recent experiment conducted on a monolayer of doped MoSe2, and we find
an excellent agreement. Our analysis demonstrates analytically that the virial
expansion recovers the predictions of the trion model when the Fermi energy
approaches zero.

In chapter 4, we investigate the optical properties of a doped two-
dimensional semiconductor in the indistinguishable carrier polaron (ICP) re-
gime, where one of the charges forming the exciton is indistinguishable from
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the Fermi sea formed by doping the system. Most notably, the indistinguishab-
ility requires the three-body trion state to have 𝑝-wave symmetry. We use a
polaron description to study the effects of the Fermi sea, where the exciton is
dressed by a single particle-hole excitation. We compare our findings to those
obtained in the distinguishable carrier polaron (DCP) case and observe that the
spectral function of the DCP case is characterized by attractive and repulsive
branches due to the ground state 𝑠-wave trion being bound, while in the ICP
case, two branches are present only when the 𝑝-wave trion is bound. We demon-
strate that there is a transfer of oscillator strength from the repulsive to the
attractive branch as doping increases in both cases. Although the 𝑝-wave trion
state does not couple directly to light, this transfer of spectral weight is pos-
sible because the trion-hole complex indirectly couples to light via its coupling
to the exciton. We find that the spectral weight of the attractive branch has a
different dependence on doping in the ICP and DCP cases. Specifically, in the
DCP case, it grows linearly with the Fermi sea density at low doping, while in
the ICP case, it grows quadratically due to the 𝑝-wave nature of the trion state.
In the regime of strong light-matter coupling, the transfer of oscillator strength
to the attractive branch results in the appearance of three polariton modes.
We discuss how the Rabi splittings in the strong-coupling polariton spectrum
enable effective measurement of the weak-coupling quasiparticle weights. We
also observe that the difference in the nature of the repulsive branch in the
ICP and DCP cases arises from the orbital character of the states involved. At
high doping, the repulsive branch and continuum states have different orbital
characters and do not mix for the ICP case. Additionally, we find that the or-
bital characters of attractive and repulsive branches swap as doping increases,
with the Fermi sea hole in the attractive branch having 𝑠-wave symmetry at
high doping.

In chapter 5, we explore the interplay between carrier density imbalances,
photon fields, and electron-hole pairing in two-dimensional structures. Our in-
vestigation builds on previous research and dives deeper into the intriguing phe-
nomenon of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase, which arises
due to a high density of excess charge leading to a roton minimum in the exciton
dispersion. With the help of a variational state, we unveil the phase diagram
of this complex system, shedding light on the impact of photon coupling on the
excitonic FFLO roton minimum. Our findings demonstrate that while coupling
to low mass cavity photons suppresses the roton minimum, the formation of an
FFLO phase limits the coupling to light, thus introducing new insights into the
nature of pairing phenomena in these structures. Moreover, we discover that
the excess charge also affects the energy of the cavity photon mode, providing
us with a tool to observe and compare structures with different light-matter
coupling, by changing the Rabi splitting by embedding different numbers of
quantum wells into the planar cavity.
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Overall, our study provides insights into the complex behavior of doped two-
dimensional semiconductors and contributes to the understanding of optical
properties in strongly correlated electron-hole systems.



Resumen

La inyección de portadores cargados en semiconductores bidimensionales, ya
sea mediante gating o dopaje, ha abierto numerosas e interesantes vías de
investigación y aplicaciones potenciales en el desarrollo de dispositivos opto-
electrónicos de alto rendimiento. Una ventaja significativa es la capacidad de
combinar el control óptico y eléctrico de los portadores, que constituye uno de
los principales focos de esta tesis. Entre los semiconductores bidimensionales,
se ha demostrado que las monocapas de dicalcogenuros de metales de transición
poseen propiedades ópticas excepcionales, como una resonancia excitónica sig-
nificativa incluso a temperatura ambiente, lo que las hace ideales para generar
dispositivos nanofotónicos. Para esta tesis, las monocapas de dicalcogenuro
de metales de transición permiten el control óptico y eléctrico de los porta-
dores, ofreciendo una fácil sintonización eléctrica de las propiedades excitón-
icas a través de las interacciones de Coulomb y los efectos de bloqueo de Pauli.
Además, la inyección de cargas puede conducir a la realización de complejos
excitónicos cargados, como los triones.

La posibilidad de lograr un fuerte acoplamiento entre la materia y la luz
es otro ingrediente esencial en el trasfondo de esta tesis. En microcavid-
ades ópticas con pozos cuánticos embebidos o monocapas de dicalcogenuros de
metales de transición se puede conseguir de forma rutinaria un fuerte acoplami-
ento luz-materia. La interacción entre un excitón y el modo confinado de la
cavidad óptica en estas estructuras puede dar lugar a la creación de excitones-
polaritones, que son cuasipartículas híbridas que combinan las propiedades
tanto de la materia como de la luz. El campo de los polaritones de cavidad ha
experimentado un notable aumento de interés en las últimas décadas; algunos
de los logros más notables incluyen la observación de la condensación y el lasing,
la realización de fases superfluidas y el estudio de la topología.

Esta tesis se centra en explorar la interacción entre la física de los semi-
conductores cargados y el fuerte acoplamiento luz-materia. materia. Gracias
a los recientes avances tecnológicos, los dispositivos semiconductores semicon-
ductores pueden manipularse con precisión y eficacia, lo que la compleja inter-
acción entre el dopaje electrónico y el fuerte acoplamiento luz-materia. entre
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el dopaje electrónico y el fuerte acoplamiento luz-materia. Esto brinda la opor-
tunidad de generar, controlar y detectar nuevas fases con fotones, pares electrón-
hueco y un gas de electrones.

La tesis se estructura en 5 capítulos. Los capítulos 1 y 2 sirven de una vis-
ión general de los antecedentes relevantes, cubriendo las los aspectos teóricos y
experimentales clave necesarios para teóricos y experimentales necesarios para
comprender los objetivos y las los objetivos y resultados de la investigación que
se presentan en los capítulos posteriores. Los capítulos 3, 4, y 5 presentan los
resultados originales de esta tesis, que han dado lugar a las publicaciones enu-
meradas en la “Lista de publicaciones”. Las conclusiones y perspectivas de este
trabajo se recogen en el capítulo final “Conclusiónes generales y perspectivas
futuras”. El texto siguiente ofrece un breve resumen de los principales objetivos
e implicaciones de la investigación presentada en los capítulos 3, 4, y 5.

El capítulo 3 de esta tesis explora la interacción entre la temperatura y la
respuesta óptica de semiconductores bidimensionales dopados. Investigando el
problema de unos pocos excitones generados en un mar de Fermi de portadores
de carga, empleamos el formalismo del polaron de Fermi para estudiar cómo las
excitaciones cuánticas del baño fermiónico visten la impureza excitónica, dando
lugar a dos cuasipartículas polares, el polaron atractivo y el polaron repulsivo.
También revelamos un cambio gradual de un estado en el que la rama atractiva
se comporta como una cuasipartícula distinta a un estado en el que se combina
con un amplio continuo de estados de dispersión trión-hueco. Recientemente ha
surgido un debate sobre cómo se compara esta imagen de muchos cuerpos con
la descripción estándar del sistema en términos de partículas de pocos cuerpos,
como excitones y triones, y cuál de los dos enfoques es más apropiado para
describir la respuesta óptica del sistema en el límite de un fuerte desequilibrio
de cargas. Nuestra investigación proporciona una visión crucial de este debate
al demostrar que las dos descripciones están conectadas sólo cuando se con-
sidera el papel crítico de la temperatura. Utilizando una expansión cuántica
virial perturbativamente exacta, analizamos la respuesta óptica y descubrimos
que la nube de aderezos coherente de la cuasipartícula polaron atractiva se ve
perturbada por fluctuaciones térmicas en los regímenes de bajo dopaje y/o alta
temperatura. Este enfoque predice nuevas características de fotoluminiscencia,
como un comportamiento no trivial del pico atractivo cerca de la energía del
trión que está conectado a la dispersión resonante excitón-electrón en dos di-
mensiones, y un pico repulsivo Lorentziano. Los resultados de nuestro estudio
se comparan con un experimento reciente llevado a cabo en una monocapa de
MoSe2 dopado, y encontramos una concordancia excelente. Nuestro análisis
demuestra analíticamente que la expansión virial recupera las predicciones del
modelo de triones cuando la energía de Fermi se aproxima a cero.

En el capítulo 4, investigamos las propiedades ópticas de un semiconductor
bidimensional dopado en el régimen indistinguible carrier polaron (ICP), donde
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una de las cargas que forman el excitón es indistinguible del mar de Fermi for-
mado al dopar el sistema. Más notablemente, la indistinguibilidad requiere
que el estado triónico de tres cuerpos tenga simetría de onda 𝑝. Utilizamos una
descripción polaron para estudiar los efectos del mar de Fermi, donde el excitón
está vestido por una única excitación partícula-hueco. Comparamos nuestros
resultados con los obtenidos en el caso distinguishable carrier polaron (DCP)
y observamos que la función espectral del caso DCP se caracteriza por ramas
atractivas y repulsivas debidas a que el trión de onda 𝑠 en estado básico está
ligado, mientras que en el caso ICP, dos ramas están presentes sólo cuando el
trión de onda 𝑝 está ligado. Demostramos que existe una transferencia de la
fuerza del oscilador de la rama repulsiva a la atractiva a medida que aumenta
el dopaje en ambos casos. Aunque el estado del trión de onda 𝑝 no se acopla
directamente a la luz, esta transferencia de peso espectral es posible porque
el complejo trión-hueco se acopla indirectamente a la luz a través de su aco-
plamiento al excitón. Encontramos que el peso espectral de la rama atractiva
tiene una dependencia diferente del dopaje en los casos ICP y DCP. Concreta-
mente, en el caso DCP, crece linealmente con la densidad del mar de Fermi a
bajo dopaje, mientras que en el caso ICP, crece cuadráticamente debido a la
naturaleza de onda 𝑝 del estado trión. En el régimen de fuerte acoplamiento
luz-materia, la transferencia de la fuerza del oscilador a la rama atractiva da
lugar a la aparición de tres modos polaritónicos. Discutimos cómo los desdo-
blamientos Rabi en el espectro de polaritones de acoplamiento fuerte permiten
una medida efectiva de los pesos de las cuasipartículas de acoplamiento débil.
También observamos que la diferencia en la naturaleza de la rama repulsiva
en los casos ICP y DCP surge del carácter orbital de los estados implicados.
A alto dopaje, la rama repulsiva y los estados continuos tienen caracteres or-
bitales diferentes y no se mezclan para el caso ICP. Además, descubrimos que
los caracteres orbitales de las ramas atractiva y repulsiva cambian a medida
que aumenta el dopaje, y que el hueco del mar de Fermi de la rama atractiva
tiene simetría de onda 𝑠 a alto dopaje.

En el capítulo 5, exploramos la interacción entre los desequilibrios de la
densidad de portadores, los campos de fotones y el emparejamiento electrón-
hueco en estructuras bidimensionales. Nuestra investigación se basa en invest-
igaciones anteriores y profundiza en el intrigante fenómeno de la fase Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO), que surge debido a una alta densidad de
exceso de carga que conduce a un mínimo de roton en la dispersión de excitones.
Con la ayuda de un estado variacional, desvelamos el diagrama de fases de este
complejo sistema, arrojando luz sobre el impacto del acoplamiento de fotones
en el mínimo de roton excitónico FFLO. Nuestros hallazgos demuestran que,
mientras que el acoplamiento a fotones de cavidad de baja masa suprime el mín-
imo de roton, la formación de una fase FFLO limita el acoplamiento a la luz,
introduciendo así nuevos conocimientos sobre la naturaleza de los fenómenos
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de emparejamiento en estas estructuras. Además, descubrimos que el exceso
de carga también afecta a la energía del modo fotónico de la cavidad, lo que
nos proporciona una herramienta para observar y comparar estructuras con
diferentes acoplamientos luz-materia, cambiando la división Rabi mediante la
incrustación de diferentes números de pozos cuánticos en la cavidad planar.

En conjunto, nuestro estudio proporciona información sobre el complejo
comportamiento de los semiconductores bidimensionales dopados y contribuye
a la comprensión de las propiedades ópticas en sistemas electrón-hueco fuerte-
mente correlacionados.
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Chapter 1

Excitons and polaritons

This chapter summarizes some of the fundamental properties of neutral semi-
conductors focusing on their optical response. We introduce concepts such as
those of excitons and cavity polaritons and discuss their properties in various
semiconductor structures. We introduce the theoretical framework that will be
needed in the rest of this thesis. Further, we will describe some of the main
experiments in this research field that represent the background of this work.

1.1 Excitons in bulk semiconductors
When a direct bandgap semiconductor1 absorbs a photon, the promotion of
a valence electron to the conduction band leaves a vacancy behind — see the
sketch in Fig. 1.1 (a). The generated conduction electron and valence hole
attract each other because of Coulomb interaction and may form a bound
state which takes the name of exciton [2]. The exciton is charge neutral and
analogous to a hydrogen atom or a positronium atom, i.e., the bound state
between an electron and a positron.

The concept of exciton was first introduced by Yakov Frenkel in 1931 [3]2.
In his proposal, Frenkel treated the crystal potential as a perturbation to the
Coulomb interaction between an electron and a hole within the same crystal
cell. Nowadays, the name “Frenkel excitons” refers to small and tightly bound
excitons, typically localized at a single atom or molecule, that can move through
the crystal via hopping. Frenkel excitons were first observed in alkali alides [4].

1 As the name suggests, in direct bandgap semiconductors the conduction band min-
imum coincides with the valence band maximum [1]. In this case, interband transitions can
be photon-mediated. In contrast, in indirect bandgap semiconductors, the conduction and
valence band edges are separated in momentum and thus excitation and recombination must
involve both photons and phonons.

2 The term “exciton” was coined by the same Yakov Frenkel later in 1936.



2 Excitons in bulk semiconductors
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Fig. 1.1: (a) Optical transition in a direct bandgap semiconductor where the ab-
sorption of a photon generates an electron-hole pair. (b) Sketch of a Wannier-Mott
exciton extending over several crystal lattice sites. (c) Exciton 𝑛𝑠 Rydberg series as
a function of the exciton center of mass momentum 𝑄.

More recently, they have been widely studied in organic molecular crystals like
tetracene and pentacene [5], as well as organic materials [6], where they domin-
ate the optical response. The binding energy of Frenkel excitons is in the range
of 0.1 − 1 eV. In the late 30s, Wannier [7] and Mott [8] made significant contri-
butions to understanding exciton behavior in semiconductor crystals. Unlike
Frenkel excitons, Wannier-Mott excitons have a much larger size, typically on
the order of tens of lattice constants, and a relatively small binding energy, as
depicted in Fig. 1.1 (b). These excitons can be found in semiconductors crystal
with a high dielectric constant and their binding energies are typical of the
order of 1 − 25 meV. However, we will see later exceptions to these relatively
small values. Examples of Wannier-Mott excitons can be found in semicon-
ducting compounds of the II-VI group such as cadmium telluride (CdTe) and
zinc selenide (ZnSe), for which the exciton binding energy is around 11 meV [9]
and 20 meV [10] respectively. Other examples are the III-V group compounds
like gallium arsenide (GaAs), gallium nitride (GaN), and Indium phosphide
(InP), with an exciton binding energy of around 4.1 meV [11], 23 meV [12], and
5 meV [13] respectively. However, as explained in Sec. 1.3, the exciton binding
energy can reach 0.1 − 1 eV in purely two-dimensional structures such as the
case of transition metal dichalcogenide monolayers. Wannier-Mott excitons can
also be found in liquid xenon [14]. Further, hybrid Frenkel-Wannier-Mott ex-
citons can be engineered in mixed organic and inorganic heterostructures [15].
Besides Frenkel and Wannier–Mott excitons, there are a few other types of ex-
citons, such as charge transfer excitons [16]3 and anyon excitons [17]4. In this

3 Charge-transfer excitons are spatially separated Coulomb-bound electron-hole pairs with
a dipole momentum. They are usually extended over two near molecules in a molecular
crystal, generating a donor-acceptor complex.

4 Anyon excitons are anyon-hole complex formed by Coulomb attraction and applies to
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thesis, we consider exclusively the case of Wannier-Mott excitons.
The theoretical description of Wannier excitons is relatively simple because

the electron and hole are delocalized across several lattice sites and the effect
of the crystal lattice can be approximated as a background field. In this case,
we can approximate the electron and hole as moving like free particles, with
a parabolic dispersion and effective masses 𝑚𝑒,ℎ (throughout this work we use
units such that ℏ = 1):

𝜖𝑒,ℎk = 𝐸𝑔
2 + k2

2𝑚𝑒,ℎ
. (1.1)

Let us consider here the case of bulk semiconductors, while the two-dimensional
(2D) case will be analyzed in Sec. 1.2. The value of the electron and hole effect-
ive masses in bulk semiconductors depends strongly on the material considered.
Further, the valence band in most cases is split so that to give light and heavy
holes. This is because, for III-V or II-VI group compounds such as GaAs, CdS,
CdTe, or ZnO, the valence band is formed by 𝑝−like orbitals with two possible
configurations resulting from total angular momentum 𝐽 = 3

2 and 𝐽 = 1
2 —

see Fig.1.3 (a) for a comparison between the bulk and quantum well cases. The
spin-orbit coupling splits the valence band into different subbands. The two
higher energy subbands have total angular momentum 𝐽 = 3

2 and are split
into two doubly degenerate subbands with different values of momentum pro-
jection 𝐽𝑧, which are fourfold degenerate at zero momentum: the heavy-hole
(hh) (𝐽𝑧 = ± 3

2 ) and the light-hole (lh) (𝐽𝑧 = ± 1
2 ) subband. As the name

suggests 𝑚ℎℎ > 𝑚𝑙ℎ. The 𝐽 = 3
2 subbands have large energy split with the

lower energy subband with 𝐽 = 1
2 , which is known as the split-off band5. For

example, for GaAs, the heavy and light hole effective masses are approximately
𝑚ℎℎ = 0.4 − 0.6𝑚0 and 𝑚𝑙ℎ = 0.06 − 0.08𝑚0, respectively [19], where 𝑚0 is
the free electron mass. The conduction band, on the other hand, is formed by
𝑠−like orbitals with a total angular momentum 𝐽 = 1

2 and is not affected by the
spin-orbit coupling6. In GaAs, typically the electron mass is 𝑚𝑒 ≃ 0.05𝑚0 [21].

In the parabolic band approximation, the exciton energy 𝐸 can be found
by solving the Schrödinger equation for the exciton wave function Ψ(r𝑒, rℎ)

[− ∇2
𝑒

2𝑚𝑒
− ∇2

ℎ
2𝑚ℎ

− 𝑉 (r𝑒, rℎ)] Ψ(r𝑒, rℎ) = (𝐸 − 𝐸𝑔)Ψ(r𝑒, rℎ) . (1.2)

In the simplest description, one can include the effect of the material surround-
the spectroscopy of an incompressible quantum liquid.

5 For GaAs, the split at zero momentum between the 𝐽 = 3
2 and 𝐽 = 1

2 bands is around
0.34 eV [18].

6 Note that all bands and subbands are double degenerates in 𝐽𝑧. Such degeneracy can be
lifted by a magnetic field because of Zeeman splitting. Typically, GaAs has a small electron
𝑔-factor 𝑔 ≃ −0.44 [20].
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ing the electron-hole pair in the dielectric constant 𝜀 and consider the Coulomb
interaction of two equal and opposite charges as if they were otherwise in a va-
cuum:

𝑉 (r𝑒, rℎ) = 𝑒2

𝜀|r𝑒 − rℎ| , (1.3)

where we are using Gaussian units such that 4𝜋𝜖0 = 1. In doped semiconduct-
ors, where the exciton size can be comparable to the average distance between
the excess carriers, the effects of screening can become important — see Ch. 5.

The Schrödinger equation (1.2) describing an exciton in three-dimensions
(3D) is almost identical to the hydrogen atom problem and thus admits an
analytical solution in terms of the relative and center of mass coordinates:

R = 𝑚𝑒r𝑒 + 𝑚ℎrℎ
𝑚𝑒 + 𝑚ℎ

r = r𝑒 − rℎ (1.4a)

∇R = ∇𝑒 + ∇ℎ ∇r = 𝑚ℎ
𝑚𝑒 + 𝑚ℎ

∇𝑒 − 𝑚𝑒
𝑚𝑒 + 𝑚ℎ

∇ℎ . (1.4b)

Eq. (1.2) can thus be written as

[−∇2
r

2𝜇 − ∇2
R

2𝑚𝑋
− 𝑉 (𝑟)] Ψ(r, R) = (𝐸 − 𝐸𝑔)Ψ(r, R) , (1.5)

where 𝜇 and 𝑚𝑋 are the reduced and exciton masses, respectively:

𝜇 = 𝑚𝑒𝑚ℎ
𝑚𝑒 + 𝑚ℎ

𝑚𝑋 = 𝑚𝑒 + 𝑚ℎ . (1.6)

The center of mass and relative degrees of freedom thus factorize, giving

Ψ(r, R) = 𝑒𝑖R⋅Q𝜑(r) (1.7a)

[−∇2
r

2𝜇 + 𝑄2

2𝑚𝑋
− 𝑉 (𝑟)] 𝜑(r) = (𝐸 − 𝐸𝑔)𝜑(r) . (1.7b)

Let us consider the Q = 0 case. The relative motion can be solved exactly
using spherical coordinates7, as it is possible to factorize the radial component
from the angular ones and solve them separately, giving [22]:

𝐸𝑛 − 𝐸𝑔 = −Ry𝑋
𝑛2 , (1.8)

7 The Laplace operator in spherical coordinates is:

∇2
r = 1

𝑟2
𝜕
𝜕𝑟 (𝑟2 𝜕

𝜕𝑟 ) + 1
𝑟2 sin 𝜃

𝜕
𝜕𝜃 (sin 𝜃 𝜕

𝜕𝜃 ) + 1
𝑟2 sin2 𝜃

𝜕2

𝜕𝜙 .
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and

𝜑𝑛𝑙𝑚(𝑟, 𝜃, 𝜙) = −√( 2
𝑛𝑎𝑋

)
3 (𝑛 − 𝑙 − 1)!

2𝑛[(𝑛 + 𝑙)!]3 𝑒− 𝑟
𝑛𝑎𝑋 (1.9a)

× ( 2𝑟
𝑛𝑎𝑋

)
𝑙
𝐿2𝑙+1

𝑛+𝑙 (2𝑟/𝑛𝑎𝑋)𝑌𝑙𝑚(𝜃, 𝜙) (1.9b)

𝑌𝑙𝑚(𝜃, 𝜙) = (−1)𝑚√(2𝑙 + 1)(𝑙 − 𝑚)!
4𝜋(𝑙 + 𝑚)! 𝑃 𝑚

𝑙 (cos 𝜃)𝑒𝑖𝑚𝜙 . (1.9c)

Here, 𝑃 𝑚
𝑙 (𝑥) are Legendre polynomials8 and 𝐿2𝑙+1

𝑛+𝑙 (𝑥) are Laguerre polynomi-
als9. The quantum numbers 𝑛, 𝑙, and 𝑚 are the principal, azimuthal, and
magnetic quantum numbers, respectively. The exciton Bohr radius 𝑎𝑋 and the
Rydberg energy 𝑅𝑦𝑋 are given by:

𝑎𝑋 = 𝜀
𝜇𝑒2 𝑅𝑦𝑋 = 𝜇𝑒4

2𝜀2 = 1
2𝜇𝑎2

𝑋
, (1.10)

Higher values of the reduced mass 𝜇 correspond to higher values of 𝑅𝑦𝑋. Thus
the ground state exciton in inorganic semiconductors is the one involving the
hh. For the majority of III-V and II-VI group compounds, values of 𝜇 are of
the order of 0.05 − 0.15𝑚0 [23] and the medium dielectric constant 𝜀 is of the
order of 8 − 10𝜀0, where 𝜀0 is the vacuum dielectric constant [24, 25]. This
leads to a Bohr radius in the range of 2 − 25 nm [1, 26]10.

We now discuss the exciton’s ability to couple to light and how to charac-
terize the exciton-light coupling strength, which is represented by the exciton
oscillator strength. Typically, the photon generating the electron-hole pair
does not carry orbital angular momentum, and thus only those exciton states
with 𝑙 = 0 = 𝑚 and characterized by the principal quantum number 𝑛 can be
generated or probed in absorption. One refers to this also as the 𝑛𝑠 Rydberg

8 We use the definition

𝑃 𝑚
𝑙 (𝑥) = (−1)𝑚2𝑙(1 − 𝑥2)𝑚/2

𝑙
∑
𝜈=𝑚

𝜈!
(𝜈 − 𝑚)! 𝑥𝜈−𝑚 (𝑙

𝜈) (
𝑙+𝜈−1

2
𝑙 ) .

9 We use the definition

𝐿𝑝
𝑞(𝑥) =

𝑞−𝑝
∑
𝜈=0

(−1)𝜈+𝑝 (𝑞!)2𝑥𝜈

(𝑞 − 𝑝 − 𝜈)!(𝑝 + 𝜈)!𝜈! .

10 In semiconductors such as GaAs, the lattice constant is typical of the order of 0.5 nm
and thus much smaller than typical values of the exciton Bohr radius (1.10). This justifies
the Wannier-Mott approximation.
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2.1716                      2.1718Photon Energy (eV)Optical density
A X(  ) [a.u

.]
ω

1

0

(b)(a) n=12 n=22n=1 n=2

Fig. 1.2: (a) Optical density of a sample of GaAs with two different thicknesses –
10𝜇m (solid circles) and 2𝜇m (open circles) [27]. (b) Comparison between the optical
absorption of a Cu2O crystal displaying the 𝑛𝑠 Rydberg energy levels 𝑛 ∈ [12, 22]
(bottom panel, adapted from [28]) and the theoretical absorption spectrum — for
details on how to define the exciton spectral function see Sec. 1.5.

series, whose wave functions are spherically symmetric, and simplifies to

𝜑𝑛𝑠(𝑟) = −√ 1
𝜋(𝑛𝑎𝑋)3

1
(𝑛!𝑛)2 𝑒− 𝑟

𝑛𝑎𝑋 𝐿1
𝑛(2𝑟/𝑛𝑎𝑋) . (1.11)

The exciton wave function gives information about the exciton coupling
strength to light. Absorbing or emitting a photon occurs when the electron
and hole are at the same spatial location 𝑟 = 0. Thus the probability for one
of these processes to occur is proportional to the dimensionless parameter [29]

𝑓𝑛𝑠 = 𝑎3
𝑋|𝜑𝑛𝑠(0)|2 , (1.12)

which takes the name of exciton optical oscillator strength. For the ground
state, the 1𝑠−exciton state, the oscillator is

𝑓1𝑠 = 1
𝜋 . (1.13)

As at large 𝑛, 𝑓𝑛𝑠 ∼ 𝑛−3, the exciton oscillator strength is strongly suppressed
for higher Rydberg states. In both II-VI and III-V compounds, the small
Rydberg energy only allows resolving the first few Rydberg states [11, 27]. In
Fig. 1.2 (a) the optical response of GaAs is shown, obtained by Sell et al. [27]
measuring the optical density of the material as a function of the photon energy.
However, in other semiconducting crystals, such as Cu2O, the exciton binding
energy reaches about 90 meV and Rydberg states up to 𝑛 = 25 have been
resolved [28] — see Fig. 1.2 (b).
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1.2 Quantum well excitons
The exciton binding energy as well as its coupling to light can be greatly in-
creased by confining excitons in one or more directions. In two-dimensional
(2D) quantum wells confinement occurs in one direction, where a nanometer-
thin layer of a low bandgap energy material is sandwiched between two layers
of a material with higher bandgap energy. Because of their advantageous elec-
tronic and optical properties, II-VI and III-V compound semiconductors are
commonly employed to generate quantum wells [30, 31]. The bandgap of these
materials can be engineered by adjusting the composition, enabling the achieve-
ment of the desired optical and electronic properties. In the particular case of
GaAs, the bandgap energy can be increased through alloying it with aluminum,
resulting in the compound Al𝑥Ga1−𝑥As [32].

In order to solve the exciton problem in a 2D quantum well, we will consider
an approximate solution of the problem where the in-plane r = (𝑥, 𝑦) degrees
of freedom factorize from those that control the confinement in the 𝑧-direction:

[−∇2
r

2𝜇 − ∇2
R

2𝑚𝑋
+ ∑

𝜎=𝑒,ℎ
𝑈𝜎(𝑧𝜎) − 𝑉 (𝑟)] Ψ(r, R) = (𝐸 − 𝐸𝑔)Ψ(r, R) (1.14a)

Ψ(r, R) = 𝑒𝑖Q⋅R𝜑(r)𝑢𝑒(𝑧𝑒)𝑢ℎ(𝑧ℎ) . (1.14b)

where 𝑈𝑒,ℎ(𝑧) are confining potentials in the 𝑧-direction and r and R are the
2D relative and center of mass coordinates Eq. (1.4a), respectively. Note that
if the width is of the same order or larger than the exciton Bohr radius, one
has to include the exciton 3D internal structure [1]. In the pure 2D limit
𝑈𝑒,ℎ(𝑧) ∝ 𝛿(𝑧) and considering the Q = 0 case, the relative degrees of freedom
for the 𝑛𝑠 series admit the following exact solution [33]11

𝐸𝑛𝑠 − 𝐸𝑔 = − 𝑅𝑦𝑋

(𝑛 − 1
2 )2 + 𝐸𝑧 (1.15a)

𝜑𝑛𝑠(𝑟) = √ 1
4𝜋𝑎2

𝑋(𝑛 − 1/2)3
𝑒− 𝑟

(2𝑛−1)𝑎𝑋

(𝑛 − 1)! 𝐿0
𝑛−1 ( 2𝑟

(2𝑛 − 1)𝑎𝑋
) , (1.15b)

11 For the general case of finite orbital angular momentum the exciton wave function reads
as:

𝜑𝑛𝑚(𝑟, 𝜙) = √ 1
4𝜋𝑎2

𝑋(𝑛 − 1/2)3
(𝑛 − 1 − |𝑚|)!

[(𝑛 − 1 + |𝑚|)!]3 𝑒− 𝑟
(2𝑛−1)𝑎𝑋

( 2𝑟
(2𝑛 − 1)𝑎𝑋

)
|𝑚|

𝐿2|𝑚|
𝑛−1+|𝑚| ( 2𝑟

(2𝑛 − 1)𝑎𝑋
) 𝑒𝑖𝑚𝜙 .
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where the energy 𝐸𝑧 takes into account the energy shift because of the confining
potential in the 𝑧-direction and 𝑅𝑦𝑋 has been defined in Eq. (1.10). The 2D
Bohr radius

𝑎𝑋 = 𝜀
2𝜇𝑒2 , (1.16)

is half the value of the 3D Bohr radius (1.10), while the exciton binding energy,
i.e., the energy of the 𝑛 = 1 state,

𝜀𝑋 = 4𝑅𝑦𝑋 = 2𝜇𝑒4

𝜀2 = 1
2𝜇𝑎2

𝑋
, (1.17)

is four times larger than the 3D binding energy (1.10). The oscillator strength
of the 2D exciton Rydberg series scales as 𝑓𝑛𝑠 ∼ (𝑛−1/2)−3, with a 1𝑠−exciton
oscillator strength

𝑓1𝑠 = 𝑎2
𝑋|𝜑1𝑠(0)|2 = 2

𝜋 , (1.18)

that is twice the one of the 3D 1𝑠−exciton (1.13).
In III-V and II-VI compound quantum wells, the exciton binding energy

depends on whether one considers the binding of the conduction electron with
either the heavy-hole or the light-hole. As explained in Sec. 1.1 and shown
in Fig. 1.3, for bulk samples, the 𝐽 = 3

2 valence bands are split into a hh
(which is doubly degenerate 𝐽𝑧 = ± 3

2 ) and lh (𝐽𝑧 = ± 1
2 ) subbands that are

fourfold degenerate at zero momentum. This fourfold degeneracy is lifted in a
quantum well, giving a hh-lh splitting between the doubly degenerate 𝐽𝑧 = ± 3

2
hh and 𝐽𝑧 = ± 1

2 lh. Note that the adjectives heavy and light now refers to the
larger and smaller effective masses, respectively, for the motion in the growth
direction [34] — i.e., confinement in the growth direction makes the hh states
to be more confined than the lh states. However, for the in-plane motion, the
mass of the hh 𝐽𝑧 = ± 3

2 is smaller than that of the lh 𝐽𝑧 = ± 1
2 , i.e., the

band dispersion is steeper for the strongly bound hh states and flatter for the
weakly bound lh states. The off-diagonal hh-lh mixing characterizes the hh-
lh anticrossing depicted in Fig. 1.3, which implies that at large momenta the
parabolic approximation of the two subband dispersions breaks down.

The width of the quantum well strongly affects the values of the measured
exciton binding energies. For example, in GaAs, the heavy-hole exciton binding
energy has been measured to be in the range 5 − 15 meV for different quantum
well widths, while for the light-hole exciton has been found to be in the range
7 − 17 meV [35]. In particular, the binding energy decreases for increasing well
widths. Quantum well widths are usually of the order of 5 − 100 nm [36], i.e.,
the same order of magnitude as the 3D exciton Bohr radius and thus accurate
modelling should include the effects of finite well width. A simple approach to
include them is provided by the fractional-dimensional model [37, 38], a model
that interpolates the 3D case and the purely 2D results by introducing an
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hhlh J= 3/2
E

kk

Bulk Quantum well

J= 1/2

E
hhlh

Fig. 1.3: Sketch of the band
structure of III-V and II-VI group
compounds [34]. For the bulk case,
the higher energy valence band
with 𝐽 = 3

2 total angular mo-
mentum is split into a hh (𝐽𝑧 =
± 3

2 ) and lh (𝐽𝑧 = ± 1
2 ) subbands,

with 𝑚hh > 𝑚lh. In a quantum
well, the 𝑘 = 0 degeneracy of
the two subbands is lifted and the
more strongly confined hh bands
have a lighter mass than the more
weakly confined lh.

effective dimensionality 𝑑𝑒𝑓𝑓 . In this model, the exciton binding energy reads
as

𝜀𝑋 = Ry𝑋

(1 + 𝑑𝑒𝑓𝑓−3
2 )

2 𝑑𝑒𝑓𝑓 = 3 − 𝑒
−𝐿𝑊
4𝑎𝑋 , (1.19)

where 𝐿𝑊 is the width of the quantum well. As shown in Ref. [38], this model
reproduces results in reasonable agreement with experiments.

1.2.1 Second quantization formalism
The exciton two-body problem can be reformulated in momentum space by
making use of a second quantization formalism. We will see later in Sec. 1.5.3
that this formalism is useful for deriving the exciton Green’s function and
evaluating the optical absorption and emission spectra that are measured in
experiments. Further, it allows us to extend calculations to the many-body
case where the optically excited exciton is surrounded by a Fermi sea of excess
charges in doped/gated semiconductors which is the main subject of this thesis

— this setup is introduced and studied in Ch. 2.
The Hamiltonian describing a system of interacting spin-polarized conduc-

tion electrons and valence holes is given by

�̂� = �̂�0 + �̂�𝑒ℎ, (1.20a)

�̂�0 = ∑
k,𝜎=𝑒,ℎ

𝜖𝜎k ̂𝑐†
𝜎k ̂𝑐𝜎k (1.20b)

�̂�𝑒ℎ = ∑
𝜎𝜎′

∑
kk′q

𝑊 𝜎𝜎′
𝑞

2𝒜 ̂𝑐†
𝜎k ̂𝑐†

𝜎′k′ ̂𝑐𝜎′k′+q ̂𝑐𝜎k−q , (1.20c)

where 𝜎, 𝜎′ = 𝑒, ℎ is the electron-hole index, 𝒜 is the system area and ̂𝑐†
𝜎k ( ̂𝑐𝜎k)
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are the creation (destruction) electron-hole operators:

{ ̂𝑐†
𝜎k, ̂𝑐†

𝜎′k′} = { ̂𝑐𝜎k, ̂𝑐𝜎′k′} = 0 { ̂𝑐𝜎k, ̂𝑐†
𝜎′k′} = 𝛿𝜎,𝜎′𝛿k,k′ . (1.21)

The electron and hole kinetic energies have been defined in Eq. (1.1). The bare
intra- and inter-species Coulomb interactions are given respectively by

𝑊 𝑒𝑒
q = 𝑊 ℎℎ

q = 𝑉q = 2𝜋𝑒2

𝜖𝑞 (1.22a)

𝑊 𝑒ℎ
q = 𝑊 ℎ𝑒

q = −𝑉q = −2𝜋𝑒2

𝜖𝑞 , (1.22b)

where 𝑉q is the Fourier transform of Eq. (1.3).
In the second quantization formalism, the two-body exciton state with a

finite center of mass momentum Q can be written as

∣ΨQ⟩ = ∑
k

𝜑(Q)
k√
𝒜

̂𝑐†
𝑒k ̂𝑐†

ℎQ−k |0⟩ , (1.23)

where 𝜑(Q)
k is the electron-hole wave function, k is the electron momentum,

and |0⟩ is the vacuum state — i.e., a state where the valence band is filled and
the conduction band is empty. The Fourier transform in momentum space of
the Schrödinger equation (1.14a) can be found by solving exactly �̂� ∣ΨQ⟩ =
𝐸 ∣ΨQ⟩:

(𝜖𝑒k + 𝜖ℎQ−k) 𝜑(Q)
k − ∑

k′

𝑉k−k′

𝒜 𝜑(Q)
k′ = 𝐸𝜑(Q)

k . (1.24)

While the center of mass momentum Q is the conjugate variable of the center
of mass coordinate R (1.4a), in order to make a connection between the relative
coordinate r and its conjugate variable, is it profitable to introduce the relative
momentum in the center of mass frame q𝑟 in terms of the electron k and hole
Q − k momenta:

k = q𝑟 + Q𝑒 Q𝑒 = 𝑚𝑒
𝑚𝑋

Q (1.25a)

Q − k = −q𝑟 + Qℎ Qℎ = 𝑚ℎ
𝑚𝑋

Q . (1.25b)

This results in the factorization of the relative and center of mass degrees of
freedom, as we already know from the real space analysis:

𝜖𝑒k + 𝜖ℎQ−k = q2
𝑟

2𝜇 + Q2

2𝑚𝑋
+ 𝐸𝑔 . (1.26)

As in real space, also in momentum space, one can solve analytically the 2D
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exciton problem. Here, the 1𝑠 wave function and binding energy are given by

𝐸1𝑠 − 𝐸𝑔 = −𝜀𝑋 𝜑1𝑠k =
√

8𝜋𝑎𝑋
[1 + (𝑘𝑎𝑋)2]3/2 , (1.27)

where the exciton binding energy 𝜀𝑋 has been defined in Eq. (1.17) and the
exciton Bohr radius 𝑎𝑋 in Eq. (1.16).

1.3 Transition metal dichalcogenide monolayers
The possibility of achieving exciton confinement down to atomically thin struc-
tures in 2D layered materials has opened novel perspectives for basic and ap-
plied research in this area. 2D materials have shown exceptional mechanical,
electronic, and optical properties [39–42], not shown in their bulk counterparts.
Further, the 2D layers can be easily integrated into other structures or can
be stacked layer-by-layer to engineer heterostructures with specific functional-
ities [43, 44] — see Sec. 1.4.

The first 2D material discovered has been graphene, consisting of a single
layer of carbon atoms arranged in a honeycomb structure [45]. Its unique
electronic and optical properties arise from its distinctive linear dispersion re-
lation [39, 40, 46]. Graphene has been widely used in various photonic and
optoelectronic devices, operating at a broad spectral range [44, 47], but the
lack of an energy gap restricts its applicability in semiconductor-based applic-
ations. Monolayers of group-VI transition metal dichalcogenides (TMDs) have
instead a direct energy gap in the near-infrared to visible spectral range [42, 48],
complementing graphene’s properties and opening new prospects in photonics
and optoelectronics. TMD monolayers have a unique electronic band structure
leading to valley- and spin-dependent electrical and optical properties that may
have significant implications for information technology [49, 50]. Moreover,
TMD monolayers exhibit strong excitonic effects because of reduced dielectric
screening of Coulomb interactions, reduced dimensionality, and large electron
effective mass [51–55]. In this section, we discuss the electronic and optical
properties of TMD monolayers and their impact on the light-matter interaction
properties, the radiative recombination of electron-hole pairs, and the mater-
ial’s optoelectronic response.

TMD monolayers are composed of hexagonally arranged metal atoms (Mo,
W) sandwiched between two planes of hexagonally arranged chalcogen atoms
(S, Se) — see Fig. 1.4 (a). Although bulk and multilayer TMDs are indirect
bandgap semiconductors, at the monolayer limit, i.e., achieved by exfoliation,
TMDs become direct bandgap semiconductors [42, 48]. The conduction and
valence bands of TMD monolayers have a minimum and maximum, respectively,
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at the two high-symmetry points K and K´, where the direct gap occurs [56,
57]. These two points are located at the corners of the hexagonal Brillouin
zone and are related by time-reversal symmetry. So most of the optical prop-
erties of TMD monolayers can be described by considering the structure of
valence and conduction bands at the K and K´ points. The strong spin-orbit
coupling in these materials splits the spin degeneracy of the bands at each
valley. In particular, it results that the spin-splitting in the valence band is
several hundred meV [41, 57], while in the conduction band, it is only a few
meV [58–60]. Furthermore, the sign of the spin-splitting in Mo-based and W-
based TMDs is opposite, as illustrated in Fig. 1.4 (b). The magnitude and sign
of the spin-splitting are determined by the detailed composition of the atomic
orbitals in TMDs [59], which involves a mix of 𝑑-orbitals from the transition
metal and 𝑝-orbitals from the chalcogen. The broken inversion symmetry of
TMD monolayers results in an opposite sign for their corresponding orbital
magnetic moments. This, in combination with the strong spin-orbit coupling
effect, leads to a phenomenon known as spin-valley locking, i.e., the correla-
tion between the spin and valley degrees of freedom. Spin-valley locking also
implies optical selection rules where a 𝜎+ (𝜎−) circularly polarized light can
excite only electrons from a valence to a conduction band with the same spin
component [61].

Spin-valley locking makes TMD monolayers ideal candidates for valleytron-
ics [49] and spintronics [50] applications. In particular, there has been an
intense investigation in the direction of valleytronic applications [49, 62], in-
cluding valley filtering [63], valley polarization [64], and valley-based logic [65].
Another promising application is the use of TMD monolayers for valley-based
spintronics, in which the spin and valley degrees of freedom are used to encode
information. This could potentially lead to engineering new types of spin-valley
transistors [66], which could have advantages over traditional electronic tran-
sistors in terms of speed and energy efficiency.

TMD monolayers have been studied extensively for their unique electronic
and optical properties. In particular, their strong excitonic effects have attrac-
ted significant interest [67–69]. Here, excitons can have large binding energies
due to the reduced screening of Coulomb interactions in two-dimensional sys-
tems. In addition, the effective masses of charge carriers in TMDs are typically
much larger than those in conventional semiconductors, leading to stronger
Coulomb interactions between the electrons and holes in the excitonic com-
plexes. In the near-infrared and visible spectral regions, the optical absorption
of TMD monolayers is dominated by direct transitions between the valence
and conduction band states. Due to the significant spin splitting of the valence
band, two types of optical excitations are observed: A- and B-excitons, corres-
ponding to holes in the top and bottom spin valence subbands, respectively. In
this thesis, the focus is on the A-exciton states, which have the lowest energy.
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Fig. 1.4: (a) Hexagonal atomic distribution of a TMD monolayer and Brillouin zone
with the high-symmetry points Γ, M, K, and K´. (b) Electronic bands around the K
and K´ points, which are spin-split by spin–orbit interactions: Mo-based (left) and
W-based (right) TMD monolayers. Valley-dependent optical selection rules for the
A-exciton are illustrated as vertical arrows.

TMD monolayers based on tungsten (W), such as WSe2 and WS2, are
commonly referred to as “darkish” while those based on molybdenum (Mo)
as “bright”. This is due to the differences in their band arrangement. In
Mo-based TMD monolayers, the highest valence band and lowest conduction
band have the same spin and the bright A-exciton corresponds to the lowest
energy exciton. In W-based TMD monolayers, instead, the conduction bands
are inverted compared to Mo-based TMD monolayers — see Fig. 1.4 (b). Here,
the A-exciton corresponds to one electron excited to the highest conduction
band, while the lower energy exciton is dark — optical selection rules require
spin matching of electron and hole pairs and thus for opposite spin pairs the
corresponding exciton is dark.

Dark excitons are difficult to access optically as they require a spin-flip
mechanism of either the electron or the hole. One option to measure these
dark exciton states is via magneto-photoluminescence experiments, where an
in-plane magnetic field is required to mix dark and bright states [70, 71]. Ex-
periments have measured 𝐴-excitons binding energies of around 0.4−0.5 eV for
MoS2 [72], 0.5−0.6 eV for MoSe2 [73], 0.4−0.7 eV for WS2 [55], and 0.4−0.5 eV
for WSe2 [74]. Crucially, particularly from a device application point of view,
the large binding energies of excitons in TMD monolayers, roughly an order of
magnitude larger than those in conventional quasi-2D semiconductors, allow
their observation up to room temperature.

As mentioned, the much higher values of the exciton binding energy in TMD
monolayer compared to III-V or II-VI semiconductor quantum wells can be ex-
plained in terms of the enhanced electron-hole Coulomb interaction and the
reduced dielectric screening. As schematically drawn in Fig. 1.5 (a), the dielec-
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(a) (b) Fig. 1.5: (a) Schematic represent-
ation of the field lines in both a
bulk semiconductor and a TMD
monolayer. (b) Exciton energies
as a function of the quantum num-
ber 𝑛 obtained both experiment-
ally and theoretically, including
the Rydberg series of 2D hydrogen
(1.15a). The inset shows the cor-
responding effective dielectric con-
stants (see text). Figures adapted
from Ref. [55].

tric screening is reduced because the electric field lines between the electron
and the hole extend outside the TMD monolayer, enhancing thus the effects of
the Coulomb attraction between the electron and the hole.

In the presence of a surrounding material with a weaker dielectric screen-
ing than the one of the TMD material, the Coulomb interaction is enhanced.
While making use of a conventional Coulomb potential to describe a monolayer
surrounded by a material with a similar dielectric constant is a good approx-
imation, this becomes inaccurate when a TMD monolayer is either suspended
in air or else is encapsulated in between low-dielectric materials. Note that
TMD monolayers are very sensitive to the external environment since almost
all atoms forming the layer are located on the surface. The environmental
degradation of TMD monolayers can be prevented by encapsulating them in
hexagonal boron nitride (hBN), a graphene analog insulator, chemically inert,
thermally stable, doping-free, and transparent material [75], which provides an
ideal environment to address properties of TMDs [76, 77]. Moreover, it has been
proved that the encapsulation leads to a significant reduction of the inhomo-
geneous linewidth observed in photoluminescence experiments, approaching the
homogeneous linewidth limit [78, 79].

One can show that the electron-hole interaction is accurately described by
the Rytova-Keldysh potential [80, 81]:

𝑉RK(𝑟) = 𝜋𝑒2

2𝑟0
[𝐻0 ( ̄𝜖𝑟

𝑟0
) − 𝑌0 ( ̄𝜖𝑟

𝑟0
)] , (1.28)

where 𝐻0 is the Struve function and 𝑌0 is the Bessel function of the second
kind. While at large distances the Rytova-Keldysh potential recovers the ∼ 1/𝑟
Coulomb potential, at short distances, diverges logarithmically. The distance
that determines the crossover between short and large distances is given by the
screening length 𝑟0. The screening length 𝑟0 can be approximately written in
terms of the monolayer effective thickness 𝑑 and its dielectric constant 𝜖, as
well as the sum of the dielectric constants of the two surrounding materials
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̄𝜖 = 𝜖1 + 𝜖2, 𝑟0 = 𝑑𝜖/ ̄𝜖 [80, 81]. In the strictly 2D limit (𝑑 → 0) with the
TMD monolayer assumed to be in a vacuum, the screening length is given by
the 2D polarizability 𝜒2D of the dielectric sheet as 𝑟0 = 2𝜋𝜒2D [51]. Values of
the vacuum polarizability have been obtained via DFT and GW calculations
giving 0.5 − 0.9 nm, which correspond to a vacuum screening length of 𝑟0 ∼
3 − 6 nm [53].

The Fourier transform of the Rytova-Keldysh potential (1.28) in momentum
space reads as

𝑉RKq = 2𝜋𝑒2

𝑞
1

(1 + 𝑟0𝑞) . (1.29)

By using these results and typical effective masses for electrons and holes in
TMD monolayers, 𝑚𝑒 ≃ 𝑚ℎ = 0.5 − 0.8𝑚0 [59, 82], theoretical calculations ob-
tain large exciton binding energy in the range 0.4−0.6 eV [51–53], in agreement
with experimental results [55, 72–74].

The modifications introduced by the Rytova-Keldysh potential (1.29) com-
pared to the unscreened Coulomb potential (1.22b) imply that the 𝑛𝑠 series of
exciton energies are modified with respect to the hydrogenic Rydberg series of
Eq. (1.15a), particular for small values of 𝑛, as shown in Fig. 1.5 (b).

It has been demonstrated in Ref. [55] that while for small values of the prin-
cipal quantum numbers, such as 𝑛 = 1, 2, the exciton binding energies deviate
substantially from the values expected from the hydrogenic model (1.14a), for
larger principal quantum numbers such as 𝑛 = 3, 4, 5, the agreement is very
good. By determining the effective dielectric constant 𝜖𝑛 needed to obtain the
TMD exciton binding energy by using the hydrogenic 2D Rydberg series (1.15a).
(see inset of Fig. 1.5 (b)), the authors of Ref. [55], have been able to show that
𝜖𝑛 decreases as 𝑛 increases, reaching values very close to 1 for 𝑛 ≥ 3. For
𝑛 = 1, 2 significant deviations of 𝜖𝑛 from 1 are due to a nonuniform dielectric
environment, as sketched in Fig. 1.5 (a). This suggests that the electron-hole
interaction is far more screened at short distances, while at larger distances
screening is reduced. The electric field between the electron and hole forming
the exciton permeates both the thin layer of material with strong screening and
the surrounding medium with weak screening. As the electron-hole distance
increases, a larger portion of the electric field is located in the low-dielectric sur-
rounding medium, leading to reduced effective screening, a phenomenon known
as “antiscreening” [83].

As far as the oscillator strength of the Rydberg states in TMD monolayers
is concerned, at small values of principal number 𝑛, the higher screening ef-
fects at short distances result in a smaller oscillator strength compared to the
unscreened Coulomb case. On the other hand, at larger values of 𝑛, thanks
to the antiscreening phenomenon, the oscillator strength is expected to behave
as for the ideal 2D unscreened Coulomb case. Hence, the decrease of the os-
cillator strength with 𝑛 is weaker for TMD monolayers than that for the ideal
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(a) (b)
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Fig. 1.6: (a) Optical pumping by resonant (red) and non-resonant (orange) excita-
tion of indirect excitons in coupled quantum wells with an electric field perpendicular
to the growth direction. Non-resonant excitation leads to the formation of both dir-
ect and indirect excitons. However, direct excitons recombine faster than indirect
ones, thus leaving electrons and holes in separate layers. Resonant excitations ini-
tially generate only direct excitons, however, tunneling and scattering mechanisms
leads eventually to the formation of also indirect excitons. Adapted from Ref. [94] (b)
Schematic representation of an electron-hole bilayer where both direct and indirect
excitons are generated optically.

2D hydrogen atom [84, 85].

1.4 Electron-hole bilayer and indirect excitons
In order to conclude the discussion about exciton properties in semiconductors,
we review in this section some of the recent advances on excitons in different
geometries, such as the case of electron-hole bilayers, i.e., quantum well struc-
tures where electrons and holes are confined in separate layers. The interest
in this geometry comes from the fact that, as explained below, the electron
and hole forming the indirect exciton [86–88] and spatially separated, implying
longer lifetimes compared to direct excitons. At the same time, the spatial
separation leads to stronger exciton-exciton interactions. The enhanced inter-
particle interaction of indirect excitons, together with the possible realization
of macroscopic quantum effects, make electron-hole quantum well systems rel-
evant for applications in optoelectronic devices, such as excitonic transistor [89,
90], switching devices [91, 92] and LED [93].

Longer lifetimes and stronger interactions are beneficial for the realization
of macroscopically coherent collective phases [94, 95]. Several collective phases
have been predicted for electron-hole bilayers [96–98], such as charge density
wave states [99], as well as the competition between exciton condensation and
Wigner crystallization [100]. We will investigate pairing phenomena in electron-
hole bilayers in the limit of extreme charge imbalance in Ch 5.

Electron-hole bilayers can be realized in two coupled quantum wells separ-
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ated by a thin barrier layer by applying a perpendicular electric field which
lifts the degeneracy of conduction and valence bands in the two wells, creating
an asymmetric potential [101–105] — see Fig. 1.6. The energy level in the well
that is closer to the positive electrode is shifted to higher energies, while the
energy levels in the well that are closer to the negative electrode are shifted to
lower energies. As a result, electrons and holes redistribute so that electrons
move to the lower energy states in one well, while holes move to the higher
energy states in the other well. Alternative approaches to create indirect ex-
citons include doping and/or electrostatic gating [106]. In this case, quantum
wells have separate contacts, allowing for an independent load of carriers. More
details about this configuration will be given in Ch. 2.

When light is shined on a coupled quantum well structure, both direct
excitons (electron and hole belong to the same well) and indirect excitons (elec-
tron and hole belong to different wells) are generated. Indirect excitons have
longer lifetimes because electrons and holes are spatially separated, thus redu-
cing the probability of tunneling, while direct excitons recombine faster, thus
eventually leaving only electrons and holes in separate layers [94]. Note that the
layer separation must be large enough to reduce recombination by tunneling,
while small enough to maximize Coulomb attraction. Further, some tunneling
is necessary to allow final detection.

Initial studies of optically generated indirect excitons in GaAs/AlGaAs
structures have led to the generation of macroscopically coherent ring-shaped
patterns around the laser spot [101, 102, 104], hundreds of micrometers away
from the excitation area. This phenomenon has been interpreted by assuming
that excitons remain in a dark state until they collectively recombine when
reaching a critical distance because they enter a collective coherent phase.

Interestingly, indirect excitons have a permanent dipole moment and thus
they are characterized by a dipole-dipole repulsive interaction [101, 107–109].
The enhanced dipole-dipole interaction of indirect excitons compared to direct
ones12 can have important consequences for the realization of a condensed phase
of excitons [101, 102, 104], as explained next. There has been a long and strenu-
ous search for exciton condensation since when it was first proposed [114, 115].
In a thermal equilibrium description, i.e., neglecting recombination, and at low
densities, exciton condensation can be described as Bose-Einstein condensation
of tightly bound bosons. However, at higher densities, the electrons and holes
start to overlap and the description of exciton condensation resembles that one
of the theory of superconductivity [116]. Even at low densities, the generation
of a cold thermalized gas of excitons starting from a hot population of optically

12 Even at low densities, i.e., much smaller than the exciton inverse squared Bohr radius,
where excitons can be approximated as tightly bound bosons [110], excitons acquire their
interaction properties from their fermionic constituents. A microscopic analysis of exciton-
exciton interaction can be found in several works, such as Refs. [111–113].
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generated particle-hole pairs is far from trivial. In a single quantum well, cool-
ing is prevented by the short lifetime of (direct) excitons [117]. Here, recombine
faster than thermalize to low-enough temperatures [118]. Further, two excitons
in opposite spin states attract each other and form a lower-energy molecular
state named biexciton [119]. In order to overcome these limitations, already
in 1975 it was suggested to consider indirect excitons [120]. The lifetime of
I=indirect excitons can be as long as microseconds [121]. At the same time,
the repulsive dipole-dipole interaction helps to stabilize them against the form-
ation of biexcitons. Strong dipole-dipole interaction has however the drawback
of leading to a rapid expansion of a dense dipolar exciton fluid [122, 123]. Still,
spatially indirect excitons have been observed to exhibit long-range spontan-
eous coherence in coupled structures made of GaAs quantum wells separated by
a thin AlGaAs barrier, with coherence being observed at temperatures around
1 K [104, 124].

With the advent of 2D materials such as TMD monolayers, it is possible to
build several electron-hole bilayer structures by combining TMDs of different
chemical compositions. The weak interlayer bonding in these layered crys-
tals allows engineering layered heterostructures through the vertical or lateral
stacking of the different monolayers, which are held together by van der Waals
forces [43]. For TMD van der Waals heterostructures, theoretical calculations
of their band structures show, in most cases, a staggered/type-II alignment,
where the conduction band minimum and valence band maximum are located
in different layers [125, 126]. Electrons and holes can thus be confined in separ-
ate layers, leading to strongly bound indirect excitons [127, 128], with binding
energies of hundreds of meV, making them stable at room temperature [129].
Thus, these materials are potentially more promising for optoelectronic devices
and should enable them to be operational at elevated temperatures.

Superfluidity of spatially indirect excitons has been predicted also for TMDs
van der Waals heterostructures [130–132]. Considering TMD layers separated
by insulating hexagonal boron nitride and making use of an effective mass the-
ory, it has been estimated that the indirect exciton degeneracy temperature
can reach 100 K. Very recently, evidence of exciton condensation at temper-
atures as high as 100 K has been obtained in a MoSe2–WSe2 electron–hole
double-layer structure [133].

1.5 Polaritons
In this section, we are going to introduce the concept of cavity polaritons,
the quasiparticles resulting from the entanglement of one exciton and a cavity
photon. These strongly coupled light-matter quasiparticles display properties of
both components, allowing to tune of the properties of matter by light and vice
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versa, opening a wealth of novel possibilities and research directions. Excitons
have a finite lifetime, after which the generated electron-hole pair recombines
emitting a photon. If however the photon is confined, recurrent processes of ex-
citon annihilation and emission of a photon and photon reabsorption to create
another exciton with the same energy and momentum can repeat themselves
until the photon is able to escape confinement. When the exciton–photon coup-
ling exceeds the exciton and photon decay rates, new polariton quasiparticles
give rise to spectrally separated normal modes.

Photon confinement is thus an essential ingredient to the formation of polari-
tons. Planar microcavities are one possibility of achieving optical confinement.
Here, two flat reflecting mirrors are disposed at a distance of the same order
of the light wavelength. Other alternatives are photonic crystals that confine
light in small volumes around crystal defects, or convex cavities with a high
refractive index, such as spherical or pillar microcavities [1].

Here, we briefly discuss the structure and properties of planar microcavities.
Fabry-Pérot resonators [134] are typical examples of planar microcavities. They
are made of two parallel reflecting mirrors at a distance 𝐿𝐶 . If light is perfectly
confined within this length, the resulting confined photon mode has a quantized
orthogonal momentum 𝑘𝑧 = 𝑁 𝜋

𝐿𝐶
so that its energy is related to the in-plane

momentum k by
𝜖𝐶k = 𝑐

𝑛√k2 + 𝑘2𝑧 , (1.30)

where 𝑛 is the medium refractive index [1], 𝑐 is the speed of light, and 𝑁 is
the index of the transverse mode in the cavity. For small values of the in-plane
momentum, the photon thus acquires a parabolic dispersion [1]:

𝜖𝐶k ≃ 𝜖𝐶0 + 𝑘2

2𝑚𝐶
, (1.31)

where

𝜖𝐶0 = 𝜋𝑐
𝑛𝐿𝐶

𝑚𝐶 = 𝑛
𝑐

𝜋
𝐿𝐶

. (1.32)

The effective photon mass 𝑚𝐶 is orders of magnitude smaller than the exciton
mass, typically, 𝑚𝐶 ∼ 10−5𝑚𝑋 [135]. Note that the cavity photon energy 𝜖𝐶0
can be tuned by changing the cavity effective length 𝐿𝐶 . This possibility is
exploited in planar cavities by growing one of the two mirrors with a wedge.
As a result, different regions of the microcavity have different values of the
effective length and thus the photon energy can be detuned to different values.

We have provided an approximated ideal description of a Fabry-Pérot reson-
ator, while real systems can deviate from this ideal scenario of perfect reflectiv-
ity. In particular, if mirrors are not exactly parallel, the light slowly “walks”
towards regions of larger cavity length, eventually escaping from the cavity.
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Fig. 1.7: (a) Schematic representation of a polariton heterostructure, consisting of
a planar microcavity made of distributed Brag reflectors with embedded quantum
wells. This configuration allows measuring the polariton in-plane dispersion by angle-
resolved measurements. (b) Photon absorption 𝐴𝐶(𝜔) as a function of momentum (in
linear [left panel] and logarithmic scale [right panel]) and energy 𝐸 obtained from a
coupled oscillator model (see text). Lower (LP) and upper (UP) polariton dispersions
are plotted as solid (white) lines. The uncoupled cavity (dot-dashed) and exciton
(dotted) modes are also shown. We have fixed 𝑚𝐶 = 10−4𝑚𝑋 and 𝜂𝐶 = ̄𝜂𝑋 = 0.05Ω.

To avoid lateral walk-off is possible to stack together multiple layers of mirrors
with alternating refractive index, as done in distributed Bragg reflectors (DBR)
— see Fig. 1.7 (a). A quarter-wave mirror is one of the most common designs,
with each optical layer thickness corresponding to one-quarter of the desired
wavelength for which the mirror is designed.

Crucially, the photon in-plane momentum k is proportional to the angle
𝜃𝑒𝑥𝑡 with respect to the normal direction in which the photon is shown or is
emitted outside the cavity:

k = 𝜖𝐶k
𝑐 sin 𝜃𝑒𝑥𝑡 . (1.33)

This gives a powerful tool for probing polariton properties by performing angle-
resolved measurements.

We are now able to describe the effects of the strong coupling between
one exciton and one cavity photon. In the following section, we first use a
simplified description where the exciton is assumed as structureless, while, in
Sec. 1.5.2, we will introduce a microscopic model which includes the exciton
internal structure.

1.5.1 Coupled oscillator model
The simplest model describing a coupled exciton and photon system neglects
the composite nature of the exciton, considers 1𝑠 exciton level only, and neglects
its spin degree of freedom. Further, as a starting point, we are going to assume
that both excitons and cavity photons are infinitely long-lived, and we introduce
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the effects of a finite lifetime later in the section. The Hamiltonian describing
the coupled oscillator model is:

�̂� = ∑
k

( ̂𝑎†
k ̂𝑥†

k) ℍ ( ̂𝑎k
̂𝑥k
) ℍ = (𝜖𝐶k

Ω
2

Ω
2 𝜖𝑋k

) , (1.34)

where ̂𝑎k and ̂𝑥k are the photonic and excitonic bosonic operators, respectively.
While the first two terms are the photon and exciton kinetic energy terms,
where 𝜖𝐶k is given by (1.31) and 𝜖𝑋k = 𝜖𝑋0 + 𝑘2

2𝑚𝑋
= 𝐸𝑔 − 𝜀𝑋 + 𝑘2

2𝑚𝑋
, the

terms proportional to Ω describe the conversion of an exciton into a photon
and vice versa with a coupling strength Ω, the Rabi frequency. This simple
model, also known as Jaynes-Cummings model [136], employs the rotating
wave approximation [137], which is valid for light-matter coupling strengths
smaller than the exciton energy. In this approximation, processes involving
the simultaneous creation or annihilation of both an exciton and a photon are
neglected. These processes do not conserve energy and are oscillating fast in
time if Ω ≪ 𝜖𝐶0 + 𝜖𝑋0. Thus, in this limit, they average to zero on time scales
of the order of 1/Ω and can be neglected.

We are going to see that experimental values of the Rabi frequency can
be obtained directly from polariton absorption spectra. At the same time, it
can be shown that Ω can be determined starting from the microscopic system
properties, such as the cavity photon energy 𝜖𝐶0, the cavity width 𝐿𝐶 , and the
1𝑠 exciton oscillator strength 𝑓1𝑠 [138]:

Ω ∝ √4𝜋𝜖𝐶0𝑓1𝑠
𝐿𝐶

. (1.35)

The dependence of Ω on the exciton oscillator strength 𝑓1𝑠 will be derived from
a microscopic polariton model in the following Sec. 1.5.2.

The Hamiltonian (1.34) can be diagonalized by rotating into the polariton
basis:

�̂� = ∑
k

(�̂�†
k

̂𝑙†k) (𝜖UPk 0
0 𝜖LPk

) (�̂�k
̂𝑙k
) , (1.36)

where

(�̂�†
k
̂𝑙†k
) = (cos 𝜃k − sin 𝜃k

sin 𝜃k cos 𝜃k
) ( ̂𝑎†

k
̂𝑥†
k
) (1.37a)

cos 𝜃k
sin 𝜃k

= ± 1√
2

⎡⎢
⎣

1 ± 𝜖𝐶k − 𝜖𝑋k

√(𝜖𝐶k − 𝜖𝑋k)2 + Ω2

⎤⎥
⎦

1/2

(1.37b)
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𝜖LP,UPk = 1
2 [𝜖𝐶k + 𝜖𝑋k ∓ √(𝜖𝐶k − 𝜖𝑋k)2 + Ω2] . (1.37c)

The Hopfield coefficients [139] cos2 𝜃k and sin2 𝜃k are the exciton (photon) and
photon (exciton) fraction in the lower (upper) polariton quasiparticle at mo-
mentum k. When the lifetime of exciton and photon are negligible, the Rabi
frequency Ω coincides with the upper (UP) and lower polariton (LP) energy
difference at resonance, i.e., when the exciton and photon energies coincide
𝜖𝐶k = 𝜖𝑋k — see Fig. 1.7 (b). The LP and UP dispersions are plotted in
Fig. 1.7 (b) as solid lines Note that in Fig. 1.7 (b), the cavity photon dispersion
is shown as a dot-dashed line and, because of the very small photon mass, the
cavity photon dispersion is much steeper than that of the exciton (dotted line).
Thus, in the range of angles probed by the photons, the dependence of the
exciton on its center of mass momentum is negligible. As previously discussed,
the cavity photon energy can be tuned in cavities grown with a wedge. Here,
it is possible to thus change the photon-exciton detuning, defined as:

𝛿 = 𝜖𝐶0 − 𝜖𝑋0 . (1.38)

In the limit 𝑘 ≪ √2𝑚𝐶Ω, the lower and upper polariton dispersions can
be approximated as parabolic

𝜖LP,UPk ≃ 𝜖LP,UP0 + 𝑘2

2𝑚LP,UP
, (1.39)

where the LP and UP effective masses are a sum of photon and exciton masses
weighted by the corresponding Hopfield factors [135]:

1
𝑚LP

≃ sin2 𝜃0
𝑚𝐶

+ cos2 𝜃0
𝑚𝑋

1
𝑚UP

≃ sin2 𝜃0
𝑚𝑋

+ cos2 𝜃0
𝑚𝐶

. (1.40)

In the simplified description provided by the coupled oscillator model, the
photon and exciton Green’s functions in the strong coupled regime between
matter and light can be evaluated by inverting the matrix

𝔾(𝜔, k) ≡ (𝜔 − ℍ)−1 = (𝜔 − 𝜖𝐶k − Ω
2

− Ω
2 𝜔 − 𝜖𝑋k

)
−1

, (1.41)
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and evaluating the diagonal elements [140]:

𝐺𝐶(𝜔, k) = 𝔾11(𝜔, k) = 1
𝜔 − 𝜖𝐶k − Ω2/4

𝜔−𝜖𝑋k

= sin2 𝜃k
𝜔 − 𝜖LP

+ cos2 𝜃k
𝜔 − 𝜖UP

(1.42a)

𝐺𝑋(𝜔, k) = 𝔾22(𝜔, k) = 1
𝜔 − 𝜖𝑋k − Ω2/4

𝜔−𝜖𝐶k

= cos2 𝜃k
𝜔 − 𝜖LP

+ sin2 𝜃k
𝜔 − 𝜖UP

. (1.42b)

Photon and exciton Green’s function in the frequency domain are related by
the Dyson equation [141]:

𝐺𝐶(𝜔, k) = 𝐺(0)
𝐶 (𝜔, k) + (Ω

2 )
2

𝐺(0)
𝐶 (𝜔, k)𝐺𝑋(𝜔, k)𝐺𝐶(𝜔, k) , (1.43)

where 𝐺(0)
𝐶 (𝜔, k) = (𝜔 − 𝜖𝐶k)−1 is the bare photon Green’s function when the

light-matter coupling is zero Ω = 0. It can be shown that this relation holds in
general, beyond the validity of the coupled oscillator model.

We now discuss how to introduce the effects of broadening due to the exciton
and photon decay, as well as a quantum well disorder or other non-radiative
processes. In order to do this, we have to separate different experimental
configurations: in one case the quantum well or the TMD monolayer is not
embedded into a microcavity and it is probed by light — we will refer to this as
the weak coupling regime; in the other case, the active medium where excitons
can be generated is embedded into a microcavity — the strong coupling regime.

In the weak coupling regime, one is interested in the exciton response and
the effects of the exciton lifetime and the broadening caused by, e.g., disorder
in the quantum well or other non-radiative processes, which can be included in
a frequency shift into the complex plane 𝜔 ↦ 𝜔 + 𝑖𝜂𝑋, giving:

𝐺𝑋(𝜔, k) = 1
𝜔 + 𝑖𝜂𝑋 − 𝜖𝑋k

. (1.44)

One physical observable in this regime can be optical absorption, i.e., the trans-
fer rate from an initial state containing no exciton to a final state with one
photo-generated exciton. Using Fermi’s golden rule it is easy to demonstrate
that the optical absorption in the weak coupling regime coincides with the ex-
citon spectral function (we will carry on a formal derivation of this result in the
case where the exciton cannot be treated as tightly bound boson in Sec. 1.5.3):

𝐴𝑋(𝜔, k) = − 1
𝜋 Im𝐺𝑋(𝜔, k) . (1.45)

Thus, shifting the frequency into the complex plane implies that the exciton
optical absorption is a Lorentzian centered at the exciton energy and with a Full
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Width at Half Maximum (FWHM) equal to 2𝜂𝑋. Different nonradiative decay
processes can lead to the broadening of the exciton line, such as exciton–exciton
and exciton–phonon scattering, as well as disorder induced by, e.g., impurities
or defects. These contribute to what is generally referred to as inhomogeneous
broadening [29, 142]. We should note here that inhomogeneous broadening
leads to a lineshape which is Gaussian-like rather than Lorentzian [143, 144].
One way to model this could be to consider a Gaussian convolution of the
exciton spectral function13.

In the strong coupling regime, when the active medium is embedded into
the optical cavity, the couple oscillator model (1.34) already takes into account
that the exciton can decay into a cavity photon (with a probability given by
the Rabi coupling Ω). However, we have neglected both the fact that the cavity
photon can leak out from the cavity, with a decay rate inversely proportional
to the cavity photon linewidth 2𝜂𝐶 , and that the exciton line can be broadened
because of inhomogeneous broadening effects, as discussed previously. We will
indicate the inhomogeneous broadening as 2 ̄𝜂𝑋. Both these effects can be
included in the photon and exciton Green’s function as follows:

𝐺𝐶(𝜔, k) = 1
𝜔 − 𝜖𝐶k + 𝑖𝜂𝐶 − Ω2/4

𝜔−𝜖𝑋k+𝑖�̄�𝑋

(1.46a)

𝐺𝑋(𝜔, k) = 1
𝜔 − 𝜖𝑋k + 𝑖 ̄𝜂𝑋 − Ω2/4

𝜔−𝜖𝐶k+𝑖𝜂𝐶

. (1.46b)

The calculation of optical absorption in the strong coupling regime differs
depending on the quality of the cavity confining the photon. For good cavities,
i.e., when 𝜂𝐶 ≪ Ω, one can use Fermi’s golden rule which establishes that the
optical absorption coincides with the photon spectral function

𝐴𝐶(𝜔, k) = − 1
𝜋 Im𝐺𝐶(𝜔, k) . (1.47)

The plot shown in Fig. 1.7 (b) depicts the spectral function 𝐴𝐶(𝜔, k) with a
fixed value of 𝜂𝐶 = ̄𝜂𝑋 = 0.05Ω. The plot clearly shows a good agreement
between the peaks of the spectral function and the two eigenvalues of the
coupled oscillators model (1.37c). However, for those cavities where the decay
into external photons is not negligible, one needs to resort to an input-output
method [145–147]. Indeed, Fermi’s golden rule only describes the absorption of

13 The Gaussian convolution of the spectral function (1.45) is defined as

̄𝐴𝑋(𝜔) = 1√
2𝜋𝜎 ∫

∞

−∞
𝑑𝜔′𝐴𝑋(𝜔′)𝑒− (𝜔−𝜔′)2

2𝜎2 .

While the FWHM of a Gaussian is 2
√

2 ln 2𝜎, if 𝐴𝑋(𝜔′) has a Lorentzian profile, the convo-
lution implies ̄𝐴𝑋(𝜔) has a Voigt profile with FWHM ≃ 𝜂 + √𝜂2 + 8𝜎2 ln 2.
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a photon already inside the cavity and does not take into account reflection and
transmission processes. Within the input-output method, one instead considers
the scattering matrix 𝒮 that relates input (incident) waves (Ψ𝑖

𝐿,𝑅) with the
output (scattered) waves (Ψ𝑜

𝐿,𝑅) at the left and right (𝐿, 𝑅) sides of the cavity:

(Ψ𝑜
𝐿

Ψ𝑜
𝑅

) = 𝒮 (Ψ𝑖
𝐿

Ψ𝑖
𝑅

) = (𝑠𝐿𝐿 𝑠𝑅𝐿
𝑠𝐿𝑅 𝑠𝑅𝑅

) (Ψ𝑖
𝐿

Ψ𝑖
𝑅

) . (1.48)

Considering an incident wave only on one side of the cavity 𝛼 = 𝐿, 𝑅, reflection,
transmission, and absorption are thus related to the matrix elements of 𝒮 by

𝑅𝛼𝛼 = |Ψ𝑜
𝛼|2

|Ψ𝑖𝛼|2 = |𝑠𝛼𝛼|2 (1.49a)

𝑇𝛼𝛽 =
|Ψ𝑜

𝛽|2
|Ψ𝑖𝛼|2 = |𝑠𝛼𝛽|2 (1.49b)

𝐴𝛼𝛽 = 1 − 𝑅𝛼𝛼 − 𝑇𝛼𝛽 , (1.49c)

where 𝛽 ≠ 𝛼. In the simplified case of identical 𝐿 and 𝑅 mirrors, it is possible
to relate the scattering matrix elements with the retarded Green’s function as
follows [147, 148]:

𝑠𝐿𝐿 = 𝑠𝑅𝑅 = 1 − 𝑖𝜂𝐶𝐺𝐶(𝜔, k) (1.50a)
𝑠𝐿𝑅 = 𝑠𝑅𝐿 = −𝑖𝜂𝐶𝐺𝐶(𝜔, k) . (1.50b)

The scattering process on the same side of the cavity 𝑠𝛼𝛼 has two contributions
because bare reflection is also allowed together with propagation into the cavity.
Thus, in the case of a single incident wave and identical mirrors, the photon
reflection, transmission, and absorption can be written in terms of the retarded
photon Green’s function as:

𝑅𝛼𝛼(𝜔, k) = 1 + 2𝜂𝐶Im𝐺𝐶(𝜔, k) + 𝜂2
𝐶 |𝐺𝐶(𝜔, k)|2 (1.51a)

𝑇𝛼𝛽(𝜔, k) = 𝜂2
𝐶 |𝐺𝐶(𝜔, k)|2 (1.51b)

𝐴𝛼𝛽(𝜔, k) = −2𝜂𝐶 (Im𝐺𝐶(𝜔, k) + 𝜂𝐶 |𝐺𝐶(𝜔, k)|2) . (1.51c)

It is easy to show that we can rewrite Eq. (1.51c) in the following equivalent
form

𝐴𝛼𝛽(𝜔, k) = 2𝜂𝐶 [𝜂𝐶 − ImΣ𝐶(𝜔, k)]
[𝜔 − 𝜖𝐶k − ReΣ𝐶(𝜔, k)]2 + [𝜂𝐶 − ImΣ𝐶(𝜔, k)]2 , (1.52)

in terms of the photon self-energy:

Σ𝐶(𝜔, k) = Ω2/4
𝜔 − 𝜖𝑋k + 𝑖 ̄𝜂𝑋

. (1.53)
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In the limit of a “good quality” microcavity, i.e., more precisely when

𝜂𝐶 ≪ |ImΣ𝐶(𝜔, k)| = Ω2

4
̄𝜂𝑋

(𝜔 − 𝜖𝑋k)2 + ̄𝜂2
𝑋

, (1.54)

the absorption 𝐴𝛼𝛽(𝜔, k) recovers the spectral function 𝐴𝐶(𝜔, k).
To conclude this section, we analyze how the polariton energies (1.37c) are

modified when we introduce the effects of the photon decay 𝜂𝐶 and exciton
inhomogeneous broadening ̄𝜂𝑋. Let us consider the following non-Hermitian
coupled oscillator Hamiltonian:

ℍ = (𝜖𝐶k − 𝑖𝜂𝐶
Ω
2

Ω
2 𝜖𝑋k − 𝑖 ̄𝜂𝑋

) , (1.55)

with complex eigenvalues:

𝜖∓,k = 1
2 {𝜖𝐶k + 𝜖𝑋k − 𝑖 (𝜂𝐶 + ̄𝜂𝑋)

∓√[𝜖𝐶k − 𝜖𝑋k − 𝑖 (𝜂𝐶 − ̄𝜂𝑋)]2 + Ω2} . (1.56)

If Ω ≫ 𝜂𝐶 , ̄𝜂𝑋 the effects of photon and exciton broadening are small and, at
resonance 𝜖𝑋k = 𝜖𝐶k, the polariton splitting is

Ω± = 𝜖+k − 𝜖−k = √Ω2 − (𝜂𝐶 − ̄𝜂𝑋)2 ≃ Ω . (1.57)

However, in the limit where either the exciton or the photon broadening is not
negligible with respect to the Rabi splitting, the polariton energies measured
in experiments differ from the eigenvalues (1.56) and depend on whether one
considers reflection, transmission, or absorption experiments (1.51) [149]. This
is particularly evident when the broadenings drive the coupled system into the
weak coupling regime, i.e., when one cannot distinguish two separate polari-
ton resonances. Considering absorption as the experimental way of probing
polaritons, one can easily show that the maxima of the absorption spectrum at
resonance 𝜖𝑋k = 𝜖𝐶k provide the following polariton splitting Ω± [149]:

Ω±,𝐴 = √Ω2 − 2 (𝜂2
𝐶 + ̄𝜂2

𝑋) (1.58)

This expression differs from the one evaluated from the eigenvalues (1.57). We
plot in Fig.1.8 the polaritons split at resonance 𝜖𝑋k = 𝜖𝐶k using the complex po-
lariton eigenvalues expression (1.57) (dashed gray lines), the photon absorption
𝐴𝛼𝛽(𝜔, k) (1.58) (solid black lines), and the spectral function 𝐴𝐶(𝜔, k) (1.47)
(dotted black lines). In Fig. 1.8 (a), it is shown that the three methods yield
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Fig. 1.8: Energy splitting between UP and LP at resonance (𝜖𝑋k = 𝜖𝐶k) as a function
of the photon broadening 𝜂𝐶 for (a) ̄𝜂𝑋 = 0 and (b) ̄𝜂𝑋 = 0.2Ω. Solid black lines are
obtained from locations of the maxima of the photon absorption 𝐴𝛼𝛽(𝜔, k), dashed
gray lines from the complex polariton eigenvalues, and dotted black lines are obtained
from the photon spectral function 𝐴𝐶(𝜔, k).

identical results in the limit of a good cavity, i.e., 𝜂𝐶 → 0, when ̄𝜂𝑋 = 0. How-
ever, in Fig. 1.8 (b), when ̄𝜂𝑋 has a finite value, the photon absorption and
the spectral function approaches can still produce the same outcome as the
limit 𝜂𝐶 → 0, while the split calculated using complex eigenvalues produces a
different result. Note that the range of values in 𝜂𝐶 in which absorption and
spectral function give similar results is reduced by increasing ̄𝜂𝑋.

The regime of polariton strong coupling has been achieved in a variety of
semiconductor heterostructures [152–155]. Just to mention a few examples,
strong coupling has been realized in GaAs quantum wells, with Rabi splitting
values ranging from 5 to 20 meV [150, 156–158]. Note that the Rabi coup-
ling can be increased by increasing the number of embedded quantum wells
located at the maxima of the cavity photon field. One can show that Ω res-
cales roughly as Ω ∼

√
𝑁 , where 𝑁 is the number of quantum wells embedded

into the cavity [156, 158]. Larger values of Ω can be achieved in inorganic
quantum wells such as CdTe and GaN, where they can reach values of about
20 − 40 meV [150, 159–162], due to their higher exciton binding energy and
higher oscillator strength.

Finally, for TMD monolayers embedded in optical microcavities Rabi split-
tings of the order of 20 to 60 meV [151, 163, 164] have been achieved. This
has allowed observing strongly coupled valley-polarized polaritons up to room
temperature [164–166].

Fig. 1.9 shows two experiments measuring polariton energies as a function
of either the cavity to exciton detuning or the inplane momentum for two
different heterostructures. In panel (a) GaAs quantum wells are embedded
into a planar microcavity made of GaAlAs-based DBR [150]. Here, as explained
before, the cavity wedge allows to modify the cavity to exciton detuning (1.38).
Panel (b) shows a MoS2 monolayer embedded in a Si-based DBR at room
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Fig. 1.9: (a) Polariton dispersion (filled circles) as a function of the photon-exciton
detuning measured in a GaAs-based microcavity heterostructure [150]. (b) Polariton
dispersion obtained from the angle-resolved reflectivity spectra in a MoS2 monolayer
embedded in a Si-based DBR [151]. Solid lines are theoretical fits using a coupled
oscillator model.

temperature [151].

1.5.2 Microscopic model
While the coupled oscillator model provides a basic understanding of polariton
formation mechanism and properties, this simplified description is bound to
fail when the Rabi coupling Ω is comparable to the exciton binding energy
𝜀𝑋, i.e., Ω ∼ 𝜀𝑋 ≪ 𝜖𝑋0. Here, while one can still make use of the rotating
wave approximation (see Sec. 1.5.1) one can expect that the strong coupling to
light can affect the exciton properties, which thus cannot be assumed to be a
structureless “rigid” particle. Indeed, the interaction between light and matter
begins to mix different excitonic levels, causing a modification in the wave
function of the electron-hole pair. In this regime, which is referred to as the
“very strong coupling” regime [167, 168], while the rotating wave approximation
can still be applied, the composite nature of the exciton has to be taken into
account. On the other hand, if Ω is on the order of the exciton energy 𝜖𝑋0,
i.e., 𝜀𝑋 ≪ Ω ∼ 𝜖𝑋0, the coupling is intense enough to hybridize states with
different numbers of excitations, resulting in what is called the “ultrastrong
coupling regime” [169–173]. In this case, the rotating wave approximation is
bound to fail.

In this thesis, we focus on the consequences induced by the very strong
coupling regime, yet, none of the experiments we compare our theory with
enter the ultrastrong coupling regime. In inorganic quantum wells, values of
Ω ∼ 𝜀𝑋 can be achieved by stacking multiple quantum wells in the central
antinodes of the cavity field [150, 156–162], since, as explained before, Ω scales
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as
√

𝑁 , where 𝑁 is the number of quantum wells embedded into the cavity [156,
158]. TMD monolayers embedded into cavities the very strong coupling regime
has yet to be achieved because of the very large values of the exciton binding
energies of about ∼ 0.5 eV, .

A microscopic model including the internal structure of the exciton, able
to describe the modifications that a very strong coupling to light can lead
to both exciton and photon mode, has been recently introduced in Ref. [140].
This model has been used to derive the results of Chs. 4 and 5 and thus we
re-derive it here for clarity and completeness. We solve the problem of a single
polariton by including all possible exciton states, such as the bound states
and the continuum of unbound electron-hole scattering states. In order to
make a connection between the microscopic parameters and those measured
in experiments, we impose that, in the limit of weak coupling to light, when
Ω ≪ 𝜀𝑋, we recover the polariton energies predicted by the coupled oscillator
model, which we expect to be valid in this limit. By allowing all possible exciton
states, we give the possibility to the exciton wave function to be modified when
values of Ω increase into the very strong coupling regime to light. At the same
time, we will also see that the cavity photon frequency is renormalized from
its “bare” value, i.e., when it is uncoupled from the matter mode. Further,
the upper polariton can strongly hybridize with the electron-hole scattering
continuum, in which case, there are large deviations from the coupled oscillator
model predictions.

Let us, therefore, start with the microscopic Hamiltonian

�̂� = �̂�0 + �̂�𝑒ℎ + �̂�𝐶 + �̂�𝑒ℎ𝐶 (1.59a)

�̂�0 = ∑
k𝜎

𝜖𝜎k ̂𝑐†
𝜎k ̂𝑐𝜎k (1.59b)

�̂�𝐶 = ∑
k

𝜖𝐶k ̂𝑎†
k ̂𝑎k, (1.59c)

�̂�𝑒ℎ𝐶 = 𝑔√
𝒜

∑
kq

( ̂𝑐†
𝑒 q

2 +k ̂𝑐†
ℎ q

2 −k ̂𝑎q + h.c.) . (1.59d)

All terms but the one referring to the coupling to light have been already intro-
duced in Eq. (1.20). The last term 𝐻𝑒ℎ𝐶 describes the electron-hole creation
because of the absorption of a photon and vice versa. Because the electron and
hole have to coincide in space when they recombine or are created, we have
described this term as a contact interaction, i.e., the coupling 𝑔 is momentum
independent. However, if one would describe microscopically this process, it is
clear that there is a momentum cutoff Λ in k of the order of the inverse lattice
constant of the material considered that thus makes the coupling 𝑔 momentum-
k dependent. It can be shown that, if Λ → ∞, a contact electron-hole-photon
interaction term leads to an ultraviolet logarithmic divergence of the polariton
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energy [140]. As such, unless one wants to include microscopic details in the
model, one needs to renormalize the divergence, as explained next.

Let us consider the following variational ansatz for a polariton state at zero
center of mass momentum14:

|Ψ⟩ = (𝛼0 ̂𝑎†
0 + ∑

k

𝜑k√
𝒜

̂𝑐†
𝑒k ̂𝑐†

ℎ−k) |0⟩ . (1.60)

The polariton energies can be found by minimizing ⟨Ψ| �̂� − 𝐸 |Ψ⟩ with respect
to the complex photon 𝛼0 and exciton 𝜑k amplitudes. One obtains the following
coupled eigenvalue equations to solve:

𝐸𝛼0 = 𝜖𝐶0𝛼0 + 𝑔
𝒜 ∑

k
𝜑k (1.61a)

𝐸𝜑k = ̄𝜖k𝜑k − ∑
k′

𝑉k−k′

𝒜 𝜑k′ + 𝑔𝛼0 , (1.61b)

where ̄𝜖k = 𝜖𝑒k + 𝜖ℎk. Inserting Eq. (1.61b) into Eq. (1.61a) and rearranging,
we obtain a relation between the polariton energy 𝐸, its photon amplitude 𝛼0,
and the exciton wave function 𝜑k:

(𝐸 − 𝜖𝐶0 + 𝑔2

𝒜 ∑
k

1
−𝐸 + ̄𝜖k

) 𝛼0 = 𝑔
𝒜2 ∑

kk′

𝑉k−k′𝜑k′

−𝐸 + ̄𝜖k
. (1.62)

The sum on the left-hand side of this equation diverges logarithmically, while
the sum on the right-hand side is finite. For this reason, we introduce an
ultraviolet momentum cutoff Λ. As mentioned before, the cutoff Λ governs the
high-energy behavior of the problem and could be proportional to the inverse
crystal lattice spacing. Thus, one way out of the problem introduced by the
divergence of the polariton equation is to model more accurately the system
physics at this scale. However, we would like to extract universal properties of
the system that are independent of microscopic modelling and details. We thus
choose the option of sending Λ → ∞, by renormalizing the system parameters
so that the dependence on Λ is lost. Note that one option would be that,
for energies 𝐸 ∼ 𝜖𝐶0, the photon amplitude 𝛼0 approaches zero as 1/ ln Λ
when Λ → ∞. However, in order to have a finite photon component in the
polariton, the other option is to renormalize the cavity photon energy so that
the divergence is canceled, which is the route we are going to follow next.

In order to relate the bare parameters in our microscopic model, such as the
bare photon energy 𝜖𝐶0 and the light-matter coupling strength 𝑔, to experiment
observables, we impose that our model recovers the coupled oscillator results

14 The generalization at finite center of mass momentum Q can be found in Refs. [140,
174].
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— see Sec. 1.5.1 — in the limit where the light-matter coupling strength is such
that Ω ≪ 𝜀𝑋, where we know that assuming the exciton state is not modified
by the coupling to light is a good approximation. To do this, we rewrite the
polariton eigenvalue Eqs. (1.61) in the following equivalent form

(𝐸 − 𝜖𝐶0 + 𝑔2

𝒜 ∑
k

1
−𝐸 + ̄𝜖k

) 𝛼0 = 𝑔
𝒜 ∑

k
𝛽k (1.63a)

(𝐸 − ̄𝜖k)𝛽k = − ∑
k′

𝑉k−k′

𝒜 𝛽k′ + 𝑔𝛼0 ∑
k′

𝑉k−k′

𝒜
1

(−𝐸 + ̄𝜖k) , (1.63b)

where
𝛽k = ∑

k′

𝑉k−k′

𝒜
𝜑k′

−𝐸 + ̄𝜖k
. (1.64)

In the regime of weak coupling to light, 𝑔 ≪ 𝑎𝑋𝜀𝑋, we expect to recover the
predictions of the coupled oscillator model where the exciton is not modified by
the coupling to light. Here, we can thus approximate the exciton wave function
as 𝜑k ≃ 𝛽0𝜑1𝑠k, where 𝛽0is a complex number. Further, the relevant energy
scale 𝐸 of the polariton problem can be set to the exciton energy 𝐸 ≃ 𝜖𝑋0 =
𝐸𝑔 − 𝜀𝑋, and thus Eq. (1.64) now reads as

𝛽k ≃ ∑
k′

𝑉k−k′

𝒜
𝛽0𝜑1𝑠k′

−𝐸𝑔 + 𝜀𝑋 + ̄𝜖k
= 𝛽0𝜑1𝑠k = 𝛽0

√
8𝜋𝑎𝑋

[1 + (𝑘𝑎𝑋)2]3/2 , (1.65)

where we have used the Schrödinger equation (1.24) for 𝜑1𝑠k. Multiplying
Eq. (1.63a) by 1

𝒜 ∑k 𝜑1𝑠k and applying the Schrödinger equation (1.24) for
𝜑1𝑠k to both Eq. (1.63a) and Eq. (1.63b), Eqs. (1.63) can thus be rewritten
as [140]:

(𝐸 − 𝜖𝑋0)𝛽0 ≃ 𝑔𝛼0
1
𝒜 ∑

k
𝜑1𝑠k , (1.66a)

(𝐸 − 𝜖𝐶0 + 𝑔2

𝒜 ∑
k

1
−𝜖𝑋0 + ̄𝜖k

) 𝛼0 ≃ 𝑔𝛽0
1
𝒜 ∑

k
𝜑1𝑠k . (1.66b)

Defining the dressed, i.e., renormalized, photon energy as

𝜔𝐶0 ≡ 𝜖𝐶0 − 𝑔2

𝒜 ∑
k

1
𝜀𝑋 − 𝐸𝑔 + ̄𝜖k

, (1.67)

the renormalized photon-exciton detuning at zero momentum as

𝛿 = 𝜔𝐶0 − 𝜖𝑋0 , (1.68)
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Fig. 1.10: Comparison between the lower and upper polariton energies obtained
with the microscopic model (blue solid lines) and the coupled oscillator model (purple
dashed lines), as a function of the exciton-photon detuning 𝛿 = 𝜔𝐶0 − 𝜖𝑋0. We set
the Rabi coupling to Ω = 0.1𝜀𝑋 (a), Ω = 0.5𝜀𝑋 (b), and Ω = 0.9𝜀𝑋 (c). The black
dotted lines are the 1𝑠 and 2𝑠 exciton states energies, while the black dot-dashed line
is the photon-exciton detuning 𝛿.

and the Rabi coupling as

Ω ≡ 2𝑔
𝒜 ∑

k
𝜑1𝑠k , (1.69)

Eqs. (1.66) recover exactly the coupled oscillator model (1.34).
The renormalization of the photon frequency (1.67) implies that when there

is an active medium in the cavity, the photon energy 𝜔𝐶0 shifts with respect to
its bare value 𝜖𝐶0, which is instead the photon energy when there is no medium
present in the cavity. The shift (1.67) is strongly dependent on the microscopic
high-energy details of the problem that we are ignoring in our modelling. The
red shift between the bare (empty) cavity energy and the dressed cavity energy
when an active medium is instead present is something known in experiments
and it has been measured [151]. TMD monolayer samples come in small flakes
so that when embedded in a planar cavity offer the possibility to measure
independently the renormalized photon energy 𝜔𝐶0 and compare it to the bare
value 𝜖𝐶0. Clearly, in a real system, the energy correction due to the dressing
from the active medium is finite rather than divergent as our model predicts,
as a cutoff associated with the nature of electronic states at large momenta
does exist. The renormalization procedure just described allows us to obtain
universal results independent of the microscopic details of the active.

We plot in Fig. 1.10 the polariton energies obtained as solutions of the
coupled eigenvalue equations (1.61), where we have implemented the renormal-
ization scheme by redefining the photon energy according to Eq. (1.67) and
the Rabi coupling by Eq. (1.69) — the LP and UP energies are the first two
eigenvalues of the problem. Here, we have defined the photon-exciton detuning
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as
𝛿 = 𝜔𝐶0 − 𝜖𝑋0 , (1.70)

which coincides with what is measured in experiments. The polariton ener-
gies are obtained for different values of the Rabi coupling: When Ω = 0.1𝜀𝑋
(Fig. 1.10 (a)), we observe that the microscopic model coincides with the res-
ults of the coupled oscillator model (1.34) for all values of the detuning 𝛿, aside
from when the UP crosses the value of the 2𝑠 exciton state, which has not been
included in the coupled oscillator model. For larger values of Ω however, such
as Ω = 0.5𝜀𝑋 (Fig. 1.10 (b)) and Ω = 0.9𝜀𝑋 (Fig. 1.10 (c)), the LP is still well
described by the coupled oscillator model, while discrepancy between this and
the microscopic model for the UP extends to a larger range of detunings.

1.5.3 Optical absorption and photoluminescence in weak
and strong coupling

In this section, we want to define those observables such as optical absorp-
tion and emission that are measured experimentally. As already explained in
Sec. 1.5.1, we differentiate between two separate experimental configurations:
in one case the quantum well or the TMD monolayer is not embedded into a
microcavity and it is probed by light, a regime we have labeled as weak coupling
regime; in the other case, the active medium where excitons can be generated
is embedded into a microcavity, the strong coupling regime.

In the weak coupling regime, the system’s optical properties can be de-
scribed starting from the retarded exciton Green’s function. In order to use a
notation that differentiates between the weak and strong coupling cases, we use
𝐺(0)

𝑋 for the retarder exciton Green’s function in weak coupling and 𝐺𝑋 for the
exciton Green’s function in strong coupling. We restrict to the case where ex-
citons have zero center of mass momentum and use the notation ∣ΨQ=0⟩ = |Ψ⟩
for the exciton state defined in Eq. (1.23).

In the time domain, the exciton Green’s function can be defined as the over-
lap between an appropriately chosen initial state and its forward time evolution
with the system Hamiltonian (1.20):

𝐺(0)
𝑋 (𝑡) = −𝑖Θ(𝑡)⟨Ψ(0)|𝑒−𝑖�̂�𝑡|Ψ(0)⟩ . (1.71)

The initial state |Ψ(0)⟩ is an electron-hole pair generated at the same spatial
position following the absorption of a photon. This state, which is not an
exciton state, can be written as:

|Ψ(0)⟩ = 𝒩√
𝒜

Λ
∑

k
̂𝑐†
𝑒k ̂𝑐†

ℎ−k|0⟩ . (1.72)
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We choose the parameter 𝒩 = ( 1
𝒜 ∑Λ

k )−1/2 so that this state is normalized
⟨Ψ(0)|Ψ(0)⟩ = 1. This introduces a dependence on the cutoff Λ that we will re-
move later with a renormalization procedure. The exciton states |Ψ⟩ (1.23) are
eigenstates of the Hamiltonian �̂� (1.20) with eigenvalues 𝐸𝑛 and eigenvectors
𝜑𝑛k solutions of the Schrödinger equation (1.24). Note that, here, the eigen-
value index 𝑛 does refer to the 𝑠-states only, because these are the only states
that couple to light, however, not only to the bound Rydberg states (1.15a),
i.e., we are also including electron-hole scattering states. As such, these states
form a complete set of orthonormal states:

�̂� |Ψ𝑛⟩ = 𝐸𝑛 |Ψ𝑛⟩
∑

𝑛
|Ψ𝑛⟩ ⟨Ψ𝑛| = 𝟙

⟨Ψ𝑛| Ψ𝑚⟩ = 𝛿𝑛,𝑚 .
(1.73)

Using this, we can write the exciton Green’s function (1.71) as:

𝐺(0)
𝑋,Λ(𝑡) = −𝑖Θ(𝑡) ∑

𝑛
| ⟨Ψ(0)| Ψ𝑛⟩|2𝑒−𝑖𝐸𝑛𝑡 , (1.74)

where we have made explicit the dependence on Λ that we later eliminate. As
⟨Ψ(0)| Ψ𝑛⟩ = 𝒩

𝒜 ∑k 𝜑𝑛k, in the frequency domain one has that:

𝐺(0)
𝑋,Λ(𝜔) = ∑

𝑛

∣ 𝒩
𝒜 ∑k 𝜑𝑛k∣2

𝜔 − 𝐸𝑛 + 𝑖𝜂𝑋
= ∑

𝑛

|𝒩𝜑𝑛(0)|2
𝜔 − 𝐸𝑛 + 𝑖𝜂𝑋

, (1.75)

where 𝜑𝑛(r) = 1
𝒜 ∑k 𝑒𝑖k⋅r𝜑𝑛k. Here, the frequency is shifted to the complex

plane 𝜔 ↦ 𝜔 + 𝑖𝜂𝑋, with 𝜂𝑋 > 0, so to guarantee that the retarded condition
is satisfied. However, as already discussed in Sec. 1.5.1, 𝜂𝑋 physically rep-
resents the sum of the exciton homogeneous and inhomogeneous broadening
contributions.

The dependence on the cutoff introduced by the initial state (1.72) is incon-
venient, as the normalization factor 𝒩 → 0 when Λ → ∞.

As discussed in detail in Sec. 4.4 and App. B, it is possible to provide a
renormalized expression of the exciton Green’s function which is independent
of the cutoff Λ and which provides a finite contribution from the bound 𝑛𝑠
states:

𝐺(0)
𝑋 (𝜔) ≡ (2𝑔

Ω )
2 𝐺(0)

𝑋,Λ(𝜔)
𝒩2 = ∑

𝑛

∣ 1
𝒜 ∑k 𝜑𝑛k ( 1

𝒜 ∑k 𝜑1𝑠k)−1∣
2

𝜔 − 𝐸𝑛 + 𝑖𝜂𝑋
. (1.76)

Here, the microscopic light-matter coupling constant 𝑔 and the Rabi splitting
Ω are related by Eq. (1.69).

In linear response, the exciton spectral function coincides with the optical
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absorption [175]. In order to show this, let us consider that the optical absorp-
tion corresponds to the transfer rate from an initial state containing no exciton
|0⟩, i.e., the vacuum state, to all the possible final states containing one exciton
|Ψ𝑛⟩ (1.73) connected by the operator which describes the photo-generated
electron-hole pair 𝒩

√
𝒜 ∑Λ

k ̂𝑐†
𝑒k ̂𝑐†

ℎ−k. Using Fermi’s golden rule, one thus has
that the optical absorption can be written as:

𝐴𝑋,Λ(𝜔) = ∑
𝑛

| ⟨Ψ𝑛| 𝒩√
𝒜

Λ
∑

k
̂𝑐†
𝑒k ̂𝑐†

ℎ−k |0⟩ |2𝛿(𝐸𝑛 − 𝜔) . (1.77)

Using the integral representation of the Dirac-delta function 𝛿(𝜔) =
Re ∫∞

0
𝑑𝑡
𝜋 𝑒−𝑖𝜔𝑡, the definition of |Ψ(0)⟩ (1.72) and the completeness of the ex-

citon states |Ψ𝑛⟩ (1.73) one finally gets:

𝐴𝑋,Λ(𝜔) = Re ∫
∞

0
𝑒𝑖𝜔𝑡 ⟨Ψ(0)| 𝑒−𝑖�̂�𝑡 |Ψ(0)⟩ = − 1

𝜋 Im𝐺(0)
𝑋,Λ(𝜔) . (1.78)

In order to define an optical absorption that is cutoff independent, we can follow
the renormalization procedure of Eq. (1.76) and obtain a cutoff independent
absorption:

𝐴𝑋(𝜔) = − 1
𝜋 Im𝐺(0)

𝑋 (𝜔) , (1.79)

Note that 𝐴𝑋,Λ(𝜔) and 𝐴𝑋(𝜔) satisfy different sum-rules. For the cutoff de-
pendent absorption 𝐴𝑋,Λ(𝜔), by definition one has that [175]

∫
∞

−∞
𝑑𝜔 𝐴𝑋,Λ(𝜔) = 1 . (1.80)

The cutoff independent absorption would instead give a divergent integral over
all frequencies and it is normalized such that the oscillator strength of the 1𝑠
state (the area underneath) is set to 1.

Starting from absorption one can evaluate photoluminescence from the
transfer rate from an initial state containing the photo-generated exciton |Ψ𝑛⟩
to a final state containing no exciton |0⟩. It can be shown that, assuming
that the population of excited states is thermalized to a Maxwell-Boltzmann
distribution at a temperature 𝑇 before emission and that they are otherwise
uncorrelated, the absorption 𝐴𝑋(𝜔) and photoluminescence 𝑃𝑋(𝜔) are related
by a detailed balanced condition [176–179]:

𝑃𝑋(𝜔) ∝ 𝑒−𝛽𝜔𝐴𝑋(𝜔) , (1.81)

where 𝛽 = 1/𝑘𝐵𝑇 . We will provide a rigorous derivation of this expression in
Ch. 3.
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The derivation of the optical absorption in the strong coupling regime fol-
lows the same steps given in Sec. 1.5.1. The photon Green’s function can be
derived by considering an initial state consisting of a single photon

|Ψ(0)⟩ = 𝛼0 ̂𝑎†
0|0⟩ , (1.82)

and a final state given by a polariton state (1.60), which is now an eigenstate
of the Hamiltonian (1.59), with eigenvalues 𝐸𝑛 and eigenvectors |Ψ𝑛⟩. Using
Eq. (1.73), we can write the photon Green’s function as:

𝐺𝐶(𝑡) = −𝑖Θ(𝑡) ∑
𝑛

| ⟨Ψ(0)| Ψ𝑛⟩|2𝑒−𝑖𝐸𝑛𝑡 . (1.83)

As ⟨Ψ(0)| Ψ𝑛⟩ = |𝛼𝑛0|2, in the frequency domain, one has that:

𝐺𝐶(𝜔) = ∑
𝑛

|𝛼𝑛0|2
𝜔 − 𝐸𝑛 + 𝑖𝜂𝐶

, (1.84)

As explained in Sec. 1.5.1, for good quality cavities, 𝜂𝐶 ≪ Ω, one can use
Fermi’s golden rule to show that the photon spectral function coincides with
the absorption spectrum:

𝐴𝐶(𝜔) = Re ∫
∞

0
𝑒𝑖𝜔𝑡 ⟨Ψ(0)| 𝑒−𝑖�̂�𝑡 |Ψ(0)⟩ = − 1

𝜋 Im𝐺𝐶(𝜔) . (1.85)

1.5.4 Polariton condensation
To conclude this chapter, we dedicate this section to some of the major advances
concerning the field of polaritons and the possibility they undergo a transition
to condensed phases [180]. Since the first observation of exciton-polaritons a
quarter of a century ago, the field has progressed at an extraordinary rate and
exciton-polaritons have now emerged as novel driven-dissipative quantum flu-
ids [138] and promising systems for exploring original properties of many-body
non-equilibrium systems. Further, exciton-polariton structures have strong po-
tential for quantum technologies, such as the possibility of room temperature
operation, ultrafast dynamical response, easy tuning, and probing techniques,
as well as relatively simple fabrication techniques. Although it is not possible
to provide an exhaustive list of recent experimental achievements on polariton,
in this final section, we summarise some of the most relevant experimental evid-
ence of polariton condensation, and the relevant role played in the developing
of novel all-optical devices.

The first experiment demonstrating spontaneous coherence in a polariton
system involved coherent pumping of the cavity at a finite angle near the in-
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flection point of the lower polariton dispersion [181, 182]. Upon exceeding a
threshold value of the pump intensity, a parametric oscillation [183] ensues in
the planar microcavity, resulting in the parametric luminescence on the signal
and idler modes attaining a long-range coherence both in time and space. This
phenomenon has been interpreted as an example of nonequilibrium BEC [184].
After some preliminary claims [185, 186], the realization of BEC condensation
in a thermalized polariton gas was conclusively achieved for the first time in
2006 [159], using CdTe microcavities. As the pumping intensity was increased
above a certain threshold, nonlinear emission at energies close to the bottom
of the lower polariton branch was seen.

Since then, the field of polariton condensation has undergone rapid devel-
opment. One intriguing development is the possibility of utilizing exciton po-
lariton gases to investigate many-body physics and, specifically, superfluid hy-
drodynamics, as initially proposed in 2004 [187]. In 2009, the first experiment
that explored the superfluidity properties of polariton fluids was published [188].
The authors employed a pulsed optical excitation technique to induce motion
in a microcavity polariton condensate and observed distinct collective dynam-
ics exhibiting superfluid characteristics, such as flow without resistance when
passing through a defect. Subsequent experimental works expanded on this
study to examine strong defects, demonstrating hydrodynamic nucleation of
vortex-antivortex pairs [189, 190], and dark solitons [191, 192] in the flowing
superfluid.

In the previous experiments we mentioned, only weak interactions between
individual polaritons were studied, and the hydrodynamic behavior of the po-
lariton condensate was examined as a result of the collective interactions of
many coherent polaritons. Going beyond and into the regime of strongly cor-
related polaritons requires the observation of a photon blockade effect [193,
194] where interactions are strong enough to suppress double occupancy of a
photonic lattice site. A convenient verification of the blockade phenomenon is
provided by photon antibunching — a vanishing photon correlation function
𝑔(2)(𝜏) for delays 𝜏 smaller than the polariton lifetime [195–197]. In Ref. [196]
evidence of quantum correlations between polaritons spatially confined in a
fiber cavity is reported. Photon correlation measurements show that careful
tuning of the coupled system can lead to a modest reduction of simultaneous
two-polariton generation probability by 5%. This modest reduction is related
to the modest polariton interaction strength in neutral semiconductors. Re-
cently a novel way to boost the optical nonlinearity of semiconductors has
been reported [198]. This method involves a doped semiconductor structure in
which the polariton is “dressed” by the surrounding charged medium, resulting
in quasiparticles known as polaron-polaritons that can interact strongly with
each other and extend over large spatial scales — see Sec. 2.3.1. The authors
demonstrate that this dressing mechanism enhances the material’s optical non-
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linearity by a factor of 50. In Ch. 2, this dressing mechanism will be described
in detail.

The realization of quantum physical phenomena at macroscopic scale and
room temperature offers significant opportunities for the development of in-
novative all-optical devices. For instance, polariton lasers exploit the coherent
nature of Bose condensates of exciton-polaritons in semiconductors to achieve
lasing with extremely low thresholds [199]. Although the concept of polariton
lasers was introduced in 1996 [180], it was not until 2013 that electrical pumping
of a polariton laser, a crucial aspect for practical use of polaritonic light sources,
was demonstrated [200]. Other relevant applications include polariton switches
and modulators [201], polariton lattices [202, 203], and networks [204, 205]. In
the contest of device applications, 2D semiconductors structures like TMDs,
thanks to their large oscillator strengths and exceptionally strong exciton bind-
ing energy with respect to quasi-2D organic and inorganic semiconductors, have
been shown to be promising in the realization of photonic lasers [206–208] and
robust exciton polaritons at room temperature [151, 209]. Very recently, the
realization of polariton lasing was reported for the first time in a monolayer
WS2-based planar microcavity at room temperature [210], showing great prom-
ise for their practical applications.



Chapter 2

Charged excitons and polaritons

Recent advances in experimental techniques in 2D semiconductors have made
it possible to investigate the interplay between electronic doping and strong
light-matter coupling. This chapter focuses on those different phenomena that
can be realized and studied in charged 2D light-matter systems, with a focus
on the extremely imbalanced limit and the Fermi polaron problem. We will
analyze in depth the Fermi polaron theory at zero temperature, while these
results will be generalized to finite temperature in Ch. 3. Further, we will carry
on a comparison with theories based on few-body excitations, i.e., excitons and
trions. We will illustrate the broad recent experimental literature that studies
this problem.

2.1 Doped and gated 2D semiconductors
There are several experimental techniques that can be employed to load a gas
of free carriers in a 2D quantum well or a TMD monolayer. Before focusing on
the theoretical aspects concerning this configuration, we briefly review some
of them here. We illustrate at the end of this section why this particular
configuration has gained significant interest in recent years.

One of the most common techniques to charge a quantum well is gating the
structure. Here, carriers are electrostatically accumulated using a field-effect
transistor structure [106, 211, 212]. To achieve the desired carrier density,
a gate electrode is placed on top of the quantum well, separated by a thin
insulating layer. The gate voltage is used to control the number of charge
carriers in the quantum well, by changing the electrostatic potential in the
region near the quantum well. The gate voltage can attract or repel carriers
from the quantum well, depending on its polarity. By applying a negative
gate voltage, electrons are attracted from a nearby source and accumulate in
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the quantum well, effectively doping it with electrons. Similarly, a positive
gate voltage attracts holes and loads them into the quantum well. The carrier
concentration can be controlled by varying the gate voltage, which affects the
electrostatic potential in the region near the quantum well.

Another technique is modulation-doping [213, 214]. In this process, a
dopant material is placed in the alloy barrier forming the quantum well. The
energy difference between the dopant energy in the barrier and the ground state
of the quantum well induces charge transfer. A finite excess of charge can also
be induced in quantum well structures using optical excitation of specially craf-
ted samples where quantum wells with different widths are coupled [215–218].
In particular, a wide and narrow quantum well are coupled together. When the
narrow quantum well is photoexcited, the generated electrons quickly transfer
toward the lower energy levels of the large quantum well. The holes, on the
other hand, tunnel from the narrow to the wide quantum well at a much slower
rate. An electron gas is thus formed in the large quantum well, the density of
which is optically controlled.

TMD monolayers can be doped using field-effect transistors. Here, flakes
of few-layer graphene serve as a contact and top/bottom gate electrodes. The
carrier density is tuned by applying a gate voltage between the electrodes con-
nected to the graphene flakes [219–221]. Other doping techniques commonly
employed in TMD monolayers are substitutional and molecular doping. Sub-
stitutional doping means substituting atoms of the transitional metal or of the
chalcogenide component with dopants [222–225]. However, control over dop-
ing with this technique is challenging. Molecular doping instead consists in
modifying the electrical properties of a TMD monolayer by coating or deposit-
ing a film providing doping. This approach results in a heterostructure of the
doping film and the TMD monolayer, where the electrical or optical proper-
ties of the monolayer can be tuned by either charge transfer from the dopant
molecules [224, 226–228] or by dipole effects of the dopant molecules [229–231].

The net result of gating or doping techniques is to load a gas of excess
charges into the 2D semiconductor. For a gas of non-interacting electrons or
holes (𝜎 = 𝑒, ℎ) the Fermi energy 𝐸𝐹 is related to the gas density 𝑛𝜎 by

𝐸𝐹 = 𝑘2
𝐹

2𝑚𝜎

1
𝑁 = 2𝜋

𝑚𝜎

𝑛𝜎
𝑁 , (2.1)

where 𝑘𝐹 is the Fermi momentum and 𝑁 = 2 is the spin degeneracy. For a
spin-polarised gas 𝑁 = 1.

There are multiple reasons why generating a gas of excess charges in 2D
semiconductors can be interesting both from fundamental and applied points
of view. Injecting free carriers into a 2D semiconductor allows for modification
of its optical response. One possibility is to create electrically injected polari-
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ton devices, such as LEDs and lasers [200, 232–236]. Recently, the electrical
injection has been employed to load polaritons into etched square and honey-
comb lattices [237]. Here, the direct current injection has led to a laser-like
emission from high-symmetry points, opening thus the possibility to generate
electrically driven polariton lasers with topologically nontrivial properties. In
Ref. [238], an external electric field is used to tune a microcavity between differ-
ent lasing regimes, from a polariton condensate at strong coupling to a photon
laser at weak coupling. Further, in a similar configuration [239], the polari-
ton and photon lasing regimes have been identified by measuring the power
dependence of the probed photocurrent between lateral contacts. Considering
gated or doped 2D semiconductors allows tuning the semiconductor properties
by changing the free carrier density. In effect, a band-gap renormalization is
expected in this regime [240–243]. Further, the exciton binding energy and os-
cillator strength are modified by the screened Coulomb interaction, leading to
a significant reduction in both binding energy and the oscillator strength [244].

These structures have also attracted noticeable interest because of the pos-
sibility of studying strongly correlated electron phases by optical means. One
usually employs the dimensionless parameter 𝑟𝑠 = 𝑚𝑒𝑒2/(𝜖√𝜋𝑛𝑒) = 1/𝑘𝐹 𝑎𝐵,
where 𝑎𝐵 = 𝜀/𝑚𝑒𝑒2 is the Bohr radius and 𝑘𝐹 the Fermi momentum, which is
the ratio between the Coulomb interaction energy and the kinetic energy, to
quantify the strongly interacting regime, when 𝑟𝑠 becomes significantly greater
than one. The dominance of Coulomb repulsion over kinetic energy can lead
to the spontaneous formation of a crystal phase, i.e., to Wigner crystalliza-
tion [245]. Here, electrons arrange themselves in configurations corresponding
to the potential energy’s absolute minima, thereby maximizing the distance
between them. Recent quantum Monte Carlo calculations [246] have shown a
critical value of 𝑟𝑠 ≳ 30 for Wigner crystallization. TMD monolayers are ideal
candidates to achieve Wigner crystals, because of the large electron mass and
small values of the dielectric constant. In these systems, a value of 𝑟𝑠 ≳ 40
can be reached for electron densities 𝑛𝑒 ∼ 1011 cm−2 [247]. Optical probing
of a Wigner crystal phase has been very recently reported in charge-tunable
MoSe2 monolayer [248] and bilayer [249]. It has been proposed that charged
TMD monolayers are also expected to allow the study, by optical means, of the
transition from a quantum liquid to a quantum solid phase, and the spontan-
eous appearance of intermediate charge density wave (CDW) phases [250–253].
The mechanisms behind the formation of a CDW phase in these systems are un-
der debate [252]. Similarly, the competition or cooperation between CDW and
superconducting phases is an open question [254]. The presence of numerous
unresolved questions further enhances the interest in the field.

As discussed in Sec. 2.4 doped semiconductors provide an opportunity to
investigate and characterize uncommon electron-hole pairing phenomena. In
the extremely imbalanced limit, previous work has suggested that excitons can
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acquire a finite center of mass momentum reminiscent of a roton minimum
at large enough doping [255, 256]. Exciton pairing at finite center of mass
momentum is related to the FFLO phase, which was first proposed for con-
ventional superconductors [257, 258]. In Ch. 5, we expand upon these studies
by examining how the strong coupling to light impacts the formation of this
phase.

To conclude this section, let us comment that doped semiconductors have
more recently attracted much interest because of the possibility of realizing
a Fermi polaron or impurity problem. This question occupies a sizeable part
of this thesis and its fundamental ideas will be analyzed in detail in Sec.2.3.
There, we will also connect the Fermi polaron formalism with those results that
can be extracted from a few-body approach involving excitons and trions.

2.2 Distinguishable trions
Optical excitation of a doped or gated semiconductor can lead to the formation
of charged few-body complexes such as trions. A trion is a bound state of either
two conduction-band electrons and a valence-band hole (indicated as 𝑋−) or
one electron and two holes (𝑋+) and can be thought of as the semiconductor
analog of either the hydrogen anion 𝐻− or the molecular ion 𝐻+

2 [259], respect-
ively. In this section, we will limit the discussion strictly to the three-body
description, while, in Sec. 2.3, we will connect these results to those obtained
for a finite density of excess charges within the polaron formalism. In partic-
ular, we will see in Sec. 2.3 that the polaron description allows describing the
optical response of charged semiconductors from low to intermediate densities
where the Fermi energy is of the order of the trion binding energy [260–265].
We will also see that, while the polaron description recovers some of the trion
properties at low doping, such as its energy and oscillator strength [266], there
are profound differences between the trion and polaron descriptions.

The first quantization Hamiltonian describing a three-body complex con-
sisting of two electrons and one hole in 2D is given by [267]

ℋ̂ = −(∇2
𝑒1 + ∇2

𝑒2)
2𝑚𝑒

− ∇2
ℎ

2𝑚ℎ
+ 3

2𝐸𝑔 − 𝑉 (r𝑒1, r𝑒2, rℎ) , (2.2)

where the factor 3/2𝐸𝑔 comes from the fact that we have a three-body particle,
and where r𝑒1,𝑒2,ℎ denotes the position coordinates of the three carriers and
𝑉 (r𝑒1, r𝑒2, rℎ) is the interaction potential which includes the electron-electron
repulsion and the electrons-hole attraction. For unscreened Coulomb potential
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one has

𝑉 (r𝑒1, r𝑒2, rℎ) = 𝑒2

𝜖 ( 1
|r𝑒1 − rℎ| + 1

|r𝑒2 − rℎ| − 1
|r𝑒1 − r𝑒2|) , (2.3)

where 𝜖 is the dielectric constant. The Schrödinger equation for the trion wave
function Ψ𝑒1,𝑒2,ℎ(r𝑒1, r𝑒2, rℎ) reads as

ℋ̂Ψ𝑒1,𝑒2,ℎ(r𝑒1, r𝑒2, rℎ) = 𝐸Ψ𝑒1,𝑒2,ℎ(r𝑒1, r𝑒2, rℎ) . (2.4)

The trion binding energy 𝜀𝑇 (defined positive) is the energy difference between
the energy of an exciton plus an electron 𝜖𝑋0 + 𝐸𝑔/2 = −𝜀𝑋 + 3/2𝐸𝑔 and the
trion energy 𝐸𝑇 :

𝜀𝑇 ≡ 𝜖𝑋0 + 𝐸𝑔/2 − 𝐸𝑇 = −𝜀𝑋 − (𝐸𝑇 − 3/2𝐸𝑔) . (2.5)

As, introducing the trion binding energy 𝜀𝑇 , the energy gap 𝐸𝑔 rescales out of
the problem, we can measure energies with respect to it, i.e., we can set 𝐸𝑔 = 0,
which we carry on throughout the rest of this chapter. The trion wave function
can be written as [268]

Ψ𝑒1,𝑒2,ℎ(r𝑒1, r𝑒2, rℎ) = 𝑒𝑖QR𝜑(r𝑒1 −rℎ, r𝑒2 −rℎ)𝒰(2)
𝑒1,𝑒2(r𝑒1, r𝑒2)𝒰(1)

ℎ (rℎ) . (2.6)

Here, 𝜑(r𝑒1 − rℎ, r𝑒2 − rℎ) is the envelope function describing the in-plane
relative motion of the two electrons with respect to the hole (we are considering
explicitly the case of 𝑋−) and 𝒰(2)

𝑒1,𝑒2(r𝑒1, r𝑒2) [𝒰(1)
ℎ (rℎ)] is the two-particle

[single-particle] Bloch function for the two electrons (the hole). The form of
the trion wave function (2.6) is general and it implies that the trion as a whole
is free to move in the in-plane space so that its envelope function can be written
as a function of the center of mass R = [𝑚𝑒(r𝑒1 + r𝑒2) + 𝑚ℎrℎ]/(2𝑚𝑒 + 𝑚ℎ)
and relative coordinates r𝑒1 − rℎ and r𝑒2 − rℎ.

Whether the trion wave function (2.6) has to satisfy symmetry constraints
for the exchange of the two electrons r𝑒1 ↔ r𝑒2 depends on whether such
electrons are indistinguishable or not [269]. For distinguishable electrons, i.e.,
electrons with different spin and/or valley indices, there are no restrictions on
the symmetry and the system is free to choose the lowest energy configuration.
One can show that this corresponds to a symmetric envelop function, i.e., 𝜑
has an 𝑠-wave symmetry. However, if the electrons are indistinguishable, i.e.,
have the same spin and valley indices, the two-particle Bloch function must
be symmetric when exchanging the two electrons (r𝑒1 ↔ r𝑒2), and therefore,
𝜑(r𝑒1 − rℎ, r𝑒2 − rℎ) is an antisymmetric function, thus in the lowest energy
solution has a 𝑝-wave symmetry. In III-V and II-VI quantum wells, where
there are no valley degrees of freedom but only spin ones, indistinguishable
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electrons mean they are in the same spin state and thus are in a spin-triplet
state and the envelope wave function must be antisymmetric, while a symmet-
ric envelop function occurs for a spin-singlet configuration, i.e., for an electron
in two different spin states. In TMD monolayers, the additional valley de-
grees of freedom allows for a symmetric envelope trion wave function with a
spin-triplet configuration. Note that, in contrast to distinguishable trions, the
observation of indistinguishable one have been scarce, since for many materi-
als this state is unbound due to Pauli repulsion. In general, it is known that
positively charged indistinguishable trions 𝑋+ can become bound when the
electron-to-hole mass ratio is sufficiently small [268] — see Ch. 4. For TMD
monolayers, indistinguishable trions are always unbound [270]. For CdTe- and
GaAs-based quantum wells indistinguishable 𝑋+ is expected to be bound [271,
272] but it has never been observed. However, a magnetic field perpendicular
to the quantum well [273–277] does stabilize this solution, and indistinguish-
able trions have been observed experimentally [278–280]. There has also been
evidence of indistinguishable trions in an electric field [281]. In this section, and
more generally in this chapter, we only consider trion states formed out of two
distinguishable majority carriers. The indistinguishable case will be discussed
in detail in Ch. 4.

The Schrödinger equation for the relative motion is given by:

𝐸𝜑(r𝑒1 − rℎ, r𝑒2 − rℎ) = [−(∇2
𝑒1ℎ + ∇2

𝑒2ℎ)
2𝜇

−∇𝑒1ℎ ⋅ ∇𝑒2ℎ
𝑚ℎ

− 𝑉 (r𝑒1, r𝑒2, rℎ)] 𝜑(r𝑒1 − rℎ, r𝑒2 − rℎ) , (2.7)

where 𝜇 = 𝑚𝑒𝑚ℎ/(𝑚𝑒 + 𝑚ℎ) is the reduced exciton mass (1.6) and

∇𝑒1ℎ = 𝑚ℎ
𝑚𝑒 + 𝑚ℎ

∇𝑒1 − 𝑚𝑒
𝑚𝑒 + 𝑚ℎ

∇ℎ (2.8a)

∇𝑒2ℎ = 𝑚ℎ
𝑚𝑒 + 𝑚ℎ

∇𝑒2 − 𝑚𝑒
𝑚𝑒 + 𝑚ℎ

∇ℎ . (2.8b)

Some of the methods most commonly employed to solve the Schrödinger (2.7)
and evaluate the trion binding energy 𝜀𝑇 are variational methods. Here, the
result depends on the choice of the trial wave function. Ref. [282] employs a
22-parameter Hylleraas-type wave function [283]:

Ψ(𝑠, 𝑡, 𝑢) = 𝑒−𝑠/2 ∑
𝑖,𝑗,𝑘

𝑐𝑖,𝑗,𝑘𝑠𝑖𝑡𝑗𝑢𝑘 , (2.9)

where 𝑠 = |r𝑒1 − rℎ| + |r𝑒2 − rℎ|, 𝑡 = |r𝑒1 − rℎ| − |r𝑒2 − rℎ|, and 𝑢 = |r𝑒1 − r𝑒2|
are elleptic Hylleraas coordinates. Results from these calculations are plotted
in Fig. 2.1 (a) and show that both positively and negatively charged trions are



Distinguishable trions 45

0      0.2     0.4     0.6     0.8     1.0                    me/mh 0      0.2     0.4     0.6     0.8     1.0                    me/mh

1.5
1.0
0.5
0.0Trion b

inding e
nergy /R

y X-0.1
-0.2
-0.3
-0.4Trion en

ergy / e
xciton e

nergy (a) (b)

Fig. 2.1: Expected dependence of the energy (a) and binding energy (b) for distin-
guishable trions 𝑋± on the electron-hole mass ratio obtained with different methods
(see text). Panel (a) contains a comparison between the results obtained by Refs. [271,
272] (solid lines), Ref. [282] (dotted) , and Ref. [267] (dashed). Here, the trion energy
is rescaled with respect to the exciton energy in 2D. Adapted from Ref. [271]. Panel
(b) are calculations for an ideal 2D quantum well and for a quasi-2D quantum well
from Ref. [284]. Here the trion binding energy is rescaled with respect to the 3D
exciton binding energy 𝑅𝑦𝑋.

bound for any value of the electron-hole mass ratio.
Quantitatively similar results have been obtained by employing much sim-

pler trial wave functions [271, 272]. The trial wave function considered in
Ref. [271] is one that interpolates between the trion wave function for two light
charges and a heavy one and that one for two heavy charges and a light one.
In the first case of two light charges and a heavy charge, one expects the trion
to be well described by [285]

Ψ𝑙𝑙ℎ(r1, r2) = (𝑒−𝑎𝑟1−𝑏𝑟2 + 𝑒−𝑏𝑟1−𝑎𝑟2) (1 + 𝑐|r1 − r2|) , (2.10)

where r1,2 are the relative positions of the light particles from the heavy particle.
Instead for the case of two heavy charges and a light charge, the trion is expec-
ted to be well described by

Ψℎℎ𝑙(r1, r2) = (𝑒−𝑎𝑟1 + 𝑒−𝑎𝑟2)ℛ(|r1 − r2|) . (2.11)

This wave function corresponds to the sum of two hydrogen-like wave func-
tions [269], multiplied by the wave function of the relative motion ℛ(𝜌), where
𝜌 = |r1 − r2|, which can be written as [271, 272]

ℛ(𝜌) = 𝑒−𝑠𝜌

1 + 𝑑(𝜌 − 𝜌0)2 , (2.12)

where 𝑠 = √−2𝑚ℎ𝐸 and 𝐸 is the trion binding energy. Thus, Ref. [271]
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suggests the use of the following trion wave function:

Ψ(r1, r2) = Ψ𝑙𝑙ℎ(r1, r2)ℛ(𝜌) . (2.13)

The clear advantage of this approach is that from 22 variational parameters of
Ref. [282], one has only 6 variational parameters. Results for the trion binding
energy evaluated this way are shown in Fig. 2.1 (a).

A completely different approach has been followed in Ref. [267] by using a
mass-weighted coordinates system, where it was possible to obtain an analytical
dependence of the trion binding energy from the electron-hole mass ratio 𝜈 =
𝑚𝑒/𝑚ℎ:

𝜀𝑋−(𝜈)
𝑅𝑦𝑋

= 1
1 + 𝜈 [9

4 (1 + 2𝜈 + 1
𝜈2 + 4𝜈 + 2)

−1
− 1] (2.14a)

𝜀𝑋+(𝜈)
𝑅𝑦𝑋

= 1
𝜈

𝜀𝑋−(1/𝜈)
𝑅𝑦𝑋

. (2.14b)

Here, 𝑅𝑦𝑋 is the 3D exciton binding energy. These results are plotted in
Fig. 2.1 (a), showing a reasonably good with the variational calculations of
Refs. [271, 272, 282].

While the results previously discussed are valid for the strictly 2D limit,
Ref. [284] has extended them to the quasi-2D geometry, by including the effect-
ive quantum well width. In particular, considering the specific case of 𝑋− and
assuming that the in-plane and perpendicular degrees of freedom factorize:

Ψ(rr1
, r𝑒2, rℎ, 𝑧𝑒1, 𝑧𝑒2, 𝑧ℎ) = 𝜑(rr1

, r𝑒2, rℎ)𝜙𝑒(𝑧𝑒1)𝜙𝑒(𝑧𝑒2)𝜙ℎ(𝑧ℎ) . (2.15)

The effective 2D Coulomb potential is obtained from averaging the 3D potential
over the particle densities in the quantum well confining direction:

𝑉𝜎𝜎′(r𝜎, r𝜎′) = 𝑒2

𝜖 ∫ 𝑑𝑧𝜎𝑑𝑧𝜎′
𝜙2

𝜎(𝑧𝜎)𝜙2
𝜎′(𝑧𝜎′)

√|r𝜎 − r𝜎′ |2 + (𝑧𝜎 − 𝑧𝜎′)2 , (2.16)

where 𝜎, 𝜎′ = 𝑒, ℎ . One thus obtains a quasi-2D problem, which, in Ref. [284]
is solved using a variational approach similar to the one employed in Ref. [286].
This work considers the specific case of a 25 nm GaAs quantum well and finds an
agreement with the experimental results of [287]. Further, the authors compare
their results with those obtained with a finite-difference technique [288], where
the potential Eq. (2.16) is approximated as:

𝑉𝜎𝜎′(r𝜎, r𝜎′) ≃ 𝑒2

𝜖
1

√|r𝜎 − r𝜎′ |2 + (𝛼𝑑𝑄𝑊 )2
. (2.17)
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Here, 𝛼 is a fitting parameter that depends on the quantum well width
𝑑𝑄𝑊 . The results for the full potential (2.16) are shown as black symbols
in Fig. 2.1 (b), while the trion binding energies obtained with the simplified
potential (2.17) are shown as solid and dashed lines. It was found that the dif-
ferences between the trion binding energies of positively and negatively charged
excitons in quantum wells are less pronounced than in an ideal 2D case — see
Fig. 2.1 (b).

The results discussed above can be applied to a quantum well in inorganic
materials such as group III-V and II-VI compounds. More recently, variational
approaches, similar to the ones used in Refs. [271, 272], have been applied to
evaluate the trion binding energy in TMD monolayers [53, 268, 289]. Here, as
discussed in Sec. 1.3, instead of a Coulomb potential, one has to use a Rytova-
Keldish potential (1.29). In the calculations of Ref. [53, 289], microscopic
details such as effective masses and screening length have been extracted from
either density functional theory (DFT) and GW approximation or ab initio
calculations. Similar to the quantum well case, also for TMD monolayers it
has been found that for distinguishable majority charges both 𝑋± are bound
for any electron-hole mass ratio [268]. Path integral [290, 291] and diffusion
Monte Carlo calculations [292] have given values for the trion binding energies
in good agreement with those obtained from variational calculations. There
have been also calculations not based on a parabolic band approximation, such
as those based on stochastic approaches [293, 294], that have demonstrated a
good agreement with effective mass models. Another computationally accurate
method that does not rely on a parabolic band approximation is the one em-
ploying the Bethe-Salpeter equation [295], already used to describe excitonic
properties [52, 57, 84]. Here, direct diagonalization of the corresponding three-
particle Hamiltonian [270, 296–300] has led to results in reasonable agreement
with those using a parabolic band approximation.

From the experimental point of view, there is a vast literature studying the
signatures of (distinguishable) trions in optical spectra. The first detection of
trions 𝑋− in inorganic quantum wells can be found in Ref. [301] for a CdTe-
based multiple quantum well structure using as doping source Indium planes
placed inside the quantum well barriers. Analyzing absorption spectra, the
authors found a trion binding energy of 2.7 meV. Later, a trion resonance has
been observed in photoluminescence experiments in gated GaAs quantum wells,
with trion binding energies in the range of 1.2 − 2 meV [278, 279, 302, 303].
These resonances can be attributed to three-body states in a spin-singlet state,
while spin-triplet trions for 𝑋− are unbound [271, 278, 286].

In TMD monolayers, researchers have recently observed trions in Mo-
based [54, 297, 304, 306] and W-based [306–308] monolayers, with binding
energies in the range of 20 − 40 meV, which is 10 or more times larger than in
III-V and II-VI compound quantum wells. In Mo-based TMDs optical selection
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Fig. 2.2: (a) Schematic band structure of MoX2 (a) and WX2 (c) TMD monolayers
with an extra charge. A 𝜎+ polarised external laser generates a K-intervalley particle-
hole pair. Green areas (purple area) indicate the spin-singlet intervalley trions (spin-
triplet intravalley trion) that can form. In all cases are distinguishable trions. (b)
Photoluminescence spectrum of a MoSe2 TMD monolayer obtained in Ref. [304]. The
inset shows the energy difference between the negatively charged trion and the neutral
exciton. (d) Reflectance contrast (blue circles) and photoluminescence (orange circles)
spectra of a WS2 monolayer [305]. Green, purple, and yellow Lorentzian profiles are
best fits for singlet trion, triplet trion, and neutral exciton, respectively.

rules establish that the lowest energy A-exciton is formed with an electron in
the lowest conduction band and a hole in the highest valence band at the K
and K´ points. In presence of a moderate 𝑛-doping, the optically generated
electron-hole pair can bind to an electron in the opposite valley with an oppos-
ite spin, thus forming a spin singlet intervalley trion. The same happens for
moderate 𝑝-doping — see Figs. 2.2 (a,b). The triplet trion that can form from
an extra charge in the same valley and band of either the electron or hole of the
optically generated electron-hole pair is unbound for the values of electron and
hole masses in TMD monolayers [270]. This indistinguishable trion state in
fact displays a 𝑝-wave symmetry and thus it is always more weakly bound than
the 𝑠-wave solution — we will discuss this aspect in detail in Ch. 4. In W-based
TMD monolayers, the situation is similar for 𝑝-doping but changes drastically
for 𝑛-doping. Here, in fact, the conduction bands are spin-inverted with re-
spect to M-based TMD monolayers, and thus optical selection rules impose
that the lowest energy A-exciton involves an electron in the upper conduction
bands. For moderate 𝑛-doping, there are two different spin configurations for
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distinguishable trions: an intravalley spin singlet trion configuration and an
intervalley spin triplet configuration — see Fig. 2.2 (c). The trion spin doublet
can be resolved because the singlet and triplet trions have different binding
energies. Indeed, as predicted by Ref. [309], a repulsive electron-electron ex-
change energy affects the triplet trion but not the singlet one, giving a splitting
of about 7 meV between these states. The trion doublet has been observed for
WSe2 [268, 310–312] and for WS2 [313–315] — see Fig. 2.2 (d).

It is important to note that the fact that trions are observed in optical spec-
tra such as PL and reflectance spectra means that trions have a finite oscillator
strength, i.e., a finite coupling to light. However, as we will discuss in detail in
Ch. 4 it is easy to show that in the strictly three-body limit, a trion has a van-
ishingly small oscillator strength [264, 266, 300, 316, 317]). The trion oscillator
strength becomes however finite in presence of a finite density of majority carri-
ers [266]. Here, depending if one considers distinguishable or indistinguishable
trions, one has that the oscillator strength increases linearly [266, 317, 318]
or quadratically with the Fermi sea energy [174]. In this regime, however, a
more appropriate formalism describing the system’s optical properties is the
one provided by the Fermi polaron model — see Sec. 2.3

There have been already in the past several authors questioning if the trion
description is the most appropriate to describe the optical response of doped or
gated two-dimensional semiconductors in presence of a finite density of excess
carriers. It was already pointed out by Refs. [286, 318–320] that there are
several experimental results that contrast with what is predicted by a three-
body trion theory. For example, as we also discuss in Sec. 2.3, increasing
the Fermi energy implies a transfer of oscillator strength from the exciton to
the trion up to a point, when the Fermi energy is close to the trion binding
energy, that all the oscillator strength is on the trion. This observation cannot
be explained via a few-body description. Further, the distance between the
exciton and trion energies measured in absorption or reflection, a quantity that
should have the meaning of the trion binding energy, increases with growing
electron density. However, the trion binding energy is expected to decrease
with doping because of Pauli blocking effects and the reduction of Coulomb
interaction due to screening [286]. It is therefore clear that beyond the very
low-density regime, where the Fermi energy is much smaller than the trion
binding energy, an alternative modelling to a few-body approach is necessary.
Recent proposals [261, 264, 321, 322] have argued that the polaron description
allows overcoming these limitations of the trion theory at finite doping and the
experimental results can be interpreted in terms of the polaron model.
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Fig. 2.3: Schematic representa-
tion of the possible states occur-
ring in the “impurity problem”. In
the many-body polaron descrip-
tion (top panels), the dressing
of the impurity by excitations of
the medium leads to the forma-
tion of repulsive and attractive
polaron quasiparticles. In a few-
body “mean-field”-like description
(bottom panels), the interaction
results in the formation of either
an exciton or a trion surrounded
by an inert Fermi sea.

2.3 Fermi polarons
The concept of “impurity problem” in quantum physics, i.e., a few particles
surrounded by a quantum gas, goes back to 1933 when the Russian physicist
Lev Landau [323] described the properties of conduction electrons in a dielec-
tric medium1. Polarons are quasiparticles resulting from the dressing of the
electrons by collective excitations of the dielectric medium. This idea was fur-
ther elaborated by Fröhlich [325] who considered the properties of electrons
in an ionic crystal, which were treated as a phonon bath. Here, polarons are
electrons dressed by the phonon cloud in the crystal. The physical properties of
a polaron, for instance, its mobility or its effective mass, can be very different
from those of the bare electron, leading to strong modifications of the electrical
and thermal transport properties of the material [326–328].

Polarons are ubiquitous in physics. Celebrated examples are the case of 3He
impurities in 4He [329] and the Kondo effect generated by localized magnetic
impurities in a metal [330]. Polarons also occur in nuclear [331, 332] and quark-
gluon plasma [333] problems. Despite nearly a century of work, the polaron
problem continues to attract significant interest [334–336] and research on this
topic has expanded into new fundamental and applied areas.

Recent ground-breaking experiments in ultracold atomic gases have allowed
exploring this regime [337–339] to a detailed level. Here, there is the unique
possibility of considering a bath of different statistics (either fermionic or bo-
sonic) and most importantly it is possible to tune the interaction strength
between the impurity and the bath by using an external magnetic field via

1 The name “polaron” was coined by Pekar in 1946 [324] to define the quasiparticle
formed by an excess charge carrier localized within a potential well, generated by displacing
the surrounding ions.
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the Fano-Feshbach resonance [340]. Using this powerful tool, recent experi-
ments have been able to vary the interaction between the impurity and the
surrounding bath [341–343] allowing the study of polaron physics across the
unitary regime of strong interactions. Differently from the semiconductor real-
izations, for ultracold 3D Fermi gases, it has been possible to gather evidence of
a polaron-molecule transition [344]. We will discuss the Fermi polaron problem
realization in ultracold atom set-ups in Sec. 2.3.7, while here we focus on the
realization of this problem in 2D gated/doped semiconductors.

2.3.1 Experiments
Recently, the absorption and emission spectra of doped/gated 2D TMD mono-
layers [198, 220, 321, 345–349] have been interpreted in terms of a Fermi-
polaron model [260–265]. As described in detail in the following section, this
model implies that the optically generated exciton is dressed by excitations of
the 2D Fermi gas of excess charge carriers (electrons or holes) induced by either
gating or natural doping of the TMD monolayer. This leads to the formation
of new quasiparticles named “attractive” and “repulsive” Fermi polarons. As
schematically depicted in Fig. 2.3, in the repulsive polaron the exciton repels
the surrounding charge carriers, while in the attractive polaron, the exciton
attracts the carriers, leading to a local density enhancement or depletion of the
medium. In this theory, the presence of an impurity implies a many-body re-
sponse and dressing by the surrounding fermionic medium. This contrasts with
a few-body “mean-field” like description where the effect of interaction ends
up in the formation of an exciton or a trion but is not a collective many-body
response of the whole system.

The characteristic reflectance spectra of gated TMD monolayers are presen-
ted in Fig. 2.4, for MoSe2 [220] and for WSe2 [221]. In both cases, the
monolayers are encapsulated in hBN to reduce disorder effects and gated us-
ing graphene-based electric contacts. Varying the applied gate voltage 𝑉𝑔 al-
lows for modification of the density of excess electrons (𝑛-doped side) or holes
(𝑝-doped side). The gate voltage applied in these experiments is such that
𝐸𝐹 ∈ [0, 40] meV [321, 350, 351]. The spectra of Fig. 2.4 show that there is
a range in the gate voltage where the monolayer is charge neutral. Here, the
optical resonance coincides with the neutral exciton. When the gate voltage 𝑉𝑔
is increased beyond the neutral region, electrons (holes) are injected into the
monolayer. For MoSe2, Fig. 2.4 (a), 𝑛-doped and 𝑝-doped regions are almost
symmetric and demonstrate the emergence of two resonances, one at higher
energy continuously connected with the exciton energy and the one at lower
energy recovering, at low doping, the distinguishable spin-singlet intervalley
trion energy. However, for WSe2, Fig. 2.4 (b), while the 𝑝-doped spectrum
is similar to the one of MoSe2, for 𝑛-doping, there are two resonances occur-
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(b)(a)

Fig. 2.4: Characteristic reflectance contrast (a) and absorption (b) spectra as a
function of photon energy and gate voltage for MoSe2 [220] (a) and WSe2 [221] (b).

ring close to the trion energies which, at low doping, recover the energies of
the spin-singlet intravalley distinguishable trion and that of the spin-triplet
intervalley trion. Note that at third branch indicated as 𝑋−′ can be observed
in the 𝑛-doped region of WSe2, whose nature is currently under debate and
investigation [221, 312, 352–355].

As argued in detail in Sec. 2.3.2, it can be shown that the evolution of these
resonances with the excess charge density is well described by a Fermi polaron
theory [261, 265, 321, 356, 357]. The evolution of the attractive and repulsive
polaron energies with density depends on several factors, among which are
the number of Fermi seas involved in the problem and whether the exciton
is affected by Pauli blocking mechanism or not. In the simplest case of a
spin-polarised system, where the exciton is generated in a valley free of excess
charges and the Fermi sea dressing occurs in a different valley, the attractive
polaron is expected to red-shift in energy with doping, while the repulsive
branch is expected to blue-shift. This case can be realized in presence of an
external magnetic field. Indeed, the resulting Zeeman splitting effects lift the
degeneracy of the two valleys, allowing one to selectively confine excess of
charges in only one valley, to then optically excite an exciton in the opposite
one — see Sec. 4.1 for further details on the role of Zeeman effects in TMD
monolayers. Experimental results from Ref. [220] in this regime are shown in
Fig. 4.12. Here, an out-of-plane magnetic field of 𝐵 = 16 T is applied to achieve
a fully spin-polarized regime.
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(a) (b)

(c) (d)

Fig. 2.5: One-quantum rephasing amplitude spectra of a MoSe2 monolayer measured
via 2D coherent electronic spectroscopy at different gate voltages (electron densities):
(a) 𝑉𝑇 𝐺 = 0V (𝑛𝑒 = 0), (b) 𝑉𝑇 𝐺 = 0.7V (𝑛𝑒 = 6.6 × 1011cm−2), (c) 𝑉𝑇 𝐺 = 1.3V
(𝑛𝑒 = 2.6 × 1012cm−2), and (d) 𝑉𝑇 𝐺 = 2.5V (𝑛𝑒 = 6.6 × 1012cm−2). The homogeneous
(inhomogeneous) linewidth of the exciton (a), attractive polaron (AP) (b-d), and re-
pulsive polaron (RP) (b) are extracted from the cross-diagonal (diagonal) slices of the
observed peaks. The two off-diagonal cross peaks, the lower (LCP) and higher cross
peak (HCP) come from the electronic coupling between the attractive and repulsive
polaron branches and have been previously studied in doped MoSe2 monolayers [358].
Adapted from Ref. [351].

In the general case, while the repulsive branch always blue-shifts with dop-
ing, the attractive branch energy behavior is non-monotonic. If the exciton
is generated in a valley with a finite density of free charges, the redshift due
to the interaction with the Fermi sea in the opposite valley competes with
the blueshift due to Pauli blocking effects on the fermionic components of the
exciton. This effect simultaneously affects both the repulsive and attractive
polaron behavior, meaning that their splitting is not affected. Thus attractive-
repulsive polaron splitting originates solely from the polaronic dressing, and it
increases linearly with 𝐸𝐹 [54, 307], which can be considered as a hallmark of
Fermi polaron physics as explained in the following section.

Another characteristic of the polaron problem is the oscillator strength
transfer from the repulsive to the attractive branch. In the small doping regime,
the attractive branch oscillator strength grows linearly with doping 𝐸𝐹 [266],
in agreement with the result obtained in a trion description. Increasing dop-
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ing, the repulsive branch loses oscillator strength and its linewidth quickly
broadens, while, at low temperatures, the attractive branch acquires oscillator
strength but remains sharp. We will see in Ch. 3 that this feature is strongly
dependent on temperature and, in the high temperature low doping regime,
the attractive branch can significantly broaden and cease to be a well-defined
quasiparticle [357, 359].

Homogeneous and inhomogeneous contributions to the polaron linewidths
can be measured using two-dimensional coherent spectroscopy [360]. Very re-
cently, this technique has been employed to a gated MoSe2 monolayer — results
are shown in Fig. 2.5. The inhomogeneous broadening is obtained by consider-
ing slices of the spectra in the diagonal direction (dashed lines), while the cross-
diagonal direction gives information about the homogeneous broadening [360].
These experiments showed that the homogeneous broadening contribution to
the repulsive polaron linewidth increases quadratically with 𝐸𝐹 , while the at-
tractive branch remains sharp and its homogeneous broadening is independent
of doping [351]. While, as shown next in Sec. 2.3.2, a zero temperature po-
laron theory predicts a well-defined sharp attractive branch, whose broadening
is doping independent, in agreement with these experiments, for the repulsive
branch a zero temperature theory underestimates the broadening observed in
experiments. Here, additional broadening mechanisms to those included in the
polaron theory, such as non-radiative decay from the repulsive to the attract-
ive branch enhanced by electron-electron interactions, have to be taken into
account [351].

When the TMD monolayer is embedded in a microcavity, the strong coup-
ling between light and matter can lead to the formation of Fermi polaron polari-
tons [244, 321, 345, 346, 361]. At finite doping, three polariton branches emerge,
as shown in the reflectance spectra of Fig. 2.6 (a) [346]: the lower (LP), middle
(MP), and upper (UP) polaritons branches are the result of strong coupling
between the cavity photon and the attractive and repulsive polaron resonances.
The polariton branch splitting is related to the polaron oscillator strength in
the weak coupling regime to light. These splitting evolve thus with doping
in a way described in detail in Sec. 2.3.4. Fig. 2.6 (b) shows the transmission
spectrum of a MoSe2 embedded into a fiber cavity is shown [321], revealing the
dependence of the coupling to light of attractive and repulsive branches on the
electron density. In order to do this, the authors of Ref. [321] have tuned the
photon energy in resonance with either the attractive or the repulsive branch
energies for each value of the gate voltage considered. One can observe that
for the repulsive branch, the splitting between UP and MP diminishes with
increasing doping because of the transfer of oscillator strength from the repuls-
ive to the attractive branch. In contrast, while the attractive branch displays
no splitting at neutrality, in agreement with the fact that the trion oscillator
strength is negligible, a splitting first grows with doping and then eventually
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(a) (b)

Fig. 2.6: (a) Reflection spectrum for a MoSe2 monolayer embedded into an optical
waveguide [346]. The light-blue dashed lines show the lower (LP), middle (MP),
and upper polariton (UP). (b) Transmission spectrum of MoSe2 embedded in a fibre
cavity [321] as a function of photon frequency and gate voltage. On the left side of
the solid black line, the photon is in resonance with the repulsive polaron branch,
while on the right is in resonance with the attractive branch.

closes again.
There has been recently a rapidly increasing interest in the Fermi polaron

regime in doped 2D semiconductors because of several reasons and because
of fundamentally important implications that the study of this regime. One
motivation lies in the fact that the dressing of polaritons by a Fermi gas can
boost their non-linearities [198, 345, 362]. It has been recently found [198]
that the effective polariton-polariton interaction strength can be enhanced by
up to a factor of 50 compared to the charge-neutral regime when a MoSe2
monolayer is electron-doped. Indeed, compared to a neutral polariton, the
polaron-polariton is spatially much larger due to the local redistribution of
electrons around the impurities [363]. This implies that polarons are expected
to interact at larger distances than polaritons. Note however that, even those
these are extremely encouraging results, much larger polariton non-linearities
are needed for quantum optics applications. Note also that the values repor-
ted in Ref. [198] are still inferior to those obtained with dipolar polaritons in
coupled quantum well structures [364].

Reaching a regime of strongly interacting polaritons is relevant for exploring
beyond mean-field effects, such as a polariton blockade regime. Note that re-
cently, conventional and unconventional polariton blockade has been predicted
for charged polaritons [365].

Another interesting prospect of considering charged exciton and polariton
configurations lies in the possibility of manipulating these states by external
electric and magnetic fields [220, 322, 366, 367]. Even though polarons are
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charge-neutral optical excitations, their interaction with the Fermi sea implies
they respond to electric and magnetic fields.

Crucially, it has been recently shown that polaron states in charged 2D
semiconductors can be employed to probe strongly correlated electron phases,
such as a Wigner crystal phase [248, 368], a quantum Hall regime [220], frac-
tional quantum Hall states in proximal graphene layers [369], and correlated
Mott states of electrons in a moiré superlattice [370].

2.3.2 Zero temperature model
We dedicate this section to the description of a zero temperature Fermi polaron
model tailored to describe the optical absorption spectra of gated/doped TMD
monolayers at very low temperatures. The analysis of temperature effects will
be carried on in Ch. 3. The model we use here is the one proposed in Refs. [261,
265, 321].

Let us consider the case of a low density of optically generated excitons
in a doped TMD monolayer. The relevant energy scales of this problem are
the exciton binding energy 𝜀𝑋, the trion binding energy 𝜀𝑇 , and the Fermi sea
energy 𝐸𝐹 . As previously discussed, for TMD monolayers one has typically
that 𝜀𝑋 ≫ 𝜀𝑇 , with 𝜀𝑋 ∼ 0.4 − 0.7 eV [55, 72–74] and 𝜀𝑇 ∼ 20 − 40 meV [54,
297, 304, 306–308]. Further, we have seen in Sec. 2.3.1 that typically studied
ranges of doping correspond to a Fermi energy 𝐸𝐹 ∼ 0 − 40 meV. Thus, in
these structures, one has that the exciton binding energy is the largest energy
scale 𝜀𝑋 ≫ 𝜀𝑇 , 𝐸𝐹 . In this limit, approximating the exciton as a tightly bound
structureless boson is a good approximation and a significant simplification as
it reduces the problem degrees of freedom.

Further, we are going to focus on the spin-valley polarized case, where
we ignore the spin and valley degrees of freedom by considering a polarized
configuration. Here, the exciton is created in a valley different from the one of
the Fermi electron gas. This configuration is motivated by the fact that, in those
systems where the indistinguishable trion is not bound, the relevant dressing
of the exciton occurs from those interband electron-hole pairs that belong to a
different valley and thus that lead to the formation of a distinguishable trion

— see Fig. 2.7. Note that in Mo-based TMD monolayers, Pauli blocking effects
from the electron Fermi sea belonging to the same valley of the exciton can
lead to a different doping dependence of the polaron energy shift from those
predicted in our model see Fig. 2.7. This effect could be taken into account
including a Fermi energy dependence on the exciton energy [321]. However,
as we will see that neither this effect nor the bandgap renormalization affects
the polaron energy splitting or other polaron properties such as the oscillator
strength and the broadening, we will avoid it by considering the spin-valley
polarised case.
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K´+

σ +
K 

––

+

MoX2 Fig. 2.7: The degeneracy between the K and K´
valley can be lifted by applying a magnetic field
perpendicular to the TMD monolayer — here is
sketched a Mo-based monolayer. This allows for
generating a spin-valley fully polarised configura-
tion where the exciton is optically generated in one
valley and is dressed by intravalley particle-hole ex-
citations in the Fermi sea of the other valley.

The Hamiltonian employed is given by

�̂� = �̂�0 + �̂�0𝑋 + �̂�𝑖𝑛𝑡 (2.18a)

�̂�0 = ∑
k

𝜖k ̂𝑐†
k ̂𝑐k (2.18b)

�̂�0𝑋 = ∑
k

𝜖𝑋k ̂𝑥†
k ̂𝑥k (2.18c)

�̂�𝑖𝑛𝑡 = − 𝑣
𝒜 ∑

kk′q
̂𝑥†
k+q ̂𝑐†

k′−q ̂𝑐k′ ̂𝑥k . (2.18d)

Here, the fermionic operator ̂𝑐†
k creates a majority charged particle (either a

conduction electron or a valence hole) with mass 𝑚 and dispersion 𝜖k = k2/2𝑚,
while ̂𝑥†

k create an exciton with energy 𝜖𝑋k = 𝜖𝑋0 +k2/2𝑚𝑋, where 𝜖𝑋0 = −𝜀𝑋
— we are measuring energies with respect to the energy gap 𝐸𝑔, which is thus
set to zero throughout this chapter. We consider the specific case of majority
particles being electrons, but results can be easily extended to the case of hole
doping. For simplicity, the model assumes that free charges are non-interacting.

If the Fermi sea is interacting, there are two possibilities to consider. The
first is that it forms a strongly correlated phase at low density, in which case
our current model can not be able to fully capture the physics of the system.
The second possibility is that the free charges form a Fermi liquid at higher
temperatures, where the excitations are quasiparticles analogous to particle-
hole pairs. In this case, while quantitative deviations are still possible, we do
not expect significant qualitative deviations from our theoretical model.

The �̂�𝑖𝑛𝑡 term in Eq. (2.18d) describes the attractive interaction between
electrons and excitons, which is approximated as short-range with a coupling
strength of 𝑣 > 0. Because a contact interaction leads to ultraviolet (UV) diver-
gences [371], we introduce an UV cutoff Λ and renormalize the contact interac-
tion by relating the bare parameter 𝑣 to the trion binding energy 𝜀𝑇 (2.5) [372]:

1
𝑣 = 1

𝒜
Λ

∑
k

1
𝜀𝑇 + 𝜖𝑋k − 𝜖𝑋0 + 𝜖k

. (2.19)

By using this definition, we will find that all results will be cutoff independent
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in the Λ → ∞ limit. As shown later, this equation can be derived from the
Schrödinger equation (2.4) for the bound trion with energy 𝐸𝑇 = 𝜖𝑋0 − 𝜀𝑇 . It
has been recently demonstrated [265] that, when 𝜀𝑋 ≫ 𝜀𝑇 , 𝐸𝐹 approximating
the exciton-electron interaction as short-range leads to essentially the same res-
ults for the polaron properties than those obtained by employing a microscopic
finite-range potential. Note that, under the assumption of contact interaction,
the Pauli exclusion principle suppresses 𝑠-wave interactions between the same
species of fermion.

2.3.3 Simplified model for the distinguishable trion
Before moving on to describing the polaron formalism, we illustrate here the
properties of the distinguishable trion within the simplified model Hamilto-
nian (2.18). As the attractive polaron recovers, in the low-doping regime, some
of the trion properties, such as its energy and oscillator strength, it is useful to
derive them first in this section.

At zero temperature, a trion with momentum Q in the presence of a Fermi
sea |𝐹𝑆⟩ = ∏|q|<𝑘𝐹

𝑐†
q|0⟩ is described as:

|𝑇 (Q)
2 ⟩ = 1√

𝒜
∑

|k|>𝑘𝐹

𝜂(Q)
k ̂𝑥†

Q−k ̂𝑐†
k|𝐹𝑆⟩ . (2.20)

The trion wave function 𝜂(Q)
k satisfies the Schrödinger equation [373]

𝐸(Q,𝐸𝐹 )
𝑇 𝜂(Q)

k = (𝜖𝑋Q−k + 𝜖k) 𝜂(Q)
k − 𝑣

𝒜
Λ

∑
|k′|>𝑘𝐹

𝜂(Q)
k′ , (2.21)

and the trion energy can be evaluated by solving the implicit equation:

1
𝑣 = 1

𝒜
Λ

∑
|k|>𝑘𝐹

1
−𝐸(Q,𝐸𝐹 )

𝑇 + 𝜖𝑋Q−k + 𝜖k
. (2.22)

For Q = 0 and 𝐸𝐹 = 0, this equation coincides with Eq. (2.19), which admits
the following solution in terms of the trion energy and wave function:

𝐸(0,0)
𝑇 = 𝜖𝑋0 − 𝜀𝑇 (2.23a)

𝜂(0)
k = √𝑍𝑇

𝜀𝑇 + k2
2𝑚𝑟

, (2.23b)

where 𝑚𝑟 = 𝑚𝑚𝑋/𝑚𝑇 is the trion reduced mass and 𝑍𝑇 = 2𝜋𝜀𝑇 /𝑚𝑟.
Let us discuss the solution of Eq. (2.22) in different limits. When 𝐸𝐹 = 0, it

is profitable to introduce the relative momentum in the center of mass frame q𝑟,
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so that the electron momentum becomes k = q𝑟 + Q𝑐, with Q𝑐 = 𝑚
𝑚𝑇

Q, where
𝑚𝑇 = 𝑚𝑋 +𝑚 is the trion mass, and the exciton momentum becomes Q−k =
Q𝑋 − q𝑟, with Q𝑋 = 𝑚𝑋

𝑚𝑇
Q. Now one has that relative and center of mass

kinetic energies factorize, 𝜖𝑋Q−k + 𝜖k = 𝜖𝑋Q𝑋−q𝑟
+ 𝜖q𝑟+Q𝑐

= 𝜖𝑋0 + 𝜖𝑟q𝑟
+ 𝜖𝑇 Q,

where 𝜖𝑟q𝑟
= 𝑞2

𝑟
2𝑚𝑟

and 𝜖𝑇 Q = 𝑄2

2𝑚𝑇
. Thus, the trion energy and wave function

are

𝐸(Q,𝐸𝐹 =0)
𝑇 = −𝜀𝑇 + 𝜖𝑋0 + 𝑄2

2𝑚𝑇
(2.24a)

̃𝜂(Q)
q𝑟 = √𝑍𝑇

𝜀𝑇 + 𝜖𝑟q𝑟

= ̃𝜂(0)
q𝑟 , (2.24b)

where ̃𝜂(Q)
q𝑟 = 𝜂(Q)

q𝑟+Q𝑐
. At finite doping and zero momentum Q = 0, Eqs. (2.21)

and (2.22) can also be solved exactly to give

𝐸(0,𝐸𝐹 )
𝑇 = −𝜀𝑇 + 𝜖𝑋0 + 𝑚𝑇

𝑚𝑋
𝐸𝐹 (2.25a)

𝜂(0)
k = √𝑍𝑇

−𝐸(0,𝐸𝐹 )
𝑇 + 𝜖𝑋0 + 𝜖𝑟k

. (2.25b)

At finite doping and finite momentum, the integral in Eq. (2.22) can be
solved analytically [374] and one gets an implicit equation for the trion energy:

2𝜀𝑇 = − ̃𝐸(Q,𝐸𝐹 )
𝑇 − 𝑄2𝑚

𝑚𝑋𝑚𝑇

+ √( ̃𝐸(Q,𝐸𝐹 )
𝑇 + 𝑄𝑘𝐹

𝑚𝑋
) ( ̃𝐸(Q,𝐸𝐹 )

𝑇 − 𝑄𝑘𝐹
𝑚𝑋

) , (2.26)

where ̃𝐸(Q,𝐸𝐹 )
𝑇 = 𝐸(Q,𝐸𝐹 )

𝑇 − 𝑄2

2𝑚𝑋
− 𝑚𝑇

𝑚𝑋
𝐸𝐹 − 𝜖𝑋0. This equation can be solved

numerically and one finds that the trion acquires a finite momentum when
𝐸𝐹 > 𝑚𝑋𝑚𝑟

𝑚2 𝜀𝑇 [374].
Is it instructive to analyze the trion coupling strength to light in the sim-

plified description of the Hamiltonian (1.34). It is very easy to understand
why, at zero doping, 𝐸𝐹 = 0, trions do not couple to light, and thus cannot be
probed optically. This is because the matrix element between a trion state and
a cavity photon plus a majority particle at zero momentum |𝐶 + 1⟩ = ̂𝑎†

0 ̂𝑐†
0|0⟩

of the light-matter interaction term ∑k ̂𝑥†
k ̂𝑎k is given by

⟨𝑇 (0)
2 | ∑

k
̂𝑥†
k ̂𝑎k|𝐶 + 1⟩ = 1√

𝒜
𝜂(0)

0 . (2.27)

Taking the squared amplitude of this matrix element, we see that the coupling
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to light of a single trion scales as 1/𝒜, which is vanishingly small. On the
other hand, if one has 𝑁 electrons within the area 𝒜, then the coupling to
light scales instead as 𝑁/𝒜 = 𝑛 ∼ 𝐸𝐹 . Thus, even though the coupling per
electron vanishes, the net effect of having an electronic medium is to create a
continuum of states, with a total spectral weight that scales as 𝐸𝐹 , in agreement
with Ref. [266].

2.3.4 Chevy ansatz and self-energy
In the limit of weak optical pumping which generates a low density of excitons,
such that the excitons can be considered as independent, non-interacting im-
purities, the polaron ground state can be described by the following ansatz:

∣𝑃 (Q)
3 ⟩ = 𝜑(Q)

0 ̂𝑥†
Q |𝐹𝑆⟩ + 1

𝒜 ∑
k,q

𝜑(Q)
kq ̂𝑥†

Q+q−k ̂𝑐†
k ̂𝑐q |𝐹𝑆⟩ , (2.28)

where the wave functions 𝜑(Q)
0 and 𝜑(Q)

kq are to be found variationally. This is
also known as Chevy’s variational ansatz [375], originally formulated to describe
the phase diagram of an interacting ultracold Fermi gas in the limit of extreme
imbalance of the spin populations. Eq. (2.28) is a state which is a superposition
of a bare exciton, and an exciton dressed by a single interband particle-hole
excitation of the Fermi sea |𝐹𝑆⟩. This involves exciting an electron from the
Fermi sea to a momentum k > k𝐹 , thus leaving behind a hole with momentum
q < k𝐹 . This exciton dressed by an electron-hole pair is also referred to as
“trion-hole” state, even though is not a superposition of a bound trion plus a
hole. This idea was already introduced to describe a doped semiconductor by
Ref. [286]. We will discuss the comparison between the results obtained next
within Chevy’s ansatz (2.28) and those obtained in Ref. [286] in Sec. 2.3.5.

One might wonder why and in which limit truncating the expansion to
a single interband particle-hole excitation in Eq. (2.28) is a good approxima-
tion for describing the impurity problem. For a contact interaction potential
between the impurity and the Fermi sea as the one employed in Eq. (2.18d),
it has been demonstrated that an almost exact cancellation of higher order
contributions [376–378].

The energy of the polaron state is obtained by minimizing the expectation
value ⟨𝑃 (Q)

3 ∣ �̂� − 𝐸 ∣𝑃 (Q)
3 ⟩ with respect to the variational parameters 𝜑(Q)

0 and
𝜑(Q)

kq . This yields the equations:

𝐸𝜑(Q)
0 = 𝜖𝑋Q𝜑(Q)

0 − 𝑣
𝒜2 ∑

kq
𝜑(Q)

kq , (2.29a)

𝐸𝜑(Q)
kq = 𝐸𝑋kqQ𝜑(Q)

kq − 𝑣𝜑(Q)
0 − 𝑣

𝒜 ∑
k′

𝜑(Q)
k′q + 𝑣

𝒜 ∑
q′

𝜑(Q)
kq′ , (2.29b)
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where 𝜖𝑋Q = 𝜖𝑋0 +Q2/2𝑚𝑋 and 𝐸𝑋kqQ = 𝜖𝑋Q+q−k +𝜖k −𝜖q = 𝜖𝑋0 +(Q+q−
k)2/2𝑚𝑋 + (k2 − q2)/2𝑚. Since 𝜑(Q)

kq ∼ 1/𝑘2 for large values of 𝑘, this implies
that the last term on the r.h.s of Eq. (2.29b) vanishes when the cutoff Λ → ∞
and 𝑣 ∼ 1/ log Λ → 0 and can be therefore neglected. Note that the energy of
an exciton at rest 𝜖𝑋0 can be rescaled out of Eqs (2.29), 𝐸 ↦ 𝐸 − 𝜖𝑋0, and we
will therefore measure energies with respect to it from now onwards.

There are several equivalent ways of solving the eigenvalue problem (2.29)
and evaluating optical observables such as the absorption spectrum. One direct
way is to discretize the momenta k and q on a grid and to directly diagonalize
the resulting matrix, obtaining the eigenvalues 𝐸𝑛Q and eigenvectors 𝜑(Q)

𝑛0 and
𝜑(Q)

𝑛kq — see App. A for further details. One can then evaluate the retarded
exciton Green’s function with the same procedure described in Sec. 1.5.3:

𝐺𝑋(𝜔, Q) = ∑
𝑛

|𝜑(Q)
𝑛0 |2

𝜔 + 𝑖𝜂𝑋 − 𝐸𝑛Q
. (2.30)

Here, the positive imaginary component 𝜂𝑋 > 0 guarantees that the retarded
condition is satisfied. At the same time, as already discussed in Sec. 1.5.1,
𝜂𝑋 can be physically interpreted as the contribution of the homogeneous and
inhomogeneous broadening to the exciton linewidth.

A more rigorous approach (that in an appropriate limit recovers the results
obtained within the Chevy ansatz) is one that makes use of the concept of
exciton self-energy Σ𝑋(𝜔, Q) [141]

Σ𝑋(𝜔, Q) = 1
𝒜 ∑

q
𝒯(𝜔, q, Q) , (2.31)

where 𝒯(𝜔, q, Q) is the 𝑇 matrix describing the exciton-medium scattering.
The self-energy describes the energy that a particle gains as a result of its
interactions with the surrounding medium. Ideally, the self-energy should con-
tain all contributions from the exciton-medium interaction, i.e.,

Σ𝑋(𝜔, Q) = Σ1𝑝ℎ(𝜔, Q) + Σ2𝑝ℎ(𝜔, Q) + ⋯ . (2.32)

Nevertheless, if one includes a single particle-hole dressing of the Fermi cloud,
the self-energy can be truncated at the first order. This approximation is
referred to as the ladder approximation [379]. Within Chevy’s ansatz, the
exciton self-energy can be derived starting from the eigenvalue problem (2.29),
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by rewriting it in an equivalent form by using the auxiliary function 𝜒(Q)
q :

𝜒(Q)
q = 𝑣

𝒜 ∑
k

𝜑(Q)
kq (2.33a)

𝐸𝜑(Q)
0 = 𝜖𝑋Q𝜑(Q)

0 − 1
𝒜 ∑

q
𝜒(Q)

q (2.33b)

𝐸𝜑(Q)
kq = 𝐸XkqQ𝜑(Q)

kq − 𝑣𝜑(Q)
0 − 𝜒(Q)

q . (2.33c)

Introducing Eq. (2.33c) into Eq. (2.33a) and solving for 𝜒(Q)
q we obtain

𝜒(Q)
q = 𝜑(Q)

0 [1
𝑣 + 1

𝒜 ∑
k

1
𝐸 − 𝐸𝑋kqQ

]
−1

, (2.34)

where we have used that (𝑣/𝒜) ∑k 1/(𝐸 − 𝐸𝑋kqQ) → −1 in the limit Λ →
∞. Substituting (2.34) into Eq. (2.33b), one thus finally obtains an implicit
equation for the energy 𝐸:

𝐸 − 𝜖𝑋Q = 1
𝒜 ∑

q
[1

𝑣 − 1
𝒜 ∑

k

1
𝐸 − 𝐸𝑋kqQ

]
−1

. (2.35)

This equation can be employed to self-consistently find the polaron energy 𝐸.
The implicit equation for the polaron energy 𝐸 (2.35) can be used to deduce

the exciton self-energy within the one particle-hole excitation approximation

Σ𝑋(𝜔, Q) = 1
𝒜 ∑

q
𝒯(𝜔 + 𝜖q, Q + q)

= 1
𝒜 ∑

q
[1

𝑣 − 1
𝒜 ∑

k

1
(𝜔 + 𝜖q) − 𝜖𝑋Q+q−k − 𝜖k

]
−1

. (2.36)

Thus, the retarded exciton Green’s function 𝐺𝑋(𝜔, Q) can be written in terms
of the exciton self-energy

𝐺𝑋(𝜔, Q) = 1
𝜔 + 𝑖𝜂𝑋 − 𝜖𝑋Q − Σ𝑋(𝜔, Q) , (2.37)

by making use of the Dyson equation [141]:

𝐺𝑋(𝜔, Q) = 𝐺(0)
𝑋 (𝜔, Q) + 𝐺(0)

𝑋 (𝜔, Q)Σ𝑋(𝜔, Q)𝐺𝑋(𝜔, Q) , (2.38)

where 𝐺(0)
𝑋 (𝜔, Q) = 1/(𝜔 + 𝑖𝜂𝑋 − 𝜖𝑋Q). Finally, as discussed in Sec. 1.5.3 the

optical absorption coincides with the exciton spectral function (1.79). As in
Eq. (2.30) we have added by hand a positive imaginary part 𝜂𝑋 to guarantee the
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Fig. 2.8: (a) Exciton spectral
function 𝐴𝑋(𝜔) as a function of
the photon frequency 𝜔 (measured
with respect to the exciton at rest
energy 𝜖𝑋0), obtained by solving
the matrix problem Eq. (2.29) or
using the exciton Green’s function
in terms of the self-energy Σ𝑋(𝜔).
The red vertical lines are the eigen-
values 𝐸𝑛. Real (b) and imaginary
(c) parts of the exciton self-energy
Σ𝑋(𝜔). The electron density is
fixed at 𝐸𝐹 = 7.5 meV, the exciton
linewidth at 𝜂𝑋 = 1 meV, the trion
binding energy 𝜀𝑇 = 25 meV, and
𝑚𝑋 = 2𝑚𝑒.

retarded properties of the Green’s function, and that we can also interpret as
the exciton broadening. Note that however calculations of the self-energy (2.36)
can be carried on in the 𝜂𝑋 = 0 limit. This is essential if one wants to evaluate
the system photoluminescence — see Sec. 3.2.3.

In the following, we are going to discuss the results that can be obtained
by employing both approaches and show that they lead to exactly the same
results. We are going to focus on the specific case of Q = 0 for the rest of
this section and, thus, to lighten the notation we are going to drop the Q
dependence everywhere.

The zero temperature Fermi polaron formalism described in this section
is applicable to any quantum impurity problem, i.e., an impurity surrounded
by a 2D Fermi gas, including both ultracold atomic gases — which we will
discuss in detail in Sec. 2.3.7 — and doped semiconductors. To be concrete,
in the following, we will consider the experimentally relevant case of electron-
doped MoSe2 monolayers, where 𝜀𝑇 ≃ 25 meV [321] and 𝑚𝑋/𝑚 = 2.05 [59].
In this system one can readily achieve doping densities 𝐸𝐹 in the range of
0–40 meV [321].

We plot in Fig. 2.8 (a) the spectral function 𝐴𝑋(𝜔) (1.79), obtained by
either solving the eigenvalue problem Eq. (2.29) or by evaluating the exciton
self-energy Σ𝑋(𝜔) (2.36). Both methods lead to exactly the same results. The
exciton spectral function reveals thus that the spectrum is dominated by two
resonances, the attractive and repulsive polaron branches. By evaluating the
eigenvalues 𝐸𝑛 obtained solving the matrix problem (2.29) we also find that the
attractive branch coincides with the system lowest eigenvalue 𝐸𝐴 = 𝐸𝑛=1, i.e.,
it is the polaron ground state, and that this eigenvalue is isolated and separated
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from those that belong to the repulsive branch from a continuum, which we will
identify with the trion-hole continuum. By contrast, the repulsive branch does
not correspond to a specific eigenstate; rather it is composed of a continuum of
eigenstates with closely spaced eigenvalues, resulting in a polaron quasiparticle
with a finite lifetime, larger than the excitonic one 𝜂𝑋. The attractive and
repulsive polaron energies, i.e., the energies of the spectral function peaks, can
also be found by evaluating the real part of the exciton Green’s function poles:

𝐸𝐴,𝑅 = ReΣ(𝐸𝐴,𝑅) . (2.39)

In Fig. 2.8 (b) we plot 𝜔 − ReΣ𝑋(𝜔). One can easily show that the zeros of
this function, i.e., the solutions of Eq. (2.35), always correspond to the maxima
of the spectral function. However, there can be cases where Eq. (2.39) does
not admit a solution but the spectral function continues to have a maximum.
This occurs, at zero temperature, for example to the repulsive branch, that at
large enough doping, ceases to be a well-defined quasiparticle, yet the spectral
function still has a small and broad maximum. One can show that this occurs
when 𝐸𝐹 ≳ 3𝜀𝑇 [380]. This large doping regime is not analyzed in this work.
Note also that the Eq. (2.35) admits a third solution between the attractive
and repulsive polaron energies which also corresponds to a weak and very broad
maximum of the spectral function. This, as we will see next, is the trion-hole
continuum, i.e., a continuum of scattering states between the bound trion and
the Fermi sea hole.

Fig. 2.8 (a) shows that there is an intrinsic linewidth that can be associated
with each polaron resonances and that is quantified by the imaginary part of the
self-energy ImΣ𝑋(𝐸𝐴,𝑅). In the limit where the self-energy imaginary part is
negligible ImΣ𝑋(𝐸𝐴,𝑅) ≪ ReΣ𝑋(𝐸𝐴,𝑅) = 𝐸𝐸,𝑅, the exciton Green’s function
can be approximated as [141]

𝐺(0)
𝑋 (𝜔) ≃

𝜔≃𝐸𝐴,𝑅

𝑍𝐴,𝑅
𝜔 − 𝐸𝐴,𝑅 + 𝑖Γ𝐴,𝑅

, (2.40)

or in other words, the spectral function close to each resonance can be approx-
imated with a Lorentzian with spectral weight

𝑍𝐴,𝑅 = ⎛⎜
⎝

1 − 𝜕ReΣ𝑋(𝜔)
𝜕𝜔 ∣

𝜔𝐴,𝑅

⎞⎟
⎠

−1

, (2.41)

and Half Width at Half Maximum (HWHM)

Γ𝐴,𝑅 = −𝑍𝐴,𝑅ImΣ𝑋(𝜔𝐴,𝑅) . (2.42)

These quantities coincide with the polaron oscillator strength, i.e., its capacity
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Fig. 2.9: Spectral function 𝐴𝑋(𝜔)
for (a) 𝐸𝐹 = 0.1𝜀𝑇 and (b) 𝐸𝐹 =
0.8𝜀𝑇 . We extract the polaron en-
ergies 𝐸𝐴,𝑅 as the peak positions,
the linewidth 2Γ𝐴,𝑅 as the peaks
FWHM, and the polaron spectral
weight 𝑍𝐴,𝑅,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 as the area
under the peaks. We fixed 𝜂𝑋 =
0.04𝜀𝑇 . At low doping (a) the
trion-hole continuum appears as
merged with the attractive branch
and 𝑍𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 = 0 as an effect of
broadening.

to couple to light, and the polaron inverse decay rate, respectively.
In Fig. 2.9 we explain how we extract the polaron properties from the

spectral function profiles 𝐴𝑋(𝜔). The attractive and repulsive polaron energies
𝐸𝐴,𝑅 are evaluated as the peak positions, their linewidths 2Γ𝐴,𝑅 as the peak
FWHMs, and the polaron spectral weights 𝑍𝐴,𝑅,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 as the area under the
peak. We have used the location of the spectral function minima to establish
the lower and upper bound of the continuum area providing 𝑍𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚. Note
that in this figure we have fixed 𝜂𝑋 = 0.04𝜀𝑇 . This implies that at low doping
in panel (a) the trion-hole continuum appears as merged with the attractive
branch and 𝑍𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 = 0. This is an artifact of imposing a broadening
because we know that the attractive branch is a sharp separate eigenvalue of
the problem at zero temperature.

We compare the polaron branch properties extracted from the spectral func-
tion with the results obtained by using a pole expansion, i.e., using Eqs. (2.39),
(2.41), (2.42), in Fig. 2.10. We observe an extremely good agreement between
the two approaches. It is not surprising that the pole expansion works ex-
tremely well for the attractive polaron branch, which, at zero temperature,
coincides with the isolated ground state (we will see that this result changes
dramatically at finite temperature). However, it is very surprising that it also
works extremely accurately for the repulsive branch (see later Fig. 2.10) which
is a continuum of states and its lineshape differs substantially from a Lorent-
zian. For this reason, the repulsive branch is also referred to as a “resonance
continuum”.

To study the doping dependence of the polaron properties, we plot in
Fig. 2.10 (a) the doping and energy dependence of the spectral function. As
expected from the analysis at a fixed detuning done previously, the optical ab-
sorption is dominated by the polaron quasiparticle resonances: the attractive
polaron branch at lower energy 𝐸𝐴 and the repulsive polaron branch at higher
energy 𝐸𝑅. In the limit of vanishing doping, the attractive branch energy re-
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Fig. 2.10: (a) Exciton spectral function 𝐴𝑋(𝜔) as a function of doping and energy.
Blue and purple lines are the attractive (𝐴) and repulsive (𝑅) polaron energies, re-
spectively, while the red lines are the boundaries of the trion-hole continuum 𝐸± (see
text). Doping dependence of the energy position 𝐸𝐴, 𝐸𝑅, 𝐸± (b), energy splitting
Δ𝑅𝐴 (c), spectral weights 𝑍𝐴,𝑅,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 (d), and half linewidths Γ𝐴,𝑅 (e) extracted
from the spectral function. The solid lines have been extracted from properties of
the spectral peaks — see text. The dashed lines with symbols have instead been
extracted from the quasiparticle properties Eqs. (2.39), (2.41), (2.42). In panel (c),
the orange dot-dashed line is a linear fit of the low doping dependence of the polaron
branch splitting which is in agreement with a slope ∼ 1, while the orange dashed line
is a linear fit of the higher density region and gives a slope approximately ∼ 𝑚𝑇 /𝑚𝑋.
In panel (d), the blue dot-dashed line is a linear fit of the low-density dependence of
the attractive branch spectral weight.

covers the trion energy 𝐸𝐴 → −𝜀𝑇 , while the repulsive branch energy reduces
to the exciton energy, 𝐸𝑅 → 0 — we remind that we measure energies with
respect to that of the exciton at rest. As pointed out in Ref. [381], while ex-
perimental absorption line shifts were found to be in relatively good agreement
with the variational approach we have described here [321], at higher Fermi
energies increasing deviations are found in particular for the attractive polaron
branch. One possible source for discrepancies pointed out in Ref. [381] are
finite-range corrections of the exciton-electron interaction.

We evaluate the energy splitting between repulsive and attractive branches
Δ𝑅𝐴 = 𝐸𝑅 − 𝐸𝐴 in Fig. 2.10 (c) with both methods illustrated above, which
show perfect agreement. By fitting the splitting at low and higher doping
finding in both cases a linear dependence on the Fermi energy but with different
slopes. At low doping, we find Δ𝑅𝐴 ∼ 𝐸𝐹 , while for 𝐸𝐹 ≳ 𝜀𝑇 /2, we find that
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Δ𝑅𝐴 ∼ 𝑚𝑇 /𝑚𝑋𝐸𝐹 . Note that in the literature [261, 265] the very small
doping behavior has been overlooked, while the larger doping behavior Δ𝑅𝐴 ∼
𝑚𝑇 /𝑚𝑋𝐸𝐹 that we find agrees with what previously found. It is important
to note that extracting the splitting from the spectral function at a finite and
large broadening can mask its precise behavior.

As far as the coupling to light properties of the polaron branches is con-
cerned, at very low doping the repulsive branch retains all the spectral weight
and the attractive branch is dark. However, when doping increases, there is a
transfer of oscillator strength from the repulsive to the attractive branch. This
is shown in Fig. 2.10 (d), where we plot the doping dependence of the spectral
weights 𝑍𝐴,𝑅 for each branch. At low doping 𝐸𝐹 ≪ 𝜀𝑇 , 𝑍𝐴 grows linearly with
𝐸𝐹 , in agreement with what is expected from a trion picture [266] (2.27) (blue
dot-dashed line). The small discontinuity that we observe for the continuum
spectral weight in Fig. 2.10 (d) derives from the fact that we are evaluating
areas of the spectral function at a finite value of the broadening 𝜂𝑋.

There are important differences between the attractive and repulsive po-
laron branches, even though they both satisfy Eq. (2.39) for values of doping
up to 𝐸𝐹 ∼ 𝜀𝑇 that we consider here. As already mentioned, the attractive
polaron is always a sharp resonance, with a Lorentzian broadening coinciding
with the intrinsic broadening 2Γ𝐴 = 2𝜂𝑋 — see Fig. 2.10 (e). As shown in
Fig. 2.8 (a), the attractive branch energy coincides with the lowest eigenvalue
energy, 𝐸𝐴 = 𝐸(𝑛=1), while the repulsive branch does not correspond to a
specific eigenstate. As a consequence, its broadening 2Γ𝑅 grows monotonically
with 𝐸𝐹 and only coincides with 2𝜂𝑋 at small doping — see Fig. 2.10 (e). Still,
it can be well described by the quasiparticle properties Eq. (2.39), Eq. (2.41),
and Eq. (2.42). This is shown in Fig. 2.10 (b,c,d,e), where we compare the
results for 𝐸𝐴,𝑅, 𝑍𝐴,𝑅, and Γ𝐴,𝑅 obtained from both the peaks properties
(solid lines) or the quasiparticle properties Eqs. (2.39), (2.41), (2.42) (squared
symbols). We observe that the positions of the poles coincide with high accur-
acy with those of the spectral function maxima. In particular, for the repulsive
branch, both the spectral weight and the broadening from the quasiparticle the-
ory are in very good agreement with those evaluated from the spectral function,
even when the linewidth is non-negligible. Previous theoretical analysis [265]
predicts a linear behaviour of Γ𝑅 with 𝐸𝐹 at small doping which our analysis
does not reveal.

Note that the polaron theory substantially underestimates the homogen-
eous broadening of the repulsive branch observed in experiments [351] as dop-
ing density increases. Experiments of Ref. [351] observe a quadratic behavior
with 𝐸𝐹 , which is not captured by Chevy’s ansatz. This discrepancy suggests
the existence of additional non-radiative transitions from the repulsive to the
attractive branch. In Ref. [351], it has been shown that electron-electron inter-
actions can enhance this non-radiative decay. By adding an extra particle-hole
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excitation in the same valley as the exciton (and different from that of the
Chevy ansatz), the authors of Ref. [351] find an additional increase of Γ𝑅 which
rescale quadratically with 𝐸𝐹 and agrees with the experimental measurements
of the homogeneous broadening of the repulsive peak.

In between the attractive and repulsive branches, we observe in Fig. 2.10 (a)
a continuum of states that correspond to scattering states between a bound
trion and an unbound Fermi-sea-hole states with a well-defined relative mo-
mentum q in the variational function 𝜑kq. This continuum is also called in the
literature as “trion-hole” continuum. The boundaries of this so-called trion-
hole continuum can be evaluated analytically from the energy of a trion (see
Sec 2.3.3) plus the kinetic energy of a hole. If the hole has zero momentum
q = 0, then, because of momentum conservation, the trion is also at zero
momentum, and the upper boundary of the trion-hole continuum is (2.25a)

𝐸+ = 𝐸(0,𝐸𝐹 )
𝑇 = −𝜀𝑇 + 𝑚𝑇

𝑚𝑋
𝐸𝐹 . (2.43)

Conversely, the energy of the trion-hole lower bound is

𝐸− = 𝐸(k𝐹 ,𝐸𝐹 )
𝑇 − 𝐸𝐹 , (2.44)

where both the hole and trion are at q = k𝐹 = 𝑘𝐹 n̂, with n̂ an arbitrary direc-
tion, and 𝐸(k𝐹 ,𝐸𝐹 )

𝑇 is the trion energy, which can be evaluated from Eq. (2.22).
Thus, at zero temperature, as soon as one has some doping, the attractive

branch is separated from the trion-hole continuum by an energy gap. Note
that, while this trion-hole continuum is a consequence of considering a single
excitation of the medium, our results are consistent with those of diagram-
matic quantum Monte Carlo [382] which demonstrated that there is a region
of anomalously low spectral weight (a “dark continuum”) above the narrow
attractive polaron branch. This situation can change drastically at finite tem-
peratures, where the trion-hole continuum merges with the attractive branch
at large enough temperature or at low enough dopings. This will be analyzed
in detail in Ch. 3.

The conclude this section, we briefly discuss other polaron approaches that
have been developed for the description of doped semiconductors. As already
mentioned, the concept of polaron as a superposition between an exciton and
a trion-hole state was originally introduced in Ref. [286] to describe the proper-
ties of doped II-VI compound quantum wells [383]. In Ref. [286], the authors
consider an exciton mode mixed with a correlated state of a trion and a hole of
the Fermi sea similar to what is done in Chevy’s ansatz. Using a diagrammatic
approach to solve the problem, they were able to capture the typical oscillator
strength transfer that can be observed in the optical response of doped semicon-
ductors. They found that, in the small doping regime, the attractive polaron
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oscillator strength increases linearly with doping, which agrees with the doping
dependence of the trion oscillator strength described in Sec. 2.2 and with what
we found with the previously described approach.

Recently, a polaron approach that does not rely on approximating the ex-
citon as tightly bound and that includes unscreened Coulomb interactions
between all carriers has been proposed in Refs. [262–264]. The authors pro-
pose a variational state similar to the state |𝑃3⟩ considered in Eq. (2.28), but
where the exciton is described in terms of the intervalley electron and hole pair:

|𝑀4⟩ = ( ∑
k1

𝜑k1√
𝒜

̂𝑐†
ℎ−k1

̂𝑐†
𝑒k1

+ ∑
k1,k2,q

𝜑k1k2q√
2𝒜3/2 ̂𝑐†

ℎq−k1−k2
̂𝑐†
𝑒k1

̂𝑐†
𝑒𝐹𝑆k2

̂𝑐𝑒𝐹𝑆q)|𝐹𝑆⟩ . (2.45)

Here, the operators ̂𝑐†
𝑒k and ̂𝑐†

𝑒𝐹𝑆k describe two distinguishable electrons. This
state, similarly to the Chevy ansatz (2.29), includes only one electron-hole ex-
citation of the Fermi sea and thus a maximum of four particles on top of the
Fermi sea. We consider a similar ansatz in Sec. 4.4 in case of two indistin-
guishable electrons when we consider the impurity problem in the spin-valley
polarized case. As explained there, the problem large Hilbert space hinders the
possibility of directly diagonalizing the eigenvalue problem associated to (2.45).
For this reason, the authors of Ref. [262] resort to some approximation. They
factorize the four-body wave function into a “trion+hole” wave function

𝜑k1k2q = 𝜙k1k2
𝜓q . (2.46)

Further, they assume a momentum dependence of the trion wave function 𝜙k1k2
similar to that of Eq. (2.13). Note that this is a strong assumption, as it implies
that there are no correlations between the trion and hole degrees of freedom.
With these assumptions, the authors find the appearance of polaron branches
that resemble those previously described in Ref. [286]. It stands out the absence
of a trion-hole continuum in their results.

2.3.5 Connection to the trion theory
It is instructive to compare the results obtained within the polaron formalism
with those that can be extracted from a mean-field few-body approach that
describes the optical response of doped semiconductors in terms of few-body
complexes such as excitons and trions. This subject has raised significant in-
terest recently and it is interesting to analyze if there are conceptual differences
and summarise differences in predictions.
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As far as agreements between the two approaches, we have seen that the
polaron description predicts that the polaron branch energies recover those of
the exciton and trion at low doping and that the attractive oscillator strength
grows linearly with 𝐸𝐹 exactly as the trion plus an inert Fermi sea descrip-
tion predicts [266]. However, the energy of a trion in a Fermi sea blueshifts
with doping due to the Pauli blocking with the surrounding electrons [373] —
see Eq. (2.25a). In contrast, the attractive polaron energy in the spin-valley
polarised configuration redshifts with doping. A blueshift can occur in the un-
polarized case, where there is a Fermi sea also in the same valley where the
exciton is created in Mo-based monolayers. This suggests that, at finite dop-
ing, the attractive and repulsive polaron quasiparticles differ from the trion
and exciton states, respectively. Further, the transfer of oscillator strength
from the repulsive to the attractive branch cannot be described by a few-body
approach [346].

Note that within the single particle-hole-excitation ansatz (2.28), while the
repulsive polaron effective mass recovers that of the exciton at low doping,
the same does not occur for the repulsive polaron [374, 384] — see App. D.
This is because the single particle-hole Chevy’s ansatz is not able to recover
the polaron-trion (or polaron-molecule) transition that is expected to occur
when doping decreases [373, 374]. In systems with contact interactions, this
transition can be found by adding an additional particle-hole excitation to
the |𝑃3⟩ ansatz and considering a polaron state |𝑃5⟩ at finite center of mass
momentum as recently demonstrated in Ref. [385] — see App. D. It is currently
an open question if this transition occurs if one includes a realistic description
of Coulomb interaction effects in the polaron modelling.

The most striking difference between the attractive polaron state and the
trion state is that the first is a composite boson (to the same extent the exciton
is), while the trion is a composite fermion. Their different statistics are expected
to lead to dramatically different interaction properties [362], something we had
no time to analyze in this work but is an extremely interesting perspective of
our work. A related issue is the different responses to an external electric field
that are expected for polaron and trion states. Trions are expected to respond
to an applied electric field similarly to other charged particles, exhibiting drag
properties similar to that studied in Ref. [386]. In contrast, the drag behavior
of polarons is more complex and was recently analyzed in Ref. [366]. Although
polarons are charge-neutral optical excitations, they interact with the Fermi
sea and follow the motion of charge carriers under an electric or magnetic field.
The response of polarons to an applied electric field differs significantly from
that of charged particles such as trions. Under equilibrium conditions with
disorder and static electric fields, polarons do not respond to a force on the bath
particles at zero temperature. However, in scenarios involving dynamical fields,
where the field frequency is much greater than the inverse disorder lifetime
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of the bath particles, or non-equilibrium setups where impurities have a finite
lifetime, polaron response can be as significant as that of trions [366].

It is important to stress that while there is a net distinction between the
attractive polaron branch and the trion-hole continuum at zero temperature,
at high temperatures and low doping, the attractive ceases to be a well-defined
quasiparticle because it merges with the trion-hole continuum. In this limit, it
is possible to recover a “trion picture” to correctly describe the system response,
yet aside from the trion bound state, one has also to include the electron-exciton
scattering states. This is automatically carried on in the polaron formalism, as
we will discuss in detail in Ch. 3.

To conclude this section, let us mention that there have been some attempts
to include the effects of Fermi sea blocking on exact ab initio calculations of the
three-body trion state [270, 300, 317]. Here, ab initio calculations are employed
for the single-particle basis set that then are used to solve the three-body
problem. In these works, doping effects are accounted for by discretizing the
quasimomentum in the Brillouin zone and imposing an IR cutoff that represents
the Fermi momentum blocking the occupation of the lower momenta states.
The drawback of this simplistic approach is that it is not possible to discern
between finite size and doping effects.

2.3.6 Strong light-matter coupling
We now extend the formalism of Sec. 2.3.2 to describe recent experiments where
a doped TMD monolayer is embedded into a microcavity [244, 321, 345, 346,
361]. In this case, the strong coupling between light and matter can lead to the
formation of Fermi polaron-polaritons [321, 387]. To describe the light-matter
coupled system, we add to the Hamiltonian (2.18) two terms representing the
cavity photons and the photon-exciton interaction:

�̂� = �̂�0 + �̂�0𝑋 + �̂�0𝐶 + �̂�𝑖𝑛𝑡 + �̂�𝑋𝐶 (2.47a)

�̂�0𝐶 = ∑
k

𝜖𝐶k ̂𝑎†
k ̂𝑎k (2.47b)

�̂�𝑋𝐶 = Ω
2 ∑

k
( ̂𝑥†

k ̂𝑎k + H.c.) . (2.47c)

Photons are described by the bosonic operators ̂𝑎†
k and have a dispersion 𝜖𝐶k =

𝛿 + k2/2𝑚𝐶 , where 𝛿 is the exciton-photon detuning

𝛿 = 𝜖𝐶0 − 𝜖𝑋0 . (2.48)

We remind the reader that, as before, we are measuring energies with respect
the one of the exciton at rest 𝜖𝑋0.
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In order to derive the photon Green’s function and the optical absorption
in the strong coupling regime, one can follow the same procedure employed
in Sec. 2.3. Similarly to what is done within Chevy’s ansatz approach, the
variational ansatz we employ is:

∣𝑃 (Q)
3 ⟩ = 𝛼(Q)

0 ̂𝑎†
Q |𝐹𝑆⟩ + 𝜑(Q)

0 ̂𝑥†
Q |𝐹𝑆⟩ + 1

𝒜 ∑
k,q

𝜑(Q)
kq ̂𝑥†

Q+q−k ̂𝑐†
k ̂𝑐q |𝐹𝑆⟩ . (2.49)

We neglect the dressing of the photon operator by a particle-hole excitation
1
𝒜 ∑k,q 𝛼(Q)

kq ̂𝑎†
Q+q−k ̂𝑐†

k ̂𝑐q |𝐹𝑆⟩. This term involves photon recoil and therefore
implies energies far off-resonance from the exciton and trion energies because
of the extremely small mass of the photon [321].

The associated equations of motion are:

𝐸𝜑(Q)
0 = Ω

2 𝛼(Q)
0 − 𝑣

𝒜2 ∑
k,q

𝜑(Q)
kq (2.50a)

𝐸𝜑(Q)
kq = 𝐸𝑋kqQ𝜑(Q)

kq − 𝑣𝜑(Q)
0 − 𝑣

𝒜 ∑
k′

𝜑(Q)
k′q (2.50b)

𝐸𝛼(Q)
0 = 𝛿𝛼(Q)

0 + Ω
2 𝜑(Q)

0 , (2.50c)

where we have neglected the terms that vanish in the limit Λ → ∞.
By following an analogous derivation to that in Sec. 2.3.4, and focusing on

the Q = 0 case, one can easily demonstrate that the retarded photon Green’s
function in the frequency domain is given by:

𝐺𝐶(𝜔) = ∑
𝑛

|𝛼𝑛0|2
𝜔 − 𝐸𝑛 + 𝑖𝜂𝐶

. (2.51)

Note that, for the same reason that we can neglect the particle-hole dressing of
the photon operator in the ansatz (2.49), the expressions for the exciton self-
energy Σ𝑋(𝜔) in Eq. (2.36) are not affected by the coupling to light. Therefore,
we can derive the coupled exciton and photon Green’s functions in the strong
coupling regime by inverting the matrix (1.41)

𝔾(𝜔) = (𝜔 + 𝑖 ̄𝜂𝑋 − Σ𝑋(𝜔) −Ω/2
−Ω/2 𝜔 + 𝑖𝜂𝐶 − 𝛿)

−1
, (2.52)
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Fig. 2.11: Energy and detuning dependence of the photon spectral function 𝐴𝐶(𝜔)
in the light-matter strongly coupled system describing a TMD monolayer with an
electron doping 𝐸𝐹 = 0.1𝜀𝑇 (panel (a)) or 𝐸𝐹 = 0.8𝜀𝑇 (panel (b)), embedded in a
microcavity. The black dots are the LP, MP, and UP branches extracted from the
three-coupled oscillator model (see text). The Rabi splitting is Ω = 20meV≃ 0.8𝜀𝑇 .
Here, we have used a broadening of 𝜂𝐶 = 1meV≃ 0.04𝜀𝑇 for the photon and ̄𝜂𝑋 = 0.2𝜂𝐶
for the matter component.

and evaluating the diagonal elements, giving:

𝐺𝑋(𝜔) = 𝔾11(𝜔) = 1
𝜔 + 𝑖 ̄𝜂𝑋 − Σ𝑋(𝜔) − (Ω/2)2

𝜔+𝑖𝜂𝐶−𝛿
(2.53a)

𝐺𝐶(𝜔) = 𝔾22(𝜔) = 1
𝜔 + 𝑖𝜂𝐶 − 𝛿 − (Ω/2)2

𝜔+𝑖�̄�𝑋−Σ𝑋(𝜔)
. (2.53b)

Thus, the exciton Green’s function is modified by both the effects of the
electron-exciton scattering contained in the exciton self-energy and the strong
coupling between the exciton and the photon modes. The optical absorption
spectrum in a microcavity structure should be evaluated by making use of the
input-output theory outlined in Sec. 1.5.1. However, in the limit of a “good”
cavity, i.e., when the decay rate of a photon from the cavity is much smaller
than the Rabi splitting 𝜂𝐶 ≪ Ω, one has that

𝐴𝐶(𝜔) = − 1
𝜋 Im𝐺𝐶(𝜔) . (2.54)

We plot in Fig. 2.11 the photon spectral function at normal incidence as a
function of energy and detuning 𝛿. The strong coupling to light leads to three
polariton branches, the LP, MP, and UP. We can capture the behavior of the
Fermi polaron-polaritons by employing a three-coupled oscillator model, which
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Fig. 2.12: (a,b) Doping dependence of the photon spectral function 𝐴𝐶(𝜔) for a
photon in resonance with either the repulsive branch 𝛿 = 𝐸𝑅 (a) or the attractive
branch 𝛿 = 𝐸𝐴 (b). The black dashed lines are the LP, MP, and UP branches extracted
from the three-coupled oscillator model — LP is not shown in panel (a) while UP
is not shown in panel (b). (c,d) Doping dependence of the photon spectral function
𝐴𝐶(𝜔) obtained with a three-coupled oscillator model (2.55b), where we have added
an ad-hoc quadratic dependence on doping of the repulsive polaron broadening (see
text). The Rabi splitting is Ω = 0.4𝜀𝑇 .

yields the following simplified expression for the photon Green’s function

̃𝐺𝐶(𝜔) = (𝜔 − �̃�)−1∣
11

(2.55a)

�̃� = ⎛⎜⎜
⎝

𝛿 − 𝑖𝜂𝐶 Ω𝐴/2 Ω𝑅/2
Ω𝐴/2 𝐸𝐴 − 𝑖Γ𝐴 0
Ω𝑅/2 0 𝐸𝑅 − 𝑖Γ𝑅

⎞⎟⎟
⎠

. (2.55b)

Here, we have explicitly included a cavity photon lifetime 1/𝜂𝐶 and we have
used the extracted parameters for the exciton-polaron branches in the ab-
sence of coupling to light, namely the energies 𝐸𝐴,𝑅, spectral weights 𝑍𝐴,𝑅 =
(Ω𝐴,𝑅/Ω)2, and half linewidths Γ𝐴,𝑅. Note that we cannot evaluate the polari-
ton branch energies as the (complex) eigenvalues of the matrix �̃�, as discussed
in Sec. 1.5.1. Rather, we have to evaluate first the photon spectral function and
then determine the polariton energies from the photon spectral function peak
positions, solutions of Re ̃𝐺−1

𝐶 (𝜔) = 0. The comparison in Fig. 2.11 between
the LP, MP, and UP energies obtained in this way and the full calculation
demonstrates essentially perfect agreement.

In order to compare the results of our model with the experimental results
obtained in [321] in the strong coupling regime, the photon spectral function
𝐴𝐶(𝜔) is plotted in Fig.2.12 (a,b) as a function of doping, by changing the
photon energy at each doping so that to be in resonance either with the repuls-
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ive (Fig.2.12 (a)) or the attractive branch (Fig.2.12 (b)). The results indicate
that if the photon is in resonance with the repulsive branch, then with increas-
ing doping, the repulsive branch linewidth increases, leading to the closing of
the UP and MP splitting. In Section 2.3.4, it was mentioned that the while the
polaron approach predicts a broadening of the repulsive branch which increases
linearly with doping, recent experiments [351] have shown that the homogen-
eous contribution to the repulsive branch linewidth increases quadratically and
that this can be explained in terms of electron-electron interactions. This im-
plies that, when the photon mode is tuned in resonance with the repulsive
branch, the MP-UP splitting is expected to close faster than what is predicted
by the polaron theory. We thus include an ad-hoc quadratic dependence to
Γ𝑅 ↦ Γ𝑅 +(𝐸𝐹 /𝜀𝑇 )2 and evaluate the resulting spectral function 𝐴𝐶(𝜔) using
the three-coupled oscillator model described in Eq. (2.55b). The result, shown
in Fig. 2.6 (b), shows that while there are no consequences when the photon is
in resonance with the attractive branch, when is instead in resonance with the
repulsive branch the MP-UP splitting closes much faster, in agreement with the
experimental results [321] shown in Fig. 2.6 (b). Note that experiments show
that increasing 𝐸𝐹 causes the LP-MP gap to also eventually close, though
much slower than MP-UP, a behavior that is not predicted by the polaron de-
scription, which expects the attractive branch linewidth at low temperatures
to stay sharp.

2.3.7 Ultracold atoms
In Section 2.3, it was discussed how impurity problems can be studied using a
shared set of ideas and technical tools, even in seemingly distinct setups such
as ultracold atomic mixtures. This has led to a significant amount of cross-
disciplinary collaboration, with insights gained from one system informing the
understanding of another. Ultracold atomic gases have provided valuable in-
sights into polaron physics and have been particularly useful in gaining intu-
ition into the behavior of polarons in other systems such as semiconductors.
Indeed, species composition and densities, interaction strengths, and confining
geometries can be precisely controlled in ultracold atomic gases [388].

In this section, we are going to focus on the uniform Fermi gas with short-
range interactions, a set-up that has already been successfully realized exper-
imentally in 3D [341, 389, 390], 2D [342, 343, 391–393], and 1D [394, 395]
systems. It should be noted that although our focus is on impurities in a
fermionic environment, Bose environments have also been achieved [396–398].

In the following, we give a brief overview of the experimental methods used
to investigate Fermi polarons in ultracold atoms to see how they compare to
the one employed to study Fermi polarons in semiconductors. In ultracold
atomic mixtures, quasiparticle properties can be analyzed by radio-frequency
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(a) (b)

Fig. 2.13: (a) RF injection spectroscopy of impurities immersed in a 3D Fermi
gas [341]. The impurity-medium interaction strength is contained in the dimension-
less parameters 1/𝑘𝐹 𝑎, tuned via a narrow Feshbach resonance. Red and green solid
lines are the repulsive and attractive polaron energies obtained using a polaron ap-
proach within Chevy’s ansatz. Black and white dashed lines are the boundary of the
dressed molecule — see text. (b) RF injection spectroscopy of impurities immersed
in a 2D Fermi gas [343]. The impurity-medium interaction strength is given by the
dimensionless parameters ln 𝑘𝐹 𝑎2D, tuned via an orbital Feshbach resonance. Blue-
white and red-white dashed lines are the repulsive and attractive polaron energies
obtained using a polaron approach. The red line is the molecule energy — see text.

(RF) spectroscopy [399]. This method involves using an oscillating RF field to
couple two internal hyperfine states of the impurity atoms. Since the RF field
has a long wavelength, it is essentially uniform over the sub-millimeter scale of
atomic samples, and absorption of RF photons results in negligible momentum
transfer to the atoms. The two hyperfine states are chosen to have different
interaction strengths with the surrounding medium, which can be either a third
hyperfine state of the same atomic species or a different atomic species.

In the case of injection spectroscopy, a weak RF pulse transfers impurities
from a nearly non-interacting state to a state with strong interactions with
the medium particles. Spectroscopy at varying interaction strengths can be
performed by tuning the impurity-medium scattering length via a Feshbach
resonance[340]. In the linear response regime, the injection RF signal 𝐼𝑖𝑛𝑗(𝜔)
is proportional to the impurity spectral function 𝐴(𝜔, q) [400, 401]

𝐼𝑖𝑛𝑗(𝜔) ∝ ∑
q

𝑛q𝐴(𝜔, q) , (2.56)

where 𝑛q is the initial momentum distribution of the impurities. To make
a parallelism with experiments in 2D semiconductors, the injection signal is
analogous to a momentum-averaged absorption spectrum, where one measures
the response of the system to the creation of an impurity. Injection spectroscopy
allows one to probe the entire many-body spectrum of strongly interacting
impurities since it addresses both the ground and the excited states of the
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system [341, 343].
The opposite protocol, known as ejection spectroscopy, involves flipping

a strongly interacting state into a non-interacting state and has been widely
used to probe the ground state of strongly interacting mixtures with arbitrary
population imbalance [402]. While ejection spectroscopy generally depends on
the initial occupation of states in the strongly interacting system, it simplifies
when the impurity concentration is very low, and the impurities are uncor-
related, resulting in a Boltzmann distribution. In this case, the ejection and
injection spectra are directly related by [179].

𝐼𝑒𝑗(𝜔) = 𝑒𝛽𝜔𝑒𝛽Δ𝐹 𝐼𝑖𝑛𝑗(−𝜔) , (2.57)

where Δ𝐹 is the difference in free energy between the interacting and the
non-interacting impurity. The exponential prefactor suppresses the repulsive
branch at positive energies, which clearly illustrates why ejection spectroscopy
is ideally suited to investigations of ground-state properties [344, 403]. Note
that the relation between ejection and injection signal is analogous to the de-
tailed balanced condition (3.19) between photoluminescence and absorption in
semiconductor physics derived in Sec. 1.5.3.

Let’s discuss some experimental evidences of polaron physics in ultracold
gases and confront them with the theoretical results. In Fig. 2.13, experimental
RF injection spectroscopy of impurities immersed in a 3D Fermi gas [341] and
a 2D Fermi gas [343] are shown. The interaction strength in the 3D and 2D
scenarios is encoded by the dimensionless parameters 1/𝑘𝐹 𝑎3D and ln (𝑘𝐹 𝑎2D),
respectively. These quantities can be tuned via Feshbach resonance mechan-
isms. In these plots, the zero of the energy corresponds to the frequency of
the atomic RF transition in the absence of the medium. The repulsive polaron
energy branch is clearly visible at positive RF detunings and loses oscillator
strength when approaching the unitarity limit of strong interactions from the
repulsive side, i.e., when 𝑎 → 0+ or ln (𝑘𝐹 𝑎2D) < 0. When crossing over the at-
tractive side, the oscillator strength is then transferred to the attractive polaron
branch, visible in the negative RF detuning region, for values of the interaction
away from the strongly interacting unitarity regime. In these plots, the lines
corresponding to the theoretical predictions for 𝐸𝐴,𝑅 are obtained within the
same polaron approach described in Sec. 2.3.2.

In 3D, it is known that, for increasing attraction and for equal masses [404–
406], there is a transition from a polaron state to a molecular state, where the
impurity is bound to a single atom of the surrounding medium [407]. For a suf-
ficiently light impurity, it has been suggested that a dressed trimer can become
energetically favourable [408]. In Fig. 2.13 (a), the energy boundaries of the
molecule-hole continuum are shown as black-white dashed lines. The presence
of a continuum is due to the removal of an atom with energy between 0 and
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𝐸𝐹 to form the molecule, i.e., which is equivalent to the trion-hole continuum
boundaries described in Eqs. (2.43) and (2.44). In Fig. 2.13 (a), the energy of
the attractive polaron becomes higher than the energy of a molecule at finite
momentum for values of −1/𝑘𝐹 𝑎 ∼ 0.6 implying that the attractive polaron is
not the system ground state any longer and can decay into a molecular state.
Indeed, recently the transition between the polaron and molecular states has
been observed in a spin-imbalanced ultracold gas of 40𝐾 atoms [344].

In 2D, theoretical work [373, 374] has predicted a transition for equal masses
from a polaron to a dressed molecular state around −1.1 ≤ ln 𝑘𝐹 𝑎 ≤ −0.8.
This transition has not been detected experimentally yet — aside from an
early claim in Ref. [342]. In Fig. 2.13 (b) we report a recent RF injection
spectroscopy of an impurity immersed in a 2D Fermi gas [343]. Here the authors
do not see any direct signatures of this transition. However, they observe a
reduction of contrast in the strongly interacting regime until the attractive
branch completely vanishes around ln 𝑘𝐹 𝑎 ∼ −0.5.

While a contact interaction model correctly describes the polaron proper-
ties in doped semiconductors, it is not clear yet whether the polaron-molecule
(i.e., polaron-trion) transitions survive in that case if one takes into account
the effects of a realistic long-range Coulomb interaction. There have been
indications [262, 346] that, by including a realistic description of Coulomb in-
teractions, a charge three-body bound is never the system ground state of a
doped 2D material as it gets surrounded by a screening hole and forms instead
an attractive polaron.

2.4 Pairing phenomena with charge imbalance
The focus of our analysis on doped 2D semiconductors in this chapter has
been so far on the effects induced by charges on weak optical excitation of the
system, i.e., with a low number of excitons. We conclude this chapter with a
short overview of how the presence of charge imbalance modifies the collective
pairing phenomena, because of frustration effects.

Intriguing questions about collective coherent phenomena in fermionic sys-
tems do arise in presence of population imbalance, i.e., when not every fermion
can pair up. Pairing frustration mechanisms can be found in many areas of
physics. For instance, in conventional superconducting thin films with an in-
plane magnetic field, the Zeeman effect can generate a spin-imbalanced system,
causing electron spins to point along the applied field and ultimately breaking
superconductivity [409]. This leads the system to suffer a transition from a
superconducting to a normal state. In quantum chromodynamics, differences
in quark masses result in a mismatch among the Fermi surfaces between the
species that could pair [410]. Atomic gases are of particular interest because
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(a) FFLO state (b) BP state Fig. 2.14: Sketch of majority car-
rier (green) and minority carrier
(light-orange) Fermi seas in pres-
ence of charge imbalance. (a) In
the FFLO state pairing (purple
area) occurs in a small sliver of
the Fermi sea where nesting oc-
curs. (b) In contrast, for the
breached-pair (BP) state, pairing
occurs isotropically, and it is op-
timized by emptying the majority
species from a ring in momentum.

they offer an ideal testing ground for exploring the quest for superfluid beha-
vior in imbalanced two-component Fermi systems, as the populations in two
hyperfine states of the fermionic atoms can be easily controlled externally [411,
412].

In an imbalanced Fermi mixture, the system can adjust itself to remain
partially coherent by maintaining a finite density of paired fermions and ac-
commodating a finite density of unpaired fermions before reaching a normal
state. In the 1960s, it was proposed [257, 258] that to accommodate the dens-
ity difference while restoring some coherence, a simple uniform BCS state could
be replaced by a state ∣ΦQ⟩ with finite center-of-mass momentum Cooper-pairs
and a finite density of unpaired fermions. The minority particle Fermi surface
shifts to contact the larger one, and pairs are formed in the vicinity of the touch-
ing point — see Fig. 2.14 (a). If the energy gain due to pair formation exceeds
the kinetic energy penalty, then the finite center of mass state has lower energy
than the normal state and describes the ground state. This state with a single
center-of-mass pair momentum is known as an FF state (Fulde Ferrel [257]) and
a superposition of states with opposite momenta LO (Larkin Ovchinnikov [258]).
Both states are commonly referred to as FFLO states. This state has been pro-
posed as the ground state for imbalanced systems in various contexts, including
superconductors and imbalanced quantum chromodynamic systems [410], cold
atoms [413, 414], and semiconductors [255, 256]. However, there is no con-
sensus on whether such a state has been observed in superconducting or cold
atom systems, despite some evidence discussed in Ref. [415]. Weak attractive
interaction in superconductors and ubiquitous phase separation accompanying
the first-order phase transition from a zero- to a finite-momentum condensate
in cold atoms are the main issues [414, 416]. In contrast, semiconductors do not
face these problems since electrons and holes are charged particles, which pre-
vents phase separation. Additionally, electron-hole interaction via long-range
Coulomb potentials, as opposed to weak phonon-mediated potentials, makes
the excitonic condensed state more resilient to external parameter variations.
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Moreover, strong exciton-photon coupling in semiconductors with microcavities
results in a much higher critical temperature of condensation, leading to room
polariton condensation — see Sec. 1.5.4. Thus, semiconductors in microcavities
provide an ideal platform for exploring the physics of imbalanced polaritonic
condensates. In Ch. 5, we will discuss in detail the effects of light-matter coup-
ling on the possible formation of an FFLO state in a semiconductor system
with extreme imbalanced densities.

Although FFLO phases are common to imbalanced two-component fermi-
ons with attractive interactions, more exotic alternatives have been suggested
in special cases. For example, a breached-pair [417] state, also called Sarma
state [418] can occur, where the minority species pair up with the other species
inside the majority Fermi sea, leaving fermions with higher energy unpaired

— see Fig. 2.14 (b). This breached-pair state can also occur in an anisotropic
manner where excess particles are squeezed out of a region in momentum space
anisotropically. This mechanism was already proposed but always found en-
ergetically unfavorable [419]. However, it turns out that strong coupling to
light and long-range Coulomb interaction favors this phase at moderate imbal-
ances [420].



Chapter 3

Crossover from polarons to trions at
finite temperature

In this chapter, we study systematically the role of temperature in the op-
tical response of doped two-dimensional semiconductors. By making use of a
finite-temperature Fermi-polaron theory, we reveal a crossover from a quantum-
degenerate regime with well-defined polaron quasiparticles to an incoherent re-
gime at high temperature or low doping where the lowest energy attractive
polaron quasiparticle is destroyed, becoming subsumed into a broad trion-hole
continuum. We demonstrate that the crossover is accompanied by significant
qualitative changes in both absorption and photoluminescence. With increas-
ing temperature (or decreasing doping), the emission profile of the attractive
branch evolves from a symmetric Lorentzian to an asymmetric peak with an ex-
ponential tail involving trions and recoil electrons at finite momentum. In the
high-temperature low-doping regime we employ a quantum virial expansion to
obtain exact analytic expressions for the photoluminescence and we predict new
features such as a non-trivial shape of the attractive branch peak related to uni-
versal resonant exciton-electron scattering and an associated energy shift from
the trion energy. Our theory allows us to formally unify the two distinct the-
oretical pictures that have been applied to this system, where we reveal that the
predictions of the conventional trion picture correspond to a high-temperature
and weak-interaction limit of Fermi-polaron theory. We compare our results to
recent experiments on doped monolayer MoSe2 finding excellent agreement.
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The results discussed in this chapter have been reported in the following manu-
scripts, which have been recently submitted for the peer review process:

[357] A. TIENE, B. C. MULKERIN, J. LEVINSEN, M. M. PARISH, and F. M. MAR-
CHETTI:
Crossover from exciton polarons to trions in doped two-dimensional semiconductors
at finite temperature,
10.48550/ARXIV.2212.05635 (2022).

[359] B. C. MULKERIN, A. TIENE, F. M. MARCHETTI, M. M. PARISH and J. LEVIN-
SEN:
Virial expansion for the optical response of doped two-dimensional semiconductors,
10.48550/ARXIV.2212.05627 (2022).

3.1 Introduction
The theoretical analysis of the Fermi polaron problem in 2D doped/gated semi-
conductors has mainly focused on the zero-temperature limit [261, 265, 321]1.
This theory has been analyzed in detail in Sec. 2.3.2. However, a natural ques-
tion to ask is how the system changes with temperature since this has been
shown to strongly modify the nature of the Fermi polaron quasiparticles in
cold-atom experiments [403]. In particular, as illustrated in Ch. 2 there is a
competing picture to that of the Fermi polaron based on few-body complexes
such as excitons and trions, which provides a description for the photolumin-
escence of the attractive branch in doped semiconductors at finite temperat-
ure [300, 421, 422]. While at zero temperature there are profound differences
between these two approaches, it is natural to ask whether the conclusions
drawn in Ch. 2 hold also at finite temperature.

In this chapter, we use a finite-temperature variational approach developed
in the context of cold atoms [423] to reveal the important role that temperature
plays in the exciton-polaron problem. In particular, we demonstrate that, when
the temperature becomes large compared to the Fermi energy of charge carriers,
the attractive Fermi polaron merges with a continuum of states comprised of a
bound trion and unbound Fermi-sea-hole, i.e., the trion-hole continuum. Here,
the attractive branch ceases to be a well-defined quasiparticle and it crosses
over into an incoherent regime dominated by the trion-hole continuum. We
discuss the implications of this crossover for the existence of polariton quasi-
particles when the semiconductor is strongly coupled to light in a microcavity.
By contrast, we find that temperature does not qualitatively change the nature
of the repulsive branch at typical doping levels, only its polaron properties.

1 While the results in Refs. [262, 387] have been derived at finite temperature, the former
only considered infinite exciton mass, while the latter did not analyze the consequences of
temperature on the polaron description.

https://arxiv.org/abs/2212.05635
https://arxiv.org/abs/2212.05627
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We find that the disappearance of the attractive polaron quasiparticle has
little effect on its energy and spectral weight, but it strongly modifies the
linewidth and the overall shape of the attractive peak in both absorption and
photoluminescence. In particular, we observe that the attractive branch evolves
from a symmetric Lorentzian shape to a strongly asymmetric profile with an
exponential tail below the trion energy.

To describe the trion-dominated regime at low temperatures and high dop-
ing, we employ a quantum virial expansion [424] for the optical response, which
is a perturbatively exact theory when the temperature 𝑇 greatly exceeds the
Fermi energy 𝐸𝐹 , and is therefore applicable at high temperature and/or low
doping. We show that this corresponds to a limit of the Fermi-polaron pic-
ture where the coherent dressing cloud of the attractive polaron quasiparticle
is destroyed by thermal fluctuations in contrast to the situation at lower tem-
peratures. We demonstrate that the virial expansion predicts hitherto unre-
cognized features in photoluminescence such as a non-trivial behavior of the
attractive peak near the trion energy related to 2D resonant exciton-electron
scattering. This in turn implies that the trion binding energy is likely to have
been overestimated by about 10% in experiments. We compare our results
to a recent experiment on a doped MoSe2 monolayer [349] and find excellent
agreement. Finally, we show analytically that the virial expansion reduces to
the predictions of the trion picture in the limit where 𝐸𝐹 → 0.

Note that, even though our model is formulated to describe doped 2D semi-
conductors, our results can be easily generalized to 2D atomic Fermi gases [342,
343, 425], and they can straightforwardly be extended to the three-dimensional
case.

3.2 Model
The model Hamiltonian we consider is the same one we have used to describe
the spin-valley polarized quantum impurity problem at zero temperature in
Sec.2.3.2. Here, a single and isolated exciton interacts with a fermionic gas of
carriers:

�̂� = �̂�0 + �̂�0𝑋 + �̂�𝑖𝑛𝑡 (3.1a)

�̂�0 = ∑
k

(𝜖k − 𝜇) ̂𝑐†
k ̂𝑐k (3.1b)

�̂�0𝑋 = ∑
k

𝜖𝑋k ̂𝑥†
k ̂𝑥k (3.1c)

�̂�𝑖𝑛𝑡 = − 𝑣
𝒜 ∑

kk′q
̂𝑥†
k+q ̂𝑐†

k′−q ̂𝑐k′ ̂𝑥k . (3.1d)
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The surrounding medium is described within the grand canonical ensemble [423].
Here the chemical potential 𝜇 is related to the excess electron density 𝑛 = 𝑁/𝒜
by

𝜇 = 𝑇 ln (𝑒𝛽𝐸𝐹 − 1) 𝐸𝐹 = 2𝜋
𝑚 𝑛 , (3.2)

where 𝐸𝐹 is the Fermi energy and 𝛽 = 𝑇 −1 the inverse temperature.
We assume the Fermi sea to be non-interacting, an assumption that becomes

exact in the high-temperature, low-doping limit [359]. Further, the exciton-
charge interaction is approximated as a contact interaction [265, 381] with
coupling strength 𝑣 > 0 up to a high-momentum cutoff Λ. The validity of this
approximation has been discussed in Sec. 2.3.2. The renormalization of the
exciton-electron contact interaction is carried out by expressing the interaction
strength in terms of the trion binding energy 𝜀𝑇 (2.5) [372]:

1
𝑣 = 1

𝒜
Λ

∑
k

1
𝜀𝑇 + 𝜖𝑋k + 𝜖k

. (3.3)

As explained in Sec. 2.3.2, through this definition and by keeping 𝜀𝑇 finite, our
results become independent of the cutoff once we consider the Λ → ∞ limit.

3.2.1 Variational approach
At finite temperature, one can employ the variational approach for impurity
dynamics developed in Ref. [423] in the context of the Fermi polaron problem
in ultracold atomic gases. This variational approach has been successfully used
to model dynamical probes such as Ramsey spectroscopy [179, 390] and Rabi
oscillations [426, 427], as well as static thermodynamic properties such as the
impurity contact [403, 428]. We review the approach here, formulating it for the
2D semiconductor problem. We consider the case of zero impurity momentum,
relevant for evaluating absorption and emission. The generalization to finite
impurity momentum is discussed in Appendix C.

The starting point of the variational approach [423] is the time-dependent
impurity operator that approximates the exact operator in the Heisenberg pic-
ture, ̂𝑥0(𝑡) = 𝑒𝑖�̂�𝑡 ̂𝑥0𝑒−𝑖�̂�𝑡. We choose the form

̂𝑥0(𝑡) ≃ 𝜑0(𝑡) ̂𝑥0 + 1
𝒜 ∑

k,q
𝜑kq(𝑡) ̂𝑐†

q ̂𝑐k ̂𝑥q−k , (3.4)

which is written in terms of the time-dependent variational coefficients 𝜑0(𝑡)
and 𝜑kq(𝑡). The truncated form of this operator is similar to that of the Chevy
ansatz [375] Eq. (2.28) employed for the zero-temperature state — see Sec.2.3.
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The time-dependent exciton operator (3.4) does not coincide with the exact
solution of the Heisenberg equation of motion, and thus we determine the
variational coefficients by minimizing the error function

Δ(𝑡) = ⟨ ̂𝑒(𝑡) ̂𝑒†(𝑡)⟩𝛽 ≡ Tr[ ̂𝜌0 ̂𝑒(𝑡) ̂𝑒†(𝑡)] , (3.5)

with respect to 𝜑∗
0(𝑡) and 𝜑∗

kq(𝑡). Here, the trace is over medium-only states,
̂𝑒(𝑡) = 𝑖𝜕𝑡 ̂𝑥0(𝑡) − [ ̂𝑥0(𝑡), �̂�] is an error operator, and ̂𝜌0 = 𝑒−𝛽�̂�0/𝑍0 is the

medium-only density matrix with 𝑍0 = Tr[𝑒−𝛽�̂�0 ] the medium partition func-
tion in the grand canonical ensemble. By considering the stationary solutions,
𝜑0(𝑡) = 𝜑0𝑒−𝑖𝐸𝑡 and 𝜑kq(𝑡) = 𝜑kq𝑒−𝑖𝐸𝑡, we obtain the following eigenvalue
problem:

𝐸𝜑0 = − 𝑣
𝒜2 ∑

k,q
𝑓q(1 − 𝑓k)𝜑kq (3.6a)

𝐸𝜑kq = 𝐸𝑋kq𝜑kq − 𝑣𝜑0 − 𝑣
𝒜 ∑

k′
(1 − 𝑓k′)𝜑k′q . (3.6b)

Here, 𝐸𝑋kq = 𝜖𝑋q−k + 𝜖k − 𝜖q and we have used the Fermi-Dirac distribution
for the electron occupation, ⟨ ̂𝑐†

k ̂𝑐k⟩𝛽 = 𝑓k = [𝑒𝛽(𝜖k−𝜇) + 1]−1, and for the hole
occupation, ⟨ ̂𝑐k ̂𝑐†

k⟩𝛽 = 1 − 𝑓k. Note that we have dropped terms that vanish
when Λ → ∞; for instance, since 𝑣 ∼ 1/ ln Λ → 0, terms like 𝑣

𝒜 ∑q′ 𝑓q′𝜑kq′

also go to zero as Λ → ∞.
The set of equations in (3.6) constitutes an eigenvalue problem that can

be solved to give a set of eigenvalues 𝐸𝑛 and associated eigenvectors 𝜑𝑛0 and
𝜑𝑛kq, with 𝑛 a discrete index. We require that the corresponding stationary
operators

̂𝑥𝑛0 = 𝜑𝑛0 ̂𝑥0 + 1
𝒜 ∑

k,q
𝜑𝑛kq ̂𝑐†

q ̂𝑐k ̂𝑥q−k ,

are orthonormal under a thermal average, ⟨ ̂𝑥𝑛0 ̂𝑥†
𝑚0⟩𝛽 = 𝛿𝑛,𝑚, implying that

𝜑𝑛0𝜑∗
𝑚0 + 1

𝒜2 ∑
k,q

𝑓q(1 − 𝑓k)𝜑𝑛kq𝜑∗
𝑚kq = 𝛿𝑛,𝑚 .

The stationary operators thus form a complete basis within which we can ex-
pand the approximate impurity operator (3.4), giving

̂𝑥0(𝑡) = ∑
𝑛

𝜑∗
𝑛0 ̂𝑥𝑛0𝑒−𝑖𝐸𝑛𝑡 , (3.7)

where 𝜑∗
𝑛0 = ⟨ ̂𝑥0 ̂𝑥†

𝑛0⟩𝛽 and where we have used the boundary condition ̂𝑥0(0) =
̂𝑥0.
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The exciton retarded Green’s function in the time domain,

𝐺𝑋(𝑡) = −𝑖𝜃(𝑡)⟨[ ̂𝑥0(𝑡), ̂𝑥†
0]⟩𝛽 = −𝑖𝜃(𝑡)⟨ ̂𝑥0(𝑡) ̂𝑥†

0⟩𝛽 , (3.8)

can be evaluated approximately within the variational ansatz (3.4) by using
Eq. (3.7). By taking the Fourier transform into the frequency domain we
obtain:

𝐺𝑋(𝜔) = ∑
𝑛

|𝜑(𝑛)
0 |2

𝜔 − 𝐸𝑛 + 𝑖0+ , (3.9)

where the small imaginary part originates from the Heaviside function 𝜃(𝑡) in
the retarded Green’s function 𝐺𝑋(𝑡).

3.2.2 Exciton self-energy and 𝑇 matrix
As discussed above, solving the eigenvalue problem (3.6) allows us to evaluate
the exciton Green’s function. It turns out that it is numerically convenient to
instead consider the exciton self-energy Σ𝑋(𝜔), which is related to the Green’s
function via

𝐺𝑋(𝜔) = 1
𝜔 − Σ𝑋(𝜔) . (3.10)

The expression for the exciton self-energy can be derived by manipulating the
eigenvalue problem (3.6) [423], following the same procedure valid at zero tem-
perature, introducing an auxiliary function 𝜒q = 𝑣

𝒜 ∑k(1 − 𝑓k)𝜑kq — see
Sec. 2.3.2. In this way, the exciton self-energy reads

Σ𝑋(𝜔) = 1
𝒜 ∑

q
𝑓q𝒯(𝜔 + 𝜖q, q) , (3.11)

where the inverse of the 𝑇 matrix is defined as

𝒯−1(𝜔, q) = −1
𝑣 − 1

𝒜 ∑
k

1 − 𝑓k
𝜔 − 𝜖k − 𝜖𝑋k−q + 𝑖0+ . (3.12)

The same expression (3.11) can also be derived by using a diagrammatic expan-
sion within the ladder approximation [49, 379]. Thus, our variational approach
provides an additional theoretical foundation for ladder diagrams.

It is profitable to separate the vacuum contribution to the 𝑇 matrix, de-
scribing the electron-exciton scattering in the absence of a surrounding Fermi
gas, from the many-body contribution. To this end, we note that the logar-
ithmic divergence of the second term in (3.12) cancels with that of the inverse
contact interaction constant 𝑣−1 (3.3), allowing the vacuum contribution 𝒯0 to
be calculated analytically [429] (Note that, throughout this chapter, energies
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are measured with respect to that of the exciton at rest):

𝒯−1(𝜔, q) = 𝒯−1
0 (𝜔, q) − Π𝑚𝑏(𝜔, q) (3.13a)

𝒯−1
0 (𝜔, q) = 𝑚𝑟

2𝜋 ln ( −𝜀𝑇
𝜔 − q2

2𝑚𝑇
+ 𝑖0+

) (3.13b)

Π𝑚𝑏(𝜔, q) = − 1
𝒜 ∑

k

𝑓k
𝜔 − 𝜖k − 𝜖𝑋k−q + 𝑖0+ , (3.13c)

where 𝑚𝑇 = 𝑚 + 𝑚𝑋 is the trion mass and 𝑚𝑟 = 𝑚𝑚𝑋/𝑚𝑇 is the exciton-
electron reduced mass. Note that the vacuum 𝑇 matrix (3.13b) has a pole at
the bound state, i.e., the trion energy, 𝜔 = −𝜀𝑇 + 𝜖𝑇 q, where 𝜖𝑇 q = 𝑞2

2𝑚𝑇
is the

trion kinetic energy (for a summary of the trion properties at finite momentum
and finite doping, see Sec 2.3.3). Differently from the vacuum 𝑇 matrix (3.13b),
the many-body correction in Eq. (3.13c) cannot be evaluated analytically. We
describe in Sec. 3.2.4 the numerical procedure we follow to evaluate it.

The system’s optical response, such as the optical absorption and photolu-
minescence, can be evaluated starting from the exciton Green’s function, as we
describe in the next section.

3.2.3 Optical absorption and photoluminescence
The optical absorption coincides with the exciton spectral function:

𝐴𝑋(𝜔) = − 1
𝜋 Im𝐺𝑋(𝜔) . (3.14)

Indeed, in the linear-response regime, as already discussed in Sec. 1.5.3, the
spectral function is equivalent to the transfer rate from an initial state |𝑛⟩
containing no excitons (the impurity vacuum) to a final state |𝜈⟩ containing
a single exciton. Here, the impurity vacuum and single-impurity states are
eigenstates of the Hamiltonian, i.e., �̂�|𝑛⟩ = �̂�0|𝑛⟩ = 𝐸𝑛|𝑛⟩ and �̂�|𝜈⟩ = 𝐸𝜈|𝜈⟩.
Using Fermi’s golden rule, we have

𝐴𝑋(𝜔) = ∑
𝑛,𝜈

⟨𝑛| ̂𝜌0|𝑛⟩|⟨𝜈| ̂𝑥†
0|𝑛⟩|2𝛿(𝐸𝜈 − 𝐸𝑛 − 𝜔) , (3.15)

which satisfies the sum-rule:

∫
∞

−∞
𝑑𝜔 𝐴𝑋(𝜔) = 1 . (3.16)

In order to evaluate the photoluminescence, we instead consider the opposite
situation, i.e., an initial state |𝜈⟩ containing the medium and the exciton, and
a final state |𝑛⟩ after the exciton has recombined to emit a photon. Here, we
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have assumed that the exciton density is low enough such that each exciton
can be treated individually. The transfer rate at thermal equilibrium is then
given by

𝑃𝑋(𝜔) = ∑
𝑛,𝜈

⟨𝜈| ̂𝜌|𝜈⟩|⟨𝑛| ̂𝑥0|𝜈⟩|2𝛿(𝐸𝜈 − 𝐸𝑛 − 𝜔) , (3.17)

where ̂𝜌 = 𝑒−𝛽�̂�/𝑍𝑖𝑛𝑡 is the density matrix associated with the interacting
exciton and medium system (3.1) and 𝑍𝑖𝑛𝑡 = ∑𝜈 ⟨𝜈| 𝑒−𝛽�̂� |𝜈⟩ the associated
partition function. It is straightforward to show that the photoluminescence
satisfies the following sum rule

∫
∞

−∞
𝑑𝜔 𝑃𝑋(𝜔) = Tr[ ̂𝜌 ̂𝑥†

0 ̂𝑥0] . (3.18)

Using the properties of the delta function, the absorption 𝐴𝑋(𝜔) and pho-
toluminescence 𝑃𝑋(𝜔) can be related by a detailed balanced condition [179]:

𝑃𝑋(𝜔) = 𝑍0
𝑍𝑖𝑛𝑡

𝑒−𝛽𝜔𝐴𝑋(𝜔) . (3.19)

The thermodynamic, Boltzmann-type scaling between absorption and emission
profiles (3.19) is also known as the Kubo-Martin-Schwinger relation [430, 431],
the Kennard-Stepanov relation [432–434] or the van Roosbroeck-Shockley re-
lation [435], depending on the context within which it has been studied, and
it applies to a broad range of systems, including semiconductors [176–178]. It
relies on the assumption that the population of excited states, here excitons,
has thermalized at a temperature 𝑇 before the emission and that they are oth-
erwise uncorrelated. Note also that the thermalization temperature 𝑇 can be
different from the system lattice (cryostat) temperature.

3.2.4 Numerical implementation
Even though one only has to evaluate two momentum integrals to obtain the
exciton Green’s function in Eq. (3.10), namely the integrals in Eqs. (3.11) and
(3.13c), some comments about the numerical procedure are necessary. For the
optical absorption (3.14), the numerical convergence of the integrals is much
improved by shifting the frequency to the complex plane, 𝜔 ↦ 𝜔 + 𝑖𝜂𝑋. Apart
from helping with convergence, this shift provides a simplified description of
the exciton’s intrinsic broadening due to effects beyond those included in the
Hamiltonian such as recombination and disorder. In the following, we have
used the typical value 𝜂𝑋 = 0.04𝜀𝑇 ≃ 1 meV.

Including 𝜂𝑋 implies that the exciton spectral function decays as a Lorent-
zian at low and high energies. However, one cannot evaluate the photolu-
minescence using this procedure. Indeed, by using the detailed balance condi-
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tion (3.19), the photoluminescence diverges at infinitely low frequencies if one
uses a finite value of 𝜂𝑋 to evaluate the absorption since the Boltzmann occu-
pation increases more rapidly than the Lorentzian decay of absorption. This
means that photoluminescence needs to be evaluated by first calculating ab-
sorption at 𝜂𝑋 = 0 and then multiplying by the Boltzmann occupation. In
order to do this, it is useful to re-write the k and q integrals appearing in the
exciton self-energy formula (3.13c) in a way that is numerically efficient when
there is no broadening.

Let us start by rewriting (3.13c) in an equivalent form:

Π𝑚𝑏(𝜔, q) = − 1
𝒜 ∑

k

𝑓k+ 𝑚
𝑚𝑇

q

𝜔 − 𝜖k+ 𝑚
𝑚𝑇

q − 𝜖𝑋k− 𝑚𝑋
𝑚𝑇

q + 𝑖0+

= − ∫ 𝑑𝑘𝑘
2𝜋

∫ 𝑑𝜃
2𝜋 𝑓k+ 𝑚

𝑚𝑇
q

𝜔 − 𝜖q
𝑚

𝑚𝑇
− 𝜖k

𝑚𝑇
𝑚𝑋

+ 𝑖0+ . (3.20)

The 𝑘-integral can then be evaluated numerically by applying the Sokhotski–
Plemelj theorem

∫ 𝑑𝑥 𝐹(𝑥)
𝑥 + 𝑖0+ = −𝑖𝜋𝐹(0) + 𝒫 ∫ 𝑑𝑥𝐹(𝑥)

𝑥 , (3.21)

where 𝒫[… ] is the integral Cauchy principal part.
As far as the q-integral for evaluating the exciton self-energy (3.11) is con-

cerned, it can be re-written in the following equivalent form by defining 𝑦 = 𝑞2:

Σ𝑋(𝜔) = ∫ 𝑑𝑦
4𝜋

𝑓√𝑦
𝒯−1(𝜔 + 𝜖√𝑦, √𝑦) . (3.22)

This integral has a pole when Re𝒯−1 = 0 = Im𝒯−1. Using a model involving
contact interactions in 2D means that such a pole always exists, and further-
more, it is a simple pole [436]. Thus, we define 𝑦∗ = 𝑦∗(𝜔) to be the pole of the
𝑇 matrix.

In this case, we can apply the residue theorem to write:

Σ𝑋(𝜔) = 𝒫 ∫ 𝑑𝑦
4𝜋

𝑓√𝑦
Re𝒯−1(𝜔 + 𝜖√𝑦, √𝑦) + 𝑖Im𝒯−1(𝜔 + 𝜖√𝑦, √𝑦)

− 𝑖𝜋Θ(𝑦∗)
4𝜋 sign [Im𝒯−1(𝜔 + 𝜖√𝑦∗ , √𝑦∗)]

× Res
𝑦∗

[
𝑓√𝑦

Re [𝒯−1(𝜔 + 𝜖√𝑦, √𝑦)]
] , (3.23)

where the principal part prescription is used in the vicinity of the pole at 𝑦∗,
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Fig. 3.1: Spectral function 𝐴𝑋(𝜔)
at temperature 𝑇 = 50 K≃ 0.17𝜀𝑇
for (a) 𝐸𝐹 = 0.04𝜀𝑇 and (b)
𝐸𝐹 = 0.8𝜀𝑇 . We extract the at-
tractive and repulsive polaron en-
ergy 𝐸𝐴,𝑅 as the peak position,
the linewidth 2Γ𝐴,𝑅 as the peak
FWHM, and the polaron spectral
weight 𝑍𝐴,𝑅,𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 as the area
under the peak. While at low dop-
ing (a) the trion-hole continuum is
merged with the attractive branch
and 𝑍𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 = 0.

and the residue can be evaluated as

Res
𝑦∗

[
𝑓√𝑦

Re [𝒯−1(𝜔 + 𝜖√𝑦, √𝑦)]
] =

𝑓√𝑦∗

∣
𝜕Re𝒯−1(𝜔 + 𝜖√𝑦, √𝑦)

𝜕𝑦 ∣
𝑦∗

. (3.24)

From the expression of the exciton self-energy, we can get the exciton
Green’s function (3.10). These results allow us to evaluate the absorption
and photoluminescence without any intrinsic homogeneous broadening for the
exciton. For absorption alone, the integration method illustrated here is un-
necessary, as one can conveniently shift the frequency to the complex plane,
𝜔 ↦ 𝜔 + 𝑖𝜂𝑋, where 𝜂𝑋 is related to the exciton homogeneous and inhomo-
geneous broadening, giving well-converged results. However, as explained in
Sec. 3.2.4, for the luminescence one has to resort to the integration method
illustrated above.

The effects of the exciton intrinsic decay time can be re-introduced at the
end of the calculation by convolving the photoluminescence with a Lorentzian
profile with broadening 2𝜂𝑋

̄𝑃𝑋(𝜔′) = ∫
∞

−∞
𝑑𝜔′𝑃𝑋(𝜔′) 1

𝜋
𝜂𝑋

(𝜔 − 𝜔′)2 + 𝜂2
𝑋

. (3.25)

3.3 Weak coupling regime
We now discuss the effect of temperature on the optical response. Results about
the zero temperature case can be found in Sec. 2.3.2. Fig. 3.2 (a,b,c) allows a
comparison between the doping-dependent properties of optical absorption at
zero and finite temperature. In this figure, the polaron energy 𝐸𝐴,𝑅 is evaluated
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Fig. 3.2: (a) Spectral function 𝐴𝑋(𝜔) for a fixed temperature 𝑇 = 50 K≃ 0.17𝜀𝑇 .
Dashed lines are the zero-temperature energies — for the trion-hole continuum, we
plot only the upper boundary 𝐸+ (2.43). Solid lines are the attractive (blue) and
repulsive (purple) branch energies at finite temperature. (b,c) Doping dependence of
the spectral weights 𝑍 and half linewidths Γ extracted from the spectral function at
𝑇 = 0 (dashed) and 𝑇 = 50 K≃ 0.17𝜀𝑇 (solid). (d,e,f) Same spectral properties, as
a function of temperature, for fixed doping of 𝐸𝐹 = 0.4𝜀𝑇 (solid lines and spectral
function), and 𝐸𝐹 = 0.04𝜀𝑇 (dot-dashed lines). In panels (c,f), the constant value
of Γ𝑅 at small doping or zero temperature is approximately given by the intrinsic
broadening 𝜂𝑋.

as the spectral function peak position, the linewidth 2Γ𝐴,𝑅 as the FWHM, and
the spectral weight as the area under the peak. We have used the location of
the spectral function minima as limits for the integrals evaluating the spectral
weights: If there is only one minimum, this is the upper (lower) bound for
evaluating 𝑍𝐴 (𝑍𝑅), while if there are two minima, these are the limits for
evaluating the trion-hole continuum spectral weight 𝑍𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑢𝑚 — see Fig. 3.1.
This criterion is the origin of the small discontinuity in the residues shown in
Figs. 3.2 and 3.6.

Both the energies and spectral weights of attractive and repulsive branches
have a very weak dependence on temperature in the regime 𝑇 ≲ 𝜀𝑇 . The branch
energies are slightly redshifted, while 𝑍𝐴 (𝑍𝑅) is slightly smaller (larger) com-
pared to the zero-temperature case. This small variation with temperature
is also observed in Fig. 3.2 (d,e) for fixed doping. The most important differ-
ence at finite temperature is the behavior of the trion-hole continuum, which
subsumes the attractive branch when 𝑇 ≳ 𝐸𝐹 , i.e., at sufficiently low doping
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Fig. 3.3: Spectral function 𝐴𝑋(𝜔) (a) for different dopings 𝐸𝐹 and at a fixed tem-
perature of 𝑇 = 50 K≃ 0.17𝜀𝑇 and (c) for different values of the temperature 𝑇 and
at a fixed doping 𝐸𝐹 = 0.1𝜀𝑇 . Lorentzian convolved photoluminescence ̄𝑃𝑋(𝜔) (b)
for different dopings 𝐸𝐹 and at a fixed temperature of 𝑇 = 50 K≃ 0.17𝜀𝑇 and (d)
for different values of the temperature 𝑇 and at a fixed doping 𝐸𝐹 = 0.1𝜀𝑇 . The
attractive branch photoluminescence peaks are rescaled to unity.

or sufficiently high temperature. This can be clearly seen from Fig. 3.2 (a),
where we no longer observe a sharp lower bound of the trion-hole continuum
at low doping because, at finite temperature, the unbound hole belonging to
the trion-hole continuum can thermally occupy any momentum state. How-
ever, the upper bound of the trion-hole continuum is still clearly visible and
approximately follows the zero-temperature expression 𝐸+ (2.43). Similarly,
for fixed doping in Fig. 3.2 (d), we observe that the trion-hole continuum is
only well-separated from the attractive branch at low temperatures.

Since the spectral weight of the trion-hole continuum is small, its mer-
ging with the attractive branch only slightly affects the attractive peak energy.
However, the disappearance of the attractive polaron quasiparticle strongly
modifies the attractive-branch linewidth 2Γ𝐴. In particular, we observe in
Fig. 3.2 (c) that Γ𝐴 has a striking non-monotonic dependence at low doping,
while it decreases towards its zero-temperature value (corresponding to the
intrinsic broadening 𝜂𝑋) when 𝐸𝐹 increases. Likewise, increasing the tem-
perature at fixed doping can substantially increase Γ𝐴 from 𝜂𝑋, as shown in
Fig. 3.2 (f). As we will discuss in Sec. 3.3.1, this behavior signals a crossover
from a coherent Fermi polaron regime to an incoherent trion-dominated regime,
where there no longer exists a well-defined attractive quasiparticle that is separ-
ated from the trion-hole continuum. The repulsive branch, on the other hand,
remains a polaron quasiparticle with a finite lifetime (broadening) for the dop-
ings considered in this work (𝐸𝐹 ≲ 𝜀𝑇 ). In particular, we see that temperature
does not change the nature of the repulsive branch in Figs. 3.2, but it can
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Fig. 3.4: (a) Unconvolved photoluminescence 𝑃𝑋(𝜔) and (b) Lorentzian convolved
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50 K≃ 0.17𝜀𝑇 , and for a frequency range around the attractive branch only. The
photoluminescence peaks are rescaled to unity. In panel (a) the vertical dashed lines
are the upper boundary of the trion-hole continuum 𝐸+ at zero temperature (2.43).

lead to a faster increase of the half linewidth Γ𝑅 with increasing doping — see
Fig. 3.2 (c).

We now discuss the shape of the optical response profiles and how they
evolve with either doping or temperature. Figs. 3.3 display both the absorption
and the Lorentzian convolved photoluminescence (3.25) — at fixed temperature

— Figs 3.3 (a,b) — and fixed doping — Figs 3.3 (c,d). The repulsive polaron
quasiparticle shows up approximately as a Lorentzian symmetric profile in both
absorption and photoluminescence spectra, with an FWHM that increases with
increasing 𝐸𝐹 . Note that the FWHM of the repulsive branch only has a weak
dependence on temperature in Fig. 3.3 (c,d) since 𝐸𝐹 has been fixed to a low
value such that the intrinsic width 2𝜂𝑋 dominates.

By contrast, the shape of the attractive branch is strongly modified by tem-
perature: in the low-temperature (high-doping) regime 𝐸𝐹 > 𝑇 , it is described
by a Lorentzian with FWHM 2𝜂𝑋, while for 𝐸𝐹 < 𝑇 , it develops a strongly
asymmetric shape with an exponential tail below the trion energy. This evolu-
tion in the asymmetry of the attractive branch once again indicates a crossover
from a Fermi-polaron quasiparticle to a continuum of trion states.

In Fig. 3.4 we further analyze the shape of the attractive peak at low doping
𝐸𝐹 ≲ 𝑇 , comparing the Lorentzian convolved photoluminescence ̄𝑃𝑋(𝜔) with
the “bare” photoluminescence 𝑃𝑋(𝜔), where we have removed the effects of
any intrinsic exciton broadening. In Fig. 3.4 (a), we observe a sharp onset of
the photoluminescence which approximately coincides with the upper bound-
ary of the trion-hole continuum at zero temperature, 𝐸+. Thus, according to
Eq. (2.43), it blueshifts with increasing doping. As shown in Fig. 3.4 (b), any
intrinsic broadening 𝜂𝑋 only smooths out the sharp onset, while it has little
effect on the position of the peak. When 𝐸𝐹 increases, the sharp onset tends
to disappear as the attractive peak redshifts and detaches from the trion-hole
continuum.
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Our calculated profiles for the attractive branch are in excellent quantitat-
ive agreement with recent experiments in the high-temperature (low-doping)
regime [349], as discussed in [359]. The exponential tail of the asymmetric
attractive peak has previously been modelled within a trion picture for the
case of photoluminescence [284, 304, 318, 437]. There, the tail is ascribed to
the kinetic energy of remaining electrons after the exciton within each trion
has decayed into a photon. This description in terms of electron recoil can be
formally derived from our theory in the limit of weak interactions, as we will
discuss in Sec. 3.3.2.

3.3.1 Loss of the attractive polaron quasiparticle: polaron
to trion-hole continuum crossover

In this section, we use the pole condition

𝐸𝐴,𝑅 = ReΣ𝑋(𝐸𝐴,𝑅) , (3.26)

to characterize the crossover from a well-defined polaron quasiparticle to a trion-
hole continuum with increasing temperature (decreasing doping). In order to
find the values of temperature and doping at which this crossover occurs, we
plot in Fig. 3.5 the local maximum value of the function 𝜔 − ReΣ𝑋(𝜔) for
𝜔 < 0 and identify the curve of doping versus fugacity 𝑧 = 𝑒𝛽𝜇 = 𝑒𝛽𝐸𝐹 − 1
at which this maximum value is zero. For 𝐸𝐹 ≲ 𝜀𝑇 , we find that this occurs
roughly when 𝑧 ∼ 1 and thus 𝐸𝐹 ∼ 0.7𝑇 . On the left of this curve, we lose
the attractive polaron quasiparticle, as the condition (3.26) cannot be satisfied,
i.e., 𝐸𝐴 − ReΣ𝑋(𝐸𝐴) ≠ 0. On the right of this curve, instead, the system is in
the polaron regime where (3.26) is satisfied.

In order to further illustrate this crossover, we compare the results for the
polaron energies, spectral weights, and linewidths extracted from the spectral
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Fig. 3.6: (a) Polaron ener-
gies 𝐸𝐴,𝑅, (b) spectral weights
𝑍𝐴,𝑅, and (c) half linewidths
Γ𝐴,𝑅, evaluated from the ex-
citon spectral function (solid lines)
and from quasiparticle expressions
(symbols). The attractive branch
stops to be a quasiparticle reson-
ance in the gray region at low
doping when 𝐸𝐹 ≲ 0.7𝑇 . In
panel (c) we plot Γ𝐴,𝑅 − 𝜂𝑋 in
order to compare the numerical
results with the analytical estim-
ate of the repulsive branch broad-
ening evaluated at 𝜂𝑋 = 0 at
small doping (dashed line), de-
rived within the virial expansion
in Sec. 3.3.2. Temperature is fixed
at 𝑇 = 50 K≃ 0.17𝜀𝑇 .

function with those obtained by treating the polaron as a well-defined quasi-
particle [141]. In the latter case, the polaron properties can be obtained directly
from the expression of the impurity self-energy. The quasiparticle properties
have already been discussed in Sec. 3.3.1, and are here proposed. Close to a
quasiparticle resonance, the exciton Green’s function can be approximated as

𝐺𝑋(𝜔) ≃
𝜔≃𝐸𝑗

𝑍𝑗
𝜔 − 𝐸𝑗 + 𝑖Γ𝑗

, (3.27)

where 𝑗 = 𝐴, 𝑅 is the two-branch index, and the quasiparticle energy 𝐸𝑗 is a
solution of Eq. (3.26). The pole weight or residue 𝑍𝑗 is

𝑍𝑗 = ⎛⎜
⎝

1 − 𝜕ReΣ𝑋(𝜔)
𝜕𝜔 ∣

𝐸𝑗

⎞⎟
⎠

−1

, (3.28)

and the polaron damping rate is

Γ𝑗 = −𝑍𝑗ImΣ𝑋(𝐸𝑗) . (3.29)

We compare the results for 𝐸𝑗, 𝑍𝑗, and Γ𝑗 obtained with both methods in
Fig. 3.6. We observe that the positions of the poles coincide to high accur-
acy with those of the spectral function maxima — see Fig. 3.6 (a). For the
repulsive branch, both the spectral weight and the broadening from the quasi-
particle theory are in good agreement with those evaluated from the spectral
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function, even when the linewidth is non-negligible. By contrast, for the at-
tractive branch, the results depart from one another when we approach the
(gray) region 𝐸𝐹 ≲ 0.7𝑇 where there is no attractive quasiparticle, and the
quasiparticle description breaks down since, according to Eq. (3.28), 1/𝑍𝐴 → 0
when max[𝜔 − ReΣ𝑋(𝜔)] = 0.

In the following section, we analyze the system properties well inside the
trion-hole continuum (gray) regime, where the attractive branch is no longer
a polaron quasiparticle. Here, for temperatures 𝑇 ≳ 𝐸𝐹 , we can apply a
systematic quantum virial expansion.

3.3.2 Virial expansion and connection to the trion wave
function at high temperature or low doping

As discussed, at high temperature or low doping such that the fugacity 𝑧 =
𝑒𝛽𝜇 ≲ 1, the attractive polaron quasiparticle disappears and the attractive
branch only consists of a broad continuum. In this limit, one can formally
apply a perturbatively exact quantum virial expansion in the fugacity [359].
We will now discuss how this expansion is related to the polaron theory, and
how this allows us to demonstrate that the trion picture results of Refs. [284,
349] are contained within the polaron formalism.

The virial expansion corresponds to a systematic expansion in powers of
the fugacity 𝑧 = 𝑒𝛽𝜇.In the high-temperature/low-doping regime 𝑇 ≳ 𝐸𝐹 , we
have 𝑧 ≲ 1, allowing us to perform an exact perturbative expansion around
the ideal Boltzmann gas limit of the medium (where 𝑧 ≃ 𝛽𝐸𝐹 ). The virial
expansion has been extensively used in other contexts. For instance, to obtain
thermodynamic quantities and quantum corrections to the equation of state
in condensed matter physics [438, 439], nuclear physics [440] and ultracold
gases [424, 441]. It has also been used to calculate response functions for
atomic gases [442–448], magnetic impurities [449], magnons [450] and Coulomb
systems [451].

When 𝑇 ≫ 𝐸𝐹 and 𝑧 ≃ 𝛽𝐸𝐹 ≪ 1, we can formally expand the Fermi
occupation function which then coincides with the Boltzmann distribution 𝑓k ≃
𝑧𝑒−𝛽𝜖k . Likewise, to leading order in 𝑧 we have 𝒯 ≃ 𝒯0

2. Within this expansion,
the exciton self-energy in Eq. (3.11) becomes

Σ𝑋(𝜔) ≃ 𝑧
𝒜 ∑

q
𝑒−𝛽𝜖q𝒯0(𝜔 + 𝜖q, q) . (3.30)

2 In principle, one can obtain the self-energy (3.11) for an arbitrary electron-exciton poten-
tial by determining the corresponding 𝑇 matrix. However, since the relevant energy scales
in TMDs (i.e., 𝑇 , 𝐸𝐹 , and the trion binding energy 𝜀𝑇 ) are smaller than that set by the
range of the potential, the 𝑇 matrix is well approximated by its low-energy 𝑠-wave form [452],
which does not depend on the nature of the potential.
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In other words, to the leading order in the fugacity, the self-energy is determined
by two-body interactions weighted by a Boltzmann distribution. Note that, at
the lowest order in 𝑧, the assumption made in Chevy’s ansatz of considering
only a single particle-hole excitation becomes exact since a higher number of
particle-hole excitations enter at higher order in 𝑧 since they require multiple
electrons to be scattered from the medium, where each medium excitation is
weighted by 𝑧 [447, 453]. This furthermore means that the assumption of
neglecting electron-electron interactions, if we work at the lowest order in 𝑧,
becomes also correct.

Focusing first on the attractive branch, in the regime 𝑇 ≲ 𝜀𝑇 , which is the
situation in most current experiments, the dominant contribution to the self-
energy arises from the pole of the 𝑇 matrix at the trion energy. We, therefore,
expand the 𝑇 matrix for 𝜔 ≃ −𝜀𝑇 + 𝜖𝑇 q, with the result

𝒯0(𝜔 + 𝜖q, q, ) ≃ 𝑍𝑇
𝜔 + 𝜖q − 𝜖𝑇 q + 𝜀𝑇 + 𝑖0+ , (3.31)

where 𝑍𝑇 ≡ 2𝜋𝜀𝑇 /𝑚𝑟. The 𝑇 matrix can be expressed in terms of the vacuum
(𝐸𝐹 = 0) trion wave function ̃𝜂(0)

q𝑟 for a contact electron-exciton interaction. In
our case, the relative momentum is q𝑟 = q𝑚𝑋/𝑚𝑇 , and therefore the kinetic
energy of the relative motion is 𝜖𝑟q𝑟

= 𝜖q − 𝜖𝑇 q. Using the expression for the
vacuum trion wave function in the center of mass frame, ̃𝜂(0)

q𝑟 = √𝑍𝑇
𝜀𝑇 +𝜖𝑟q𝑟

(see
Sec 2.3.3), we have

𝒯0(𝜔 + 𝜖q, q) ≃
|(𝜀𝑇 + 𝜖𝑟q𝑟

) ̃𝜂(0)
q𝑟 |2

𝜔 + 𝜖𝑟q𝑟
+ 𝜀𝑇 + 𝑖0+ . (3.32)

Here, the numerator is derived by manipulating the relation between the trion
wave function and 𝑍𝑇 , and is momentum independent. However, this is a spe-
cial property of the contact electron-exciton interaction, and Eq. (3.32) in fact
yields the correct generalization for an arbitrary electron-exciton interaction
that leads to the formation of a trion. In other words, it can be applied for
any realistic trion wave function. To see this, we note that the generalization
of Eq. (3.30) to arbitrary two-body transition operator ̂𝑇0 is

Σ𝑋(𝜔) ≃ 𝑧
𝒜 ∑

q
𝑒−𝛽𝜖q ⟨Q, q𝑟| ̂𝑇0(𝜔 + 𝜖q)|Q, q𝑟⟩ . (3.33)

We have defined the two-body state |Q, q𝑟⟩ ≡ ̂𝑐†
q𝑥†

0 |𝑣𝑎𝑐⟩ in terms of the re-
lative momentum q𝑟 and the total momentum Q which are related to the
electron momentum via q𝑟 + Q𝑚/𝑚𝑇 = q and the exciton momentum via
−q𝑟 + Q𝑚𝑋/𝑚𝑇 = 0.
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To evaluate the matrix element of the transition operator for an electron-
exciton interaction that yields a trion bound state, we use the relationship
between Green’s operator and the transition operator at energy 𝐸:

̂𝐺(𝐸) = ̂𝐺0(𝐸) + ̂𝐺0(𝐸) ̂𝑇 (𝐸) ̂𝐺0(𝐸) . (3.34)

Here, ̂𝐺(𝐸) = 1
𝐸−�̂�+𝑖0+ and ̂𝐺0(𝐸) = 1

𝐸−�̂�0−�̂�0𝑋+𝑖0+ (which, for the two-body
problem, should be evaluated in the canonical ensemble, effectively taking 𝜇 =
0). Close to the trion resonance, we can neglect the first term, and we, therefore,
have the spectral representation

⟨Q, q𝑟| ̂𝑇0(𝐸)|Q, q𝑟⟩
≃ ⟨Q, q𝑟| ̂𝐺−1

0 (𝐸) ̂𝐺(𝐸) ̂𝐺−1
0 (𝐸)|Q, q𝑟⟩

= (𝐸 − 𝜖q)2 ⟨Q, q𝑟| ̂𝐺(𝐸)|Q, q𝑟⟩

≃ (𝐸 − 𝜖q)2 | ̃𝜂(0)
q𝑟 |2

𝐸 + 𝜀𝑇 − 𝜖𝑇 Q + 𝑖0+

≃ (−𝜀𝑇 + 𝜖𝑇 Q − 𝜖q)2| ̃𝜂(0)
q𝑟 |2

𝐸 + 𝜀𝑇 − 𝜖𝑇 Q + 𝑖0+ , (3.35)

where in the third step we approximated the expectation value by inserting
the trion state, and in the last step we used the pole condition. Taking 𝐸 =
𝜔 + 𝜖q and using Q = q we see that Eq. (3.35) reduces to Eq. (3.32) which
demonstrates that it holds for arbitrary electron-exciton interactions that lead
to trion formation.

Using the approximation for the vacuum 𝑇 matrix, Eq. (3.32), the self-
energy in Eq. (3.30) becomes

Σ𝐴(𝜔 < −𝜀𝑇 ) ≃ 𝑧
𝒜 ∑

q
𝑒−𝛽𝜖q | ̃𝜂(0)

q𝑟 |2

× [𝒫
|𝜖𝑟q𝑟

+ 𝜀𝑇 |2
𝜔 + 𝜖𝑟q𝑟

+ 𝜀𝑇
− 𝑖𝜋𝜔2𝛿(𝜔 + 𝜖𝑟q𝑟

+ 𝜀𝑇 )] , (3.36)

where 𝒫 denotes the principal value. This explicitly relates the self-energy
calculated within the polaron theory to the trion wave function in the regime
where the fugacity is small, and importantly it applies for any realistic trion
wave function. A similar approach involving trion wave functions has been used
to calculate absorption [421]. Note that the real part diverges logarithmically
when 𝜔 + 𝜀𝑇 → 0−, and therefore it cannot in general be neglected close to the
onset of the attractive branch.

For the repulsive branch, we can again apply Eq. (3.30) to find the leading
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contribution at small fugacity. In the regime where 𝐸𝐹 ≪ 𝜀𝑇 , the width of
the repulsive branch is much smaller than the trion binding energy, and to
the lowest order in the fugacity, we can simply evaluate the repulsive polaron
self-energy within the repulsive branch by taking 𝜔 = 0. We then use the fact
that, to logarithmic accuracy, the logarithmic behavior at small momentum is
generic for the vacuum 𝑇 matrix for any short-range interaction [269, 452] and
thus we have

Σ𝑅(0) ≃ 𝑧
𝒜

2𝜋
𝑚𝑟

∑
q

𝑒−𝛽𝜖q

ln(𝜀𝑇 /𝜖𝑟q𝑟
) + 𝑖𝜋

≃ 𝑧(𝑚/𝑚𝑟)𝑇
𝜋2 + ln2(𝑒𝛾E𝛽𝜀𝑇 )

[ln(𝑒𝛾E𝛽𝜀𝑇 ) − 𝑖𝜋] , (3.37)

where 𝛾E ≃ 0.5772 is the Euler-Mascheroni constant. Here, we have evaluated
the integral by noting that the integral is dominated by 𝜖q ∼ 1/𝛽 for small
𝛽𝜀𝑇 , and the inclusion of 𝛾E originates from expanding the integral to the first
subleading order in 𝛽𝜀𝑇 .

The self-energies in Eqs. (3.36) and (3.37) can now be directly inserted
into the Dyson equation (3.10) to yield the absorption in Eq. (3.14) or the
photoluminescence in Eq. (3.19). To be explicit, within the virial expansion we
have the exciton spectral function

𝐴𝑋(𝜔) = − 1
𝜋 Im [Θ(−𝜔 − 𝜀𝑇 )

𝜔 − Σ𝐴(𝜔) + 1
𝜔 − Σ𝑅(0)] . (3.38)

This yields a broad continuum for the attractive branch, where the spectral
weight vanishes at 𝜔 +𝜀𝑇 → 0−, and when we are far below this onset, we have
Σ𝐴(𝜔)/𝜔 → 0. Therefore we have an exponential tail modulated by the trion
wave function:

𝐴𝑋(𝜔) ≃
𝜔→−∞

𝑧 𝑒𝛽(𝜔+𝜀𝑇 ) 𝑚𝑇
𝑚𝑋 ∣ ̃𝜂(0)

√2𝑚𝑟|𝜔+𝜀𝑇 |∣
2

. (3.39)

The peak of the absorption is between the onset and the tail, and therefore it
will not correspond to the vacuum trion energy. This can lead to an overestim-
ate of the trion binding energy in experiments [349]. From Eq. (3.37), we find
that the repulsive branch is a Lorentzian of width Γ𝑅 = 𝜋(𝑚/𝑚𝑟)𝐸𝐹 /[𝜋2 +
ln2(𝑒𝛾E𝛽𝜀𝑇 )]. We have compared in Fig. 3.6(c) this expression against the
numerical evaluation of the repulsive branch half linewidth Γ𝑅 − 𝜂𝑋 (where
we have removed the effect of the intrinsic exciton lifetime), finding excellent
agreement at low doping, inside the region of validity of the virial expansion.



100 Weak coupling regime

For the photoluminescence, we find

𝑃𝑋(𝜔) ≃ − 𝑍0
𝑍𝑖𝑛𝑡

1
𝜋 Im [Θ(−𝜔 − 𝜀𝑇 )𝑒−𝛽𝜔

𝜔 − Σ𝐴(𝜔) + 1
𝜔 − Σ𝑅(0)] , (3.40)

where we have used the fact that the width of the repulsive branch is much
smaller than the temperature, and thus the repulsive branch is very weakly
modified by the Boltzmann factor.

Equation (3.40) is a key result of this work. We see that the repulsive branch
is a Lorentzian peak at 𝜔 = Re Σ𝑅(0), where both the width and position scale
with 𝐸𝐹 , similar to Fermi polaron theories [261, 380, 384]. However, for the
attractive branch, we find that we cannot satisfy the condition 𝜔 = Re Σ𝐴(𝜔),
indicating that there is no attractive polaron quasiparticle in the limit 𝑧 ≪ 1,
unlike for the quantum degenerate case 𝑧 > 1 — see Sec. 3.3.1. Instead, we
have an asymmetric continuum of trion states, with a sharp onset at 𝜔 = −𝜀𝑇
and an exponential tail involving trions and recoil electrons at finite relative
momentum, where

𝑃𝑋(𝜔) ∝ 𝑒𝛽𝜔𝑚/𝑚𝑋/𝜔2 (3.41)

for −𝜔 ≫ 𝜀𝑇 in agreement with Ref. [284]. Moreover, in the limit of an infinitely
heavy exciton, we see that the tail in PL loses its exponential dependence,
becoming a power law, unlike in the case of absorption. The shape of the
onset is dictated by 2D resonant electron-exciton scattering at the trion energy,
leading to a universal logarithmic divergence in the self-energy:

Σ𝐴(𝜔 ≲ −𝜀𝑇 ) ≃ −𝑧𝜀𝑇 ( 𝑚𝑇
𝑚𝑋

)2 [ln (−𝑒𝛾E𝛽 𝑚𝑇
𝑚𝑋

(𝜔 + 𝜀𝑇 )) + 𝑖𝜋] . (3.42)

Previous trion theories of PL [284, 318, 349] focussed on the imaginary part
of the self-energy, as we show below, and thus appear to have missed this
divergence in the real part.

3.3.3 Comparison with experiments
Recently, the PL originating from a MoSe2 monolayer was measured for the
case of a hole doping (per valley) of 𝑛ℎ ≃ 0.5 × 1011 cm−2 and for lattice tem-
peratures 𝑇 = 5–50K [349], corresponding to fugacities in the range 𝑧 ≃ 1–0.1.
Therefore, apart from the very lowest temperatures explored, the experiment
was well within the regime of validity of the virial expansion. To compare our
spectra calculated using Eq. (3.40), we apply a Lorentzian broadening of 1 meV,
matching the experimental linewidth [349]. We start by analyzing the distance
between the peaks of the attractive and repulsive branches which, primarily due
to the non-trivial shape of the attractive branch, does not correspond to 𝜀𝑇
even at very low doping. Fig. 3.7 (a) shows our theoretical result for two values
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P X
Fig. 3.7: (a) Frequency differ-
ence between attractive and re-
pulsive peaks as a function of tem-
perature. The black dots are
the experimental peak positions
of Ref. [349]. The blue and
red shaded regions correspond to
the results of the virial expan-
sion using binding energies 𝜀𝑇 =
22.5 meV and 23.5 meV. The solid
lines correspond to the experi-
mental hole density 𝑛ℎ = 0.5 ×
1011 cm−2, and the lower and up-
per bounds of each shaded region
to densities of 0.25 × 1011 cm−2

and 1011 cm−2. (b) Comparison
between theoretical (dark) and ex-
perimental [349] (light) PL spec-
tra for the attractive branch at dif-
ferent lattice temperatures. The
theoretical spectra were obtained
by convolving Eq. (3.40) with a
Lorentzian of width 1 meV [349]
and using 𝜀𝑇 = 22.5 meV, 𝑛ℎ =
0.5×1011 cm−2, and 𝑚𝑋 = 1.15𝑚0
and 𝑚 = 0.59𝑚0. The experi-
mental PL has been shifted hori-
zontally to match the peaks of the
virial expansion.

of the trion binding energy, 𝜀𝑇 = 22.5 meV and 23.5 meV, and for a range of
densities. Even though this is noticeably below the quoted experimental value
of 25 meV [321, 349], we see that the virial expansion correctly reproduces the
splitting between the peaks when we take 𝜀𝑇 = 22.5 meV. Thus, the fact that
the attractive branch peak in PL does not correspond to the onset implies that
the trion binding energy is likely to have been overestimated by as much as
10% in previous works3. We expect corrections to this result to be at most
comparable to the Fermi energy [357] which for this experiment is 0.4 meV.

Fig. 3.7 (b) shows the comparison of our results for the attractive branch
PL with experiments, using the extracted 𝜀𝑇 . We see that the agreement
is essentially perfect at high temperature, with small discrepancies at lower
temperatures. Since our theory is fully analytic and contains no free parameters,
this is a remarkable agreement. The remaining discrepancy could potentially
be due to the temperature of the system being different from that of the crystal

3 This is also consistent with Ref. [437] which has shown that the extracted trion binding
energy is sensitive to the shape of the trion peak.
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lattice at low 𝑇 .

3.3.4 Connection to the trion theory of electron recoil
Finally, we discuss how our theory relates to the calculation of electron recoil
in previous trion-picture calculations such as in Refs. [284, 318]. As we shall
demonstrate, that theory corresponds to a weak-interaction limit of the low
doping/high-temperature version of our polaron theory. To see this, we take
the limit of a small self-energy in the Dyson equation in Eq. (3.10) as follows:

𝐺𝑋(𝜔) ≃ 1
𝜔 + 1

𝜔2 Σ𝑋(𝜔) . (3.43)

Since the 1/𝜔 terms only have a pole at 𝜔 = 0 (i.e., at the bare exciton energy),
the attractive branch is obtained from the imaginary part of the self-energy.
The detailed balance equation (3.19) then implies that the corresponding PL
from the attractive branch is

𝑃𝐴(𝜔) ≃ − 1
𝜋

𝑍0
𝑍𝑖𝑛𝑡

𝑒−𝛽𝜔

𝜔2 ImΣ𝐴(𝜔)

≃ 𝑍0
𝑍𝑖𝑛𝑡

𝑧
𝒜 ∑

q
𝑒−𝛽(𝜔+𝜖q)| ̃𝜂(0)

q𝑟 |2𝛿(𝜔 + 𝜖𝑟q𝑟
+ 𝜀𝑇 )

≃ 𝑍0
𝑍𝑖𝑛𝑡

𝑧 𝑒
𝛽(𝑚𝜔+𝑚𝑇 𝜀𝑇 )

𝑚𝑋 ∣ ̃𝜂(0)
√2𝑚𝑟|𝜔+𝜀𝑇 |∣

2
Θ(−𝜔 − 𝜀𝑇 ) , (3.44)

where we used Eq. (3.36). Up to frequency-independent prefactors, this pre-
cisely matches the result of Refs. [284, 318]. Thus, the trion-picture PL is
already contained within the polaron picture. However, as we have already
argued, the trion picture calculation assumes that we are in a weakly inter-
acting limit where the self-energy is much smaller than the frequency. This
assumption manifestly breaks down close to the onset of the attractive branch,
where the real part of the self-energy diverges, and hence the previous trion pic-
ture calculation fails to correctly describe the onset and shape of the attractive
branch. On the other hand, it correctly identifies the exponential tail of the
PL, which is dominated by the imaginary part of the self-energy.

For the repulsive branch, the trion picture again uses the weak-interaction
limit of the Dyson equation (3.43), this time neglecting even the second term
on the right-hand side. This results in

𝑃𝑅(𝜔) ≃ 𝑍0
𝑍𝑖𝑛𝑡

𝛿(𝜔), (3.45)

with a small correction that counteracts the oscillator strength transferred to
the attractive branch [318]. We see that the trion picture fails to describe
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the Lorentzian shape of the repulsive polaron, which arises from the exciton-
electron scattering states as well as the full Dyson series.

3.4 Strong light-matter coupling
As done in Sec. 2.3.6, to describe the light-matter coupled system, we add
two terms describing cavity photons and the photon-exciton interaction to the
Hamiltonian (3.1):

�̂� = �̂�0 + �̂�0𝑋 + �̂�0𝐶 + �̂�𝑖𝑛𝑡 + �̂�𝑋𝐶 (3.46a)

�̂�0𝐶 = ∑
k

𝜖𝐶k ̂𝑎†
k ̂𝑎k (3.46b)

�̂�𝑋𝐶 = Ω
2 ∑

k
( ̂𝑥†

k ̂𝑎k + H.c.) . (3.46c)

Photons are described by the bosonic creation operator ̂𝑎†
k with dispersion

𝜖𝐶k = 𝛿+k2/2𝑚𝐶 (1.31), where 𝛿 is the photon-exciton energy detuning (1.38).
In order to derive the photon Green’s function and the optical absorption in
the strong coupling regime, one can follow the same procedure employed in
Sec. 1.5.3. The difference is that now we formulate a variational ansatz for the
time-dependent photon operator, with an analogous form to (3.4):

̂𝑎0(𝑡) ≃ 𝛼0(𝑡) ̂𝑎0 + 1
𝒜 ∑

k,q
𝜑kq(𝑡) ̂𝑐†

q ̂𝑐k ̂𝑥q−k + 𝜑0(𝑡) ̂𝑥0 . (3.47)

We neglect the dressing of the photon operator by a particle-hole excitation
1
𝒜 ∑k,q 𝛼kq(𝑡) ̂𝑐†

q ̂𝑐k ̂𝑎q−k. This term involves photon recoil and therefore implies
energies far off-resonance from the exciton and trion energies because of the
extremely small mass of the photon.

To obtain the eigenvalue problem for the light-matter coupled system, we
introduce the error operator corresponding to the photon ̂𝑒(𝑡) = 𝑖𝜕𝑡 ̂𝑎0(𝑡) −
[ ̂𝑎0(𝑡), �̂�] and minimize the error function, Eq. (3.5), with respect to the vari-
ational coefficients 𝛼∗

0(𝑡), 𝜑∗
kq(𝑡), and 𝜑∗

0(𝑡). Considering the stationary solu-
tions, we find

𝐸𝜑0 = Ω
2 𝛼0 − 𝑣

𝒜2 ∑
k,q

𝑓q(1 − 𝑓k)𝜑kq (3.48a)

𝐸𝜑kq = 𝐸𝑋kq𝜑kq − 𝑣𝜑0 − 𝑣
𝒜 ∑

k′
(1 − 𝑓k′)𝜑k′q (3.48b)

𝐸𝛼0 = 𝛿𝛼0 + Ω
2 𝜑0 , (3.48c)
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Fig. 3.8: Energy and detuning dependence of the photon spectral function 𝐴𝐶(𝜔)
in the light-matter strongly coupled system describing a TMD monolayer with an
electron doping 𝐸𝐹 = 0.1𝜀𝑇 (panel (a) and (b)) or 𝐸𝐹 = 0.8𝜀𝑇 (panel (c) and (d)),
embedded in a microcavity at a finite temperature 𝑇 = 10𝐾 ≃ 0.034𝜀𝑇 (panel (a) and
(c)) and 𝑇 = 70𝐾 ≃ 0.24𝜀𝑇 (panel (b) and (d)). The black dots are the LP, MP, and
UP branches extracted from the three-coupled oscillator model (see text). The Rabi
splitting is Ω = 20meV≃ 0.8𝜀𝑇 . Here, we have used a broadening of 𝜂𝐶 = 1meV≃
0.04𝜀𝑇 for the photon and ̄𝜂𝑋 = 0.2𝜂𝐶 for the matter component.

where we have again neglected terms that vanish in the limit Λ → ∞. These
equations reduce to those for the exciton polaron, Eq. (3.6), when we take
Ω = 0 and 𝛼0 = 0.

We plot in Fig. 3.8 the finite-temperature photon spectral function at nor-
mal incidence as a function of energy and detuning 𝛿. When 𝑇 ≪ 𝐸𝐹 ≲ Ω,
the strong coupling to light leads to three polariton branches, LP, MP, and
UP, as can be seen in Fig. 3.8 (a,c). Remarkably, we find that a strong enough
light-matter coupling can produce well-defined polariton quasiparticles (where
Re ̃𝐺−1

𝐶 (𝜔) = 0) for the lower and middle branches even when there is no at-
tractive polaron quasiparticle and Eq. (3.26) is not satisfied. However, once
the linewidths 2Γ𝐴,𝑅 approach Ω𝐴,𝑅, the energy splitting between branches
closes, indicating a loss of strong coupling. We observe this in the low-doping
regime for LP and MP (Fig. 3.8 (b)), and in the high-doping regime for MP
and UP (Fig. 3.8 (c,d)). Within the three-coupled oscillator model (2.55b),
this transition from weak to strong light-matter coupling approximately occurs
when 2Γ𝐴,𝑅 ≳ Ω𝐴,𝑅, as expected, though there are small deviations when the
attractive branch is no longer a well-defined polaron quasiparticle. The effect
of temperature on this transition can be easily accounted for by considering its
effect on the quasiparticle linewidths and spectral weights.

The results shown in Fig. 3.9 illustrate that, when the photon is at resonance
with the repulsive branch (Fig. 3.9 (a)), the increase of the repulsive branch
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Fig. 3.9: Doping dependence
of the photon spectral function
𝐴𝐶(𝜔) at 𝑇 = 50K≃ 0.17𝜀𝑇 for
a photon in resonance with either
the repulsive branch 𝐸𝑅 (a) or the
attractive branch 𝐸𝐴 (b). The
black dashed lines are the po-
lariton branches obtained with a
three-coupled oscillator model at
𝑇 = 0 (see Fig. 2.12), while the
black dotted lines at 𝑇 = 50 K≃
0.17𝜀𝑇 . The Rabi splitting is Ω =
10 meV∼ 0.4𝜀𝑇 . Here, 𝜂𝐶 =
1meV≃ 0.04𝜀𝑇 and ̄𝜂𝑋 = 0.2𝜂𝐶 .

linewidth with temperature leads to a faster closing between the UP and MP
spitting with doping. On the contrary, when instead the photon is at resonance
with the attractive branch (Fig. 3.9 (a)), at finite temperature, the increase of
doping sharpens the attractive branch absorption line towards a regime where
the linewidth recovers the value of ̄𝜂𝑋. Because of this, while at low doping the
system can be in the weak coupling regime if the temperature is large enough
and Ω small enough, increasing the doping always leads to a finite splitting
between the LP and MP.

3.5 Conclusions and perspectives
In this chapter, we have studied the optical properties of a doped two-
dimensional semiconductor at a finite temperature using a Fermi-polaron ap-
proach involving a single excitation of the fermionic medium. Our results reveal
that the attractive branch can experience a smooth transition from a regime
where it is a well-defined quasiparticle to a regime where is subsumed into a
broad continuum of trion-hole scattering states. This crossover results in a
strong change in the spectral lineshape and can be driven by either decreas-
ing doping or increasing temperature, but it cannot occur at zero temperature.
While the Fermi polaron theory is able to capture both limits, theories based
on the trion wave function necessarily only apply in the limit where there is
no well-defined quasiparticle. In particular, we formally show that the trion
theory corresponds to a weak-interaction limit of our finite-temperature Fermi
polaron theory.

In the high-temperature and low-density limit, we have applied a controlled
virial expansion, which we show corresponds to a thermally incoherent limit
of Fermi-polaron theory where the attractive polaron quasiparticle no longer
exists. Our theory has the advantage of being fully analytic, and it yields
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excellent agreement with experiments without the need for fitting parameters.
Our approach is very generic and can potentially be applied to a broad range of
systems, for instance emerging designer materials such as moiré superlattices
where signatures of polaron physics have already been observed [454–456].

In the regime of strong light-matter coupling, we have shown how the tem-
perature can modify the properties of the Fermi polaron-polaritons. We demon-
strate that the strong-to-weak coupling crossover observed at finite temperature
for the attractive branch at low enough doping and the repulsive branch in the
high doping regime can be explained in terms of the linewidths and spectral
weights of the two branches.

In future studies, it would be interesting to investigate how the quasiparticle
transition of the attractive branch, driven by either temperature or doping,
would affect the interactions between exciton impurities. In particular, com-
mon descriptions of polaron-polaron interactions use Landau’s theory of dilute
solutions [457], which assumes well-defined quasiparticles. Such interactions
could, for instance, be measured using coherent multidimensional spectroscopy
on gated 2D materials, similar to recent experiments on intrinsically doped
samples [458].



Chapter 4

Indistinguishable carrier polarons

This chapter investigates the optical absorption spectrum of doped 2D semicon-
ductors in the spin-valley polarized limit when the Fermi sea consists of carriers
that are indistinguishable from those forming the exciton. This results in a three-
body trion state with 𝑝-wave symmetry. To understand the implications of this,
we use a polaron description to evaluate the system’s optical properties across a
range of densities. Our findings are compared to the scenario where the Fermi
sea includes distinguishable carriers, resulting in an 𝑠-wave trion ground state.
The results discussed in this chapter have been published in the following pub-
lication:

[356] A. TIENE, J. LEVINSEN, J. KEELING, M. M. PARISH and F. M. MARCHETTI:
Effect of fermion indistinguishability on optical absorption of doped two-dimensional
semiconductors,
Phys. Rev. B 105, 125404 (2022).

4.1 Spin-valley polarized limit
In Chs. 2 and 3, we investigated how the optical spectrum of a doped semicon-
ductor evolves when doping increases in the specific case where the optically
excited exciton is dressed by the excitations of a distinguishable fermionic me-
dium. We refer to this scenario as the distinguishable carrier polaron (DCP).
In this chapter, we aim to study the opposite case, where the free carriers are
indistinguishable from one of the carriers forming the exciton. We will refer to
this scenario as the indistinguishable carrier polaron (ICP). In order to realize
experimentally this limit it is necessary to reach a spin-valley fully polarized
limit. Indeed, as discussed in Sec. 1.3, the two valley conduction and valence
bands of TMD monolayers are energetically degenerate, thus leading to the

https://link.aps.org/doi/10.1103/PhysRevB.105.125404
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formation of two distinct Fermi seas when the material is doped — see Sec. 2.1.
As discussed in Sec. 2.3.2, for Mo-based monolayers (and W-based monolayers
at low doping), the experimental results [220, 321] can be interpreted in terms
of the exciton dressing by a distinguishable Fermi sea, even if multiple Fermi
seas are generated. For this reason, the DCP scenario has so far received most
of the attention from theoretical studies [261, 264, 265, 321].

The valley energy degeneracy can be lifted by applying a small magnetic
field, via the Zeeman effect. For TMD monolayers, there are three contributions
to the Zeeman shift in [459–462]. One contribution comes from the spin
magnetic moment, shifting the bands by a quantity Δ𝑠 = 2𝑠𝑧𝜇𝐵𝐵, where
𝜇𝐵 = 𝑒/2𝑚0 is the Bohr magneton and 𝑠𝑧 the spin component of the band.
Note that, while this effect contributes to lifting the valley degeneracy, it does
not affect the excitonic optical resonance since optical excitation preserves spin,
and so the effect on the initial and final state is the same. On the other hand,
the atomic orbital moment affects differently the valence and conduction bands.
In particular, the orbital composition of the conduction band is mainly from
𝑑−orbitals with 𝑚 = 0 and differs from the composition of the edges of the
valence bands, which are mainly composed by 𝑑−orbital with 𝑚 = 2 (𝑚 = −2)
for the K (K´) valley. Thus, only the valence bands are shifted, by a quantity
Δ𝑚 = 𝑚𝜏𝜇𝐵𝐵, where 𝜏 is the valley index, 𝜏 = 1 for K and 𝜏 = −1 for K´.
Finally, the Zeeman shift due to the valley magnetic moment shifts the entire
valley. This shift is given by Δ𝑣 = 𝑔𝑖𝜏𝜇𝐵𝐵, where 𝑔𝑖 = 𝑚0/𝑚𝑖 is the valley
𝑔- factor for band 𝑖 (𝑖 = 𝑐, 𝑣). Taking this into account, the global effect of
Zeeman splitting on the exciton resonance is

Δ𝑋(𝐵) = −𝜏(2 − Δ𝑔)𝜇𝐵𝐵 , (4.1)

where Δ𝑔 = 𝑔𝑐 − 𝑔𝑣. In the limit of identical electron and hole effective masses
Δ𝑔 = 0 and thus, the total Zeeman shift between the K and K´ exciton depends
only on the orbital magnetic moment and increases linearly with the magnetic
field at a rate approximately of −4𝜇𝐵 ≈ −230𝜇eVT−1 [459–463], i.e., typical
effective 𝑔-factor is 𝑔 ∼ −4 . This result is in agreement with both ab initio
calculations and experimental findings — see Ref. [464] and references therein,
which obtained a 𝑔-factor ranging between −3 and −3.5 in Mo- and W-based
TMD monolayers.

Further, there are other effects induced by a perpendicular magnetic field
that affect the optical response of a doped TMD monolayer. The presence
of a magnetic field generates the quenching of the kinetic energy spectrum of
electrons and holes to a set of degenerate Landau levels [465], separated by
the Landau quantization energy 𝜔𝐵 = 𝑒𝐵/𝑚𝑐 [322, 466], known as Larmor
frequency. Owing to heavy effective carrier masses and reduced screening, the
Larmor frequency in a TMD monolayer is much smaller than the binding ener-
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Fig. 4.1: Schematic representation of the band structure of doped MoX2 and WX2
monolayers in the presence of Zeeman splitting induced by a perpendicular magnetic
field. The DCP and ICP configurations can be realized thanks to the optical selection
rules. Note that while MoX2 monolayers allow DCP and ICP on both the 𝑛-doped
and 𝑝-doped sides, for WX2 monolayers, ICP can only be realized with 𝑝-doping.

gies of the exciton even at high magnetic fields up to 𝐵 ∼ 10 T [220]. In this
regime, the magnetic field is too weak to alter the structure of excitons [322],
and as such it only influences the free charges in the system. Still, the interplay
between Coulomb interaction and magnetic field can influence the excitonic
resonance inducing a diamagnetic shift, which is anticipated to increase quad-
ratically with field Δ𝐸𝑑𝑖𝑎 = 𝑒2⟨𝑟2

1𝑠⟩𝐵2/8𝜇 [463, 467], where ⟨𝑟2
1𝑠⟩ is the mean

squared radius of the 1𝑠 exciton. The large reduced mass and small exciton
radius in the TMD monolayer results in a small diamagnetic shift coefficient of
about 𝜎 ≈ 0.32 𝜇eVT−2 [463], compared with the previously reported 𝑔-factor
𝑔 = −4𝜇𝐵 ≈ −230𝜇eVT−1 As such, in TMD monolayers, for moderate values
of the magnetic field 𝜔𝐵 ≲ 𝜀𝑇 , the most relevant magnetic effect on the exciton
resonance is the Zeeman splitting of the conduction and valence bands, while
the Landau quantization of the electronic states mainly influences the excess
charge. Lifting valley degeneracy enables to control of the valley polarization
and allows for the unequivocal realization of either the ICP or DCP scenario
described at the beginning of this section. At sufficiently small doping, it is
possible to accommodate the excess charge entirely in the lowest conduction
band, as illustrated in Fig. 4.1. Because of the optical selection rules, we can
selectively create an exciton in one of the two valleys to reproduce either the
ICP or DCP scenario — see Fig. 4.1. While both the DCP and ICP config-
urations can be achieved by 𝑛- and 𝑝-doping Mo-based TMD monolayers, in
W-based monolayers, the ICP configuration is only possible on the 𝑝-doped
side. Full spin valley polarisation has been achieved in both WSe2 [461, 462]
and MoSe2 [459, 460] experiments. Indeed, a high degree of valley polariz-
ation has been realized at modest magnetic fields, up to an electron density
𝑛1 ≃ 1.6 × 1012 cm−2 [468] (corresponding to a Fermi energy 𝐸𝐹 ≃ 15 meV).
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For III-V and II-VI compound quantum wells, the Zeeman splitting is smal-
ler than the one in TMD monolayers, i.e., here 𝑔-factors for GaAs quantum
well are in the range 𝑔 ∈ [−0.44 ∶ 0.4] [469] — different values depend mostly
on the quantum well width. Further, smaller carrier effective masses and a
smaller exciton binding energy with respect to TMD monolayers result in a
Larmor frequency that can be larger than the exciton binding energy even for
small values of the magnetic field. In this regime, the excitonic spectra are
dominated by Landau level-associated peaks [470]. In the opposite limit, when
𝑤𝐵 < 𝜀𝑋, large values of the exciton radius imply a large diamagnetic shift of
the excitonic resonance [470] compared with the small Zeeman splitting. This
means that it is difficult to achieve a spin-polarized regime without introdu-
cing other relevant orbital effects. Note that, in the strong magnetic field limit
when the distance between Landau levels becomes large, all particles in the
trion complex are confined to their lowest Landau levels and have their spins
aligned with the magnetic field [276].

4.2 Model
We seek to model the spectral response of a doped semiconductor, where one
of the two charges forming the exciton is identical to those forming the Fermi
sea. As such, we write the following Hamiltonian, describing only two species
of charges, each belonging to a single (spin-valley polarized) conduction and
valence band :

�̂� = �̂�0 + �̂�𝑒ℎ + �̂�𝑒ℎ𝐶 (4.2a)

�̂�0 = ∑
k𝜎

𝜖𝜎k ̂𝑐†
𝜎k ̂𝑐𝜎k + ∑

k
𝜖𝐶k ̂𝑎†

k ̂𝑎k (4.2b)

�̂�𝑒ℎ = − 𝑣
𝒜 ∑

kk′q
̂𝑐†
1k ̂𝑐†

2k′ ̂𝑐2k′+q ̂𝑐1k−q (4.2c)

�̂�𝑒ℎ𝐶 = 𝑔√
𝒜

∑
kq

( ̂𝑐†
1 q

2 +k ̂𝑐†
2 q

2 −k ̂𝑎q + h.c.) . (4.2d)

Here, ̂𝑐𝜎=1,2k and ̂𝑐†
𝜎=1,2k are the majority (𝜎 = 1) and minority (𝜎 = 2) species

annihilation and creation operators, respectively. These have a dispersion 𝜖𝜎k =
k2/2𝑚𝜎 (1.1), where 𝑚𝜎 is the effective mass and k is the 2D momentum. Note
that, throughout this chapter, energies are measured with respect to the band-
gap energy. We denote the density of the majority species as 𝑛1 and thus the
Fermi energy is (2.1),

𝐸𝐹 = 𝑘2
𝐹

2𝑚1
= 2𝜋

𝑚1
𝑛1 , (4.3)
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where 𝑘𝐹 is the Fermi momentum. For electron doping, 𝜎 = 1 are conduction
electrons and 𝜎 = 2 are valence holes. For hole doping, 𝜎 = 1 are valence holes
and 𝜎 = 2 are conduction electrons. The only distinction between these two
cases is the assignment of masses 𝑚1,2, so we can swap between the two by
interchanging 𝑚1 ↔ 𝑚2.

In order to considerably simplify our calculations, in �̂�𝑒ℎ (4.2c) we approx-
imate the electron-hole Coulomb interaction as a contact interaction of strength
𝑣 > 0. This limit describes the case where interactions between charges are
strongly screened. In such a case, intraspecies interactions vanish since the
relative wave function between identical fermions must have a node at zero sep-
aration. One may wonder whether the use of contact interactions — in place
of Coulomb (1.22b), or screened Coulomb (1.29) interactions — significantly
changes when a 𝑝-wave trion state exists. However, as we show in Sec. 4.3, in
the zero-density limit, our model predicts nearly the same critical mass ratio
for trion formation [374, 471] as found for the Coulomb problem [271, 272]. As
such, we expect that the use of contact interactions will allow us to faithfully
capture the qualitative features of the ICP scenario. Because our model does
not include same species interactions, we are neglecting band-gap renormaliz-
ation effects induced by doping [240–243]. However, our predictions for the
energy difference between repulsive and attractive branches are accurate [265].

The operators ̂𝑎k and ̂𝑎†
k describe the cavity photon mode with a dispersion

𝜖𝐶k = 𝜖𝐶0 + k2/2𝑚𝐶 (1.31), where 𝑚𝐶 is the photon mass (1.32) and k is the
in-plane momentum. These photons couple to the matter excitations via the
term �̂�𝑒ℎ𝐶 in Eq. (4.2d). We have taken the strength 𝑔 of the coupling to be in-
dependent of momentum and applied the rotating wave approximation. These
approximations are appropriate when the band-gap energy greatly exceeds the
other energy scales in the problem.

4.2.1 Renormalization of contact interactions
The use of contact interactions and momentum-independent light-matter coup-
ling introduces UV divergences — see, e.g., Ref [371]. These can be regularized
by introducing a UV cutoff Λ, i.e., assuming that 𝑣 and 𝑔 are non-zero only up
to a momentum Λ, which is typically set by the electronic band structure. As
already discussed in Sec. 1.5.2 and Sec. 2.3.2, results independent of the short-
distance physics can be obtained by then renormalizing both coupling strengths
𝑣 and 𝑔 so that observable quantities do not depend on the cutoff, as also shown
in recent calculations employing this same model to study polariton-electron
scattering [472, 473].

The electron-hole interaction strength 𝑣 can be renormalized by relating it
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to the physically measurable exciton binding energy, 𝜀𝑋 > 0, via [429]:

1
𝑣 = 1

𝒜
Λ

∑
k

1
𝜀𝑋 + ̄𝜖k

, (4.4)

where ̄𝜖k = 𝜖1k + 𝜖2k = k2/2𝜇, with 𝜇 = (1/𝑚1 + 1/𝑚2)−1 being the reduced
mass. When Λ → ∞, 𝑣−1 ∼ ln Λ → ∞ and thus 𝑣 → 0. Note that the right-
hand side of Eq. (4.4) is related to the normalized 1𝑠 exciton wave function
at zero electron-hole separation (evaluated in the absence of coupling to light),
since in momentum space this wave function is given by

Φ1𝑠
k = √2𝜋𝜀𝑋

𝜇
1

𝜀𝑋 + ̄𝜖k
. (4.5)

The light-matter coupling strength 𝑔 can be renormalized by considering the
single-polariton problem at zero doping and matching the eigenvalues of the
microscopic problem to the experimental observables — see Sec. 1.5.2. Experi-
ments typically fit the LP and UP polaritons to a coupled oscillator model (1.34)
(describing a tightly bound exciton and a photon):

�̂� = (−𝜀𝑋 + 𝛿 Ω/2
Ω/2 −𝜀𝑋

) (4.6a)

𝜖𝐿𝑃,𝑈𝑃 = −𝜀𝑋 + 𝛿 ∓
√

𝛿2 + Ω2

2 . (4.6b)

Here, 𝛿 = 𝜖𝐶0 + 𝜀𝑋 is the photon-exciton detuning and Ω the Rabi split-
ting (1.35). As such, the procedure we follow is to write the finite (renormal-
ized) Rabi splitting Ω in terms of the bare coupling 𝑔 and the relative 1𝑠 exciton
wave function at zero electron-hole separation, which describes the amplitude
for electron and hole to overlap (see [472] or Sec. 1.5.2 for details):

Ω = 2𝑔
𝒜

Λ
∑

k
Φ1𝑠

k = 2𝑔
𝑣 √2𝜋𝜀𝑋

𝜇 . (4.7)

Because 1/𝑣 diverges logarithmically with the cutoff, 𝑔 ∼ 1/ ln Λ → 0 when
Λ → ∞, in such a way that the physically meaningful parameter Ω is finite.

We finally turn to the photon-exciton detuning 𝛿. Here, Ref. [473] found
that to match the coupled-oscillator model, there is a shift from the bare de-
tuning 𝜖𝐶0 + 𝜀𝑋 associated with our Hamiltonian. Specifically, one has that

𝛿 = 𝜖𝐶0 + 𝜀𝑋 − Ω2

8𝜀𝑋
. (4.8)

In summary, we take the finite (renormalized) energy scales in our problem
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to be the exciton binding energy 𝜀𝑋, and the zero doping Rabi splitting Ω.
Further, the other relevant parameters are the photon-exciton detuning 𝛿, the
Fermi energy 𝐸𝐹 , and the mass ratio 𝑚2/𝑚1.

4.3 Distinguishable and indistinguishable trions
In this section, we demonstrate that when the trion contains two indistinguish-
able excess majority particles, i.e., two particles with identical spin and valley
indices, the lowest energy is the one with one unit of angular momentum, i.e.,
it is a 𝑝-wave state. By contrast, for distinguishable particles, because there
is not a particular symmetry property that the trion wave function has to sat-
isfy, the ground state is free to choose the lowest energy solution and the wave
function is 𝑠-wave.

In this section, we summarize the relevant results for the ICP trion. We
start by considering the particular limit of large mass imbalance, where the
problem can be solved analytically, thus providing insight into the nature of
the trion state. We then present the numerically exact solution for a general
mass ratio. We considered the simplified description where the electron-hole
interaction is a contact interaction, and where the same species repulsion is
neglected. While our model overestimates the trion binding energy, we show
how it predicts correctly where the unbinding transition occurs. Our results
are consistent with the behavior of the ICP in Sec. 4.4, where we find that the
three-particle component of the polaron ground state always has 𝑝-wave orbital
character in the low-doping limit.

4.3.1 Limit of large mass imbalance
The Hamiltonian in Eq. (4.2) is rotationally symmetric, and consequently, the
trion states have definite angular momentum. In the following, we consider
both the case of distinguishable and indistinguishable fermions and identify
the differences between these cases. To clearly illustrate the role played by
exchange symmetry in determining the angular momentum, it is instructive to
first consider the limit of a small minority over majority mass ratio, 𝑚2/𝑚1 ≪
1, where we can use the Born-Oppenheimer approximation [269, 474]. This
consists of assuming that the light particle at position r adiabatically adjusts its
wave function to the positions of the two heavy particles at ±R/2, as illustrated
in Fig. 4.2 (a). Within this approximation, the total wave function takes the
form of a product

Ψ(𝜌𝜌𝜌1, 𝜌𝜌𝜌2) = 𝜙(R)𝜓R(r) , (4.9)
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Fig. 4.2: Sketches for the Born-Oppenheimer approximation. (a) Coordinate defini-
tions. The light minority particle (with mass 𝑚2) at r adiabatically adjusts its motion
to the heavy majority particles (with masses 𝑚1) at ±R/2. (b) Wave function of the
light particle 𝜓R,±(r), Eq. (4.10) along the axis separating the heavy particles.

where 𝜌𝜌𝜌1,2 = r∓R/2 are the relative positions of the light particle with respect
to the heavy particles. Here, ΨR(r) is the wave function of the light particle,
and 𝜙(R) governs the motion of the heavy particles.

The wave function of the light particle is obtained by solving the Schrödinger
equation for fixed positions of the heavy particles. This can be shown [475] to
have a solution in terms of the modified Bessel function of the second kind,
𝐾0(𝜅𝑟). Since the solution must be a parity eigenstate under R → −R, there
are two possibilities for 𝜓R(r) [475]

𝜓R,±(r) = 𝒩±(𝑅)[𝐾0 (𝜅±(𝑅) |r + R/2|) ± 𝐾0 (𝜅±(𝑅) |r − R/2|) ] , (4.10)

where 𝒩±(𝑅) is an overall normalization. These two wave functions are il-
lustrated in Fig. 4.2 (b). As argued in Ref. [475], the momentum scale 𝜅±(𝑅)
associated with the motion of the light particle is obtained by solving the equa-
tion ln(𝜅±𝑎𝑋) = ±𝐾0(𝜅±𝑅) with 𝑎𝑋 ≡ 1/√2𝜇𝜀𝑋

1.
Having solved for the motion of the light particle at a fixed separation of the

heavy particles, one considers the motion of the heavy particles in the presence
of the effective potential 𝐸±(𝑅) = −𝜅2

±(𝑅)/2𝜇2 mediated by the light particle.
Here, we should note that only 𝐸+(𝑅) corresponds to a potential energy surface
below the exciton at −𝜀𝑋 — see Fig. 4.3 (a), and hence only this wave function
can lead to trion formation.

In the case of distinguishable heavy particles, there are no restrictions on the
overall symmetry under the exchange of these particles, and so the symmetry

1 This condition is obtained by applying the Bethe-Peierls boundary condition when the
light particle approaches one of the heavy particles: lim ̃𝑟→0[ ̃𝑟(𝜓)′

̃𝑟/𝜓] = 1/ ln( ̃𝑟𝑒𝛾/2𝑎2𝐷) with
̃r ≡ r ± R/2 [475], and 𝛾 ≃ 0.577 is the Euler gamma.

2 Here we use the reduced mass rather than the light particle mass [476], and hence the
energy surface corresponds to the energy of the relative motion of the light particle relative
to one of the heavy particles.



Distinguishable and indistinguishable trions 115

of 𝜓R,+(r) does not impose any restrictions on the symmetry of 𝜙(R). As
such, the ground state trion is the lowest energy solution, which is in the
𝑠-wave angular momentum channel. By contrast, if the two heavy particles
are identical fermions, the overall wave function must be antisymmetric under
R → −R. Since the attractive potential corresponds to the function 𝜓R,+(r)
which is symmetric under exchange, and since the total wave function Ψ is
antisymmetric, 𝜙(R) must then be antisymmetric under exchange. This, in
turn, implies that 𝜙(R) has odd angular momentum, and therefore the ground
state trion forms in the 𝑝-wave channel.

The effective potential

𝑉 (ℓ)
eff,±(𝑅) = 𝐸±(𝑅) + ℓ2

𝑚1𝑅2 , (4.11)

including the centrifugal barrier for angular momentum ℓ is illustrated in
Fig. 4.3 (a) for ℓ = 0, 1 and the two symmetries ±. We see that the bare
mediated potential 𝐸+(𝑅) = 𝑉 (ℓ=0)

eff,+ (𝑅) (corresponding to the 𝑠-wave case) is
purely attractive, while the 𝑝-wave potential 𝑉 (ℓ=1)

eff,+ (𝑅) has an attractive well
when 𝑅 ∼ 𝑎𝑋, within which the trion forms, and a centrifugal barrier at small
𝑅. We also find that the attractive well and bound state only exist when the
mass ratio 𝑚2/𝑚1 is sufficiently small. The form of the potential and in partic-
ular the short-range repulsion provided by the centrifugal barrier means that
the critical mass ratio for trion binding is relatively insensitive to the precise
form of the interaction potential between heavy particles.

In the limit of a large mass imbalance, 𝑚2/𝑚1 → 0, the trion energy 𝐸𝑇3
in the Born-Oppenheimer approximation takes the known form [475]:

|𝐸𝑇3
| − 𝜀𝑋
𝜀𝑋

≃ 𝑚1
𝑚2

2𝑒−2𝛾

9 , (4.12)

where 𝛾 ≃ 0.577 is the Euler constant. We will now compare these results with
an exact calculation within our model (4.2).

4.3.2 Trion binding energy
Having gained insight into the trion state at a large mass ratio, we next discuss
the range of mass ratios for which this state is bound [374, 471]. We thus
consider a trion state in a vacuum with zero center of mass momentum, which
is described by the following state

|𝑇3⟩ = 1√
2𝒜

∑
k1≠k2

𝛾k1k2
̂𝑐†
2−k1−k2

̂𝑐†
1k1

̂𝑐†
1k2

|0⟩ , (4.13)
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Fig. 4.3: (a) Effective potential 𝑉 (ℓ)
eff,±(𝑅) (4.11) determining the motion of the ma-

jority heavy particle within the Born-Oppenheimer approximation for 𝑚2/𝑚1 = 0.25.
The solid (red) line is 𝑉 (ℓ=1)

eff,+ (𝑅) for the 𝑝-wave trion, while gray dot-dashed and dot-
dot-dashed lines are the bare mediated potentials 𝐸±(𝑅) = 𝑉 (ℓ=0)

eff,± (𝑅) respectively. (b)
Lowest-energy 𝑝-wave trion binding energy (solid black line), evaluated by numeric-
ally solving the eigenvalue problem (4.14), as a function of the minority over majority
mass ratio 𝑚2/𝑚1. At a small mass ratio, the binding energy diverges according to
Eq. (4.12) (dashed red line). Squared (blue) and rhombus (purple) symbols indicate
the critical mass ratios obtained for bare Coulomb [271, 272] and Rytova-Keldysh
effective interactions [268].

where we must obey 𝛾k2k1
= −𝛾k1k2

. The trion wave function in momentum
space 𝛾k1k2

is the Fourier transform of the wave function in real space, Eq. (4.9),
𝛾k1k2

= ∫ 𝑑𝜌𝜌𝜌1 ∫ 𝑑𝜌𝜌𝜌2𝑒𝑖k1⋅𝜌𝜌𝜌1+𝑖k2⋅𝜌𝜌𝜌2Ψ(𝜌𝜌𝜌1, 𝜌𝜌𝜌2). We can also argue that the trion
ground state is 𝑝-wave in this general case if we consider the configuration
where one of the light particles is placed on top of the heavy particle. This
is equivalent to taking one of the positions, 𝜌𝜌𝜌1, to zero in the wave function.
We thus obtain a wave function that only depends on the position 𝜌𝜌𝜌2 of the
remaining light particle, while still having the same definite angular momentum.
We then note that this wave function must go to zero when 𝜌𝜌𝜌2 → 0 since there
cannot be two (fermionic) light particles at the same position. This condition
is most easily satisfied by placing the remaining light particle in a 𝑝-wave state.
Hence the ground-state trion is 𝑝-wave.

To test whether this trion state is bound, we calculate its energy and com-
pare it with the exciton energy. The trion energy can be found by minimizing
⟨𝑇3|(�̂� − 𝐸)|𝑇3⟩ with respect to the complex wave function 𝛾∗

k1k2
to obtain the

following eigenvalue equation

𝐸𝛾k1k2
= ℰk1k2

𝛾k1k2
− 𝑣

𝒜 ∑
k′

(𝛾k′k2
+ 𝛾k1k′) , (4.14)

where ℰk1k2
= 𝜖1k1

+𝜖1k2
+𝜖2k1+k2

. Equation (4.14) corresponds to a Fredholm
integral equation of the second kind and its solution is obtained using Gauss-
Legendre quadrature for the numerical integrals [477].
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(a) (b)

Fig. 4.4: (a) Binding energies of the 𝑝-wave spin-triplet (solid line) and 𝑠-wave spin-
singlet (dashed line) trion 𝑋+ as a function of the electron-hole mass ratio for a 2D
GaAs quantum well and unscreened Coulomb interactions (1.22b) — adapted from
Ref. [272]. (b) Binding energies for the 𝑝-wave (antisymmetric) 𝑋+ trion (red), the
𝑠-wave symmetric 𝑋+ (blue), and 𝑋− (green) trions as a function of the electron-
hole mass ratio. The parameters used are for a WSe2 monolayer described by a RK
interaction potential (1.29), with a screening radius 𝑟0 = 4 nm and a fixed reduced
mass 𝜇 = 0.16𝑚0 — adapted from Ref. [268].

As argued above, the ground state must have overall angular momentum
ℓ = ±1 (i.e., it is 𝑝-wave), so we may consider the following ansatz:

𝛾k1k2
= 𝑒𝑖𝜃1𝛾𝑘1𝑘2(𝜃2−𝜃1) . (4.15)

We have numerically checked that the ground state of Eq. (4.14) always satisfies
this condition. In agreement with Refs. [374, 471], we find that the 𝑝-wave
trion binds for a mass ratio 𝑚2/𝑚1 ≲ 0.3 — see Fig. 4.3 (b). We see that
our calculated binding energy closely matches that obtained within the Born-
Oppenheimer approximation in the limit of a large mass ratio, Eq. (4.12), see
the dashed (red) line in Fig. 4.3 (b).

In typical semiconductors, the hole’s effective mass is larger than the elec-
tron mass. As such, the critical mass ratio obtained above implies that a 𝑝-wave
trion bound state can exist only if the majority particles are holes, meaning
that it is an 𝑋+ trion. By contrast, for distinguishable particles, the 𝑠-wave
bound state exists for all mass ratios [471], and both 𝑋+ and 𝑋− trions are
possible.

As noted in Sec. 4.2, we approximate the interaction between charges as
a contact interaction, which can be considered as assuming that interactions
between charges are strongly screened. This overestimates the 𝑝-wave trion
binding energy when 𝑚2/𝑚1 → 0. In fact, the contact interaction causes the
binding energy to diverge according to Eq. (4.12), which is a well-known feature
of contact interactions [478]. An interaction that decays at large momentum
transfer (like a screened Coulomb interaction) would instead result in a finite
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binding energy [268, 271, 272]. Nevertheless, the contact interaction approx-
imation correctly describes the existence of a critical mass ratio. Furthermore,
the critical ratio found for contact interactions, 𝑚2/𝑚1 ≲ 0.3 agrees well with
that found for bare Coulomb interactions [271, 272], 𝑚2/𝑚1 ≲ 0.35, as well
as for Rytova-Keldysh effective interactions describing TMD monolayers [268],
𝑚2/𝑚1 ≲ 0.5 — see Fig. 4.4. These critical mass ratios are marked by symbols
in Fig. 4.3 (b).

4.3.3 Coupling to light
The dipole matrix element for the transition between a single isolated trion
and a single carrier vanishes—i.e., the isolated trion does not couple to light.
Here we are showing it explicitly, for both DCP and ICP, by considering the
matrix element of the light-matter interaction term �̂�𝑒ℎ𝐶 (4.2d) between the
trion state in Eq. (4.13) and a cavity photon plus a majority particle state at
zero momentum |𝐶 + 1⟩ = ̂𝑎†

0 ̂𝑐†
10|0⟩ [266]:

⟨𝑇3|�̂�𝑒ℎ𝐶 |𝐶 + 1⟩ =
√

2√
𝒜

𝜂∗
0 . (4.16)

Here, 𝜂k = 𝑔
𝒜 ∑k′ 𝛾k′k describes the recombination probability amplitude of an

electron and hole in the trion with total momentum k3. The term in Eq. (4.16)
is in general vanishingly small due to the prefactor of order 1/

√
𝒜 [479]; such

suppression is present for both 𝑠- and 𝑝-wave trions. Additionally, in the 𝑝-wave
case we have 𝜂k → 0 as 𝑘 → 0 due to Eq. (4.15), i.e., the 𝑝-wave transition is
further forbidden by symmetry.

Now let us discuss how these results lead to a non-zero oscillator strength
in experiments carried out at small but finite doping. In the 𝑠-wave case, the
oscillator strength of the trion branch is proportional to the square of the matrix
element in Eq. (4.16) multiplied by the number of particles within the area 𝒜,
i.e., the oscillator strength scales as the majority particle density ∼ 𝑛1. This
estimate is smaller than the exciton oscillator strength by a factor proportional
to 𝑛1, in agreement with results based on the trion [266, 317, 318] and the
polaron [261, 321, 479] pictures.

In order to estimate the finite-density trion oscillator strength in the 𝑝-
wave case, we need to consider adding the correction to the sum appearing in
Eq. (4.16) since this is identically zero at 𝑘𝐹 = 0. For 𝑘𝐹 ≪ √2𝜇|𝐸𝑇3

|, we
therefore instead calculate the matrix element between a final-state trion at
a typical center of mass momentum k𝐹 ≡ 𝑘𝐹 n̂ (where n̂ is a unit vector in

3 This is in principle equivalent to taking the limit 𝜌1 → 0 in ∫ 𝑑𝜌𝜌𝜌2𝑒𝑖k⋅𝜌𝜌𝜌2 Ψ(𝜌𝜌𝜌1,𝜌𝜌𝜌2), as
in Ref. [266]. However, care must be exercised in the case of contact interactions since
lim𝜌1→0 Ψ(𝜌𝜌𝜌1,𝜌𝜌𝜌2) is formally divergent. Thus, one must also include the coupling 𝑔 to cancel
the logarithmic divergence at short distances.
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an arbitrary direction), and an initial state with a photon at normal incidence
and a carrier at momentum k𝐹 . To leading order, the matrix element becomes
√2/𝒜 𝜂∗

k𝐹
. It is straightforward to show that, in the 𝑝-wave case, 𝜂k𝐹

scales
linearly with 𝑘𝐹 ∝ √𝑛1. To see this, we can rewrite Eq. (4.14) in terms of 𝜂k

4:

(1
𝑣 + 1

𝒜 ∑
k1

1
𝐸 − ℰk1k2

) 𝜂k2
= 1

𝒜 ∑
k1

𝜂k1

𝐸 − ℰk1k2

. (4.17)

Like 𝛾, 𝜂 satisfies the 𝑝-wave symmetry 𝜂k = 𝑒𝑖𝜃𝜂𝑘. Therefore, the right-hand
side is identically zero at k2 = 0, and thus 𝜂0 = 0 and the matrix element
in Eq. (4.16) vanishes. At finite doping, instead, we want to estimate 𝜂k𝐹

at
small 𝑘𝐹 . Expanding the kinetic energy ℰk1k𝐹

for small k𝐹 to linear order, and
using the 𝑝-wave condition, we then find the first non-zero term scales as 𝑘𝐹 ,
multiplied by a 𝑘𝐹 -independent integral. Taking the square amplitude of the
matrix element and multiplying by the number of majority particles within the
area 𝒜, we thus find that in the 𝑝-wave case the trion oscillator strength ∼ 𝑛2

1.
This estimate agrees with the numerical results obtained within the polaron
picture, as analyzed below in Sec. 4.4.3.

4.4 Polaron state
In this section, we present a wave function ansatz describing exciton-polaron
(polariton) states with indistinguishable carriers. We first present the ansatz,
which we use to describe both ground and excited states, and then discuss how
we may efficiently calculate the absorption spectrum within this ansatz. We
consider the following ansatz describing a superposition of a bare photon and
an exciton with a dressing cloud of electron-hole excitations of the Fermi sea,
all with zero center of mass momentum:

|𝑀4⟩ = (𝛼 ̂𝑎†
0 + ∑

k1

𝜑k1√
𝒜

̂𝑐†
2−k1

̂𝑐†
1k1

+ ∑
k1,k2,q

𝜑k1k2q√
2𝒜3/2 ̂𝑐†

2q−k1−k2
̂𝑐†
1k1

̂𝑐†
1k2

̂𝑐1q)|𝐹𝑆⟩ , (4.18)

normalized so that

1 = ⟨𝑀4|𝑀4⟩ = |𝛼|2 + 1
𝒜 ∑

k1

|𝜑k1
|2 + 1

𝒜3 ∑
k1,k2,q

|𝜑k1k2q|2 . (4.19)

4 In practice, having a Fermi sea restricts the momentum k1 appearing in the sums to be
above the Fermi surface. However, due to the 𝑝-wave symmetry, such corrections are higher
order in 𝑘𝐹 and may be neglected here.
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In Eq. (4.18), |𝐹𝑆⟩ = ∏q ̂𝑐†
1q|0⟩ describes the Fermi sea of majority particles,

and we use the convention that momenta labeled k𝑖 represent states above the
Fermi sea (𝑘𝑖 > 𝑘𝐹 ), while momenta labeled q refer to states below (𝑞 < 𝑘𝐹 ).
We denote the state in Eq. (4.18) by 𝑀4 [374] to indicate it is a molecular
(i.e., excitonic) state with up to four-body correlations. The first two terms in
|𝑀4⟩ are, respectively, a photon with amplitude 𝛼, and an electron-hole pair
(undressed exciton) with wave function 𝜑k in terms of the relative electron-hole
momentum k. The final term describes a scattered exciton and a single intra-
band particle-hole excitation of the majority particle Fermi sea. The associated
four-body wave function 𝜑k1k2q can be viewed as a trion-like (three-particle)
complex plus a hole of the Fermi sea. Indeed, this term reduces to the trion
wave function (4.13) in the limit of vanishing doping. Thus, we will refer to
this term as the “trion-hole” state for brevity, although it should be understood
that the “trion” in this complex is not necessarily a well-defined three-particle
bound state. Because the majority particles are indistinguishable, the trion-
hole wave function 𝜑k1k2q must be antisymmetric under the exchange k1 and
k2, i.e., 𝜑k1k2q = −𝜑k2k1q, which is satisfied by all our numerical results in the
following.

In our variational state, Eq. (4.18), we consider only the states where the
photon is at zero momentum, as these are experimentally accessible by a probe
at normal incidence. Furthermore, we do not include the contribution of the
particle-hole-dressed photon state,

∑
kq

𝛼kq
𝒜 ̂𝑎†

q−k ̂𝑐†
1k ̂𝑐1q|𝐹𝑆⟩ . (4.20)

If present, this term would lead to a broadening of the photon, because a photon
at Q = 0 could scatter to a different momentum q − k, which is typically non-
zero because 𝑞 < 𝑘𝐹 and 𝑘 > 𝑘𝐹 . However, due to the photon mass 𝑚𝐶 being
approximately five orders of magnitude smaller than the bare electron mass
(𝑚𝐶 ≃ 10−5𝑚0), finite-momentum photons have energies far off-resonance with
both trion and exciton energies. As such, their contribution is negligible [480].

The ICP energy can be obtained minimizing the expectation value ⟨𝑀4|(�̂�−
𝐸)|𝑀4⟩ with respect to the complex variational parameters 𝛼∗, 𝜑∗

k1
, and 𝜑∗

k1k2q
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to obtain the following eigenvalue equations:

𝐸𝛼 =𝜖𝐶0𝛼 − 𝑔
𝒜 ∑

k′
1

𝜑k′
1

(4.21a)

𝐸𝜑k1
= ̄𝜖k1

𝜑k1
− 𝑣

𝒜 ∑
k′

1

𝜑k′
1

− 𝑔𝛼 −
√

2𝑣
𝒜2 ∑

k′
2q′

𝜑k1k′
2q′ (4.21b)

𝐸𝜑k1k2q =ℰk1k2q𝜑k1k2q + 𝑣
𝒜 ∑

q′
𝜑k1k2q′ − 𝑣

𝒜 ∑
k′

1

𝜑k′
1k2q

− 𝑣
𝒜 ∑

k′
2

𝜑k1k′
2q − 𝑣√

2
(𝜑k1

− 𝜑k2
) , (4.21c)

where, as in Eq. (4.4), ̄𝜖k1
= 𝜖1k1

+ 𝜖2k1
= k2

1/2𝜇, while ℰk1k2q = 𝜖1k1
+

𝜖1k2
− 𝜖1q + 𝜖2q−k1−k2

. By solving the coupled linear equations (4.21) we gain
direct access to the energies of both the ground and excited states, as well as
the corresponding wave functions. This includes information about the photon,
exciton, and dressed exciton amplitudes.

Equations (4.21) show that the photon mode couples only to the bare ex-
citon part of the state. However, the bare exciton and trion-hole terms are
not system eigenstates in the presence of doping; they couple via the electron-
hole interaction. As such—when the 𝑝-wave trion state is bound, i.e., for
𝑚2/𝑚1 ≲ 0.3—the eigenstates are hybridized to form attractive and repulsive
polaron resonances, as well as an incoherent continuum of many-body states.
Because of this hybridization, the photon couples to all of these eigenstates,
leading to a transfer of oscillator strength from the repulsive branch—which,
at low doping, is exciton-like—to the attractive branch—which, at low doping,
is trion-like.

Even though for indistinguishable particles the symmetry of the (three-
body) trion state is 𝑝-wave (4.15), the lowest energy wave functions of both the
(two-body) exciton and (four-body) trion-hole contributions have an overall
𝑠-wave symmetry:

𝜑k1
= 𝜑𝑘1

(4.22a)

𝜑k1k2q = 𝜑𝑘1𝑘2𝑞(𝜃1−𝜃𝑞)(𝜃2−𝜃𝑞) . (4.22b)

Indeed, within our model Hamiltonian (4.2), all other angular momentum states
are completely uncoupled to light, and hence we will be making this 𝑠-wave
ansatz in the following. Clearly, in the case of the trion-hole wave function
𝜑k1k2q, Eq. (4.22b) implies that we can equivalently choose as reference angle
either the angle of the Fermi sea hole 𝜃𝑞, as in Eq. (4.22b), or the angle of any
of the two majority species particles, e.g., 𝜑k1k2q = 𝜑𝑘1𝑘2𝑞(𝜃2−𝜃1)(𝜃𝑞−𝜃1). Note
that, at low doping, the trion sub-space within the trion-hole complex of those
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states corresponding to the attractive branch still has an angular momentum
ℓ = ±1, while the hole component has ℓ = ∓1, as shown later in Fig. 4.10.
Yet, as we discuss below, the orbital character of both attractive and repulsive
branches evolves with doping.

In solving the system of equations in (4.21), we want to consider the limit
where the UV cutoff Λ → ∞, and replace the bare parameters 𝑣, 𝑔, 𝜖𝐶0 with the
renormalized parameters, as discussed in Sec. 4.2.1. Our results will then be
independent of microscopic physics and can be expressed in terms of the exciton
binding energy 𝜀𝑋, the photon-exciton detuning 𝛿, and the Rabi splitting Ω.
In addition to these, the other relevant parameters are the Fermi energy 𝐸𝐹
and the mass ratio 𝑚2/𝑚1. By considering the limit Λ → ∞, 𝑣 → 0, we may
also simplify the form of Eq. (4.21c). Since the large-𝑘 behavior of both exciton
and trion-hole wave functions is 𝜑k1,2

∼ 𝜑k1k2q ∼ 1/𝑘2
1,2, we can neglect the

term 𝑣
𝒜 ∑q′ 𝜑k1k2q′ in Eq. (4.21c) when Λ → ∞.

4.4.1 Numerical implementation
If one were working with a finite UV cutoff, Λ, then the discrete form of the
Hamiltonian describing the eigenvalue problem (4.21) could be obtained by
considering a grid for momenta 𝑘 ∈ [𝑘𝐹 , Λ]. However, as we wish to consider
the renormalized problem, Λ → ∞, the grid for 𝑘-integrals has to extend up to
infinity. We thus apply a transformation 𝛽 = tan 𝑘, with 𝛽 ∈ [arctan(𝑘𝐹 ), 𝜋/2).
We then consider a Gauss-Legendre quadrature in 𝛽 with 𝑁𝑘 points, in 𝑞 with
𝑁𝑞 points, and in 𝜃 with 𝑁𝜃 points. Note that, in this way, by sending the
number of points 𝑁𝑘 → ∞, we automatically consider the Λ → ∞ limit. For
efficiency, we use a grid in polar coordinates that exploit the symmetry of the
system.

This approach is only possible because of our use of contact interactions. If
we had used full Coulomb interactions, this inevitably also requires intraspecies
interactions (which vanish in the contact case). Such intraspecies interactions
lead to the appearance of terms in the eigenvalue equations that involve differ-
ences of momenta, and, as such, do not lie on the original momentum grid.

By studying the dependence of the spectral functions on the number of
points, 𝑁𝑘, 𝑁𝑞, and 𝑁𝜃, we find that the convergence with respect to 𝑁𝑞 and
𝑁𝜃 is reached easily (already for 𝑁𝑞 = 4, 𝑁𝜃 = 7), while the details of the
spectra strongly depend on 𝑁𝑘, as shown in Fig. 4.5. To be concrete, we
observe that the two pronounced peaks corresponding to the attractive and
repulsive polaron branches converge quickly with 𝑁𝑘. By contrast, the set of
states that eventually will form a continuum continues to vary with 𝑁𝑘. This
distinct behavior as a function of 𝑁𝑘 allows us to distinguish the attractive
and repulsive branches from the continuum. Note that we have checked that
our results match between the direct diagonalization of Eqs. (4.21) and the
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Fig. 4.5: Exciton spectral func-
tion profiles 𝐴𝑋(𝜔) in the weak
coupling regime for the same sys-
tem parameters as Fig. 4.6 (a)
(𝑚2/𝑚1 = 0.25, and 𝜂𝑋 = 5 ×
10−3𝜀𝑋), at 𝐸𝐹 = 0.064𝜀𝑋, for dif-
ferent values of 𝑁𝑘 and for 𝑁𝑞 = 4
and 𝑁𝜃 = 8.

Haydock iteration method — see App. B. The recursive method however allows
us to consider a larger number of grid points (up to 𝑁𝑘 = 22) than the direct
diagonalization method (restricted to 𝑁𝑘 = 10) because it only involves matrix-
times-vector operations and thus requires less memory.

Even though the recursive method allows us to reach larger values of 𝑁𝑘
than exact diagonalization, at the maximum value we can reach, 𝑁𝑘 = 22, the
form of the continuum has still not converged. We observe in Fig. 4.5 that, by
increasing 𝑁𝑘, the states associated with the continuum reduce in frequency
and accumulate in the region between the attractive and repulsive branches.
During this evolution, there are specific values of 𝑁𝑘 where a given continuum
state becomes resonant with the repulsive branch. In the 𝑁𝑘 → ∞ limit,
the continuum states would become dense, and so there would not be distinct
resonances. Since the coupling between continuum and repulsive modes is small,
the repulsive branch does not notably shift in energy at these resonances, but
it does change its spectral weight. These resonances result in a slightly “noisy”
behavior of the spectral weight of the repulsive branch and the continuum
shown in Fig. 4.7 (c). The corresponding data points are plotted with empty
rather than filled symbols.

Figs. 4.6, 4.7, 4.8, and 4.11 are obtained with the recursive method with
𝑁𝑘 = 20, 𝑁𝑞 = 4, and 𝑁𝜃 = 8.

Finally, we note that while Eq. (4.21) is written allowing for strong light-
matter coupling, 𝑔, it can also be considered in the limit 𝑔 → 0. This therefore
allows us to explore two distinct regimes: In the strong coupling regime, the 2D
semiconductor is embedded in a microcavity and the coupling to light explicitly
modifies the excitonic states resulting in the formation of polaron-polaritons.
Conversely, in the weak coupling regime, the 2D semiconductor is probed by
light in the absence of a cavity, and the probe light does not change the form
of the spectrum. Technically, in our formulation, the latter case corresponds to
removing the photonic part of the variational state in Eq. (4.18) (correspond-
ing to removing Eq. (4.21a)) and taking 𝑔 = 0 in Eq. (4.21b), and thus this
procedure will be implicit in the following whenever we discuss results obtained
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in the weak coupling limit.

4.4.2 Spectral functions
A natural probe of trion states is optical absorption which can be calculated, in
both strong and weak coupling regimes, starting from the photon and exciton
Green’s functions respectively. We can follow a procedure similar to the one
employed in Sec. 1.5.3. We here briefly summarize the main steps.

In the time domain, the photon and exciton Green’s functions are defined
as

𝐺𝐶,𝑋(𝑡) = ⟨Ψ𝐶,𝑋
0 |𝑒−𝑖�̂�𝑡|Ψ𝐶,𝑋

0 ⟩ . (4.23)

Here, |Ψ𝐶,𝑋
0 ⟩ denotes the initial state within the space spanned by our ansatz.

The choice of this state varies depending on which Green’s function we seek
to calculate. For the photon Green’s function (𝐶) we consider an initial state
with a single photon

|Ψ𝐶
0 ⟩ = ̂𝑎†

0|𝐹𝑆⟩ . (4.24)

The exciton Green’s function (𝑋) is instead chosen to describe the response of
the material to optical excitation, and thus the initial state we use is that of
an electron-hole pair at the same spatial position — note that this state is not
an exciton. We will nonetheless refer to this as the exciton Green’s function
in the following since this name is commonly used in the literature. We thus
write

|Ψ𝑋
0 ⟩ = 𝒩√

𝒜
∑

k
̂𝑐†
2−k ̂𝑐†

1k|𝐹𝑆⟩ , (4.25)

where the normalization 𝒩 = ( 1
𝒜 ∑k)−1/2 is chosen so that ⟨Ψ𝑋

0 |Ψ𝑋
0 ⟩ = 1.

Both Green’s functions can be written in the frequency domain in terms of
the complete set of eigenstates of Eqs. (4.21), described by eigenvalues 𝐸𝑛, and
photonic 𝛼𝑛 and excitonic 𝜑𝑛k components of the eigenvectors:

𝐺𝐶(𝜔) = ∑
𝑛

|𝛼𝑛|2
𝜔 − 𝐸𝑛 + 𝑖𝜂 (4.26a)

𝐺𝑋,Λ(𝜔) = ∑
𝑛

∣ 𝒩
𝒜 ∑Λ

k 𝜑𝑛k∣
2

𝜔 − 𝐸𝑛 + 𝑖𝜂 , (4.26b)

where 𝜂 denotes a Lorentzian linewidth which we add by hand. We note that
the exciton Green’s function 𝐺𝑋,Λ defined in Eq. (4.26b) depends on the UV
cutoff Λ and needs to be renormalized in order to obtain a physical quantity
that is cutoff independent. This is because as Λ → ∞, 𝒩 ∼ Λ−1 → 0 while
1
𝒜 ∑k 𝜑(𝑛)

k ∼ log Λ → ∞. As discussed in App. B, a cutoff independent form
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can be obtained by considering the following rescaling

𝐺𝑋(𝜔) = (2𝑔
Ω )

2 𝐺𝑋,Λ(𝜔)
𝒩2 = ∑

𝑛

∣ 1
𝒜 ∑k 𝜑𝑛k/ 1

𝒜 ∑k Φ1𝑠k∣
2

𝜔 − 𝐸𝑛 + 𝑖𝜂 , (4.27)

where the microscopic light-matter coupling constant 𝑔 and the Rabi splitting
Ω are related by Eq. (4.7), and Φ1𝑠k denotes the wave function of the 1𝑠
exciton (4.5).

Because the photon mass is orders of magnitude smaller than that of the
exciton, we can neglect the electron-hole photon dressing term in Eq. (4.20).
This simplifies the problem considerably, in particular, we find that the strong
coupling photon Green’s function in Eq. (4.26a) is related to the exciton Green’s
function in the weak light-matter coupling regime 𝐺(0)

X (𝜔), via (1.43):

𝐺𝐶(𝜔) = 1
𝜔 − 𝛿 + 𝜀𝑋 − (Ω/2)2𝐺(0)

X (𝜔) + 𝑖𝜂
. (4.28)

Note however that 𝐺(0)
X (𝜔) is not the free exciton Green’s function, because of

the electron-hole dressing by the Fermi sea.
If we try to evaluate the exciton and photon Green’s functions by first find-

ing the complete set of eigenvalues and eigenvectors of Eqs. (4.21), this places
significant constraints on the number of degrees of freedom we may consider,
and thus on the precision of the calculation. We thus also employ a recursive
method, originally developed by Haydock and collaborators [481], which allows
one to consider a larger number of basis states, and thus reach a higher numer-
ical precision. Here, one seeks to transform the eigenvalue problem (4.21) into
a tridiagonal form, with the top left element corresponding to the expectation
value on the initial state |Ψ𝐶,𝑋

0 ⟩. Truncating this recursive scheme at some
order provides a basis for those states which are most relevant in terms of their
contribution to the associated Green’s function. The Green’s function can then
be conveniently evaluated by continued-fraction. Further details can be found
in App. B. For our problem we can simultaneously evaluate both the photon
Green’s function 𝐺𝐶(𝜔), as well as the renormalized exciton Green function in
the weak coupling limit to light 𝐺(0)

X (𝜔), which are related by Eq. (4.28).
Finally, the exciton and photon spectral functions to describe the optical

absorption in the weak and strong coupling regimes, respectively, are defined
as in Eqs. (1.45) (1.47):

𝐴𝑋,𝐶(𝜔) = − 1
𝜋 Im𝐺(0)

𝑋,𝐶(𝜔) . (4.29)

As discussed in Sec. 1.5.1, while the exciton spectral function 𝐴𝑋(𝜔) corres-
ponds to the absorption by the semiconductor (TMD monolayer or quantum
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Fig. 4.6: Colormap of the exciton spectral function 𝐴𝑋(𝜔) for the ICP case, in the
weak coupling regime as a function of the frequency 𝜔 and the majority particle Fermi
energy 𝐸𝐹 . (a) For 𝑚2/𝑚1 = 0.25, the spectrum displays two Lorentzian resonances
corresponding to attractive (𝜔 = 𝐸𝐴) and repulsive (𝜔 = 𝐸𝑅) polaron branches
(indicated by dashed white lines). At 𝐸𝐹 → 0, these approach the trion (𝐸𝐴 → 𝐸𝑇3 )
and exciton (𝐸𝑅 → −𝜀𝑋) energies, respectively. At 𝑚2/𝑚1 = 0.25, the 𝑝-wave trion
binding energy is (|𝐸𝑇3 | − 𝜀𝑋)/𝜀𝑋 ≃ 0.022 — see Fig. 4.3 (b). (b) For 𝑚2/𝑚1 = 1, the
𝑝-wave trion is unbound and the spectrum has a single Lorentzian resonance, which
continuously connects with the exciton mode at zero doping, 𝜔 = 𝐸𝑛=1 → −𝜀𝑋. The
linewidth in both panels is 𝜂 = 5 × 10−3𝜀𝑋.

well), in the absence of any optical microcavity, the relation between the photon
spectral function 𝐴𝐶(𝜔) and optical absorption is more subtle. This spectral
function does correspond to the absorption of light by an optical microcavity
containing the semiconductor, but only in the limit where the cavity linewidth
is much smaller than that of the excitons — see Sec. 1.5.1.

4.4.3 Weak coupling
We first present our results in the weak coupling regime. This corresponds to
the absence of a cavity, and therefore we consider the exciton spectral function
𝐴𝑋(𝜔). This function shows distinct behavior depending on whether the 𝑝-wave
trion state is bound (𝑚2/𝑚1 ≲ 0.3) or not (𝑚2/𝑚1 > 0.3) — see Sec. 4.3.2.
Note that mass ratios relevant to current experiments are 𝑚2/𝑚1 ∼ 1, typical
for a TMD monolayer [59], and 𝑚2/𝑚1 ∼ 0.25, for a GaAs quantum well [482]
(when hole-doped). We note also that the effective mass ratio in TMD mono-
layers can be tuned by application of strain [483, 484].

When the 𝑝-wave trion state is bound, the spectral function is characterized
by two peaks, as shown in Fig. 4.6 (a). We identify these as the attractive
branch at 𝜔 = 𝐸𝐴 and the repulsive branch at 𝜔 = 𝐸𝑅 (the location of these
peaks are indicated by dashed white lines in Fig. 4.6 (a). In the limit of zero
doping 𝐸𝐹 → 0, the attractive mode continuously connects with the 𝑝-wave
trion state (𝐸𝐴 → 𝐸𝑇3

), while the repulsive mode tends toward the exciton
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state (𝐸𝐴 → −𝜀𝑋). As anticipated, in this limit, the trion has a vanishing
spectral weight, and the spectral function has a single peak at the exciton
energy with spectral weight (i.e., integrated area) equal to one. Upon increasing
the doping, we see that there is a transfer of spectral weight from the repulsive
(exciton) to the attractive (trion) branch.

The energy of the attractive branch peak coincides with the lowest eigen-
value of Eqs. (4.21), 𝐸𝐴 = 𝐸𝑛=1, and we find that there is a strong suppression
of spectral weight immediately above this value. As such, the attractive branch
at finite doping retains a Lorentzian shape, which mirrors the DCP case — see
e.g., Ref. [382] for a detailed discussion in the three-dimensional case. Con-
versely, the repulsive branch does not coincide with a single eigenvalue, because
of the presence of a continuum between the attractive and repulsive modes. Des-
pite this, we find that the repulsive branch also has a Lorentzian shape with
a constant width 𝜂𝑋 for all values of doping 𝐸𝐹 . As such, we conclude that,
for dressing by indistinguishable carriers, the shape of the repulsive branch is
not affected by the continuum. We explain this result below by showing that
at large enough doping the repulsive branch and the continuum have distinct
symmetries and, as such, do not hybridize. Note that the ICP and DCP cases
are very different in this regard, as we later discussed.

We next explore how the attractive and repulsive peak positions and weights
evolve with doping. To do this, we fit the weak coupling exciton spectral
function 𝐴𝑋(𝜔) with two Lorentzians centered at 𝐸𝐴,𝑅 and with quasiparticle
weights 𝑍𝐴,𝑅:

𝐴𝑋(𝜔) ≃ − 1
𝜋 Im [ 𝑍𝐴

𝜔 − 𝐸𝐴 + 𝑖𝜂𝑋
+ 𝑍𝑅

𝜔 − 𝐸𝑅 + 𝑖𝜂𝑋
] . (4.30)

The weights 𝑍𝐴,𝑅 correspond to the areas underneath the peaks. We have
checked that these peaks fit this Lorentzian form extremely well for the entire
range of doping considered.

In addition to the Lorentzian peaks, the spectral function also includes the
continuum of many-body states. We denote the weight of this continuum as
𝑍continuum, and we estimate its value from a sum rule on the exciton Green’s
function. In fact, numerically we find that the exciton Green’s function satisfies:

− 1
𝜋 ∫

𝐸0
𝑁

−∞
𝑑𝜔Im𝐺(0)

𝑋 (𝜔) = 1 , (4.31)

where the integral is up to the energy 𝐸0
𝑁 = 𝑘2

𝐹 /2𝜇 of an unbound majority-
minority pair on top of a Fermi sea with zero center of mass motion Q = 0.
Because of this, one can write that:

𝑍𝐴 + 𝑍𝑅 + 𝑍continuum = 1 . (4.32)
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Fig. 4.7: Doping dependence of the branch energies (a,b) and spectral weights (c,d)
of the exciton spectral function 𝐴𝑋(𝜔) in the weak coupling regime. For mass ratio
𝑚2/𝑚1 = 0.25 (a,c), the spectrum has two peaks: the attractive branch at 𝜔 = 𝐸𝐴 =
𝐸𝑛=1, which coincides with the lowest eigenvalue of Eqs. (4.21), and the repulsive
branch at 𝜔 = 𝐸𝑅 branch. For 𝑚2/𝑚1 = 1 (b,d), the spectrum is characterized by
a single peak at 𝜔 = 𝐸𝑛=1. The symbols in panels (c) and (d) correspond to the
spectral weights found by integrating the peak areas for the R and A branches and
using 𝑍continuum = 1 − 𝑍𝑅 − 𝑍𝐴 for the continuum weight. In panel (c), the dashed
blue line shows a fit to the attractive branch weight with 𝑍𝐴 ∼ (𝐸𝐹 /𝜀𝑋)1.92. For the
(purple) squares of panel (c), the empty symbols indicate a point where a resonance
occurs with one of the continuum states, due to finite-size effects — see Sec. 4.4.1);
solid lines are a guide to the eye, excluding these points.

Figure 4.7 shows the doping dependence of the energies of attractive and
repulsive branches 𝜔 = 𝐸𝐴,𝑅, and of the weights 𝑍𝐴,𝑅, and 𝑍continuum, plotted
for the same two mass ratios as shown in Fig. 4.6. We observe that both attract-
ive and repulsive branches are blue-shifted when 𝐸𝐹 increases. The blueshift
of the upper (repulsive) branch can naturally be understood from the repulsion
between the levels. The blueshift of the attractive branch can be understood as
arising from the Pauli exclusion experienced by the optically generated majority
particle. Note, however, that our model does not include interaction between
same species charges and, as such, does not include band-gap renormalization
effects [240–243] which can affect the absolute energy shift of attractive and
repulsive branches with 𝐸𝐹 . Our prediction for the energy difference between
repulsive and attractive branches remains however accurate [265].

As doping first increases, the spectral weight of the repulsive branch is trans-
ferred to both the continuum and the attractive branch. However, initially,
the attractive branch weight grows more slowly. Eventually, for 𝐸𝐹 ≳ 0.02𝜀𝑋,
both attractive and repulsive branches transfer their weights to the continuum.
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Note that the weights 𝑍𝐴,𝑅 coincide with the oscillator strengths of attractive
and repulsive modes, and thus, in the strong coupling regime, determine the
Rabi splittings Ω𝐴,𝑅 = √𝑍𝐴,𝑅Ω of the polariton modes, as discussed further
in Sec. 4.4.5. Note also that the repulsive and continuum spectral weights have
a slightly noisy behavior for a few specific values of 𝐸𝐹 . As explained in Ap-
pendix 4.4.1, this is due to the finite-size effects of the numerical calculation
and the lack of convergence of the continuum states. This leads to occasional
resonances between continuum states and the repulsive branch, causing a re-
duction in oscillator strength (empty points in Fig. 4.7 (c)).

We find that the growth of the attractive branch spectral weight with doping
is consistent with quadratic, with a fit to our numerical results giving 𝑍𝐴 ∼
(𝐸𝐹 /𝜀𝑋)1.92 (dashed blue line in Fig. 4.7 (c)). This is quite different from the
behavior known for the DCP case, where the growth is linear [266, 317]. This
different power-law dependence of 𝑍𝐴 on 𝐸𝐹 can be understood directly from
the difference of 𝑠-wave and 𝑝-wave symmetry of the trion state belonging to
the trion-hole complex. In both cases, one factor of 𝐸𝐹 dependence arises to
account for the relative probability of creating a majority electron-hole pair,
as discussed in Ref. [266]. In the 𝑝-wave case, an extra factor arises since, as
discussed in Sec. 4.3.3, the matrix element to create a trion from an electron
at k = 0 vanishes by symmetry. As such, the amplitude for the transition to a
trion-hole state depends not only on the density of carriers but on a momentum-
weighted density, giving a higher power of 𝐸𝐹 .

The dependence of 𝑍𝐴 on 𝐸𝐹 varies with the mass ratio. This is shown
in Fig. 4.8, where we plot the spectral weight of the attractive branch 𝑍𝐴 vs
𝐸𝐹 for a variety of mass ratios 𝑚2/𝑚1 < 0.3. The transfer of spectral weight
is reduced at a larger mass imbalance when the 𝑝-wave trion is more strongly
bound.

For 𝑚2/𝑚1 > 0.3, the 𝑝-wave trion is unbound and, as noted above, the
spectral function displays a single peak. This single branch continuously con-
nects, at zero doping, with the exciton mode 𝐸𝑛=1 → −𝜀𝑋, as illustrated in
Fig. 4.7 (b). The weights of the 𝐸𝑛=1 state and the continuum are plotted
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in Fig. 4.7 (d), showing a gradual weight transfer from the single branch to
the continuum when 𝐸𝐹 increases. This transfer to the continuum is slower
than when the trion 𝑝-wave state is bound. We have also analyzed the case
where the trion is unbound at zero doping and becomes bound by increasing
𝐸𝐹 [374]. Surprisingly, we find that the spectral function displays two branches
exclusively when the trion state is already bound at 𝐸𝐹 = 0 and otherwise is
characterized by the repulsive branch only.

It is instructive to compare the results found for the ICP scenario with the
DCP case, studied previously in Sec. 2.3.2 and which results are resumed in
Fig. 2.10. In the DCP case, the 𝑠-wave trion is always bound, i.e., |𝐸𝑇3

|−𝜀𝑋 > 0,
for any mass ratio [268, 271, 272]. Therefore, the spectrum is always charac-
terized by attractive and repulsive branches which continuously connect to the
𝑠-wave trion and exciton states, respectively. As in the ICP case, the attractive
branch is well separated from the continuum and thus has a Lorentzian shape.
However, the repulsive branch is in this case hybridized with the continuum and
so its shape is not Lorentzian. Instead, the repulsive branch is characterized by
an asymmetric shape and a linewidth that grows with 𝐸𝐹 [265, 321]. From the
energy peak positions Fig. 2.10 (b) one sees that the attractive branch in the
DCP case red-shifts with doping; this difference is because, for distinguishable
carriers, there is no effect of Pauli blocking on the exciton. From the spectral
weights Fig. 2.10 (d), one sees that the transfer to the continuum is negligible
in the DCP scenario. Further, at small densities, the attractive branch spectral
weight has a linear dependence on density, as already predicted by Refs. [266,
317], in contrast with the quadratic dependence found in the ICP scenario.

4.4.4 Hole angular momentum in the trion-hole complex
As noted previously, the four-body complex described by the wave function
𝜑k1k2q in the ansatz (4.18) always has an overall 𝑠-wave symmetry, ℓ = 0. The
three-particle (trion) and Fermi sea hole subspaces within the complex can,
however, have any orbital character consistent with this, i.e., the overall state
can be a superposition of states where the trion and hole have opposite angular
momenta ℓtrion = −ℓhole; in practice, we find that components with ℓhole =
0, ±1 dominate the state. In order to evaluate the hole (and, consequently, the
trion) angular momentum in the trion-hole complex, we consider the probability
𝑃 (𝑛)

ℓ for the hole in a given eigenstate 𝑛 to have an angular momentum ℓ, which
we define as

𝑃 (𝑛)
ℓ =

1
𝒜3 ∑k1k2qq′ 𝑒𝑖ℓ(𝜃𝑞−𝜃𝑞′ )𝜑∗

𝑛k1k2q𝜑𝑛k1k2q′𝛿𝑞𝑞′

1
𝒜3 ∑k1k2q |𝜑𝑛k1k2q|2 . (4.33)
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Fig. 4.9: Exciton spectral func-
tion 𝐴𝑋(𝜔) and angular mo-
mentum character for the ICP
case, in the weak coupling re-
gime, plotted for different values
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in Eq. (4.37). The line width is
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Here, 𝜃𝑞 is the angle of the majority hole momentum variable q = (𝑞, 𝜃𝑞), see
Eq. (4.18). Due to time-reversal symmetry, the probability satisfies 𝑃 (𝑛)

−ℓ = 𝑃 (𝑛)
ℓ

and it is normalized such that ∑ℓ∈ℤ 𝑃 (𝑛)
ℓ = 1. We observe that, for eigenvalues

up to the repulsive branch, 𝐸𝑛 ≲ 𝐸𝑅, the |ℓ| ≥ 2 components have a negligible
probability, so that the hole angular momentum is either ℓ = 0 or |ℓ| = 1. Thus,
in this energy interval, 𝑃 (𝑛)

ℓ=0 ≃ 1 − 2𝑃 (𝑛)
ℓ=1.

In order to relate this probability to frequency 𝜔, and to focus attention on
those states which are optically active, it is convenient to define the angular-
momentum-weighted exciton Green function as:

𝐺𝑋,ℓ(𝜔) = (2𝑔
Ω )

2
∑

𝑛
𝑃 (𝑛)

ℓ
∣ 1

𝒜 ∑k 𝜑𝑛k∣2

𝜔 − 𝐸𝑛 + 𝑖𝜂𝑋
, (4.34)

from which we can evaluate the angular-momentum-weighted spectral function
as usual:

𝐴𝑋,ℓ(𝜔) = − 1
𝜋 Im𝐺𝑋,ℓ(𝜔) . (4.35)

For 𝜔 ≲ 𝐸𝑅, we have

𝐴𝑋(𝜔) = ∑
ℓ∈ℤ

𝐴𝑋,0(𝜔) ≃ 𝐴𝑋,0(𝜔) + 2𝐴𝑋,1(𝜔), (4.36)
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Fig. 4.10: Doping dependence
of the 𝑝-wave orbital character
(𝑃 (𝑛)

ℓ=1 + 𝑃 (𝑛)
ℓ=−1 (4.33)) of the ei-

genstate 𝑛 closest to the attract-
ive 𝐸𝐴 and repulsive 𝐸𝑅 branches
of the ICP case at 𝑚2/𝑚1 =
0.25. Symbols denote the val-
ues found from exact diagonaliza-
tion. Empty symbols indicate val-
ues where a resonance with one
of the continuum states occurs.
Solid lines are a guide to the eye.

because the |ℓ| ≥ 2 hole angular momentum components are suppressed. As
such, we may define the fraction of the spectral function with angular mo-
mentum |ℓ| = 1 as

𝐹𝑋,|ℓ|=1(𝜔) ≡ 2𝐴𝑋,1(𝜔)
𝐴𝑋(𝜔) . (4.37)

When this quantity is close to zero, the hole in the trion-hole complex is pre-
dominantly 𝑠-wave, while a value close to one means that it is nearly all 𝑝-wave.
We show this in Fig. 4.9 by the colored area. Note that this plot is obtained at a
low resolution (𝑁𝑘 = 10) because evaluating the angular momentum character
𝐹𝑋,|ℓ|=1(𝜔) requires knowing the eigenstate in full, so we have to use a direct
diagonalization routine rather than the iterative method. Nonetheless, we can
still identify the attractive and repulsive branches by comparing these results
with the spectral functions evaluated with a higher number of points via the
iterative method, which establishes which peak positions are independent of
𝑁𝑘, and may thus be identified as the attractive and repulsive branches (see
Fig. 4.5).

We observe that the symmetry of the peaks that we have previously iden-
tified as attractive and repulsive branches evolves as a function of doping. In
particular, at very low doping — see Fig. 4.9 (a) — as expected, the hole (and
thus the trion) of the trion-hole complex in the attractive branch has a 𝑝-wave
symmetry, while the hole in the repulsive branch has 𝑠-wave symmetry. How-
ever, as 𝐸𝐹 increases, the symmetries cross over so that at larger doping — see
Fig. 4.9 (c) — the attractive branch becomes 𝑠-wave and the repulsive branch
𝑝-wave. Those states associated with the continuum do not change symmetry
and remain 𝑠-wave at all dopings.

Note that, because attractive and repulsive peaks in Fig. 4.9 have constant
values of the state fraction 𝐹𝑋,1(𝜔) within their linewidth, we can characterize
this symmetry in Fig. 4.10 by plotting the doping dependence of the probability
𝑃 (𝑛)

ℓ=1 + 𝑃 (𝑛)
ℓ=−1 = 2𝑃 (𝑛)

ℓ=1 for the eigenvalue 𝐸𝑛 closest to the attractive 𝐸𝐴 and
repulsive 𝐸𝑅 branches. When this quantity is zero, the hole (and trion) in the
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trion-hole term is 𝑠-wave, while when it is one the hole and trion are 𝑝-wave.
We observe that, as expected, at zero doping the attractive branch hole (and
thus trion) has a 𝑝-wave symmetry, consistent with earlier arguments about
the ground state of the trion for indistinguishable carriers. In the same limit,
the repulsive branch hole (and thus trion) has an 𝑠-wave symmetry. At very
low doping, when the attractive branch spectral weight 𝑍𝐴 has a quadratic
dependence on 𝐸𝐹 , the attractive branch is primarily 𝑝-wave and the repulsive
branch 𝑠-wave. However, at larger doping, this switches to a regime where
the attractive branch becomes instead 𝑠-wave and the repulsive branch 𝑝-wave.
As noted previously the optically active continuum always retains the 𝑠-wave
symmetry. When the continuum has the same or larger spectral weight of the
repulsive branch, as seen at 𝐸𝐹 ≳ 0.02𝜀𝑋, the repulsive branch is full 𝑝-wave.
The different symmetry of the repulsive branch versus the continuum explains
why the repulsive branch retains its Lorentzian shape with constant width 𝜂𝑋,
and does not hybridize with the continuum. This behavior for the ICP case is
very different than that seen for the DCP case — see Sec. 2.3.4.

Note that, in Fig. 4.10, while the orbital character of the attractive branch
is smooth, the orbital character of the repulsive branch has a kink in a small
interval of 𝐸𝐹 . This is due to the coupling, at finite 𝑁𝑘, between the repulsive
branch and one of the continuum states, as previously explained. For this
reason, we plot these data points with empty rather than filled symbols.

4.4.5 Strong coupling
We finally discuss how the above results obtained for the ICP case affect the
spectrum in the regime of strong light-matter coupling. In Fig. 4.11 we plot the
photon spectral function 𝐴𝐶(𝜔) as a function of the photon-exciton detuning
𝛿 and the frequency 𝜔, for two different values of 𝐸𝐹 , for a Rabi splitting
Ω = 0.1𝜀𝑋, and for a mass ratio 𝑚2/𝑚1 = 0.25 at which the zero doping 𝑝-
wave trion is bound—the same conditions as Figs. 4.6 (a) and 4.7 (a,c). This
figure has been obtained by considering a Gaussian convolution of the exciton
Green’s function:

1√
2𝜋𝜎 ∫ 𝑑𝜔′𝐺(0)

𝑋 (𝜔′)𝑒− (𝜔−𝜔′)2
2𝜎2 . (4.38)

This convolution is used to reduce finite-size effects.
In Fig. 4.11 (a), we observe that, at low doping, the attractive branch has

a negligible spectral weight and the attractive and repulsive branches are very
close to each other, and therefore we only see two polariton branches. At
larger 𝐸𝐹 (panel (b)), we instead see three polariton branches, the LP, MP,
and UP polariton. This occurs because the oscillator strength transfer from
the repulsive to the attractive branch allows for anticrossings of the photon
with both branches.
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Fig. 4.11: Photon spectral function 𝐴𝐶(𝜔) for the ICP case in the strong light-
matter coupling regime, as a function of the photon-exciton, detuning 𝛿 and the
frequency 𝜔, for two different values of 𝐸𝐹 . Attractive (𝜔 = 𝐸𝐴) and repulsive
(𝜔 = 𝐸𝑅) branches evaluated in the weak coupling regime are plotted as dashed and
dotted (white) lines, respectively. The black dots are the eigenvalues of the three-
coupled oscillator model, Eq. (4.39), with parameters 𝐸𝐴, 𝐸𝑅, and Ω𝐴,𝑅 = √𝑍𝐴,𝑅Ω
extracted from the weak coupling regime results (see panels (a) and (c) of Fig. 4.7).
The mass ratio is 𝑚2/𝑚1 = 0.25, the Rabi splitting Ω = 0.1𝜀𝑋, and the linewidth
𝜂 = 5 × 10−3𝜀𝑋. The exciton Green’s function has been evaluated by applying a
Gaussian convolution (4.38), with width 𝜎 = 𝜂.

In order to see the relation between the results in the strong coupling regime
with those previously obtained in the weak coupling regime, we plot in Fig. 4.11
as (black) solid lines the eigenvalues of a three-coupled oscillator model:

ℋ3𝑜 = ⎛⎜⎜
⎝

−𝜀𝑋 + 𝛿 Ω𝐴/2 Ω𝑅/2
Ω𝐴/2 𝐸𝐴 0
Ω𝑅/2 0 𝐸𝑅

⎞⎟⎟
⎠

, (4.39)

Here, 𝐸𝐴,𝑅 are the energies of the attractive and repulsive peaks obtained
in Fig. 4.7 (a), while the effective Rabi splittings of attractive and repulsive
branches are related to the branch spectral weights of Fig. 4.7 (b) via Ω𝐴,𝑅 =
√𝑍𝐴,𝑅Ω [341]. As Fig. 4.7 shows, there is perfect agreement between the
polariton branches evaluated from the strong coupling spectral function and
the eigenvalues of the three-coupled oscillator model (4.39)

4.5 Experiments
In order to observe the predictions of the work presented in the previous sections
requires the 𝑝-wave trion state to be bound. As we have shown in Sec. 4.3, the
positively charged trion 𝑋+ can bind when the ratio between the electron and
the hole mass is sufficiently small [268, 272], i.e., for sufficiently more massive
holes than the electron — see Fig. 4.4. For TMD monolayers, calculations for
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Fig. 4.12: Panels (a) and (b): Reflectance contrast spectra of a MoSe2 TMD mono-
layer measured as a function of the gate voltage at a magnetic field 𝐵 = 16 T and
probed for 𝜎+ (a) and 𝜎− (b) circular polarization. The horizontal dashed lines in-
dicate the positions of the bottoms (tops) of the conduction (valence) bands in panel
(c). Adapted from Ref. [220].

MoX2 (X=Se, S) indicate that the intravalley 𝑝-wave trion is unbound [270]
because the electron-hole mass ratio is around one.

In Fig. 4.12 it is plotted the reflectance spectra for a MoSe2 monolayer
at a large enough magnetic field to reach full spin-valley polarisation — see
Fig. 4.12 (c) — on the 𝑛-doped side up to voltages of around 𝑉𝑔 ≲ 10 V and at
all voltages on the 𝑛-side. Because of this, when the gate voltage reaches the
minimum of the conduction band of the K´ valley, the monolayer is doped with
electrons with spin ↓ (𝑛-doped region). If the exciton is created in the K valley
with a 𝜎+ polarized light, we are in the DCP scenario and the optical response
is dominated by the attractive and repulsive polaron branches. The attractive
polaron branch energy redshifts at increasing doping, in contrast to the zero
magnetic field case shown in Fig. 2.4 (a). This is because, in the fully spin-
valley polarized regime shown here for voltages 𝑉𝑔 ≲ 10 V, the exciton is not
affected by Pauli blocking effects. For 𝑉𝑔 ≳ 10 V, the conduction band in the K
valley starts to be populated as well and the gate dependence of the attractive
branch now changes, showing instead a blueshift. By still using a 𝜎+ polarised
light and on the 𝑝-doped side the hole forming the exciton is identical to the
holes that constitute the Fermi sea. This leads to the ICP scenario, where
no attractive polaron branch is visible in the optical response, in agreement
with the prediction that at these mass ratios the indistinguishable 𝑋+ trion is
not bound. Here, only the repulsive branch is visible, in agreement with our
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Fig. 4.13: (a) Prediction [277] for the symmetric singlet and antisymmetric triplet
trion binding energies dependence on the magnetic field (solid lines), for a GaAs
quantum well. Dashed lines are results obtained using the lowest subband approxim-
ation, while the dotted lines correspond to the lowest-Landau-level approximation. (b)
Experimental results of Ref. [278] obtained from photoluminescence measurements for
the trion and exciton energies for a GaAs quantum well in a perpendicular magnetic
field.

predictions. The opposite situation arises when the exciton is generated in the
K´-valley by a 𝜎− polarized light, as shown in Fig. 4.12 (b).

While in presence of electron doping the optical transitions evolve smoothly
with the gate voltage, in the hole doping region they exhibit a pronounced oscil-
latory behavior. The oscillations visible in the spectra are due to the influence
of the Landau levels quantization of the Fermi medium. While the attractive
exciton-polaron branch is only weakly influenced by the magnetic field, the
repulsive branch splits into a number of peaks separated by the Larmor fre-
quency 𝜔𝐵 [322, 466]. In Ref. [220], the authors speculated that the asymmetry
between 𝑛- and 𝑝-doped region may be a consequence of the electron-hole effect-
ive mass ratio that exceeds unity (with a value around 2 [82, 485]), in contrast
to ab initio calculations which predict both masses to be similar.

While the experimental detection of ICP is forbidden in TMD monolayers,
due to electron and hole effective masses being too similar, some ab initio calcu-
lations [483, 484] has shown that the mass ratio of TMD monolayers is tunable,
within a narrow range, by application of strain, either epitaxially or externally.
Another way to potentially achieve ICP is by applying a stronger external mag-
netic field, which, in quantum well systems, has been predicted [273–277, 486]
and demonstrated [278–280, 487] to increase the binding energies of charged
excitons. Indeed calculations in this direction would be desirable.

As discussed in Sec.4.3.2, both 𝑋− [278] and 𝑋+ [487] 𝑠-wave singlet trions
are bound in GaAs quantum wells at zero magnetic field. Note that the terms
triplet and singlet trions are commonly used in the literature to refer to 𝑝-wave
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Fig. 4.14: Photoluminescence
spectra of exciton (𝑋), triplet
(𝑋−

𝑡 ), and singlet (𝑋−
𝑠 ) trions at

𝐵 = 8 T, as a function of dop-
ing [280].

and 𝑠-wave trions in quantum wells, respectively. This is because, unlike TMD
monolayers, the particles involved possess only the spin degree of freedom. The
electron-hole mass ratio for a GaAs is typically around 𝑚𝑒/𝑚ℎ = 0.25 [482],
though there is not an exact value for this parameter, as it depends on various
factors such as quantum well width and barrier composition [488]. For instance,
the mass ratio reported in Ref. [487] is 𝑚𝑒/𝑚ℎ = 0.58. The specific value of 0.25
is below the critical mass ratio of ∼ 0.35 discussed in Sec. 4.3.2 (see Fig. 4.4 (a))
and, as such, allows the existence of a weakly bound 𝑝-wave trion even at zero
magnetic field. Yet, there has been not so far experimental evidence of the
triplet trion 𝑋+ in absence of a magnetic field.

There has been however experimental evidence of biding of the 𝑝-wave
triplet trion 𝑋+ when a magnetic field is applied perpendicularly to the GaAs
quantum well for a sufficiently high magnetic field [278–280, 487]. This is
shown in Fig. 4.13 (b) where the experimental measurements for a negatively
charged exciton in a GaAs quantum well obtained in Ref. [278] are reported.
Fig. 4.13 (a) shows that, while for small values of the magnetic field, the sing-
let negatively charged exciton is the ground state, the triplet one eventually
becomes the lowest energy one in the presence of a strong magnetic field, as eval-
uated in Ref. [277]. Similar results have also been obtained in CdTe quantum
wells [489, 490].

Results from Ref. [280] have also indicated that, in the presence of a mag-
netic field and by increasing doping, the exciton oscillator strength can transfer
to the triplet trion state. Fig. 4.14 (a) shows the effects of doping on the trion
formation in a magnetic field of 8 T, as calculated in Ref. [280]. The exciton
dominates the PL spectrum at low doping (∼ 3×1010 cm−2), but an increase of
doping enhances the trion formation rate, reducing the exciton PL intensity and
strengthening both singlet and triplet trion one. Ref. [280] extracted oscillator
strength from the inverse decay rate obtained with photoluminescence exper-
iments revealing an almost cubic dependence on the electron concentration,
contrary to the quadratic behavior predicted by our calculations. Nonetheless,
a more accurate estimation of the optical oscillator strength with respect to
electron concentration is achievable by conducting reflectance or absorption
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experiments. These experiments would provide a better assessment of our cal-
culations’ predictions.

4.6 Conclusions and perspectives
We have studied the optical properties of a doped 2D semiconductor, where one
of the two charges forming the exciton is indistinguishable from those forming
the Fermi sea induced by doping — a case we referred to as the ICP case. We
have calculated the optical absorption, which describes transitions between the
system ground state and states with an inter-band particle-hole pair (exciton).
To describe the effects of the Fermi sea, we employed a polaron description
where the exciton is dressed by a single intra-band particle-hole excitation of
the Fermi sea.

The polaron formalism allows us to recover, at low doping, the properties
of few-body complexes, i.e., the exciton and the trion. At the same time, this
formalism allows one to describe the higher density many-body regime. From
the comparison of our results with those obtained in the distinguishable (or
DCP) case, we conclude that, while for the DCP case, the spectral function is
always characterized by attractive and repulsive branches (because the associ-
ated 𝑠-wave trion is always bound), for the ICP case there are two branches
only when the 𝑝-wave trion is bound, which requires sufficiently small minority
to majority mass ratio.

Both the ICP and DCP cases show a transfer of oscillator strength from
the repulsive to the attractive branch as one increases doping. Such a transfer
of weight is possible because, in both cases, it is not the trion state itself which
must couple to light, but rather a trion-hole complex (a complex consisting
of three particles and a Fermi-sea hole) that indirectly couples to light via its
coupling to the exciton. The spectral weight of the attractive branch has a
different dependence on doping for the ICP and DCP cases: at low doping, in
the DCP case it grows linearly with the Fermi sea density [266, 317], while
in the ICP case, we find that it grows quadratically as a consequence of the
𝑝-wave nature of the trion state. In the regime of strong light-matter coupling,
the transfer of oscillator strength to the attractive branch furthermore leads to
the appearance of three polariton modes resulting from the anticrossing of the
photon with both the attractive and repulsive branches. We have discussed
how the Rabi splittings in the strong coupling polariton spectrum allow one to
effectively measure the weak coupling quasiparticle weights.

The attractive polaron energy recovers, at low doping, the 𝑝-wave (𝑠-wave)
trion energy for the ICP (DCP) case. In both cases, this branch is a sharp
Lorentzian-like peak of the spectral function, with a linewidth that does not
change with doping. The repulsive polaron branch continuously connects at
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low doping with the exciton energy. Because attractive and repulsive branches
are separated by a continuum, the repulsive branch never coincides precisely
with a system eigenstate. However, for the ICP case, the repulsive branch is,
like the attractive branch, a sharp peak with a Lorentzian shape and a doping-
independent broadening. This is in stark contrast with the DCP case, where
the repulsive peak is a broad feature, involving multiple eigenstates, and has
an asymmetric shape and a linewidth that increases with doping [265, 321].
The origin of the different nature of the repulsive branch in the ICP and DCP
cases comes from the orbital character of the states involved. We show this by
calculating the angular momentum of the three-particle (trion) and Fermi-sea
hole components of the polaronic state, both for the repulsive branch and for
the continuum. For the ICP case, at large enough doping, the repulsive branch
and continuum states have different orbital characters and, thus, do not mix.
For the ICP case, we also observe that the orbital characters of attractive and
repulsive branches swap as one increases doping so that the Fermi-sea hole in
the attractive branch has 𝑠-wave symmetry at high doping.

There are several directions in which this work can be generalized and
extended. To start this, we have considered a simplified description of interac-
tions, neglecting majority particle interactions and approximating the interac-
tion between opposite charges as contact. We have seen that this is accurate
to describe the binding-unbinding transition of the 𝑝-wave trion and, at the
same time allows us to obtain the major qualitative results for the ICP polaron.
In order to obtain quantitatively accurate results it would be interesting to
include the effects of the long-range Coulomb interaction, something we plan
for future work.

Moreover, we saw that to observe the results of our work, it is necessary to
have a bound 𝑝-wave trion state, which can be achieved with a strong out-of-
plane magnetic field. Our initial findings suggest that increasing doping in the
presence of a magnetic field can lead to the transfer of the exciton oscillator
strength to the 𝑝-wave trion state. Future studies may explore extending these
results by including the effects of Landau quantization in the Fermi polaron
regime of the ICP case. In this regime, one should be able to describe the
spin-polarized case for a quantum well, where electrons occupy a single spin-
polarized Landau level, allowing the description of the magnetic field-induced
oscillator strength transfer from the exciton to the 𝑝-wave trion. This should
also allow us to describe the magnetic oscillation which characterizes the po-
laron branches in TMD monolayer at small magnetic fields and to explore the
possible enhancement of the 𝑝-wave trion binding energy in TMD, where the
unitary electron-hole mass ratio forbids this state.

Another intriguing direction that would be extremely interesting to invest-
igate as a future perspective of this work is how the different orbital character-
istics of the ICP can affect the strength of polaron-polaron interactions. We
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plan to analyze this scenario for both attractive and repulsive polarons as a
function of charge density in future work.



Chapter 5

Pairing at extreme imbalance

In this chapter we focus on pairing effects between a conduction band electron
and a valence band hole and how this is modified by the presence of a Fermi
sea of majority charges as well as the strong coupling to a microcavity photon
field. We consider a microscopic theory that allows the modification of the
electron-hole wave function by both the light-matter interaction and the Fermi
sea. Using variational wave functions, we examine the competition between dif-
ferent electron-hole paired states for the specific cases of semiconducting III-V
single quantum wells, electron-hole bilayers, and transition metal dichalcogen-
ide monolayers embedded in a planar microcavity. We show how the Fermi
sea of excess charges modifies both the electron-hole bound state (exciton) prop-
erties and the dielectric constant of the cavity active medium, which in turn
affects the photon component of the polariton ground state. On the one hand,
long-range Coulomb interactions and Pauli blocking of the Fermi sea promote
electron-hole pairing with finite center-of-mass momentum, corresponding to
an excitonic roton minimum. On the other hand, the strong coupling to the
ultra-low-mass cavity photon mode favors zero-momentum pairs. We discuss
the prospect of observing different types of electron-hole pairing in the photon
spectrum.
The results discussed in this chapter have been published in the following pub-
lication:

[174] A. TIENE, J. LEVINSEN, M. M. PARISH, A. H. MACDONALD, J. KEELING, and
F. M. MARCHETTI:
Extremely imbalanced 2D electron-hole-photon systems,
Phys. Rev. Research 2, 023089 (2020).

https://journals.aps.org/prresearch/abstract/10.1103/PhysRevResearch.2.023089
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5.1 Introduction
We have discussed at length in Ch. 2 how recent technological progress has
opened up the possibility to study the interplay between strong light-matter
coupling and electronic doping in semiconductor structures [214, 217, 218, 321,
345, 350, 491, 492]. In this chapter, we will focus on pairing effects, i.e., on
the two-body problem of a conduction band electron and a valence band hole,
and we will determine the consequences on pairing of Pauli blocking from the
Fermi sea, Coulomb interaction, and strong coupling to light.

Electron-hole systems with charge imbalance are expected to display exotic
pairing phenomena such as the spontaneous appearance of excitons with finite
center-of-mass (CoM) momentum [255, 256, 419, 493]. This finite CoM paired
state is equivalent to the FFLO phase [257, 258], a spatially modulated paired
phase first proposed in the context of spin-imbalanced conventional supercon-
ductors — see Sec. 2.4. The study of this inhomogeneous superfluid phase
has attracted noticeable interest over the past five decades in a wide range
of physical systems — see, e.g., the recent reviews [410, 413, 494]. However,
a conclusive experimental observation of the FFLO state remains a challenge.
Signatures and indirect evidence of the FFLO phase have been reported in
heavy-fermion systems [495], layered organic superconductors [496–500], and
iron-based superconductors [501]. There has also been related work on ul-
tracold gases in 1D optical lattices, paving the way toward studying FFLO
states in such systems [502]. It is therefore of particular interest to understand
how such a state in an electron-hole system might be probed and controlled
with light.

In this chapter, we discuss pairing effects in strongly carrier density imbal-
anced electron-hole 2D structures strongly coupled to a microcavity photon
field. In the absence of light, it was previously shown that a sufficiently high
density of excess charge causes the exciton energy to develop a roton minimum
at finite CoM momentum [255, 256] that is related to the FFLO phase — see
Sec. 5.3 for a detailed discussion. We discuss how strong coupling to light affects
this excitonic FFLO roton minimum. While long-range Coulomb interactions
and Pauli blocking promote the formation of a finite CoM momentum bound
state, the strong coupling to low mass cavity photons tends to suppress such
a phase. Conversely, the formation of an FFLO phase suppresses the coupling
to light. We study the competition between these processes by deriving the
phase diagram of the equilibrium extremely imbalanced electron-hole-photon
system, focusing solely on pairing phenomena. We show that the exciton mode
is affected not only by the presence of the majority species Fermi sea, but, at
the same time, the excess charge modifies the dielectric constant of the active
medium and, thus, it also affects the energy of the cavity photon mode. Con-
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sequences of this predicted energy shift of the photon mode in the presence
of a Fermi sea can be observed by comparing structures with different light-
matter coupling, e.g., by embedding a different number of quantum wells into
the planar cavity and thus in effect changing the Rabi splitting.

5.2 Model
We are going to make use of the fully microscopic model introduced in Ch. 1
describing an electron-hole system, interacting via Coulomb potential between
all charges, and coupling via a photon field. We consider the fully spin polar-
ized case, where electrons and holes are in a single spin state. In Sec. 4.1 we
discussed how this can be achieved by introducing an external magnetic field.
The system Hamiltonian reads as:

�̂� = �̂�0 + �̂�𝐶 + �̂�𝑒ℎ + �̂�𝑒ℎ𝐶 (5.1a)

�̂�0 = ∑
k,𝜎=1,2

𝜖𝜎k ̂𝑐†
𝜎k ̂𝑐𝜎k (5.1b)

�̂�𝐶 = ∑
k

𝜖𝐶k ̂𝑎†
k ̂𝑎k (5.1c)

�̂�𝑒ℎ = ∑
𝜎𝜎′

∑
kk′q

𝑊 𝜎𝜎′
𝑞

2𝒜 ̂𝑐†
𝜎k ̂𝑐†

𝜎′k′ ̂𝑐𝜎′k′+q ̂𝑐𝜎k−q (5.1d)

�̂�𝑒ℎ𝐶 = 𝑔√
𝒜

∑
kq

( ̂𝑐†
1 q

2 +k ̂𝑐†
2 q

2 −k ̂𝑎q + h.c.) . (5.1e)

Here, ̂𝑐†
𝜎k ( ̂𝑐𝜎k) and ̂𝑎†

k ( ̂𝑎k) are the creation (destruction) electron-hole and
cavity photon operators, and 𝜖𝜎k = k2/2𝑚𝜎 (1.1) and 𝜖𝐶k = k2/2𝑚𝐶 (1.31) are
the electron-hole and cavity photon kinetic energies. We are measuring energies
with respect to the energy gap 𝐸𝑔, which is thus set to zero throughout this
chapter. The index 𝜎, 𝜎′ = 1, 2 is the electron-hole index — we use a notation
where 1 stands for the majority particles and 2 for the minority one; which ones
are electrons or holes is established by the value of the mass ratio 𝑚2/𝑚1. For
example, 𝑚2/𝑚1 ∼ 4 [482] is the typical mass ratio between hole (minority) and
electron (majority) particles in a GaAs quantum well. If instead, we consider
𝛼 = 𝑚2/𝑚1 = 0.25 it means that the electrons are the minority particles and
the holes the majority ones.

As far as the Coulomb interaction terms between charges are concerned, we
are going to consider two opposite situations. As explained later, the screening
of Coulomb interaction induced by the majority carriers causes, in the absence
of photons, a transition from bound to unbound excitonic states when the ma-
jority species density increases [255]. With the aim of including the possibility
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of describing the binding-unbinding transition, we will present results for both
the unscreened case, and for screened Coulomb interactions within the static
random phase approximation (RPA). In RPA, the intraspecies potential reads
as

𝑉 𝑠𝑐
q = 𝑉q

1 − 𝑉qΠ1(q) (5.2a)

Π1(q) = 𝑁𝑠𝑚1
2𝜋 [√𝑞2 − 4k2

𝐹
𝑞 𝜃(𝑞 − 2k𝐹 ) − 1] , (5.2b)

with 𝑁𝑠 = 1 for the spin polarized case and where 𝑉q = 2𝜋𝑒2/𝜖q is the un-
screened intraspecies potential (1.22a). In this chapter, we are also considering
the possibility of electron and hole confinement in two separate wells. The bare
potentials we consider are

𝑊 11
q = 𝑊 22

q = 𝑉q (5.3a)
𝑊 12

q = 𝑊 21
q = −𝑉q𝑒−𝑞𝑑 , (5.3b)

where 𝑑 is the bilayers separation1 In the screened case, the bare Coulomb
interaction 𝑉q is substituted by the RPA screened potential 𝑉 𝑠𝑐

q .
Considering screened interactions within RPA corresponds to effectively

“dressing” the particles forming the exciton with density fluctuations, i.e., an
infinite number of particle-hole pairs. RPA is expected to overestimate screen-
ing and provides a good approximation when the exciton Bohr radius greatly
exceeds the interparticle spacing of the majority species, i.e., 𝑎2

𝑋𝑛1 ≫ 1. RPA
should be also reliable for sufficiently large bilayer distance 𝑑, since it removes
the short-range interactions between electrons and holes where RPA has prob-
lems [503]. In the opposite limit, 𝑎2

𝑋𝑛1 ≪ 1, screening is negligible. With this
in mind, unscreened and RPA screened interactions represent extreme limiting
cases, thus allowing us to place a bound on the effect of screening in realistic
materials.

5.2.1 Renormalization of the cavity photon energy
We have already seen in Ch. 1 that, modelling the electron-hole-photon coup-
ling as a contact interaction as in �̂�e-h-C (5.1), leads to an ultraviolet logar-
ithmic divergence of the ground-state energy [140]. Since the details of the
high-momentum physics, such as the band curvature due to the crystal lattice
structure, are not included in our low-energy model, we will renormalize the
ultraviolet divergence via the procedure described in Sec. 1.5.2. This allows to

1 The single layer limit can be recovered by taking 𝑑 → 0.
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deduce universal properties of our system that are independent of microscopic
details.

We propose here an equivalent description of the renormalization procedure
described in Sec. 1.5.2 by using, instead of a variational approach, Feynman
diagrams [140]. The spectrum can be obtained from the poles of the photon
Green’s function, dressed to include the effects of the matter-light interaction.
In this case, the retarded photon Green’s function can be defined in terms of
the photon self-energy as:

𝐺𝐶(𝜔) = 1
𝜔 − 𝜖𝐶0 − Σ𝐶(𝜔) . (5.4)

The photon self-energy Σ𝐶(𝜔) includes the scattering effects because of electron-
hole pair generation and it can thus be written in terms of the electron-hole
Green’s function as:

Σ𝐶(𝜔) = 𝑔2

𝒜2 ∑
kk′

𝐺(𝜔, k, k′) , (5.5)

where 𝐺(𝜔, k, k′) is the electron-hole Green’s function. This satisfies the Lippman-
Schwinger equation [141]

𝐺(𝜔, k, k′) = 𝛿k,k′

𝜔 − ̄𝜖k
− 1

𝒜 ∑
k″

𝑉k−k″𝐺(𝜔, k″, k′)
𝜔 − ̄𝜖k″

, (5.6)

where ̄𝜖k = 𝜖1k + 𝜖2k. The first term on the right-hand side of Eq. (5.6) is the
bare electron-hole pair retarded Green’s function, while the second term ac-
counts for all the possible repeated Coulomb interactions between the electron
and the hole forming the exciton. The poles of Eq. (5.4) can thus be found
solving

𝜔 − 𝜖𝐶0 + 𝑔2

𝒜 ∑
k

1
−𝜔 + ̄𝜖k

= 𝑔2

𝒜3 ∑
kk′k″

𝑉k−k″𝐺(𝜔, k″, k′)
𝜔 − ̄𝜖k″

(5.7)

As demonstrated in Ref. [140], while the right-hand side of this equation is
convergent, the sum on the left depends logarithmically on the UV cutoff,
making necessary the redefinition of the cavity photon frequency.

By carrying on the renormalization procedure at zero doping (see Sec. 1.5.2)
in the weak coupling limit 𝑔 ≪ 𝑎𝑋𝜀𝑋, the renormalized photon exciton detun-
ing can be written as

𝛿 = 𝜔𝐶0 − 𝜖𝑋0 , (5.8)
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where 𝜔𝐶0 is the renormalized (finite and measurable) photon energy:

𝜔𝐶0 ≡ 𝜖𝐶0 − 𝑔2

𝒜 ∑
k

1
𝜀𝑋 + ̄𝜖k

. (5.9)

In this limit, the Rabi coupling can be written as:

Ω ≡ 2𝑔
𝒜 ∑

k
𝜑1𝑠k , (5.10)

The definitions of the effective detuning, Eq. (5.8), and Rabi splitting,
Eq. (5.10), represent a first-order approximation in the expansion parameter
𝑔 ≪ 𝑎𝑋𝜀𝑋 to the experimentally measured detuning and Rabi splitting. An
effort to obtain a better estimate of both parameters and a comparison with
the approximation carried out here is discussed in App. E. There, we employ
a definition of detuning and Rabi splitting which is similar to a possible exper-
imental procedure. In this way, we find that the differences between the fitted
parameters and those defined in Eqs. (5.8) and (5.10) are small. This implies
only small quantitative changes in our results below when we push our results
beyond the 𝑔 ≪ 𝑎𝑋𝜀𝑋 validity regime of Eqs. (5.8) and (5.10).

5.2.2 Variational ansatz: FF, SF, and normal states
Because we want to describe how strong light-matter coupling affects the trans-
ition from having an exciton with zero CoM momentum to having one at finite
CoM momentum, as doping increases, we focus on the extremely imbalanced
limit, where there is a single minority particle 𝜎 = 2 interacting with a Fermi li-
quid of majority particles 𝜎 = 1. To determine the mean-field zero temperature
phase diagram, we find the ground state by a variational approach. The vari-
ational state we consider describes a superposition of a photon and an electron-
hole pair, on top of a Fermi sea of majority particles, |𝐹𝑆⟩ = |𝐹𝑆⟩1⊗|0⟩2⊗|0⟩𝐶 :

∣ΨQ⟩ = ( ∑
k>k𝐹

𝜑(Q)
k√
𝒜

̂𝑐†
1k ̂𝑐†

2Q−k + 𝛼(Q)
0 ̂𝑎†

Q) |𝐹𝑆⟩ . (5.11)

Here, 𝜑(Q)
k and 𝛼(Q)

0 are the excitonic and photonic variational parameters,
respectively, and the normalization condition requires that

⟨ΨQ ∣ΨQ⟩ = 𝒜−1 ∑
k>k𝐹

|𝜑(Q)
k |2 + |𝛼(Q)

0 |2 = 1 . (5.12)

The momentum Q is the CoM momentum of the polaritonic bound state, while
the label k denotes the relative electron-hole momentum. Pauli blocking forbids
occupation of all majority particle states below the Fermi momentum k𝐹 , and
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we use the notation ∑k>k𝐹
to indicate summation over allowed states.

In the following, we will refer to the polaritonic bound state with finite
CoM momentum ∣ΨQ≠0⟩ as the Fulde-Ferrel (FF) state. Note that we use the
notation FF rather than FFLO because the pairing wave function we consider
is a single plane-wave, and thus it does not have any spatial modulation of dens-
ity [257]. If we would consider increasing the density of minority particles, we
expect a smooth evolution from the finite Q bound state we describe here to a
modulated coherent FFLO paired phase [419]. In the absence of cavity photons,
the finite Q bound state for a single impurity has already been analyzed for
GaAs [255] and TMD [256] structures, where it was predicted to occupy a
sizeable region of the phase diagram. For an imbalanced state of electron-hole
bilayers, with a non-vanishing density of minority particles, an FFLO phase
was also described in Refs. [419, 493].

Also by analogy to the terminology used to describe the states at non-zero
minority density, we refer to the zero CoM momentum bound state |Ψ0⟩ as the
superfluid (SF) state. For a finite minority particle density, the SF state is an
excitonic condensate where pairing occurs for a balanced fraction of electrons
and holes at zero CoM momentum (but finite relative momentum), while the
excess majority species occupies a Fermi sea around k = 0.

To find which state occurs in the presence of coupling to photons, we min-
imize ⟨ΨQ∣ (�̂� − 𝐸) ∣ΨQ⟩ with respect to the complex amplitudes 𝜑(Q)

k and
𝛼(Q)

0 (5.11). This gives the coupled eigenvalue equations

(𝐸 − 𝜉kQ) 𝜑(Q)
k = − ∑

k′>k𝐹

𝑉k−k′

𝒜 𝜑(Q)
k′ + 𝑔𝛼(Q)

0 (5.13a)

(𝐸 − 𝜈𝐶Q) 𝛼(Q)
0 = 𝑔

𝒜 ∑
k>k𝐹

𝜑(Q)
k . (5.13b)

The lowest energy eigenvalue 𝐸 represents the energy of a bound lower polariton
state in the presence of a Fermi sea, accounting for the modification of the
exciton wave function both by light-matter coupling and by Pauli blocking.
Here, 𝜉kQ = 𝜖2Q−k + 𝜖1k − 1

𝒜 ∑k′<k𝐹
𝑈k−k′ includes the exchange correction

to the electron dispersion. We neglect the energy of the interacting Fermi sea
|𝐹𝑆⟩, ℰ𝐹𝑆 = ∑k<k𝐹

[𝜖1k − ∑k′<k𝐹
𝑈k−k′/(2𝒜)], because we are interested in

comparing 𝐸 with that of the normal state, which also includes ℰ𝐹𝑆.
Indeed, we find that at large majority particle density, the finite CoM mo-

mentum exciton can undergo an unbinding transition to the normal (N) state.
This comprises an unbound minority particle on top of a Fermi sea of majority
particles:

|ΨN⟩ = ̂𝑐†
20 ̂𝑐†

1k𝐹
|𝐹𝑆⟩ , (5.14)
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(a) CB
VB

E

+ k
–

(b) CB
VB

E

+ k
–

Fig. 5.1: Particle-hole excitation
process following the absorption of
a photon in absence (a) and with
(b) a Fermi sea.

where k̂ is an arbitrary direction, and this state has energy

𝐸N = 𝐸𝐹 − 1
𝒜 ∑

k′<k𝐹

𝑈k𝐹 −k′ , (5.15)

where, as for 𝐸, we neglect the energy of the interacting Fermi sea, ℰ𝐹𝑆. The
excitonic FF state ∣ΨQ⟩ (5.11) would reduce to the normal state |ΨN⟩ when we
take Q = k𝐹 and the exciton wave function takes the form, 𝜑(Q)

k =
√

𝒜𝛿k,k𝐹
.

This corresponds to a wave function that has weight only when relative and
CoM momenta are equal, and match the Fermi momentum k𝐹 .

It is worth noting that when this state occurs, the only possible normal
state is purely electronic — i.e., it has zero photon fraction and is thus given
by Eq. (5.14). This can be seen from the renormalization scheme of the photon
energy (5.9), which has the consequence that any non-zero photon fraction
always implies a bound state between minority and majority particles. That is
to say, the presence of light can bind an otherwise unbound electron-hole pair.

5.2.3 Effective photon energy in presence of a Fermi gas
In order to understand how the ground state evolves with doping, it is instruct-
ive to consider how the effective photon energy changes as the majority density
increases, due to a modification of the dielectric constant of the quantum well.
As described in Sec. 1.5.2, in order to reproduce the experimental protocol for
measurements, we have defined the renormalization of the photon energy us-
ing a procedure defined at zero gating/doping 𝐸𝐹 = 0. This means that we
define the renormalized photon energy 𝜔𝐶0 (or equivalently the photon-exciton
detuning 𝛿) in such a way that it approximately matches what would be ex-
perimentally measured at 𝐸𝐹 = 0. As illustrated in Fig. 5.1, the available
particle-hole excitations contributing to the dressing of the photon propagator
depend on 𝐸𝐹 . As such, at a finite density of majority species, the effective
photon energy 𝜔(𝐸𝐹 )

𝐶Q differs from 𝜔𝐶Q defined at 𝐸𝐹 = 0. In this section,
we want to identify and estimate the photon energy renormalization in the
presence of doping.

We start by rewriting the eigenvalue equations (5.13a) and (5.13b) in an
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Fig. 5.2: Photon energy shift in presence of a Fermi gas 𝜔(𝐸𝐹 )
𝐶0 − 𝜔𝐶0 as estimated

from Eq. (5.18) (solid line) and from Eq. (5.20) (dashed line) for either fixed Fermi
energy 𝐸𝐹 and varying Rabi splitting Ω (a, b) or conversely fixed Ω and varying 𝐸𝐹 (c,
d). Parameters are for a GaAs single quantum well (𝑑 = 0), mass ratio 𝑚2/𝑚1 = 0.25,
and screened interactions 𝑁𝑠 = 1.

equivalent form by inserting Eq. (5.13a) in (5.13b) and defining the new wave
function 𝛽(Q)

k = 1
𝒜 ∑k′>k𝐹

𝑉k−k′𝜑(Q)
k′ /(−𝐸 + 𝜉kQ):

(𝐸 − 𝜖𝐶Q + 𝑔2

𝒜 ∑
k>k𝐹

1
−𝐸 + 𝜉kQ

) 𝛼(Q)
0 = 𝑔

𝒜 ∑
k>k𝐹

𝛽(Q)
k . (5.16)

The divergence of the sum on the left-hand side of Eq. (5.16) is exactly can-
celed by the renormalization of the bare photon energy 𝜖𝐶Q by particle-hole
excitations, as described in Sec. 1.5.2. The form of Eq. (5.16) suggests that, in
the presence of a Fermi sea, the effective renormalized photon energy can be
estimated as

𝜔(𝐸𝐹 )
𝐶Q ≃ 𝜖𝐶Q − 𝑔2

𝒜 ∑
k>k𝐹

1
−𝐸 + 𝜉kQ

. (5.17)

This estimate is expected to be valid in the limit of small light-matter coupling
and sufficiently small density, where there is a well-defined exciton bound state
with energy 𝐸(𝐸𝐹 )

𝑋Q that is only weakly perturbed by light. In this limit, one
can approximate 𝐸 ≃ 𝐸(𝐸𝐹 )

𝑋Q
2. Taking the CoM momentum to be zero, we

2 𝐸(𝐸𝐹 )
𝑋Q is the exciton energy at finite doping and CoM momentum.
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then estimate the difference between 𝜔(𝐸𝐹 )
𝐶0 and the photon energy 𝜔𝐶0 at zero

doping (5.9) as3

𝜔(𝐸𝐹 )
𝐶0 − 𝜔𝐶0 ≃ −𝑔2

𝒜 [ ∑
k>k𝐹

1
−𝐸(𝐸𝐹 )

𝑋0 + 𝜉k0
− ∑

k

1
−𝐸𝑋0 + 𝜖1k + 𝜖2k

] . (5.18)

This energy difference is clearly finite because the logarithmic divergence of the
first sum cancels with the one of the second sum. Thus, we see that the photon
energy shift with doping depends quadratically on the light-matter coupling
strength 𝑔, provided Ω ≪ |𝐸(𝐸𝐹 )

𝑋0 − 𝐸N|. By numerically evaluating the density
dependence of the exciton energy at Q = 0, 𝐸(𝐸𝐹 )

𝑋0 , as well as the exchange
correction to the electron dispersion, we find that, in the small Ω and 𝐸𝐹 limit,
the photon energy shift 𝜔(𝐸𝐹 )

𝐶0 − 𝜔𝐶0 is always negative — see the solid line of
Fig. 5.2). Such a shift could be observed in experiments by either comparing
structures with different Rabi splittings or by changing the doping.

An alternative way of estimating the photon energy shift 𝜔(𝐸𝐹 )
𝐶0 − 𝜔𝐶0 in

presence of a Fermi sea, is by identifying the detuning 𝛿50% at which the Q = 0
exciton state and the cavity photon are at resonance:

𝜔(𝐸𝐹 )
𝐶0 = 𝐸(𝐸𝐹 )

𝑋0 . (5.19)

We assume that this condition is satisfied when the photon fraction |𝛼(0)
0 |2 is 1/2.

We can rewrite the condition (5.19), which defines the detuning at resonance,
𝛿50%, by subtracting the energy of the photon mode at zero doping/gating
𝜔𝐶0 (5.9) from both sides. Then using the definition 𝛿 = 𝜔𝐶0 − 𝐸𝑋0 on the
right-hand side gives:

𝜔(𝐸𝐹 )
𝐶0 − 𝜔𝐶0 = 𝐸(𝐸𝐹 )

𝑋0 − 𝐸𝑋0 − 𝛿50% . (5.20)

We can thus estimate the photon shift 𝜔(𝐸𝐹 )
𝐶0 − 𝜔𝐶0 at a fixed value of 𝐸𝐹 and

Ω by evaluating 𝐸(𝐸𝐹 )
𝑋0 − 𝐸𝑋0, i.e., by solving Eq. (5.21), and by numerically

estimating the value of detuning 𝛿50% at which the photon fraction is exactly
1/2. The results of this estimate are plotted in Fig. 5.2 and compared with those
obtained from Eq. (5.18). Note that, even at 𝐸𝐹 = 0, this estimate predicts a
photon energy shift because, beyond the weak coupling regime 𝑔 ≪ 𝑎𝑋𝜀𝑋, the
exciton wave function is strongly modified by light-matter coupling, affecting
the definition of detuning 𝛿 given in Eq. (1.38) (see discussion in App. E and
Fig. E.1). At small and finite 𝐸𝐹 , the estimates given by Eqs. (5.18) and (5.20)
agree for small Ω giving a negative shift of the photon energy, while, when Ω

3 𝐸𝑋0 is the exciton energy at 𝐸𝐹 = 0 and Q = 0. In the specific case of single layer
geometry and bare Coulomb interaction it can be related to the 1𝑠 exciton binding energy
Eq. (1.17), i.e., 𝐸𝑋0 = 𝜖𝑋0 = −𝜀𝑋.
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increases, Eq. (5.20) predicts an upturn of the shift to positive values.
Predicting the exact behavior of 𝜔(𝐸𝐹 )

𝐶0 − 𝜔𝐶0 with either Ω or 𝐸𝐹 is non-
trivial, since both estimates of Eqs. (5.18) and (5.20) are based on the assump-
tion that the system does behave like a two-level coupled oscillator model, an
hypothesis which looses validity when either Ω or 𝐸𝐹 increases. As we will see
in Sec. 5.4, the shift of the photon energy with doping has little consequence for
the phase diagram at fixed Rabi splitting Ω, while the implications are larger
when we fix 𝐸𝐹 and change Ω.

5.3 Weak coupling regime
In absence of a microcavity confining the photon field, it was previously shown
for an electron-hole bilayer [255] that a sufficiently high density of excess charge
causes the exciton to develop a minimum at finite center of mass momentum,
analogous to a roton minimum, which, as explained in Sec. 2.4, is also analogous
of the FF [257] phase. These results have been recently extended to consider
the interaction potential relevant for TMD monolayers in Ref. [256]. We are
going to review briefly these results in this section.

The weak coupling regime means the system is probed in absence of the
microcavity; so to all effects, it is described by the Hamiltonian (5.1) with
𝑔 = 0 and by the ansatz (5.11) with 𝛼(Q)

0 = 0. The ground state energy of an
exciton state in presence of a Fermi sea can be obtained by solving the following
Schrödinger equation:

(𝐸 − 𝜉kQ) 𝜑(Q)
k = − ∑

k′>k𝐹

𝑉k−k′

𝒜 𝜑(Q)
k′ . (5.21)

Note that the eigenvalue equation (5.21) coincides, in the limit of extreme
imbalance, with the mean-field gap equation employed to describe the BEC-
BCS crossover in imbalanced electron-hole bilayers [493, 504, 505]. To see this,
we neglect the intra-layer Coulomb repulsion and rewrite Eq. (5.21) in terms
of the gap Δ(Q)

k ≡ 1/𝒜 ∑k′>𝑘𝐹
𝑉k−k′𝜑(Q)

k′ :

Δ(Q)
k = 1

𝒜 ∑
k′>𝑘𝐹

𝑉k−k′

𝒜
Δ(Q)

k′

−𝐸 + 𝜖2Q−k′ + 𝜖1k′
. (5.22)

It is easy to show that this equation is the linearized version of the mean-
field gap equation for a balanced electron-hole condensate at zero temperature.
Indeed, for balanced electron and hole populations, even a small attractive in-
teraction can lead to an instability of the normal state to a condensed state,
similar to what occurs to conventional superconductors within the BCS the-
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ory [116]. Here, the ground state can be described by a coherent superposition
of electron-hole pairs:

|Φ⟩ = ∏
k

(𝑢k + 𝑣k ̂𝑐†
1k ̂𝑐†

2−k) |0⟩ , (5.23)

where |𝑢k|2 + |𝑣k|2 = 1. This state is able to describe exciton condensation
in both the low and high density regimes, in what is referred to as the BEC-
BCS crossover [506]. In the small density limit, 𝑛 ≪ 𝑎−2

𝑋 , excitons do not
overlap and they can be treated as tightly bound bosons so that they undergo
Bose-Einstein condensation [104, 133]. In the opposite regime of large densit-
ies, 𝑛 ≫ 𝑎−2

𝑋 , the Coulomb attraction is screened and condensation of loosely
bound excitons resembles the same description as the BCS formulation of su-
perconductivity. However, being excitons neutral objects, this limit is known
as the exciton insulator state [507]. By minimizing the expectation value of
the Hamiltonian (5.1) in the gran canonical ensemble, ⟨Φ| �̂� − 𝜇 ̂𝑁 |Φ⟩, where
𝜇 is the chemical potential fixing a balanced mean number of electrons and
holes 𝑁 = ⟨Φ| ̂𝑁 |Φ⟩, one gets a BCS-like set of equations [508] that have to be
solved self-consistently:

𝜒k = 𝜖𝑒k + 𝜖ℎk − 𝜇 − ∑
k′

𝑊 11
k−k′ (1 − 𝜒k′

𝐸k′
) (5.24a)

Δk = ∑
k′

𝑊 12
k−k′⟨ ̂𝑐†

1k′ ̂𝑐†
2−k′⟩ = ∑

k′
𝑊 12

k−k′
Δk′

𝐸k′
(5.24b)

𝑁 = ∑
k

(1 − 𝜒k
𝐸k

) (5.24c)

where
𝐸k = √𝜒2

k + |Δk|2 , (5.25)

is the quasiparticle excitation spectrum, i.e., the energy cost of taking one
pair out of the condensate and adding either an electron or removing a hole.
Eq. (5.24a) is the renormalized single particle kinetic energy of the relative
degree of freedom. Eq. (5.24b) is the gap equation and Eq. (5.24c) fixes the
mean number of particles in the system.

To complete the correspondence between Eq. (5.21) and the linearised mean-
field gap equation, we require that the chemical potential of the minority
particles is 𝜇2 = 𝐸 − 𝑘2

𝐹 /2𝑚1 and the chemical potential of the majority
particles is 𝜇1 = 𝑘2

𝐹 /2𝑚1. Thus, the conditions for a bound state outlined
above require that 𝜇2 < 0, implying that 𝜇2 gives the exciton binding energy
in this limit, which also matches with the mean-field theory.

In Ref. [255] the eigenvalue problem in Eq. (5.21) has been solved for para-
meters relevant for GaAs electron-hole bilayers and for both unscreened and
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FF
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Fig. 5.3: (a) Phase diagram for mean-field paring in the extremely imbalanced limit
as a function of the interaction parameter 𝑟𝑠, as obtained in Ref. [255]. In the top two
panels, the bilayer distance 𝑑 varies while the mass ratio 𝛼 = 𝑚2/𝑚1 is fixed. In the
bottom panel, 𝛼 varies and 𝑑 is fixed. The inter- and intra-layer interactions have been
screened using the RPA approximation in all cases. The region of SF corresponds
to excitons with CoM momentum 𝑄 = 0, while the FF excitons have their lowest
energy when 𝑄 ≠ 0. The N region is where there are no bound excitons. (b) Exciton
dispersion as a function of the CoM momentum 𝑝 at different Fermi energies 𝐸𝐹 in a
doped MoSe2 monolayer. Adapted from Ref. [256].

RPA screened inter- and intra-layer Coulomb interactions. In Fig. 5.3 (a) res-
ults regarding the latter are shown. The interaction parameter utilized here
is the dimensionless parameter 𝑟𝑠, given by 𝑟𝑠 = 𝑚1𝑒2

𝜖√𝜋𝑛1
= 2

𝑘𝐹 𝑎𝑋
. This repres-

ents the ratio between the Coulomb interaction and the kinetic energy of the
majority particle. The electron-hole mass ratios considered are those relevant
to GaAs bilayers, with 𝛼 = 𝑚2

𝑚1
= [0.25, 4] [482]. In the low-density limit, as

𝑟𝑠 → ∞, the two-body limit is recovered, and it is expected that a bound
exciton with 𝑄 = 0, i.e., an SF phase, will emerge. In contrast, in the op-
posite limit, where 𝑟𝑠 is small, the screened interactions cause the exciton to
eventually unbind and enter the N phase.

It should be noted that, as discovered in Ref. [255], the presence of the
normal phase is a result of using a screened Coulomb interaction, as the bare
Coulomb interaction always allows for a bound state. Indeed, looking at the
gap equation (5.22) in presence of a bare Coulomb potential

Δ(Q)
k = − ∫

k′>k𝐹

𝑑2k′

2𝜋
𝑒−𝑑|k−k′|

|k − k′|
Δ(Q)

k′

−𝐸 + 𝜖2Q−k′ + 𝜖1k′
, (5.26)
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at the unbinding transition 𝐸 = 𝐸𝑁 = 𝐸𝐹 , the integral is logarithmically
divergent for Q = k = k′ = k𝐹 and so one must take k𝐹 = ∞ for the equation
to be satisfied. This implies that for the bare Coulomb inter-layer interaction
the exciton with momentum Q = k𝐹 for large k𝐹 is always bound. This is not
the case for screened interaction, since the singularity at k = k′ is removed,
leaving an integrable singularity at Q = k′ = k𝐹 .

The key point to note in Fig. 5.3 (a) is that for intermediate densities in
a significant area of the phase diagram, the ground state of the system is a
bound exciton with a finite momentum Q, labeled as FF. The size of the FF
region is largest when the minority particle is an electron (𝛼 = 0.25), rather
than a hole (𝛼 = 4). The region is generally enhanced (and shifted to larger 𝑟𝑠)
when the minority particle is lighter, as shown in the lower panel of Fig. 5.3 (a).
The reason for this is straightforward: An exciton with Q = 0 requires the
minority particle to be above the Fermi sea, but a small mass ratio 𝛼 increases
the kinetic energy cost for this, thus promoting the formation of an FF exciton,
where the minority particle can sit below the Fermi surface. The FF region is
also enlarged by increasing the distance between the bilayers, 𝑑. For large 𝑑,
scattering with large momentum |k − k′| > 1/𝑑 is suppressed in 𝑉 𝑠𝑐

k−k′ , which
favors the FF state, where the wave function 𝜑(Q)

k is peaked in the direction
of Q, over the SF state. However, a larger 𝑑 requires a larger 𝑟𝑠 to achieve
FF, and Wigner crystallization is expected to eventually destroy FF. Quantum
Monte Carlo calculations estimate that Wigner crystallization occurs when
𝑟𝑠 ∼ 70𝛼/(1 + 𝛼) [246]. Therefore, the distance 𝑑 required to observe FF
sensitively depends on 𝛼, for instance, for 𝛼 = 0.25, a distance of 𝑑/𝑎𝑋 ∼ 1 is
desirable.

Recently, the appearance when increasing doping of an FF phase was also
predicted in TMD monolayers. Ref. [256] investigated the elementary optical
excitations, in the extreme imbalanced fully polarized scenario, for a MoSe2
monolayer. In Ref. [256] the eigenvalue problem Eq. (5.21) is solved by employ-
ing the Rytova-Keldish electron-hole interaction (1.29), and fixing a mass ratio
𝛼 = 1.05 (𝑚𝑒 = 0.56𝑚0 and 𝑚ℎ = 0.59𝑚0). The exciton dispersion they ob-
tained is shown in Fig. 5.3 (b) for Fermi energies ranging from 𝐸𝐹 = 0 meV to
𝐸𝐹 = 50 meV. A roton minimum appears in the elementary optical excitations
when the electron density is increased, which arises from the interplay between
Pauli exclusion of excitons and the electron Fermi sea, and the long-range Cou-
lomb interaction and the nonlocal dielectric screening, which are distinctive
features of monolayers.
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5.4 Strong coupling regime
We obtain the ground-state phase diagram in the strong coupling regime by nu-
merically diagonalizing the coupled equations (5.13) and analyzing the nature
of the lowest energy state, while comparing it with the energy of the normal
state (5.15). We use a non-linear grid in the relative momentum k-space — see
App.A, and evaluate, at a given value of the CoM momentum Q, the lowest
eigenvalue 𝐸 and the associated excitonic 𝜑(Q)

k and photonic 𝛼(Q)
0 eigenvectors,

with |𝛼(Q)
0 |2 representing the state photon fraction. The results we show are

numerically converged with respect to the number of points employed in the
momentum grid. We then minimize the energy 𝐸 with respect to 𝑄 ≡ |Q|, and
indicate the momentum at which the energy is minimized by 𝑄min.

In the following we rescale energies by the 2D exciton binding energy 𝜀𝑋 (1.17)
and lengths by the exciton Bohr radius 𝑎𝑋 (1.16). Hence, only a few independ-
ent dimensionless parameters are left to characterize the system properties and
phase diagram, namely, the mass ratio between minority and majority particles
𝑚2/𝑚1, the rescaled bilayer distance 𝑑/𝑎𝑋, the dimensionless majority particle
density 𝐸𝐹 /𝜀𝑋, the photon-exciton detuning 𝛿/𝜀𝑋 (5.8), and the Rabi splitting
Ω/𝜀𝑋 (5.10).

5.4.1 Quantum wells in planar microcavities
We first consider the case of a GaAs quantum well system embedded in a
microcavity. In Fig. 5.4 we show our calculated phase diagram as a function
of majority particle density and detuning, keeping the Rabi splitting fixed. We
compare the results for both screened and unscreened Coulomb interactions,
for a single quantum well (𝑑 = 0) and a bilayer geometry (𝑑 = 𝑎𝑋), and for one
electron in a Fermi sea of holes (𝑚2/𝑚1 = 0.25) and one hole in a Fermi sea
of electrons (𝑚2/𝑚1 = 4). In all cases, we see that the coupling to cavity light
modes suppresses the formation of the finite momentum FF state as compared
to the case without light-matter coupling. In particular, a strong coupling to
light favors the Q = 0 state, since the photon mode at non-zero Q is at high
energy, due to the small photon mass. As such, strong coupling to light imposes
that for detunings below a minimal value, 𝛿 < 𝛿min, only the Q = 0 SF phase
is allowed.

Fixing the detuning 𝛿 > 𝛿min and increasing 𝐸𝐹 , one first finds an SF-FF
transition between a Q = 0 mixed polariton state and a 𝑄min ≠ 0 FF state
weakly coupled to light. This occurs because the energy gained by forming a
finite Q exciton state is larger than that obtained by dressing the Q = 0 exciton
with a zero momentum photon. For screened interactions, the transition can
be directly to the unbound N state, while for unscreened interactions there is
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Fig. 5.4: Phase diagram of photon-exciton detuning 𝛿 and majority particle Fermi
energy 𝐸𝐹 for a GaAs heterostructure with either a single quantum well (𝑑 = 0) or a
bilayer geometry at a distance 𝑑 = 𝑎𝑋. The Rabi splitting is fixed to Ω = 2𝜀𝑋 for the
𝑑 = 0 case and to Ω = 0.64𝜀𝑋 for the bilayer at 𝑑 = 𝑎𝑋 case. Solid lines are 1st-order
transitions (SF-FF and SF-N). The dashed almost vertical line is the 2nd-order FF-N
transition occurring for screened interactions. 1st- and 2nd-order transitions meet at
a critical end-point. The diamond symbols indicate the value of the density, 𝐸𝐹0, at
which the SF-FF transition occurs in the absence of the cavity field Ω = 0 = 𝛼(Q)

0 .
The color map represents the photon fraction |𝛼(Q)

0 |2.
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Fig. 5.5: Momentum 𝑄min (blue squares) minimizing the polaritonic energy 𝐸 as a
function of the majority Fermi energy 𝐸𝐹 for a single quantum well 𝑑 = 0, mass ratio
𝑚2/𝑚1 = 0.25, Rabi splitting Ω = 2𝜀𝑋 and detuning 𝛿 = 8𝜀𝑋. Interactions are (a)
RPA screened (𝑁𝑠 = 1), and (b) unscreened (𝑁𝑠 = 0). Solid (purple) lines represent
the value of 𝑄min in the absence of light-matter coupling (Ω = 0), while the thick
dashed (black) line is the Fermi momentum k𝐹 . The corresponding photon fraction
|𝛼Q|2 is plotted with red circles and the corresponding axes are on the right side of
each panel.

no normal phase, just as in the absence of photons [255].
As shown in Ref. [255], in the absence of the photon field, the excitonic SF-

FF transition is always second order. In Fig. 5.5 we show this by plotting the
momentum 𝑄min — which minimizes the exciton energy 𝐸 = 𝐸(𝐸𝐹 )

𝑋Q solution
of Eq. (5.21) — as a function of the Fermi energy of the majority species in
absence of coupling to light (purple lines). We see that the transition from
the SF Q = 0 to the finite momentum FF phase is continuous. In addition,
for screened interactions, when increasing the density further, 𝑄min locks to
precisely k𝐹 at the FF-N transition.

In the presence of a cavity field, both the SF-FF and SF-N transitions be-
come first order, with 𝑄min changing discontinuously from 𝑄min = 0 to a finite
value, as shown in Fig. 5.5 and Fig. 5.6. Because of the small cavity photon
mass, the finite 𝑄min FF phase has a small photon fraction, that decreases fur-
ther on increasing 𝐸𝐹 (see Fig. 5.5). Thus, the value of 𝑄min almost coincides
with that in the absence of the cavity field, and in particular 𝑄𝑚𝑖𝑛 locks to k𝐹
at the FF-N transition. In contrast, for unscreened interactions, 𝑄𝑚𝑖𝑛 asymp-
totically tends to k𝐹 in the FF region only for large values of 𝐸𝐹 . In addition,
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Fig. 5.6: Polariton ground state energy 𝐸 with respect to the normal state energy
𝐸N (solid lines) versus momentum 𝑄. Parameters are for a GaAs heterostructure
with a single quantum well (𝑑 = 0), mass ratio 𝑚2/𝑚1 = 0.25, Rabi splitting Ω = 2𝜀𝑋,
detuning 𝛿 = 8𝜀𝑋 and screened interactions (𝑁𝑠 = 1). Dashed colored lines are the
exciton energies 𝐸(𝐸𝐹 )

𝑋Q evaluated in absence of the light-matter coupling, Ω = 0. The
gray dotted line indicates where the minima at 𝑄 = 0 and 𝑄 ≠ 0 are equal. Panel (a)
shows the 1st order SF-FF transition when increasing the system density, while panel
(b) shows the N-SF 1st order transition.

the FF-N transition is always second order and it is only weakly affected by
the coupling to light — thus it is approximately independent of both 𝛿 and Ω.

The SF-FF transition is strongly affected by the coupling to a cavity field.
In particular, the exciton at Q = 0 strongly couples to the cavity photon when
both energies are comparable, resulting in a half-matter half-light polariton
state. In Fig. 5.4, the red region of the color map indicates where the photon
fraction is around 50%, corresponding to resonance between the cavity photon
and the exciton. The value of the detuning 𝛿 for which resonance occurs is seen
to grow with the majority density. This is mostly due to the Q = 0 exciton
energy 𝐸(𝐸𝐹 )

𝑋0 growing with 𝐸𝐹 due to Pauli blocking. Indeed, one can show
that 𝐸(𝐸𝐹 )

𝑋0 grows sub-linearly for 𝐸𝐹 ≪ 𝜀𝑋 and screened interaction, while it
grows linearly ∼ 𝐸𝐹 for 𝐸𝐹 > 𝜀𝑋.

This is shown in Fig. 5.7, where we compare the density dependence be-
havior of the rescaled energies 𝐸(𝐸𝐹 )

𝑋Q − 𝐸𝑋0 of the exciton state in the weak
coupling regime at Q = 0 (solid line) and at 𝑄min (dashed line) for different
mass ratios 𝑚2/𝑚1 = 0.25, 4 and for both screened and unscreened interac-
tions. In Fig. 5.8 we plot 𝐸(𝐸𝐹 )

𝑋Q − 𝐸𝑋0 as a function of density for a specific
choice of parameters and superimpose a color map of the photon fraction |𝛼0

0 |2
of the Q = 0 polariton state, as a function of 𝐸𝐹 and detuning 𝛿. The red
region shows where the photon fraction is around 50% indicating that the cav-
ity photon energy is resonant with the Q = 0 exciton state — see Eqs. (5.19)
and (5.20). As discussed is Sec. 5.2.3, the photon energy shift at Q = 0,
𝜔(𝐸𝐹 )

𝐶0 − 𝜔𝐶0, depends only weakly on 𝐸𝐹 . In particular, for the small value
of Ω used in Fig. 5.8 (Ω = 0.2𝜀𝑋), we expect that the 𝐸𝐹 dependence of
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Fig. 5.7: Rescaled shift of exciton energies 𝐸(𝐸𝐹 )
𝑋Q − 𝐸𝑋0 at Q = 0 (solid) and

𝑄min (dashed) as a function of density, in the weak coupling regime. Parameters
are for a GaAs single quantum well (𝑑 = 0, 𝐸𝑋0 = −𝜀𝑋), two different mass ratios
𝑚2/𝑚1 = 0.25 and 𝑚2/𝑚1 = 4, and for both screened (a,b) and unscreened (c,d)
interactions. Dot-dashed and dotted lines show the low- and high-density fittings,
respectively.

the effective photon energy is negligible with respect to that of the exciton
energy, |𝜔(𝐸𝐹 )

𝐶0 − 𝜔𝐶0| ≪ |𝐸(𝐸𝐹 )
𝑋0 − 𝐸𝑋0|. Thus, in this case, we expect that

𝛿50% ≃ 𝐸(𝐸𝐹 )
𝑋0 − 𝐸𝑋0, which matches what is observed in Fig. 5.8: The detun-

ing 𝛿 at which resonance occurs (red region) coincides with the energy shift of
the exciton, 𝐸(𝐸𝐹 )

𝑋0 − 𝐸𝑋0 (solid line).
At large positive detunings, we recover, as expected, the results obtained

in Ref. [255] for GaAs single wells and bilayers in the absence of light-matter
coupling. Here, as one increases the majority particle density, Pauli blocking
causes the exciton energy 𝐸 = 𝐸(𝐸𝐹 )

𝑋Q obtained by solving Eq. (5.21) to develop a
minimum at finite CoM momentum 𝑄min, as this reduces the kinetic energy cost
of the minority particle. We denote the Fermi energy at which this transition
occurs in the excitonic limit by 𝐸𝐹0, and, in the figures, this is illustrated by
a diamond symbol.

By further increasing the density at fixed (large positive) photon-exciton
detuning, there is eventually an additional first-order transition to an almost
completely photon-like Q = 0 SF state. This is because the energy of the FF
and N states is pushed up by Pauli blocking such that they exceed the photon
energy at a sufficiently large density. As such, larger values of the detuning
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Fig. 5.8: Rescaled shift of ex-
citon energies at Q = 0 (solid)
and 𝑄min (dashed) as a func-
tion of the density, for a GaAs
single quantum well (𝑑 = 0,
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screened interactions 𝑁𝑠 = 1, in
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0 |2 of the polariton state at
Q = 0 in the strong coupling re-
gime, for Ω = 0.2𝜀𝑋. The color
map is plotted against 𝐸𝐹 /𝜀𝑋 (𝑥-
axis) and detuning 𝛿/𝜀𝑋 (𝑦-axis).

require larger values of density for this second transition to occur. Since this
transition only weakly depends on the light-matter coupling, the FF-SF (N-SF)
boundary essentially occurs when 𝛿 ≃ 𝐸(𝐸𝐹 )

𝑋𝑄𝑚𝑖𝑛
− 𝐸𝑋0 (𝛿 ≃ 𝐸N − 𝐸𝑋0), where

𝐸(𝐸𝐹 )
𝑋𝑄𝑚𝑖𝑛

is the FF exciton energy at Fermi energy 𝐸𝐹 in the absence of the
photon field – see Eq. (5.21).

From the study of the phase diagram at fixed Rabi splitting, we can draw
similar conclusions about the mechanisms promoting the existence of a FF
phase to those known in the absence of the cavity photon [255]: the FF phase
is favored by unscreened Coulomb interactions and by a small minority particle
mass. In addition, considering the unscreened case, a finite bilayer distance
also favors FF. This is because the inter-layer interaction suppresses large mo-
mentum scattering and promotes an exciton wave function 𝜑(Q)

k peaked at the
k ∼ Q direction, and also because a finite inter-layer distance reduces the
effective electron-hole coupling to light. While our results demonstrate that
embedding the quantum well structure into a cavity reduces the parameter re-
gion where FF can occur, this phase is still weakly coupled to light. Thus, the
FF ground state should be visible in the photon momentum distribution, in an
experiment with sufficient sensitivity. Note that for our simplified scenario in
Eq. (5.11) of a single minority particle and thus a single photon in the cavity,
the system photoluminescence is peaked at the energy 𝐸, with a weight given
by the corresponding photon fraction |𝛼(Q)

0 |2. Because, as shown in Fig. 5.5,
this photon fraction is very small, it would require a very sensitive experimental
probe. Even when (in presence of strong coupling to light) the lowest energy
state is a Q = 0 polariton state, it has been suggested that the formation of
a FF state could drastically change photoluminescence, due to the bottleneck
effect of high momentum excitons relaxing to the true lowest energy polariton
state [509].

It is possible to study the evolution of the FF phase with changing Rabi
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Fig. 5.9: (a) Solid lines are SF-FF (or SF-N) phase boundaries for different values of
the Rabi splitting Ω, for a single quantum well with hole doping, 𝑑 = 0, 𝑚2/𝑚1 = 0.25,
and for screened interactions 𝑁𝑠 = 1. In particular, the region above a solid line is
either FF (on the left of the dashed line) or N (on the right). The almost vertical
dashed line is the approximately Ω-independent FF-N boundary (see Fig. 5.4). Below
each solid line, the phase is SF. Each symbol represents the minimal detunings 𝛿min
of the boundaries — special values are Ω = 0 (filled diamond) and the Ω at which
𝛿𝑚𝑖𝑛 = 𝛿∗ (filled circle). A special value common to all boundaries is (𝛿∗, 𝐸∗

𝐹 ) (filled
circle). (b) The solid line and symbols give the behavior of 𝛿min as a function of Ω for
screened 𝑁𝑠 = 1 interactions, while the dot-dashed line represents 𝛿min for unscreened
𝑁𝑠 = 0 interactions.

splitting by considering a sequence of cavities that have different numbers 𝑁𝑄𝑊
of embedded quantum wells, since Ω ∼ √𝑁𝑄𝑊 [156, 158]. In particular, in
Ref. [157], two structures with either 1 or 28 quantum wells stacked at the
antinodes of the cavity field have been compared, allowing one to study the
change of the Rabi splitting in the range 0.3𝜀𝑋 ≲ Ω ≲ 1.3𝜀𝑋. Studying the
evolution of the phase diagram with increasing Rabi splitting should in principle
directly show how the introduction of light-matter coupling modifies the phase
diagram.

With this motivation, in the left panel of Fig. 5.9, we compare the bound-
aries between the SF and the FF (SF and N) phases for different values of Ω.
Screened and unscreened interactions give qualitatively the same results, with
the only difference being the absence of the N phase for unscreened interactions.
The boundaries are also quantitatively similar in the two cases. In the absence
of light-matter coupling, the SF-FF boundary is given by (𝐸𝐹 > 𝐸𝐹0):

𝛿 = 𝐸(𝐸𝐹 )
𝑋𝑄𝑚𝑖𝑛

− 𝐸𝑋0 . (5.27)

For the SF-N boundary at Ω = 0, this expression becomes 𝛿 = 𝐸N − 𝐸𝑋0. We
observe an evolution of the minimal photon-exciton detuning 𝛿min with Ω (right
panel of Fig. 5.9) which, starting from the value 𝛿0 = 𝐸(𝐸𝐹0)

𝑋𝑄min
− 𝐸𝑋0 at Ω = 0,

grows up to a maximum value 𝛿∗, and then decreases again. Consequently,
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Fig. 5.10: Different possible to-
pologies of the phase diagram as
a function of the Rabi splitting
Ω and the majority particle Fermi
energy 𝐸𝐹 for a GaAs heterostruc-
ture with a single quantum well
(𝑑 = 0), 𝑚2/𝑚1 = 0.25, and
screened interactions 𝑁𝑠 = 1. The
detuning has been fixed to 𝛿 = 0 <
𝛿0 (left panel), 𝛿0 < 𝛿 = 1.5𝜀𝑋 <
𝛿∗ (middle panel), and 𝛿 = 4𝜀𝑋 >
𝛿∗ (right panel). In all panels,
the vertical dot-dashed line is the
value of 𝐸∗

𝐹 (see Fig. 5.9), while
all other lines and labels are as in
Fig. 5.4.

the light-matter coupling is detrimental to the formation of a finite momentum
phase for small values of Ω, while it favors finite Q at Ω ≳ 4𝜀𝑋.

There is a special point (𝛿∗, 𝐸∗
𝐹 ) which is common to all SF-FF (SF-N)

boundaries as one varies Ω, i.e., one observes in the left panel of Fig. 5.9 that
all lines appear to cross at a single point. At this particular value of the
photon-exciton detuning and density, all the dependence on the Rabi splitting
and thus the light-matter coupling is lost. Here, the decrease in energy due to
forming a polariton is exactly counterbalanced by doping-induced changes to
the cavity dielectric constant discussed in Sec. 5.2.3. Note that this behavior is
not accurately captured by the estimated photon shift in Eq. (5.18), since this is
not valid in the regime 𝐸𝐹 > 𝜀𝑋. However, we can determine (𝛿∗, 𝐸∗

𝐹 ) once we
account for all the electron-hole scattering processes, as shown in App. F. We
have checked that the existence of the special point (𝛿∗, 𝐸∗

𝐹 ) is common to both
structures with a single well and bilayer geometry, and it is also independent
of whether interactions are screened or unscreened.

To further illustrate the special role played by the detuning 𝛿∗ and Fermi
energy 𝐸∗

𝐹 , we plot in Fig. 5.10 the three different types of phase diagrams
at fixed detuning 𝛿 that arise by varying Ω and 𝐸𝐹 . A common feature for
all three cases is that, for 𝐸𝐹 < 𝐸∗

𝐹 , the FF and N phases are suppressed on
increasing Ω, in favor of a strongly mixed light-matter polaritonic SF phase
with |𝛼(0)

0 |2 ∼ 0.5. Note also that for 𝐸𝐹 < 𝐸∗
𝐹 the FF (N) phase occurs only

for 𝛿 > 𝛿0. In this small 𝐸𝐹 case, the lowering of energy of the strongly mixed
Q = 0 LP state with Ω dominates over any change of the cavity dielectric
constant because of gating/doping. Note that the phase diagram we see in this
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small 𝐸𝐹 case illustrates the idea that increasing light-matter coupling can
stabilize a polaritonic ground state even when the purely excitonic system is
unbound.

For 𝐸𝐹 > 𝐸∗
𝐹 , we see quite a different behavior — a finite momentum FF

or N phase is favored at larger values of the Rabi splitting Ω, regardless of
the value of the detuning. In this large 𝐸𝐹 case, the SF-FF (SF-N) transition
typically occurs from an almost purely photonic SF phase |𝛼(0)

0 |2 ∼ 1 to an
almost purely excitonic FF (N) phase with |𝛼(0)

0 |2 ≪ 1 (|𝛼(0)
0 |2 = 0). This

transition occurs because the shift in the cavity dielectric constant at finite 𝐸𝐹
increases with Ω, while the excitonic or normal state energy is Ω independent,
so that eventually, increasing Ω to large enough values, one favors the excitonic
phase over the polaritonic.

Note that for GaAs heterostructures with a single quantum well and
𝑚2/𝑚1 = 0.25, we find that 𝐸∗

𝐹 ≃ 1.55𝜀𝑋 (𝐸∗
𝐹 ≃ 1.95𝜀𝑋) for screened 𝑁𝑠 = 1

(unscreened 𝑁𝑠 = 0) interactions respectively — see App. F. This value of the
Fermi energy is well below typical energies at which band curvature and struc-
ture start being important, so it lies within the range of the validity of our
model. Indeed, from the GaAs lattice constant 𝑎 ≃ 0.56 nm, we can estimate
that 1/(2𝜇𝑎2) ≃ 150𝜀𝑋 ≫ 𝐸∗

𝐹 .

5.4.2 TMD monolayer in planar microcavities
We derive here the phase diagram for the specific case of doped MoSe2, see
Fig. 5.11. In particular, we consider the case of a single hole in a Fermi sea
of electrons, with all electrons being spin and valley polarized, a regime that
can be experimentally realized by applying a magnetic field [468]. Further, we
have assumed a large enough spin-orbit splitting, so that only the lowest energy
conduction band is considered.

Due to the fact that most of the dielectric screening takes place within the
2D layer, TMD materials require a separate analysis from the case of III-V semi-
conductor heterostructures. Specifically, we consider the same model Hamilto-
nian as before, Eq. (5.1), with Rytova-Keldish potential, Eq. (1.29). The elec-
tron and hole masses are 𝑚1 ≡ 𝑚𝑒 = 0.56𝑚0 and 𝑚2 ≡ 𝑚ℎ = 0.59𝑚0 [53,
510], where 𝑚0 is the free electron mass. Because 𝑚𝑒 and 𝑚ℎ have very similar
values, little difference is expected whether the minority species is a hole — as
explicitly considered here — or an electron.

Following Ref. [256], we neglect electron exchange; furthermore, we neglect
screening by the electron gas on the basis that, for these materials, the plasma
frequency, 𝜔pl(k𝐹 ) ≃ √𝑛1k2

𝐹 𝑉RKk𝐹
/𝑚1 ∼ 90 meV (for 𝐸𝐹 = 20 meV), is

much smaller than the exciton binding energy |𝜀𝑋| = 485 meV [53, 510, 511].
We fix the cavity photon mass to 𝑚𝐶 = 10−5𝑚0 and the Rabi splitting to
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Ω = 40 meV [151]. Importantly for our analysis, the renormalization scheme
of the photon energy described in Sec. 1.5.2 is unchanged.

By considering the same variational polariton state as in Eq. (5.11) we
derive the phase diagram versus detuning 𝛿 and electron Fermi energy 𝐸𝐹 .
The resulting phase diagram is shown in Fig. 5.11, and is seen to qualitatively
agree with the unscreened case of GaAs presented in Fig. 5.4. Because the long-
range unscreened Coulomb interaction promotes the finite momentum bound
FF phase, it is not surprising that the system never transitions to the normal
state N for the potential in Eq. (1.29). As shown in Ref. [255], the bare Coulomb
interaction always implies a bound exciton state for any density of majority
particles. In the absence of the cavity photon mode, we recover the results of
Ref. [256], which predicted an SF-FF transition at 𝐸𝐹 = 20 meV — as before,
this value is labeled with a diamond symbol in Fig. 5.11. Because of the large
value of 𝜀𝑋 relative to Ω, the minimal photon-exciton detuning for observing
FF is found to be rather large, 𝛿min ≃ 147 meV. However, we expect this value
to eventually decrease for Ω ≳ 𝜀𝑋 in a manner similar to that shown in Fig. 5.9.

5.5 Conclusions and perspectives
We have studied pairing effects in an extremely charge imbalanced electron-
hole mixture in either a single quantum well, a bilayer, or TMD monolayers
embedded into a planar cavity. In particular, we have analyzed the competition
between the formation of an FF-like [257] bound excitonic pair at finite CoM
momentum, which is promoted by both long-range Coulomb interactions and
the Pauli blocking of the Fermi sea [255, 256], and the formation of a strongly
coupled polariton state at zero momentum, which is promoted by the strong
coupling to the cavity field. By fixing the light-matter coupling, i.e., the Rabi
splitting, we find that, as expected, strong coupling to a cavity photon mode
competes against the formation of the finite momentum FF state, and so re-
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duces the parameter range of majority species density where this phase occurs.
Note that the FF phase does weakly couple to light to allow its detection in pho-
toluminescence experiments with enough sensitivity. For large photon-exciton
detunings, the photon becomes less relevant, and so the FF phase occupies a
sizeable region at finite density of the majority species. At small densities, the
FF phase is replaced by bound polariton states with zero CoM momentum,
which lowers their energy through strong light-matter coupling. At large dens-
ities, one instead finds an almost purely photonic state (with zero momentum)
because, due to Pauli blocking, the exciton energy grows roughly linearly with
the density. As already known for the case without photons, a bound state
always exists for unscreened Coulomb interactions, whereas with screening, an
unbound state can replace the excitonic FF state.

To understand the topology of the phase diagram, we note that it is im-
portant that the presence of a Fermi sea not only changes the energy of the
exciton but also the background cavity dielectric constant of the active medium,
i.e., the gated/doped quantum well, the bilayer, or the TMD monolayer. This
change has little consequences for the phase diagram at fixed Rabi splitting
because the exciton energy shift with density dominates over the shift of the
photon energy. However, the photon energy shift increases for sufficiently large
values of the Rabi splitting and consequently does have a significant effect on
the phase diagram at fixed detuning. In particular, we find that increasing
the Rabi splitting at low enough doping/gating densities always promotes the
formation of a zero momentum strongly bound polariton state. However, sur-
prisingly, at large enough densities, this behavior is reversed, and increasing the
coupling to light promotes the formation of finite momentum excitonic states
weakly mixed with light.

The results in this chapter focus entirely on the regime of extreme imbalance,
where there is only a single minority species particle. It is of course interesting
to consider the behavior of the many-body state with a larger minority particle
density as carried on in a recent work in Ref. [420]. Another important question
concerns the possibility of more complex pairing states, even in the extreme
imbalance state. The Ansatz we use in this chapter assumes that the pairing
state has no effect on the majority Fermi sea, however, Coulomb interactions
between majority particles mean this assumption will not necessarily hold. Re-
laxing this assumption allows the excitonic state to be dressed by electron-hole
pairs of the majority band — similar to what happens in the polaron case. Un-
derstanding the interplay of this dressing with the internal structure of pairing,
the coupling to light, and the crossover from the behavior we discuss here to
the Fermi-edge polariton regime is a topic for future work.
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General conclusions and future per-
spectives

In this thesis, we explore the optical excitations of two-dimensional semicon-
ductors and how their behavior is altered when an excess of free charges is
introduced into the medium. We address several topics of interest regarding
the extreme imbalanced limit regime, resulting in a combination of theoretical
advancement and crucial explanations of experimental findings.

Chapter 3 explores the optical properties of doped semiconductors at fi-
nite temperatures by means of a finite-temperature Fermi-polaron approach.
Through this technique, we unveil a smooth transition from a regime where the
attractive branch behaves as a well-defined quasiparticle to a regime where it
merges into a broad continuum of trion-hole scattering states. This crossover
results in a dramatic change in the spectral lineshape and can be triggered
by decreasing doping or increasing temperature, but it cannot occur at zero
temperature. Interestingly, while the Fermi polaron theory successfully de-
scribes both limits, theories based on the trion wave function only apply when
a well-defined quasiparticle is absent. In fact, we show that by introducing a
perturbatively exact quantum virial expansion in the high-temperature or low-
doping regime, the trion theory corresponds to a weak-interaction limit of our
finite-temperature Fermi polaron theory. Recent experiments on doped mono-
layer MoSe2 have confirmed our results, indicating that previous measurements
may have overestimated the trion binding energy. Moreover, in the realm of
strong light-matter coupling, we discover that temperature can substantially
alter the properties of Fermi polaron-polaritons. Specifically, we identify that
the strong-to-weak coupling crossover observed at finite temperature for the
attractive branch at low doping and the repulsive branch in the high doping
regime can be explained by analyzing the linewidths and spectral weights of
the two branches.

One of the main limitations of our finite-temperature approach is that our
theory incorporates radiative broadening, disorder, and incoherence effects due
to phonons in a phenomenological manner, by introducing experimentally rel-
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evant values of homogeneous and inhomogeneous broadening as Lorentzian
and Gaussian linewidths. However, a separate analysis of these effects would
be beneficial. It is worth noting that phonon effects are not significant for
monolayer TMDs at low temperatures, but as the temperature increases, they
become more relevant. It would be desirable to examine these effects separately
to gain a better understanding of their contribution to the system’s behavior.
Therefore, the inclusion of phonons in the analysis should not be overlooked,
as they can significantly impact the system’s overall behavior at higher tem-
peratures.

Looking ahead, our research opens up exciting new avenues for future invest-
igations. For instance, it would be fascinating to explore how the quasiparticle
transition of the attractive branch, induced by either temperature or doping, af-
fects the polaron-polaron interaction properties, and how they affect the optical
nonlinearities of doped semiconductors. Nonlinear effects are crucial for the de-
velopment of optical quantum information platforms, as they allow different
information-carrying photons to interact and perform basic tasks such as chan-
ging the photons’ color, modifying their statistics, and inducing entanglement
between them. Such interactions could be measured using cutting-edge tech-
niques like coherent multidimensional spectroscopy on gated two-dimensional
materials.

In chapter 4 we consider the spin-valley polarized limit. This particular con-
figuration assumes that the excess carriers forming the Fermi sea are identical
to one of the two carriers that form the exciton. As a result, the three-body
trion state in this system has 𝑝-wave symmetry. Using a zero temperature
polaron description, we manage to extrapolate from few-body bound states
to many-body states in the high-density regime, discovering that the optical
spectrum exhibits an attractive quasiparticle branch, a repulsive branch, and
a many-body continuum only in the parameter range where the 𝑝-wave trion
is bound. We also evaluate the doping dependence of the corresponding ener-
gies and spectral weights. Notably, our results show that at low doping, the
oscillator strength of the attractive branch scales with the square of the Fermi
energy due to the trion’s 𝑝-wave symmetry. As we increase the density, we
discover that both the repulsive and attractive branches blueshift and that the
orbital character associated with these branches interchange, making us won-
der if the different orbital characteristics of the indistinguishable carrier polaron
could enhance the polaron-polaron interaction strength. This represents one of
the main focus of our future research activity.

To deepen our research in this field, we also plan to analyze the ICP scen-
ario moving away from our current assumption of contact interaction and con-
sidering a proper Coulomb interaction, achieving more accurate and precise
quantitative results. In order to observe the outcomes of our work, a bound
𝑝-wave trion state is necessary. We believe that a sufficiently strong out-of-
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plane magnetic field could achieve this state, where the carrier orbital motion
undergoes Landau-level quantization. Preliminary results have shown that in
the presence of a magnetic field, increasing doping can cause the exciton os-
cillator strength to transfer to the 𝑝-wave trion state, opening up a world of
possibilities for future studies in the Landau quantized regime. Last but not
least, we are also keen to explore temperature effects on the properties of the
indistinguishable carrier polaron, as done for the distinguishable carrier polaron
in chapter 4.

In Chapter 5, we explore the behavior of two-dimensional electron-hole sys-
tems embedded in optical microcavities under extreme charge imbalance condi-
tions. Our research focuses on the competition between different electron-hole
paired states for specific cases of semi-conducting III-V single quantum wells,
electron-hole bilayers, and transition metal dichalcogenide monolayers embed-
ded in a planar microcavity. Using variational wave functions, we investigate
the complex interplay between electron-hole pairing and photon modes in the
many-body polariton ground state. Our findings shed light on the ways that
the Fermi sea of excess charges modifies both the exciton properties and the
dielectric constant of the cavity active medium, affecting the photon component
of the many-body polariton ground state. We show that long-range Coulomb
interactions and Pauli blocking of the Fermi sea promote electron-hole pair-
ing with finite center-of-mass momentum, corresponding to an excitonic roton
minimum. On the contrary, the strong coupling to the ultra-low-mass cavity
photon mode favors zero-momentum pairs.

Our research is limited to the regime of extreme imbalance, where there is
only one minority species particle. The behavior of the many-body state with
a higher minority particle density could be equally intriguing. Furthermore,
we’re curious about the possibility of more complex pairing states, even in ex-
treme imbalance scenarios. Our Ansatz assumes that the pairing state does
not impact the majority Fermi sea, but we recognize that Coulomb interac-
tions between the majority particles may challenge this assumption. Relaxing
this assumption could open up new possibilities for the excitonic state and its
interaction with electron-hole pairs of the majority band.

Recent years have witnessed a considerable surge of interest in the realiz-
ation of charged polariton configurations in doped two-dimensional semicon-
ductors, leading to a wealth of fascinating results. This thesis addresses funda-
mental questions about the physics of doped 2D semiconductors embedded in
optical microcavities, taking a step forward towards the development of next-
generation electronic and optoelectronic devices.
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Conclusiónes generales y per-
spectivas futuras

En esta tesis, exploramos las excitaciones ópticas de semiconductores bidimen-
sionales y cómo se altera su comportamiento cuando se introduce un exceso de
cargas libres en el medio. Abordamos varios temas de interés en relación con
el régimen límite de desequilibrio extremo, lo que resulta en una combinación
de avances teóricos y explicaciones cruciales de hallazgos experimentales.

El capítulo 3 explora las propiedades ópticas de semiconductores dopados a
temperaturas finitas mediante una aproximación Fermi-polarón a temperatura
finita. Mediante esta técnica, desvelamos una transición suave desde un ré-
gimen en el que la rama atractiva se comporta como una cuasipartícula bien
definida a un régimen en el que se funde en un amplio continuo de estados de
dispersión trión-hueco. Este cruce da lugar a un cambio drástico en la forma de
las líneas espectrales y puede desencadenarse al disminuir el dopaje o aumentar
la temperatura, pero no puede producirse a temperatura cero. Curiosamente,
mientras que la teoría del polaron de Fermi describe con éxito ambos límites,
las teorías basadas en la función de onda del trión sólo se aplican cuando no
existe una cuasipartícula bien definida. De hecho, mostramos que al introducir
una expansión cuántica virial perturbativamente exacta en el régimen de alta
temperatura o bajo dopado, la teoría de triones corresponde a un límite de inter-
acción débil de nuestra teoría de Fermi polaron de temperatura finita. Experi-
mentos recientes en una monocapa de MoSe2 dopada han confirmado nuestros
resultados, indicando que las mediciones anteriores pueden haber sobrestimado
la energía de enlace del trión. Además, en el ámbito del fuerte acoplamiento
luz-materia, descubrimos que la temperatura puede alterar sustancialmente las
propiedades de los polaron-polaritones de Fermi. En concreto, identificamos
que el cruce de acoplamiento fuerte a débil observado a temperatura finita para
la rama atractiva a bajo dopaje y la rama repulsiva en el régimen de alto dopaje
puede explicarse analizando los anchos de línea y los pesos espectrales de las
dos ramas.

Una de las principales limitaciones de nuestro enfoque de temperatura fi-
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nita es que nuestra teoría incorpora los efectos de ensanchamiento radiativo,
desorden e incoherencia debidos a los fonones de manera fenomenológica, intro-
duciendo valores experimentalmente relevantes de ensanchamiento homogéneo
e inhomogéneo como anchos de línea lorentziano y gaussiano. Sin embargo, un
análisis separado de estos efectos sería beneficioso. Cabe señalar que los efectos
fonónicos no son significativos para los TMD monocapa a bajas temperaturas,
pero a medida que aumenta la temperatura, se vuelven más relevantes. Sería
conveniente examinar estos efectos por separado para comprender mejor su con-
tribución al comportamiento del sistema. Por tanto, no debe pasarse por alto la
inclusión de los fonones en el análisis, ya que pueden influir significativamente
en el comportamiento general del sistema a temperaturas más elevadas.

De cara al futuro, nuestra investigación abre nuevas e interesantes vías de
investigación. Por ejemplo, sería fascinante explorar cómo la transición de
cuasipartículas de la rama atractiva, inducida por la temperatura o el dopaje,
afecta a las propiedades de interacción polaron-polaron, y cómo afectan a las
no linealidades ópticas de los semiconductores dopados. Los efectos no lineales
son cruciales para el desarrollo de plataformas ópticas de información cuántica,
ya que permiten que diferentes fotones portadores de información interactúen
y realicen tareas básicas como cambiar el color de los fotones, modificar sus
estadísticas e inducir entrelazamiento entre ellos. Estas interacciones podrían
medirse utilizando técnicas de vanguardia como la espectroscopia multidimen-
sional coherente en materiales bidimensionales con compuerta.

En el capítulo 4 consideramos el límite polarizado espín-valle. Esta config-
uración particular supone que los portadores en exceso que forman el mar de
Fermi son idénticos a uno de los dos portadores que forman el excitón. Como
resultado, el estado triónico de tres cuerpos en este sistema tiene simetría de
onda 𝑝. Utilizando una descripción de polaron a temperatura cero, consegui-
mos extrapolar desde estados ligados de pocos cuerpos a estados de muchos
cuerpos en el régimen de alta densidad, descubriendo que el espectro óptico ex-
hibe una rama de cuasipartículas atractiva, una rama repulsiva y un continuo
de muchos cuerpos sólo en el rango de parámetros donde el trión de onda 𝑝 está
ligado. También evaluamos la dependencia del dopaje de las energías y pesos
espectrales correspondientes. En particular, nuestros resultados muestran que
a bajo dopaje, la fuerza oscilatoria de la rama atractiva escala con el cuadrado
de la energía de Fermi debido a la simetría de onda 𝑝 del trión. A medida
que aumentamos la densidad, descubrimos que tanto la rama repulsiva como
la atractiva se desplazan hacia el azul y que el carácter orbital asociado a estas
ramas se intercambia, lo que nos hace preguntarnos si las diferentes caracter-
ísticas orbitales del indistinguible carrier polaron podrían aumentar la fuerza
de interacción polaron-polaron. Esto representa uno de los principales focos de
nuestra futura actividad investigadora.

Para profundizar nuestra investigación en este campo, también planeamos
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analizar el escenario ICP alejándonos de nuestra suposición actual de interac-
ción de contacto y considerando una interacción de Coulomb adecuada, lo-
grando resultados cuantitativos más exactos y precisos. Para observar los
resultados de nuestro trabajo, es necesario un estado de trión de onda 𝑝 lig-
ada. Creemos que un campo magnético fuera del plano suficientemente intenso
podría alcanzar este estado, en el que el movimiento orbital del portador exper-
imenta una cuantización a nivel de Landau. Los resultados preliminares han
demostrado que, en presencia de un campo magnético, el aumento del dopaje
puede hacer que la fuerza oscilatoria del excitón se transfiera al estado de trión
de onda 𝑝, lo que abre un mundo de posibilidades para futuros estudios en el
régimen cuantizado de Landau. Por último, pero no por ello menos importante,
también estamos interesados en explorar los efectos de la temperatura sobre
las propiedades del emphpolaron de portador indistinguible, como se hizo para
el emphpolaron de portador indistinguible en el capítulo 4.

En Chapter 5, exploramos el comportamiento de sistemas bidimensionales
electrón-hueco embebidos en microcavidades ópticas bajo condiciones extremas
de desequilibrio de carga. Nuestra investigación se centra en la competencia
entre los diferentes estados emparejados electrón-hueco para casos específicos de
pozos cuánticos simples semiconductores III-V, bicapas electrón-hueco y mono-
capas de dicalcogenuro de metales de transición embebidas en una microcavidad
planar. Utilizando funciones de onda variacionales, investigamos la compleja
interacción entre el emparejamiento electrón-hueco y los modos fotónicos en el
estado básico polaritón de muchos cuerpos. Nuestros descubrimientos arrojan
luz sobre las formas en que el mar de Fermi de cargas en exceso modifica tanto
las propiedades del excitón como la constante dieléctrica del medio activo de
la cavidad, afectando al componente fotónico del estado fundamental del po-
laritón de muchos cuerpos. Demostramos que las interacciones de Coulomb de
largo alcance y el bloqueo de Pauli del mar de Fermi promueven el emparejami-
ento electrón-hueco con momento de centro de masa finito, correspondiente a
un mínimo excitónico roton. Por el contrario, el fuerte acoplamiento al modo
de fotones de la cavidad de masa ultrabaja favorece los emparejamientos de
momento cero.

Nuestra investigación se limita al régimen de desequilibrio extremo, en el
que sólo hay una partícula de especie minoritaria. El comportamiento del es-
tado de muchos cuerpos con una mayor densidad de partículas minoritarias
podría ser igualmente intrigante. Además, tenemos curiosidad por la posib-
ilidad de estados de emparejamiento más complejos, incluso en escenarios de
desequilibrio extremo. Nuestro Ansatz asume que el estado de emparejamiento
no afecta al mar de Fermi mayoritario, pero reconocemos que las interacciones
de culombio entre las partículas mayoritarias pueden desafiar esta suposición.
Relajar esta suposición podría abrir nuevas posibilidades para el estado ex-
citónico y su interacción con pares electrón-hueco de la banda mayoritaria.
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Los polaritones cargados en semiconductores bidimensionales dopados se
han convertido en un área de investigación apasionante en las últimas décadas,
ofreciendo resultados fascinantes. Esta tesis aborda cuestiones fundamentales
sobre la física de los semiconductores bidimensionales dopados embebidos en
microcavidades ópticas, dando un paso adelante en el desarrollo de dispositivos
electrónicos y optoelectrónicos de nueva generación.



Appendices

A Momentum discretization and matrix diagonal-
ization

In the numerical implementation of the eigenvalue problems encountered dur-
ing this work, we have to discretize momenta and symmetrize the eigenvalue
problem by taking into account the normalization condition of the problem
considered. In this appendix, we briefly review the numerical implementation
used to solve specifically the eigenvalue problem (1.24) — the same procedure
applies to any other scenario.

Using 2D polar coordinates, to solve Eq. (1.24) we have to discretize 2
variables, 𝑘 and 𝜃, where the angle 𝜃 is measured with respect to the reference
angle of Q. We measure energies, length, and mass scales in units of 𝜀𝑋, 𝑎𝑋,
and 𝜇, respectively, defined in (1.17), (1.16), and (1.6). Thus, in the following,
we use the simplified notation:

k𝑎𝑋 ↦ k
𝜖𝑒k + 𝜖ℎQ−k

𝜀𝑋
↦ k2 + Q2

𝑚𝑋
+ 𝐸𝑔 (A.1a)

𝑚𝑋
𝜇 ↦ 𝑚𝑋

𝑉q
𝜀𝑋𝑎2

𝑋
↦ 2𝜋

𝑞 (A.1b)

𝒜
𝑎2

𝑋
↦ 𝒜 𝑎2

𝑋
𝒜 ∑

k
↦ 1

𝒜 ∑
k

= ∫ 𝑑k
(2𝜋)2 = ∫ 𝐷2

𝑘𝐷2
𝜃 . (A.1c)

For integrals we use a Gauss-Legendre (GL) quadrature:

∫
1

−1
𝑓(𝑥)𝑑𝑥 ≃

𝑁
∑
𝑖=1

𝑤𝑖𝑓(𝑥𝑖) , (A.2)

where 𝑁 are the number of sample points, 𝑤𝑖 the weights, and 𝑥𝑖 are the
abscissae, i.e., the roots of the 𝑛-th Legendre polynomial. The generalization
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to an arbitrary interval [𝑎, 𝑏] is straightforward

∫
𝑏

𝑎
𝑓(𝑥)𝑑𝑥 ≈

𝑛
∑
𝑖=1

𝑤𝑖𝑓 (𝑏 − 𝑎
2 𝑥𝑖 + 𝑏 + 𝑎

2 ) . (A.3)

In the specific case of an unlimited momentum variable 𝑘 ∈ [0, ∞), the change
of integration variable 𝑘 ↦ tan 𝛽 results in a new finite interval 𝛽 ∈ [0, 𝜋

2 ) which
can be discretized by GL quadrature, obtaining

𝑘𝑖 = tan 𝛽𝑖 𝑤𝑘𝑖
=

𝑤𝛽𝑖

cos2 𝛽𝑖
. (A.4)

The normalization condition becomes:

1 =
𝑁𝑘

∑
𝑘

𝑁𝜃

∑
𝜃

|�̃�(0)
𝑘𝜃 |2 , (A.5)

where

�̃�(0)
𝑘𝜃 = 𝐷𝑘𝐷𝜃𝜑(0)

𝑘𝜃 𝐷2
𝑘 = 𝑑𝑘𝑘

2𝜋 = 𝑑𝛽
2𝜋

tan 𝛽
cos2 𝛽 𝐷2

𝜃 = 𝑑𝜃
2𝜋 . (A.6)

We can rewrite Eq. (1.24) as (we set 𝑉0 = 0):

(𝐸 − 𝐸𝑔) �̃�(Q)
𝑘𝜃 = (𝑘2 + 𝑄2

𝑚𝑋
) �̃�(Q)

𝑘𝜃

− ∑
𝑁𝑘𝑁𝜃

𝐷𝑘𝐷𝑘′𝐷𝜃𝐷𝜃′
2𝜋

√𝑘2 + 𝑘′2 − 2𝑘𝑘′ cos (𝜃 − 𝜃′)
�̃�(Q)

𝑘′𝜃′ , (A.7)

which can be easily diagonalized.

B Iterative method
This method has been developed in 1972 by Roger Haydock and collaborat-
ors [481] to recursively solve an eigenvalue problem

ℍℓℓ′𝜙ℓ′ = 𝐸𝜙ℓ ,

by transforming the Hamiltonian ℍℓℓ′ in a tridiagonal matrix. Once this is done,
the associated Green’s function can be evaluated exactly by continued-fraction.

The idea is to start from an initial state u0, which represents the system
physical initial conditions. For example, if we want to evaluate the photon
Green’s function, the initial state will be the state with a photon, i.e., u0 =
(1, 0, 0, … ). The complete Hilbert space is build considering all possible states
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orthogonal to the initial state.
Step 𝑛 = 0. Let us assume that u0 is normalised, i.e., u†

0u0 = 1, then the
next step is

u1 = ℍu0 − 𝑎0u0
𝑏1

= ũ1
𝑏1

𝑎0 = u†
0ℍu0 𝑏2

1 = ũ†
1ũ1 , (B.1)

which guarantees the normalisation of u1 as well as its orthogonality to u0.
Step 𝑛 = 1. The next step requires two coefficients, i.e., 𝑎1 and 𝑏2:

u2 = ℍu1 − 𝑎1u1 − 𝑏1u0
𝑏2

= ũ2
𝑏2

𝑎1 = u†
1ℍu1 𝑏2

2 = ũ†
2ũ2 . (B.2)

It is easy to show that
𝑏2 = u†

1ℍu2 . (B.3)

We can thus write the general step 𝑛 as

u𝑛+1 = ℍu𝑛 − 𝑎𝑛u𝑛 − 𝑏𝑛u𝑛−1
𝑏𝑛+1

= ũ𝑛+1
𝑏𝑛+1

(B.4a)

𝑎𝑛 = u†
𝑛ℍu𝑛 (B.4b)

𝑏𝑛+1 = √ũ†
𝑛+1ũ𝑛+1 = u†

𝑛ℍu𝑛+1 . (B.4c)

This means that on the basis u𝑛, the Hamiltonian has a tridiagonal form

ℍ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎0 𝑏1 0 0 ⋯ 0
𝑏1 𝑎1 𝑏2 0 ⋯ 0
0 𝑏2 𝑎2 𝑏3 ⋯ 0
0 0 𝑏3 𝑎3 ⋱ ⋮
⋮ ⋮ ⋮ ⋱ ⋱ 𝑏𝑛
0 0 0 ⋯ 𝑏𝑛 𝑎𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(B.5)

The photon Green’s function is defined as

𝔾 = (𝐸 + 𝑖𝜖 − ℍ)−1 , (B.6)

and can be evaluated using the continued-fraction representation:

𝐺C(𝐸) = u†
0(𝐸 + 𝑖𝜖 − ℍ)−1u0

= (𝔾)00 = 1
𝐸 + 𝑖𝜖 − 𝑎0 − 𝑏2

1

𝐸+𝑖𝜖−𝑎1− 𝑏2
2

𝐸+𝑖𝜖−𝑎2−⋯

. (B.7)
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This can also be rewritten in a simpler form to implement:

𝐺C(𝐸) = 1
𝐸 + 𝑖𝜖 − 𝑎0 − 𝑏2

1𝑔1(𝐸) (B.8a)

𝑔1(𝐸) = 1
𝐸 + 𝑖𝜖 − 𝑎1 − 𝑏2

2𝑔2(𝐸) (B.8b)

𝑔𝑛(𝐸) = 1
𝐸 + 𝑖𝜖 − 𝑎𝑛 − 𝑏2

𝑛+1𝑔𝑛+1(𝐸) . (B.8c)

In the trivial case of the coupled oscillator model (1.34), where the matrix
is already tridiagonal,

�̂� = (𝜖𝐶q
Ω
2

Ω
2 𝜖𝑋q

) (B.9)

one recovers the known results, where 𝑎0 = 𝜖𝐶q, 𝑎1 = 𝜖𝑋q, and 𝑏1 = Ω
2 , and:

𝐺𝐶(𝜔, q) = 1
(𝜔 − 𝜖𝐶q + 𝑖𝜂) − (Ω/2)2

𝜔−𝜖𝑋q+𝑖𝜂
. (B.10)

In the case where the exciton is composite, we can identify in the expres-
sion (B.8a) the exciton Green’s function in the 𝑔 = 0 weak coupling limit.
To do that, we consider the simplified case of |𝑀2⟩ (no electron-hole dressing)
and then generalize the result to ∣�̃�4⟩ (4.18).

If we organize the vector

𝜙 = (𝛼0 �̃�𝑘1
�̃�𝑘2

… �̃�𝑘𝑁𝑘
)

𝑇
, (B.11)

where 𝑘𝑖=1,2,…,𝑁𝑘
are the discretized momenta and 𝐷2

𝑘𝑖=1,2,…,𝑁𝑘
the discretized

weights — see Sec. A, then ℍℓℓ′ takes the following form

ℍℓℓ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝜈𝐶0 − 𝐸𝑔 −𝑔𝐷𝑘1
−𝑔𝐷𝑘2

⋯ −𝑔𝐷𝑘𝑁𝑘
−𝑔𝐷𝑘1

𝜔𝑋,𝑘1
𝑣𝐷𝑘1

𝐷𝑘2
⋯ ⋯

−𝑔𝐷𝑘2
𝑣𝐷𝑘1

𝐷𝑘2
𝜔𝑋,𝑘2

⋯ ⋯
⋯ ⋯ ⋯ ⋯ ⋯

−𝑔𝐷𝑘𝑁𝑘
⋯ ⋯ ⋯ 𝜔𝑋,𝑘𝑁𝑘

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠ℓℓ′

(B.12)

Starting from this, we can reconstruct the coefficients 𝑎0,1,2,… and 𝑏1,2,… that
build the Hamiltonian in its tridiagonal form. The starting point is the vector
describing a single photon state:

u0 = (1 0 … 0)𝑇 , (B.13)
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from which we can get:

𝑎0 = u†
0ℍu0 = 𝜈C0 − 𝐸𝑔 (B.14a)

𝑏1 = |ℍu0 − 𝑎0u0| = 𝑔
√√√
⎷

𝑁𝑘

∑
𝑖=1

𝐷2
𝑘𝑖

(B.14b)

u1 = ℍu0 − 𝑎0u0
𝑏1

= 1
√∑𝑖 𝐷2

𝑘𝑖

(0 −𝐷𝑘1
−𝐷𝑘2

… −𝐷𝑘𝑁𝑘
)

𝑇
. (B.14c)

It is easy to show that there all dependence on the photon energy is contained
in 𝑎0 and from the coupling to light in 𝑏1, while all the following terms in
the recursive method are 𝑔-independent and related to the matter degrees of
freedom only.

This, together with the renormalization process of the contact interaction
seen in Eq. (4.7) gives

𝐺𝐶(𝜔) = 1
𝜔 + 𝑖𝜂 − 𝑎0 − 𝑏2

1𝑔1(𝜔) = 1
𝜔 + 𝑖𝜂 − (𝜖𝐶0) − 𝑔2 ∑𝑖 𝐷2

𝑘𝑖
𝑔1(𝜔)

≡ 1
𝜔 + 𝑖𝜂 − (𝜖𝐶0) − (Ω/2)2𝐺𝑋(𝜔)|𝑔=0

, (B.15)

where we define the exciton Green’s function in the weak coupling limit as

𝐺𝑋(𝜔)|𝑔=0 = ( 𝑣
√𝑍𝑋

)
2 𝑁𝑘

∑
𝑖=1

𝐷2
𝑘𝑖

𝑔1(𝜔) , (B.16)

where

Ω = 2𝑔
𝒜 ∑

k
Φ1𝑠k = 2𝑔√𝑍𝑋

𝑣 𝑍𝑋 = 2𝜋𝜀𝑋
𝜇 . (B.17)

Note that it is correct up to a finite shift of the bare photon energy 𝜖𝐶0 =
𝛿 + 𝜖𝑋0 + ( Ω

2 )2
(4.8).

The same exact procedure can be applied to the case of ∣�̃�4⟩ (4.18).

C Finite momentum polaron state
For completeness, we generalize the finite-temperature polaron formalism il-
lustrated in Sec. 3.2 to absorption and photoluminescence at finite momentum.
This can in principle be measured in doped semiconductors using angle-resolved
photoemission spectroscopy [512, 513]. Similarly to Eq. (3.4), we approx-
imate the exciton operator in the Heisenberg picture at finite momentum
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̂𝑥Q(𝑡) = 𝑒𝑖�̂�𝑡 ̂𝑥Q𝑒−𝑖�̂�𝑡 as

̂𝑥Q(𝑡) ≃ 𝜑(Q)
0 (𝑡) ̂𝑥Q + 1

𝒜 ∑
k,q

𝜑(Q)
kq (𝑡) ̂𝑐†

q ̂𝑐k ̂𝑥Q+q−k . (C.1)

The derivation then follows similarly to the zero momentum case. We minimize
the error function ΔQ(𝑡) = ⟨ ̂𝑒Q(𝑡) ̂𝑒†

Q(𝑡)⟩𝛽, where ̂𝑒Q(𝑡) = 𝑖𝜕𝑡 ̂𝑥Q(𝑡)−[ ̂𝑥Q(𝑡), �̂�],
obtaining the following eigenvalue problem:

𝐸(Q)𝜑(Q)
0 = 𝜖𝑋Q𝜑(Q)

0 − 𝑣
𝒜2 ∑

k,q
𝑓q(1 − 𝑓k)𝜑(Q)

kq (C.2a)

𝐸(Q)𝜑(Q)
kq = 𝐸𝑋Qkq𝜑(Q)

kq − 𝑣𝜑(Q)
0 − 𝑣

𝒜 ∑
k′

(1 − 𝑓k′)𝜑(Q)
k′q , (C.2b)

where 𝐸𝑋Qkq = 𝜖𝑋Q+q−k + 𝜖k − 𝜖q. The exciton Green’s function can thus be
written in terms of the eigenvalues 𝐸(Q)

𝑛 and eigenvectors 𝜑(Q)
𝑛0 as

𝐺𝑋(𝜔, Q) = ∑
𝑛

|𝜑(Q)
𝑛0 |2

𝜔 − 𝐸(Q)
𝑛 + 𝑖0+

. (C.3)

Equivalently, the exciton Green’s function can be written in terms of the
exciton self-energy at finite momentum

𝐺𝑋(𝜔, Q) = 1
𝜔 − 𝜖𝑋Q − Σ𝑋(𝜔, Q) (C.4a)

Σ𝑋(𝜔, Q) = 1
𝒜 ∑

q
𝑓q𝒯(𝜔 + 𝜖q, q + Q) , (C.4b)

where the inverse of the 𝑇 matrix is defined in Eq. (3.12).
The absorption of a photon with momentum Q is given by

𝐴𝑋(𝜔, Q) = − 1
𝜋 Im𝐺𝑋(𝜔, Q) . (C.5)

Absorption and photoluminescence can be connected using detailed balance
conditions as derived in Sec. 1.5.3, starting from Fermi’s golden rule definitions:

𝐴𝑋(𝜔, Q) = ∑
𝑛,𝜈

⟨𝑛| ̂𝜌0|𝑛⟩|⟨𝜈| ̂𝑥†
Q|𝑛⟩|2𝛿(𝐸𝜈𝑛 − 𝜔) (C.6a)

𝑃𝑋(𝜔, Q) = ∑
𝑛,𝜈

⟨𝜈| ̂𝜌|𝜈⟩|⟨𝑛| ̂𝑥Q|𝜈⟩|2𝛿(𝐸𝜈𝑛 − 𝜔) . (C.6b)

where 𝐸𝜈𝑛 = 𝐸𝜈 −𝐸𝑛. Thus, the detailed balance condition is identical to that
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Fig. D.1: Inverse of the at-
tractive (solid blue) and repuls-
ive (solid purple) polaron effective
masses as a function of doping. As
a reference, the inverse of the trion
effective masses is shown (dashed
gray).

at zero momentum:

𝑃𝑋(𝜔, Q) = 𝑍0
𝑍𝑖𝑛𝑡

𝑒−𝛽𝜔𝐴𝑋(𝜔, Q) . (C.7)

D Polaron masses at zero temperature
In this appendix, we study the effective masses of both attractive and repuls-
ive polaron branches in the weak coupling regime. We evaluate the polaron
masses for both branches, at zero temperature, by evaluating the momentum
dependence of their dispersion and by fitting it, at low momentum, with the
expression

𝐸𝐴,𝑅(Q) ≃ 𝐸𝐴,𝑅 + Q2

2𝑚∗
𝐴,𝑅

. (D.1)

The results of the fitting are shown in Fig. D.1.
For increasing doping, the repulsive polaron effective mass 𝑚∗

𝑅 first in-
creases, and eventually diverges for a critical value of 𝐸𝐹 ≃ 1.4𝜀𝑇 , at which the
repulsive polaron dispersion becomes flat. For larger values of 𝐸𝐹 , the effective
mass changes sign and becomes negative, signaling that the repulsive branch
develops a minimum at finite center of mass momentum Q ≠ 0. Note that 𝑚∗

𝑅
recovers the exciton mass at zero doping, i.e., 𝑚∗

𝑅 → 𝑚𝑋 when 𝐸𝐹 → 0.
In contrast, the attractive branch effective mass monotonously decreases

for increasing doping. When 𝐸𝐹 → 0, 𝑚∗
𝐴 does not recover the trion mass

which, for the exciton to electron mass ratio 𝑚𝑋/𝑚𝑒 = 2 relevant for TMD
monolayers, is 𝑚𝑇 = 3/2𝑚𝑋. The same result was also found in calculations
with a different mass ratio [374]. This is due to the fact that the polaron ansatz
∣𝑃 (Q)

3 ⟩ (2.28) which includes a single particle-hole excitation, does not allow to
describe the “polaron-molecule” transition, as also explained in Ref. [374].

In order to describe the “polaron-molecule” transition one should instead
add a particle-hole dressing to the trion ansatz ∣𝑇 (Q)

2 ⟩ (2.20) to define the
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dressed trion state

|𝑇 (Q)
4 ⟩ = 1√

𝒜
∑

|k|,|k′|>𝑘𝐹 ,|q|<𝑘𝐹

𝜂(Q)
kk′q ̂𝑥†

Q+q−k−k′ ̂𝑐†
k ̂𝑐†

k′ ̂𝑐q|𝐹𝑆⟩ . (D.2)

At low enough doping, one would discover that there is a first-order transition
from the polaron state ∣𝑃 (0)

3 ⟩ to the “molecular” dressed trion state ∣𝑇 (0)
4 ⟩.

One can however describe this transition within a polaron description only, by
considering a polaron ansatz up to two particle-hole excitations and allowing a
finite center of mass momentum Q [385], thus considering

∣𝑃 (Q)
5 ⟩ = [𝜑(Q)

0 ̂𝑥†
Q + 1

𝒜 ∑
k,q

𝜑(Q)
kq ̂𝑥†

Q+q−k ̂𝑐†
k ̂𝑐q

+ 1
2𝒜2 ∑

k1,2,q1,2

𝜑(Q)
k1k2q1q2

̂𝑥†
Q+q1+q2−k1−k2

̂𝑐†
k1

̂𝑐†
k2

̂𝑐q1
̂𝑐q2

⎤⎥
⎦

|𝐹𝑆⟩ . (D.3)

Here, the polaron-molecule transition can be described as a transition from
∣𝑃 (0)

5 ⟩ to ∣𝑃 (k𝐹 )
5 ⟩ at low enough doping [385].

E Renormalization procedure beyond the weak coup-
ling limit

We discuss here an improvement of the renormalization procedure employed in
Sec. 1.5.2, to increase its accuracy beyond the weak coupling limit. In Sec. 1.5.2
we saw that in the weak coupling limit 𝑔 ≪ 𝑎𝑋𝜀𝑋, defining the renormalized
photon-exciton detuning 𝛿 as in Eq. (1.68) and the Rabi splitting Ω as in
Eq. (1.69), enables one to recover the one-particle LP energy of the coupled
oscillator model (1.37c). Beyond weak coupling, the exciton wave function is
strongly modified by light-matter coupling, thus impacting the detuning and
the Rabi splitting. Here, we provide alternative definitions for the effective
detuning 𝛿eff and Rabi splitting Ωeff that coincide with the previous ones for
𝑔 ≪ 𝑎𝑋𝜀𝑋, but whose validity extends beyond this limit. Comparing the two
results allows one to estimate the quantitative error made in our study of the
evolution of the system phase diagram with increasing Rabi splitting Ω.

To renormalize the theory, it is necessary to identify a measurable quantity
that can be used to define the renormalized quantities in the theory. Ideally,
the quantity we would use would be the photon energy. However, this is not
directly measurable, since the renormalization only occurs for a cavity that
contains an active medium, and in that case, the photon mode is replaced
by the strongly coupled polariton modes. To circumvent this problem, as in
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Ref. [140], we define the effective detuning 𝛿eff and Rabi splitting Ωeff in a way
analogous to an experimental procedure — by fitting the polariton dispersion
to a coupled oscillator model.

In particular, we employ a two-parameter least square fitting procedure to
match the LP dispersion 𝐸 evaluated numerically from Eqs. (5.13) with the
LP dispersion obtained by the coupled oscillator model (1.37c),

𝜔LPQ = 𝐸𝑋0 + 𝐸𝑔 +
𝛿eff + Q2

2𝑚C
+ Q2

2(𝑚𝑒+𝑚ℎ)
2

− 1
2

√(𝛿eff + Q2

2𝑚C
− Q2

2(𝑚𝑒 + 𝑚ℎ))
2

+ Ω2
eff , (E.1)

where 𝛿eff and Ωeff are fitting parameters. In Fig. E.1 we compare the results
obtained for the fitting parameters 𝛿eff and Ωeff with 𝛿 and Ω as defined in
Eqs. (1.68) and (1.69), respectively. In Fig. E.1 (a)-(d) we fix the light-matter
coupling 𝑔 and vary 𝛿, while in Fig. E.1 (e)-(h), we fix 𝛿 and vary 𝑔. As
expected, 𝛿eff → 𝛿 and Ωeff → Ω when 𝑔 ≪ 𝜀𝑋𝑎𝑋. Moreover, we observe that
the differences |𝛿eff−𝛿| and Ωeff−Ω remain relatively small also when 𝑔 ≳ 𝜀𝑋𝑎𝑋.
These results allow us to estimate the size of the corrections that would arise
from an improved renormalization scheme. We see that these appear small.
Nonetheless, there may be some changes in the results of Ch. 5, when studying
the phase diagram beyond the 𝑔 ≪ 𝜀𝑋𝑎𝑋 regime.

F Origin of 𝐸∗
𝐹 and 𝛿∗

We explain here the origin of the “universal point” (𝐸∗
𝐹 , 𝛿∗) found in the phase

diagram of Fig. 5.9. Remarkably, exactly at this point there is no Ω depend-
ence of either the SF-FF transition (for unscreened interactions) or the SF-N
transition (for screened interactions). One way to understand the origin of this
universal point is by comparing the many-body LP energy of the SF state at
Q = 0, 𝐸0, with that of the FF phase at 𝑄min, 𝐸𝑄min

. The two energies clearly
coincide at this 1st order boundary (for screened interactions the FF phase may
be replaced by the N phase if the density is large enough). A limiting case of
this boundary occurs when Ω → 0; in this limit, the boundary occurs when

𝛿 = 𝐸(𝐸𝐹 )
𝑋Qmin

− 𝐸𝑋0 , (F.1)

(assuming 𝐸𝐹 > 𝐸𝐹0), where 𝐸(𝐸𝐹 )
𝑋𝑄min

is the many-body exciton (i.e., Ω = 0
case) energy of the FF phase for a majority species Fermi energy 𝐸𝐹 . This con-
dition corresponds to a crossing between a photonic SF state and the excitonic
FF state. At non-zero Ω, the SF state becomes polaritonic.
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The existence of the special point (𝐸∗
𝐹 , 𝛿∗) corresponds to a point where

this critical condition is not affected by light-matter coupling. To see this, we
consider the following. At each 𝐸𝐹 , we can choose the detuning 𝛿 so as to
satisfy Eq. (F.1), thus on the SF-FF boundary at Ω = 0. We then plot in
the top panels of Fig. F.1 𝐸0 − 𝐸𝑄min

, the energy difference between the LP
energy at Q = 0 and Q = 𝑄min, as a function of Ω. We plot this energy
difference for different values of 𝐸𝐹 . For 𝐸𝐹 < 𝐸∗

𝐹 , this energy difference
decreases with Ω. This means that on increasing Ω, the SF-FF boundary
moves to larger values of the detuning (see Fig. 5.9). Conversely, if 𝐸𝐹 > 𝐸∗

𝐹 ,
the energy difference increases with Ω, so the SF-FF boundary moves down
to lower detuning. Exactly at 𝐸𝐹 = 𝐸∗

𝐹 , we observe that 𝐸0 − 𝐸𝑄min
= 0,

becomes exactly independent of Ω. As such, at this value of 𝐸∗
𝐹 , the critical

detuning is 𝛿∗, independent of Ω
Given the effective Ω independence seen at 𝐸∗

𝐹 , an alternative way of identi-
fying the value of 𝐸∗

𝐹 and 𝛿∗ is by finding a condition for which the eigenenergy
of the variational state becomes independent of the coupling to light. To do this,
following Ref. [140], we rewrite the many-body eigenvalue problem of Eqs. (5.13)
in terms of the renormalized photon energy 𝜔CQ = 𝜔C0 + Q2/2𝑚C (1.67), to
give an expression which is independent of the UV cutoff. We thus separate
out the divergent part of the relative wave-function 𝜑(Q)

k ,

𝜑(Q)
k = 𝛽(Q)

k + 𝑔𝛼(Q)
0

𝐸 − 𝜉kQ
, (F.2)

and rewrite (5.13) in the following equivalent forms:

(𝐸 − 𝜉kQ) 𝛽(Q)
k = − 1

𝒜 ∑
k′>𝑘𝐹

𝑉k−k′𝛽k′Q + 𝑔𝛼(Q)
0

𝒜 ∑
k′>𝑘𝐹

𝑉k−k′

−𝐸 + 𝜉k′Q
(F.3a)

[𝐸 − 𝜔CQ + 𝑔2

𝒜 ( ∑
k>𝑘𝐹

1
−𝐸 + 𝜉kQ

− ∑
k

1
−𝐸𝑋 + 𝜖k,1 + 𝜖k,2

)] 𝛼(Q)
0

= 𝑔
𝒜 ∑

k>𝑘𝐹

𝛽(Q)
k . (F.3b)

All sums are now convergent. For the solution of these equations to be in-
dependent of light-matter coupling means the 𝐸 must match the solution at
𝑔 = 0, i.e.,

𝐸 = 𝜔CQ . (F.4)

This condition corresponds to the system energy 𝐸 coinciding with 𝜔CQ, the
energy of the photon mode at 𝐸𝐹 = 0. Using Eq. (F.4) in Eq. (F.3b), we obtain
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the following equation to define 𝐸∗
𝐹 :

∑
k>𝑘𝐹

1
−𝐸 + 𝜉kQ

− ∑
k

1
−𝐸𝑋0 + 𝜖k,1 + 𝜖k,2

= 1
𝑔𝛼(Q)

0
∑

k>𝑘𝐹

𝛽(Q)
k . (F.5)

Note that this condition is indeed independent of 𝑔. To see this, we formally
invert Eq. (F.3a), to give 𝛽(Q)

k :

𝛽(Q)
k = 𝑔𝛼(Q)

0 ∑
k′>𝑘𝐹

(𝕄Q
−1)k,k′𝐿k′Q , (F.6)

where the matrix 𝕄Q and vector 𝐿Q in relative momentum space are defined
respectively as

(𝕄Q)k,k′ = (𝐸 − 𝜉kQ) 𝛿k,k′ + 𝑉k−k′ (F.7a)

𝐿kQ = ∑
k′>𝑘𝐹

𝑉k−k′

−𝐸 + 𝜉k′Q
. (F.7b)

We thus find that Eq. (F.5) is independent of both 𝑔 and 𝛼(Q)
0 :

∑
k>𝑘𝐹

1
−𝐸 + 𝜉kQ

− ∑
k

1
−𝐸𝑋0 + 𝜖k,1 + 𝜖k,2

= ∑
k>𝑘𝐹

∑
k′>𝑘𝐹

(𝕄Q
−1)k,k′𝐿k′Q . (F.8)

In addition to satisfying Eq. (F.8), 𝐸∗
𝐹 lies on the SF-FF (SF-N) bound-

aries for unscreened (screened) interactions and, thus, it also has to lie on
the boundary at Ω = 0. With this in mind, we plot in the bottom panels of
Fig. F.1 the energy 𝜔C0 = 𝐸0 obtained by solving Eq. (F.8) at Q = 0 as a
function of 𝐸𝐹 . From the crossing of this curve with that of the FF state in
the absence of light, i.e., the FF exciton energy 𝐸(𝐸𝐹 )

𝑋Q𝑚𝑖𝑛 (or, for the screened
case, the normal state energy 𝐸N), we recover the value of 𝐸∗

𝐹 . The corres-
ponding value of the detuning 𝛿∗ is given by Eq. (F.1) for 𝐸𝐹 = 𝐸∗

𝐹 , i.e.,
𝛿∗ = 𝐸(𝐸∗

𝐹 )
X𝑄min

− 𝐸𝑋0. We thus find (𝐸∗
𝐹 , 𝛿∗) ≃ (1.55𝜀𝑋, 1.82𝜀𝑋) (for screened

interactions) and (𝐸∗
𝐹 , 𝛿∗) ≃ (1.95𝜀𝑋, 0.91𝜀𝑋) (unscreened interactions).

Finally, we remark that the 𝑔 independence at 𝐸∗
𝐹 does not imply that light

and matter are fully decoupled at this point. Indeed, the photon frequency
depends on the active medium through the process of renormalization. How-
ever, precisely at 𝐸∗

𝐹 , the photon self-energy arising due to the light-matter
interaction only contains the term that appears in Eq. (1.67), while all other
terms cancel. Given the general arguments that led us to determine the point
(𝐸∗

𝐹 , 𝛿∗), it is likely that it persists as a special point in the photon self-energy
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also beyond the variational approach used in this work.
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Fig. E.1: Comparison between detuning 𝛿 (1.68) and Rabi splitting Ω (1.69), as
defined in the renormalization procedure of Sec. 1.5.2, and the respective quantities
𝛿eff and Ωeff obtained by a least square fitting procedure — see text. Parameters
are for a GaAs microcavity with a single quantum well (𝑑 = 0), 𝑚𝑒/𝑚ℎ = 0.25, and
𝐸𝐹 = 0.
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Fig. F.1: Illustration of the dependence of energies on Rabi splitting close to 𝐸∗
𝐹 .

The parameters are for a GaAs heterostructure with a single quantum well 𝑑 = 0,
mass ratio 𝑚2/𝑚1 = 0.25, and for screened (left panels) and unscreened (right panels)
interactions. Top panels: energy difference between the many-body polariton SF
energy 𝐸0 and the FF energy 𝐸𝑄min

(top right) or between 𝐸0 and the normal state
energy 𝐸N (top left). For each Fermi energy, 𝐸𝐹 , the detuning is fixed according to
Eq. (F.1), describing the SF-FF boundary at Ω = 0. Bottom panels: Photon energy
𝜔C0 satisfying Eq. (F.8) at Q = 0 and 𝐸𝑄min

— for the values of 𝐸𝐹 considered in
the plot and for screened interactions, 𝐸𝑄min

coincides with the normal state energy
𝐸N, i.e., 𝑄min = 𝑘𝐹 k̂𝐹 .
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